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DISCONTINUOUS MAPS WHOSE ITERATIONS ARE
CONTINUOUS

KOUKI TANITYAMA

ABSTRACT. Let X be a topological space and f : X — X a bijection. Let C(X, f)
be a set of integers such that an integer n is an element of C(X, f) if and only if
the bijection f™ : X — X is continuous. A subset S of the set of integers Z is said
to be realizable if there is a topological space X and a bijection f : X — X such
that S = C(X, f). A subset S of Z containing 0 is called a submonoid of Z if the
sum of any two elements of S is also an element of S. We show that a subset S of
Z is realizable if and only if S is a submonoid of Z. Then we generalize this result
to any submonoid in any group.

1. Introduction

Let X be a topological space and f : X — X a bijection. By f~!: X — X

we denoted the inverse mapping of f. For each integer n we define a bijection
ff: X = X by

Jofo---of (n>0)
—_—
fr=9q idx (n=0)

[of o0t (n<).

\ 1

We note that f™ o f™ = f™*" for any integers m and n. Let Z be the set of all
integers. We define a subset C(X, f) of Z by

C(X,f)={n€Z|f": X — X is continuous.}.
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A subset S of Z is said to be realizable if there is a topological space X and a
bijection f : X — X such that S = C(X, f). A subset S of Z is called a submonoid
of Z if S satisfies the following two conditions.

(1) S contains 0,
(2) if S contains a and b then S contains a + b.

Note that it is not necessary that S contains a — b.

FExample 1.1. The following subsets of Z are submonoids of Z.
Z,{n € Zn > 0}, {0} U{n € Z|n < =3}, {2n|n € Z}, {0} U{3n|n € Z,n > 2},
{3a + 5bla,b € Z,a,b >0} ={0,3,5,6,8} U{n € Z|n > 9}, {0}.

Theorem 1.1. A subset S of the set of all integers Z is realizable if and only if S
15 a submonoid of Z.

We generalize Theorem 1.1 to any submonoid in any group in the third section.

2. Proof of Theorem 1.1

Proposition 2.1. Let X be a topological space and f : X — X a bijection. Then
the subset C(X, f) of Z is a submonoid of Z.

Proof. Since f° = idx is continuous the set C(X, f) contains 0. Suppose that C(X, f)
contains @ and b. Then f® and f° are continuous. Then the composition f°o f@ =
fo*? is also continuous. Therefore C(X, f) contains a + b. O

Proof of Theorem 1.1. It follows from Proposition 2.1 that if S is realizable then
S is a submonoid of Z. We will show that if S is a submonoid of Z then § is
realizable. Let S be a submonoid of Z. For each integer n we define a subset X, of
the 2-dimensional Euclidean space R? as follows.

v _{ myx2) (ne€S)
T Ik x (0, U2,3)) (ne(Z)\S)).

Let X = U X,,. Then X is a topological subspace of R% Let f : X — X be a

neZ
bijection defined by the followings.

(1) if n,n+1€ S, then f((n,z)) = (n+1,z) for each = € [0,2),

(2) if n,n+1€(Z\S9), then f((n,z)) = (n+1,z) for each z € ([0,1) U[2,3)),

3)ifneSandn+1e€(Z\S), then f((n,z)) = (n+1,z) for each z € [0,1)
and f((n,x)) = (n+ 1,2 + 1) for each z € [1,2),

(4) ifn € (Z\ S) and n+1 € S, then f((n,x)) = (n+ 1,2) for each x € [0,1)

and f((n,z)) = (n+ 1,z — 1) for each = € [2,3).
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By definition we have f™(X,,) = X, for any integers m and n. Suppose that n €
(Z\S). Since Xy = {0} x[0,2) is connected and f™"(Xy) = X,, = {n} x([0,1)U[2,3))
is not connected, we see that f™ is discontinuous. Therefore n is not an element
of C(X, f). Suppose that n € S. For each m € (Z\ S) we see that f™ maps
Xy ={m} x([0,1)U[2,3)) onto X,,4n. If m+mn € 5 then Xy, = {m+n} x|0,2)
and f"((m,z)) = (m+n,z) for each z € [0,1) and f*((m,z)) = (m+n,z — 1) for
each = € [2,3). Therefore f™ maps X,, continuously onto X,,.,. f m+n € (Z\ S)
then X1, = {m + n} x ([0,1) U [2,3)) and f*((m,z)) = (m + n,x) for each
xz € ([0,1)U[2,3)). Therefore f™ maps X,, homeomorphically onto X,,,. Thus we
see that f"|x,, is continuous for each m € (Z\ S). Suppose that m is an element of
S. Then X,, = {m}x[0,2). Since S is a submonoid of Z we see that m+n is also an
element of S. Therefore X,,, = {m+n}x[0,2). We see that f™((m,x)) = (m+n, )
for each x € [0,2). Therefore f™ maps X,, homeomorphically onto X, ,,. Thus we
see that f"|x,, is continuous for each m € S. Therefore f" is continuous. Therefore
n is an element of C(X, f). Thus we have S = C(X, f) as desired. O

Example 2.1. Figure 1 illustrates X and f : X — X in the proof of Theorem 1.1
where S = C(X, f) ={0} U {n € Z|n > 3}.

TR
Pl

X3 Xo X1 Xo X1 Xy X3 Xy Xj

FIGURE 1

We note that the topological type of the topological space X in the proof of
Theorem 1.1 is independent of the choice of the subset S of Z. Actually X is a
disjoint union of countably many semi-open intervals. Thus we have shown the
following proposition.

Proposition 2.2. Let X be a disjoint union of countably many semi-open intervals.
Then for any submonoid S of Z there is a bijection f : X — X such that S =

C(X, f)-

We note that not all topological spaces have such a property as X in Proposition
2.2. For example, let X be a compact Hausdorff space. Then a continuous bijection
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from X to X is a homeomorphism. Therefore, for any bijection f : X — X the set
C(X, f) is invariant under the map r : Z — Z defined by r(z) = —z, z € Z.

3. Generalization

In this section we reformulate and generalize Theorem 1.1 as follows. Let G be a
group and e the unit element of G. A subset S of G is called a submonoid of G if S
satisfies the following two conditions.

(1) S contains e,
(2) if S contains a and b then S contains ab.

Let X be a topological space. By B(X) we denote the set of all bijections from X
to X. Then B(X) forms a group under the composition of maps. Let A(X) be a
subgroup of B(X). By C(A(X)) we denote the set of all continuous bijections in
A(X). Since idx : X — X is continuous and the composition of two continuous
maps is continuous, we see that C(A(X)) is a submonoid of A(X). Let G and H
be groups and S and 7' submonoids of G and H respectively. We say that the pair
(G, S) is isomorphic to the pair (H,T) if there is a group isomorphism h : G — H
such that h(S) =T.

Theorem 3.1. Let G be a group and S a submonoid of G. Then there is a topological
space X and a subgroup A(X) of B(X) such that the pair (G, S) is isomorphic to
the pair (A(X),C(A(X))).

Proof. Let G be a group and S a submonoid of G. We give a discrete topology to
G. Let R be the 1-dimensional Euclidean space and G' x R the product topological
space. For each element n in G we define a subspace X,, of G x R as follows.

v [ xp2) (nes)
Tl x (0D U23) (ne(G\S)).

Let X = U X,. Then X is a topological subspace of G x R. For each element n

ned
in G we define a bijection f, : X — X by the followings.

(1) if m,mn € S, then f,((m,z)) = (mn,z) for each x € [0,2),
(2) if m,mn € (G\ 9), then f,((m,x)) = (mn,z) for each z € ([0,1) U [2,3)),
(3) if m € S and mn € (G '\ S), then f,((m,z)) = (mn,x) for each z € [0,1)
and f,,((m,z)) = (mn,z + 1) for each z € [1,2),
(4) it m € (G\ S) and mn € S, then f,((m,z)) = (mn,z) for each z € [0, 1)
and f,((m,z)) = (mn,x — 1) for each z € [2,3).
For any two elements m and n in G we see by definition that f, o f,, = f.n. Let
A(X) be the subgroup of B(X) defined by A(X) = {f.|n € G}. Then we see
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that the group A(X) is isomorphic to the group G. Then by an entirely analogous
argument as in the proof of Theorem 1.1 we see that C(A(X)) = {fn|n € S}. Thus
we see that the pair (A(X),C(A(X))) is isomorphic to the pair (G, S) as desired. [

Remark 3.1. (1) In general the group B(X) is so big that we should take a subgroup
A(X) of B(X) as in the statement of Theorem 3.1. In fact there is a group G that
is not isomorphic to B(X) for any set X. For example, it is easy to check that B(X)
is not isomorphic to a cyclic group of order 3 for any set X.

(2) Even in the case that a group G is isomorphic to B(X) for some set X, not
all pair (G, S) is realized by the pair (B(X),C(B(X))) under any topology on X.
Let G = S5 be a symmetric group of degree 3. Note that every submonoid of a
finite group G is a subgroup of G. We will see that the pair (S3,C3) is not real-
ized where Cj is a cyclic group of order 3. It is clear that B(X) is isomorphic to
S3 if and only if X contains exactly 3 points. Therefore we may suppose without
loss of generality that X = {a,b,c}. Then, up to self-homeomorphism, there are 9
topologies on X. They are Dy = {0, X}, Dy = {0,{a}, X}, D3 = {0,{a, b}, X},
D, = {97 {a}7 {a7 b}= X}7 D; = {Q)a {a}7 {bv 0}7 X}v D = {@7 {CL}, {b}7 {a7 b}7 X},
D; = {0,{a},{a,b},{a,c}, X}, Dy = {0,{a},{b},{a,b},{a,c}, X} and Dy = 2%.
Then we see that the subgroup C(B(X,D;)) of B(X,D;) is the trivial group for
1 = 4,8, a cyclic group of order 2 for ¢+ = 2,3,5,6,7 and the symmetric group of
degree 3 B(X,D;) for i = 1,9. Thus C(B(X,D;)) is not a cyclic group of order 3 for
any 1.

Next we give a variation of Theorem 3.1 as follows. A monoid M is a semigroup
with the unit element e. Namely M has an associative binary operation such that
xe = exr = x for any element x € M. A subset S of a monoid M is said to be a
submonoid of M if e is an element of S and for any elements a and b of S the element
ab is an element of S. Let X be a topological space. By M(X) we denote the set
of all maps from X to X. Then M(X) forms a monoid under the composition of
maps. Let A(X) be a submonoid of M(X). By C(A(X)) we denote the set of all
continuous maps in A(X). Then we see as before that C(A(X)) is a submonoid of
A(X). Let M and N be monoids and .S and 7" submonoids of M and N respectively.
We say that the pair (M, S) is isomorphic to the pair (NN, T) if there is a monoid
isomorphism h : M — N such that h(S) =T.

Theorem 3.2. Let M be a monoid and S a submonoid of M. Then there is a
topological space X and a submonoid A(X) of M(X) such that the pair (M,S) is
isomorphic to the pair (A(X),C(A(X))).

Proof. We define a topological space X to be a subspace of M xR as in the proof of
Theorem 3.1. The map f,, : X — X is also defined in the same way for each element
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n of M. The only difference is that the map f,, is not a bijection in general. Note
that in the proof of Theorem 3.1 the assumption that n has an inverse element in
the group G assured the fact that f,, : X — X is a bijection. Then the rest of the
proof is the same as the proof of Theorem 3.1. U

Finally we give another variation of Theorem 3.1 as follows. As we have already
remarked, if X is compact Hausdorff and f : X — X is a continuous bijection, then
/7' : X — X is also continuous. Therefore for any subgroup A(X) of B(X) the
submonoid C(A(X)) of A(X) is a subgroup of A(X). Then we have the following
theorem.

Theorem 3.3. Let G be a group and H a subgroup of G. Then there is a com-
pact Hausdorff space X and a subgroup A(X) of B(X) such that the pair (G, H) is
isomorphic to the pair (A(X),C(A(X))).

Proof. We give a discrete topology to G. Let G x [0, 1] be the product topological
space and X = (G x [0,1]) U{oc} the one-point compactification of G x [0, 1]. Then
X is a compact Hausdorff space. For each element n in G we define a bijection
fn: X = X by the followings.

(1) For each m in G and x in (0,1), f.((m,z)) = (mn,x).
(2) If m,mn € Horm,mn € (G\H), then f,((m,0)) = (mn,0) and f,((m,1)) =
(mn, 1).
(3) fme Handmn € (G\H),orm € (G\ H) and mn € H, then f,((m,0)) =
(mn, 1) and f,((m, 1)) = (mn,0).

(4) fn(00) = o0.
We see by the definition that the composition f,, o f,, is equal to f,,, for any elements
m and n in G. Let A(X) be the subgroup of B(X) defined by A(X) = {f.|n € G}.
Then we see that the group A(X) is isomorphic to the group G. We will show that
C(A(X)) = {fuln € H}. First we will show that f, is continuous at oo for any n
in G. Let U be an open neighbourhood of co. Then X \ U is a compact subset of
G x [0,1]. Therefore there is a finite subset F' of G such that X \ U is contained
in FF'x[0,1]. Let V =X\ (Fn™') x [0,1]). Then V is an open neighbourhood of
oo such that f,(V) = X \ (F x [0,1]) is contained in U as desired. Suppose that
n € (G\ H). Then f, maps {e} x [0,1] to {n} x [0,1]. Since the unit element e
isin H, f.((e,0)) = (n,1) and f,((e,1)) = (n,0). Therefore f, is not continuous
and f, is not in C(A(X)). Suppose that n € H. Let m be an element of G. Then
we see that mn is an element of H if and only if m is an element of H. Therefore
fn maps {m} x [0,1] to {mn} x [0,1] by the formula f,((m,z)) = (mn,z) for each
x in [0, 1]. Therefore the restriction map fy|{myx 0,1 is continuous for each m in G.
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Therefore f,, is an element of C(A(X)). Thus the pair (G, H) is isomorphic to the
pair (A(X),C(A(X)). 0

Remark 3.2. Theorem 3.1, Theorem 3.2 and Theorem 3.3 concern the pairs (G, S),
(M, S) and (G, H) respectively. There are some known results not on a pair but
on a single group or a single monoid. It is shown in [1] that for any group H there
exists a topological space X such that the group of all self-homeomorphisms of X is
isomorphic to H. It is shown in [2] that for any monoid S there exists a topological
space X such that the monoid of all nonconstant continuous maps from X to X is
isomorphic to S.
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