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A Problem in Pythagorean Arithmetic

Victor Pambuccian

Meinem Lehrer, Stefan Kleitsch, in Dankbarkeit gewidmet

Abstract  Problem 2 at the 56th International Mathematical Olympiad (2015)
asks for all triples (a, b, ¢) of positive integers for which ab — ¢, bc — a, and
ca — b are all powers of 2. We show that this problem requires only a primitive
form of arithmetic, going back to the Pythagoreans, which is the arithmetic of
the even and the odd.

1 Introduction

Problem 2 at the 56th International Mathematical Olympiad (2015), proposed by
Dusan Djukid¢, asked contestants to find all triples (a, b, ¢) of positive integers for
which ab —c, bc —a, and ca — b are all powers of 2. Here a power of 2 is understood
to be 2" with n a nonnegative integer.

As is well known, problems at the International Mathematical Olympiad should
be solvable with elementary means, and our aim is to find out just how elementary a
formal theory is needed to solve Problem 2. Since it speaks about positive integers
and the operations of addition and multiplication, an axiom system for a theory in
which it holds will need to contain the binary operations + and -, the binary relation
<, and the constants 0 (both < and 0 are needed so we can express the fact that all
the numbers we deal with are nonnegative) and 1 (so that we can express the fact that
the successor of a number # in the order determined by < isn + 1).

2 The Axiom System for PA™ and Its Extensions

Thus, we need axioms for the usual rules for addition 4+ and multiplication -, for 1
and 0, that is:

A1l x+y)+z=x+(y+2),
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A2 X+y=y-+x

A3 x-y)z=x-(y-2),
A4 X-y=Yy-x

A5 x-(y+z)=x-y+x-z
A6 x+0=xAx-0=0,
A7 x-1=ux

We also need axioms for inequality < and a binary operation —, so that we can
express the difference between two numbers if the result is positive. These are

A8 x<yAny<z)—>x<z,

A9 —x < X,

A10 X<yVx=yVvy<x,

A1 X<y—=>x+z<y+z,

A12 O<zAXx<y)—>x-z<y-z
A13 x<y—->x+(y—x)=y,

A14 0<IA(x>0—=>(x>1Vvx=1),
A15 x>0vx=0.

Al1-AlS5 represent an axiom system for what is referred to as PA™ in Kaye [I,
pp- 16—-18]. Models of PA™ consist of numerals; thatis,n = (1 + (1 +---4 1)) with
1 occurring n times, and, possibly, of nonstandard elements, which are greater than
all numerals. The structures satisfying the axioms of PA™ are the sets of nonnegative
elements of what are referred to as discretely ordered rings.

By referring to powers of 2, our problem seems to require more, for we do not
have the exponential function in our vocabulary. It turns out that we do not need it,
for we can express the fact that a is a power of 2 simply by defining a unary predicate
PT which stipulates that a positive number a is a power of 2 if and only if all of its
divisors, except 1, are even. Formally, this amounts to (the divisibility predicate |
being defined as usual, a | b :< (Ic)a - ¢ = b):

PT(n):on>0A(NNd)(d |nAnd>1—2]|d). (1)

This definition certainly corresponds to our intuitions regarding powers of 2, but
it may not satisfy properties we find to be intrinsic to the notion of power of 2,
properties which can be formalized as follows:

PT(a) A PT(b) — PT(ab), 2)
PT(a) A\PT(b) Na<b —a|b, 3)
PT(a)Aa <bAb<2-a— —PT(bh). )

This is perhaps not so surprising if one thinks that PA™ is a very weak theory in
which one cannot even show that among two consecutive numbers one is even and
the other one is odd. In fact, for any natural number n, there may be sequences of
n consecutive numbers, none of which are odd and none of which are even. For the
positive cone of Z[X] (here Z[X] is ordered by Y ', ¢; X I > 0ifand onlyifc, > 0)
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is a model of PA™, and the sequence X + 1,..., X + 7 has no even element and no
odd element. Yet none of (2)—(4) hold in PA™ + A16 either, where A16 is the axiom
expressed in a language enriched with the unary operation symbol [3], stating that
every number is odd or even:

A16 x=2[5]vx=2[5]+1
To see this, denote by K p[X] the ring of polynomials in X with free term in D and
with all other coefficients in K, ordered by Y ;_,¢; X' > 0 if and only if ¢, > 0

(here cp € D,and ¢; € K forall 1 <i < n, with ¢, # 0), and denote by €(Kp[X])
the positive cone of Kp[X]. Let Z 1 stand for the ring of dyadic numbers, that is, all

rational numbers of the form zﬂn withm,n € Zandn > 0,andlet R = Z ! [«/5]

stand for the ring whose elements are of the form a + b«/§, witha,b € Z 1 Then
€(Ry[X]) with [Si=14X a0y 51 ai yi | [40] i 4 model of PA™ + A6,
However, given that PT(\/§X ), but =PT(3X?), (2) does not hold, and given that
PT(X), PT(«/§X), X < V/3X, yet X } JV3X, (3) does not hold either, and the fact
that X < «/§X < 2X, with X, \/§X, and 2X powers of 2, shows that (4) does not
hold.

What PA™ + A16 lacks is an axiom stating that every fraction can be brought
into a form in which the numerator and denominator are not both even. It is an
axiom needed for the proof based on considerations of parity of the fact that +/2 is
irrational (but, as pointed out in Pambuccian [3] (see also Menn and Pambuccian
[2]), too weak to prove that V17 is irrational). This was, apparently, the oldest form
of number theory, as practiced by the Pythagoreans, about which Aristotle tells us in
his Metaphysics, 986a, “Evidently, then, these thinkers also consider that number is
the principle both as matter for things and as forming both their modifications and
their permanent states, and hold that the elements of number are the even and the
odd” (translated by W. D. Ross).

To state the axiom, we need two more binary operations, « and p (so the language
in which our Pythagorean arithmetic is expressed consists of 0, 1, 4+, —, -, <, [5], K,
), together with the following axiom:

A17 m=k(m,n)-u(m,n) An=«(m,n)-un,m)
A, n) = 2[EED] 4 1V p(n,m) = 2[£8M] 4 1),

With our modest means, A17 accomplishes what the fact that, for any positive inte-
ger 71, there are nonnegative integers p(n) and g(n) such that n = 27 (2g(n) + 1)
does for natural numbers. Our k(m,n) here plays the role of 2mP(1).p(m)}
whereas (m,n) and p(n,m) stand for 22m—min{p@).p(m} (24 (m) + 1) and
22 m)—min{p().p(M)} (24 (n) + 1), respectively.

Note that, as shown in Schacht [4], in the presence of A 17, the requirement made
by A16 can be replaced by the weaker assumption

A18  x=[Z].
Pythagorean arithmetic can thus be axiomatized by {A1-A15, A17, A18}. Through-
out the paper, we will use the symbols < and > with their usual meanings. All of

(2)—(4) hold in Pythagorean arithmetic. To see this, note first that additive cancella-
tion holds, that is, Pythagorean arithmetic satisfies the following:

a+x=a+y—x=y. (5)
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Proof Supposea +x = a+ y. By Al0,oneof x < y,x = y,ory < x
must hold. Suppose x = y does not hold. Given the symmetry in x and y of our
hypothesis, we may assume without loss of generality that x < y. Then, by Al1, we
have a + x < a + y as well; thus, a + y < a + y, which contradicts A9. O

Multiplicative cancellation is also allowed in Pythagorean arithmetic, that is,
a#0Aa-x=a-y —>x=y. (©6)

Proof By Al0, we have x < yorx = y,or y < x. If x = y does not hold,
then one of x < y or y < x must hold. Suppose x < y. By Al5 and Al2, we have
a-x < a-y,which, together with our hypothesis a - x = a - y, contradicts A9. We
obtain the same contradiction by assuming y < x. [

Distributivity of multiplication holds over subtraction as well, that is,
b<anc#0—>c-a—c-b=c-(a-0>b). @)

Proof ByAIl3,b+(a—b) = a;thus,by A5, c-a = ¢-(b+(a—b)) = c-b+c-(a—b).
Since, by A15, ¢ > 0, by A6 and A9, a — b # 0, and thus, by A15,a — b > 0, we
have, by A12,c-(a—b) > 0. Thus, c-a > ¢-bso,by Al3,¢c-b+(c-a—c-b) = c-a.
Together with c-a = c¢-b+c-(a—b), this implies, by (5), c-(a—b) = c-a—c-b. O

Also, odd numbers are never even in Pythagorean arithmetic, that is,
2-n+1#2-m. )

Proof Suppose2-n+1=2-m.ByAl4andAl1,2-n <2-n+1;thus,2-n <2-m
and alson < m (by A8, A9, A10, and A12), so, by Al3, 2 n+(2 m—2-n) =2-m.
Thus,2-n+ (2-m—2-n) =2-n+ 1, and thus, by (5),2-m —2-n = 1, that is, by
(7),2- (m—n)—1.Slncem—n>0,Wehave,byAl4,m—n>10rm—n—1.
Thus,byA7,§-(m—n)>§0r§-(m—n)=§,thatis,l>§0r1=§,n0neof
which can hold, for, by Al4 and All,0 < land 1 <1+ 1. O

We also have
2-m41|a-bAPT(a)—>2-m+1]|b. )

Proof Since2-m + 1 | a-b, thereisac suchthat (2-m +1)-¢ = a-b. By
A17 with ¢ instead of m and a instead of n we get that ¢ = «(c,a) - u(c,a) and
a = k(c,a)- u(a,c), with at least one of (¢, a) and p(a, c) odd. Plugging these in
to (2-m 4 1) - ¢ = ab, using the associativity and commutativity of multiplication
and canceling k(a,c), we get (2-m + 1) - u(c,a) = pu(a,c) -b. Now u(a,c)
must be odd, for, if it were even, (2 - m + 1) - ju(c,a) would have to be even as
well, forcing w(c, a) to be even (it has to be even or odd, since A16 holds, and if it
were odd, (E -m + 1) - u(c,a) would be odd, a contradiction, for a number cannot
be both odd and even, by (8)), but one of p(a,c) and pu(c,a) must be odd. Since
u(a,c) is odd, u(a,c) | a, and PT(a), we must have u(a,c) = 1, so we have
Q2-m+1)-pu(c,a)=b,s02-m+1|b. O

We can now show that (2)—(4) hold in Pythagorean arithmetic. Suppose PT(a)
and PT(b), and let d | ab with d > 1. If d were odd, then, by (9), bearing
in mind that PT (a), we would have d | b, but that would contradict the fact that
PT (D). This proves (2). Suppose now a < b, PT(a), and PT(b). By A17 we have
a = k(a,b) - u(a,b) and b = «(a,b) - u(b,a). Since a and b cannot have odd
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divisors greater than 1 and one of u(a, b) and p(b, a) has to be odd, the odd one has
to be 1 (both cannot be 1, for else @ = b). Since we cannot have u(b,a) = 1, as that
would entail b < a or b = a, we must have p(a,b) = 1, and thus a | b, proving (3).
Suppose now a < b, b < 2 -a, and PT(a). By A17, we have a = «(a,b) - u(a,b)
and b = k(a,b) - u(b, a). Given that a can have no odd divisor except for 1, wu(a, b)
is either even or 1. If it were 1, then b = a - (b, a), and thus 1 < pu(b,a) < 2,
contradicting A14, which asks for y(h,a) — 1 tobe 1 or > 1, that is, (b, a) = 2 or
w(b,a) > 2, which is a contradiction. Thus, (a, b) is even, so j(b, @) must be odd.
It cannot be 1, or else we would have b < a, so u(b,a) is an odd number greater
than 1. Thus, =PT (), proving (4).

3 Problem 2 Holds in Pythagorean Arithmetic

To turn Problem 2 into a statement that can be proved inside Pythagorean arithmetic,
we need to express it not as a question but rather as a solved problem, one that states
what the solutions are and implicitly that there are no other solutions. In this form,
its statement is—with S = {(2,2,2),(3,2,2),&,(11,6,2), &, (7,5, 3), &}, where
by (x, v, z), & we have denoted the sequence of all triples obtained by permuting x,
y, and z—

a-b>cAb-c>anc-a>bAPTa-b—c)APT(b-c—a)

APT(c-a—b)— \/ a=inb=jnrc=k. (10)
(i,j,k)eS

Now (10) can be shown to hold in Pythagorean arithmetic, the proof being what
one expects it to be.

Theorem 3.1 The statement (10) can be proved using only the axioms {AI-A15,
Al7,Al8}, that is, inside Pythagorean arithmetic.

Proof  First, note that each of a, b, and ¢ has to be greater than 1. That none can be
0 is plain, for if, say, a = 0, then a - b > ¢ could not hold, given A6 and A15. None
of them can be 1 either, for if, say, a = 1, then we would have b > ¢ and ¢ > b,
which, after applying A8, would contradict A9. Suppose now that two of a, b, and ¢
were equal, say, ¢ = b. Then we would have PT(a?> — ¢) and PT(a - (¢ — 1)). The
latter implies PT'(a) and PT (¢ — 1), and since a > 1, PT (a) implies that a is even.
If ¢ > 2,thenc — 1 > 1, and thus, PT (¢ — 1) would imply that ¢ — 1 is even, that
is, ¢ is odd. But then a? — ¢ would have to be odd, and since we have P(a2 —c), we
would need to have a® — ¢ = 1, that is, a> = ¢ + 1. Since PT(a) we also have, by
(2), PT(a?), so PT(c + 1) as well. Given that their difference is 2, both ¢ — 1 and

¢ + 1, which have to be even as ¢ > 2, cannot be multiples of 4. Since both have
only even divisors, one of them must be 2. Since ¢ + 1 > 3, we must have c — 1 = 2,
so ¢ = 3, and thus, givena®> = ¢ + 1,a = 2. So (2,2,3) is the only solution with
a =bandc > 2. If c = 2, then PT(a?® — ¢) and PT(a) imply that 4 4 a, so that
a = 2. Thus, (2,2, 2) is the only solution witha = b and ¢ = 2.

Given the symmetry in «, b, ¢ of the hypothesis in (10) and the fact that we have
already dealt with the case in which two among them are equal, we may assume for
the moment that 1 < ¢ < b < a. Letus alsodenote a -b —c by m, b -c —a by n,
and ¢ -a — b by p. Note that n < p < m. By (3), we must thus have n | p, n | m,
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and p | m. Notethatm —p=(b—c)-(a+ 1)andm+ p=(b+c)-(a—1),s0
plb—c)-(a+1) and plb+c)-(a—1). (11)

One of a + 1 and a — 1 cannot be a multiple of 4, for their difference is 2. If a — 1
is not a multiple of 4, then, since p-x = (b+c)-(a—1) for some x > 0 and we have
eithera—1 =2-2-k+1)ora—1 =2-k+1,wehave p-x = (b+c)-2-(2-k+1) or
p-x = (b+c)-(2-k+1). Inboth cases, by (9), 2-k +1 | x, thatis, x = (2-k+1)-y.
Thus, the two options are, after canceling 2 -k + 1 (by (6)): p-y = (b +¢)-2or
p-y =b+c. Thus, in any case, p-y = 2- (b + ¢) must hold for some y, and thus

p<2-(b+c). (12)

If a + 1 is not a multiple of 4, then we arrive analogously to p -y = 2- (b —¢), and
thus p < 2- (b — ¢). So, in this case as well, (12) holds.

Now,b-c+c=0b+1)-c<a- C—p+b<§ b+c)+b=3-b+2-c.
Thus, we have b - ¢ + ¢ < 3-b + 2 - ¢. Thus, by using A8, A9, A10, and All,
b-c<3-b+c,andgiventhat3-b+c < 4-b, we get, using Al2, ¢ < 4. Thus,
we have only two possibilities: (i) ¢ = 2 and (ii) ¢ = 3.

Suppose that (i) holds. Then we need to have PT(a - b — 2), PT(2 - a — b), and
PT(2-b —a). If a and b were both even, then a - b — 2 would be a multiple of 2,
but not of 4, so we would need to have a - b — 2 = 2, which is impossible, since
b>3anda >4 (asc < b < aand ¢ = 2). One can also easily note that a and b
cannot both be odd, for else a - b — 2 would be odd and, thus, would have to be 1,
which is impossible for the reasons mentioned above. Thus, the pair (a, ) consists
of an even number and an odd number. Suppose a were odd and b were even; then
2 - b — a would be odd and, thus, would have to be 1. Thus, a= 2-b — 1, and thus,
=a-b—c=2-b>-b—2andp=c-a—b=3-b—2. Since p | m, we have

—2]2-b%—b—2. Since

I3

9-2-b*~b—-2)=03B-b—=2)-(6-b+1)—16, (13)
we must have 3-b — 2 | 16. Thus,3-b—2 € {1,5 4, _,E} However, since b > 3,
we have 3-b—2 > 7, and thus, we can only have 3.b—2 = § hich has no solution
b,or3-b—2 =16, whichmeans b = 6anda = 2-b — 1 = 11. So, in the case in
which ¢ = 2, we have only (ﬁ, 6, i) as a solution.
Suppose now that (ii) holds. Looking at (11) with ¢ = 3, we note that not both of
b —3 and b + 3 can be multiples of 4 (given that their difference is 6). If 4 } b — 3,
then b—3 = i-(2-k+1) withi € {1,2}, and (11) becomes p-x = i-(2- k+1)-(a+1).
By (9), x = (2- k+1)-y, forsome y,sowehave p-y =i-(a+1),s0 p < 2-(a+1).
Similarly, if 4 { b+ 3, then p - y=i-(a—1);thus, p < 2-(a—1). So, in any case,
we have p < 2-(a+ 1), thatis, 3-a—b < 2-(a + 1), which means a —b < 2. Since
we alsohave | <a—b,wecanhaveonlya—b = lora—b = 2.Ifa = b +1, then
n =2-b— 1, which, being odd and a power of 2, must be 1, which is not possible,
as it would imply b = 1. Ifa = b + 2, thenm = (b — 1) - (b + 3), and thus we
must have PT'(h — 1) and PT (b + 3). Since (b + 3) — (b — 1) = 4, one of them must
be 4, and, since b > 4, that one cannot be b + 3, so it mustbe » — 1, s0 b = 5 and
a=7. O]
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4 Pythagorean Arithmetic Is the Right Setting

We may wonder whether we actually needed all of Pythagorean arithmetic to prove
(10). From a methodological point of view, we have argued that, in the absence
of Al7, the usual properties of powers of 2 would not hold, and thus, the mean-
ing of the terms involved would be altered. In that sense Pythagorean arithmetic is
the right theory in which the question regarding the provability of (10) ought to be
raised.

From a purely formal point of view, however, one is justified to ask whether (10)
does not follow from weaker assumptions. Our proof already shows that it does. All
we have used in itis PA™, A16, and (9). That this is less than what Pythagorean arith-
metic asks can be seen by noting that €(Q(~+/2)z[X]) is a model of PA™, A16, and
(9) (as there are no nonstandard powers of 2 in it), but not of Pythagorean arithmetic
(which is plain, as A17 fails form = X andn = V2 X).

However, the weak theory of the odd and the even, PA™ + Al6, is not strong
enough to prove (10). In fact, even if enlarged by (2) and (3), it still is not strong
enough to prove (10).

Theorem 4.1 PA™ + Al6 4 (2) 4 (3) does not prove (10).

Proof If D is an ordered integral domain and R is an ordered integral domain
containing D, then we denote by Rp[X,Y, Z] the ring of polynomials in X,
Y, and Z, with free term in D and with all other coefficients in R, ordered by
Y oijk<n €l X YIZE > 0 (here co0,0) € D, and c¢( k) € R for all
1 <i,j,k < n)ifand only if ¢ ,p) > 0, where (u,v, w) is the greatest ele-
ment, in the lexicographic ordering, among all the indices (i, j, k) of the nonzero
coefficients c; ; of the terms of highest degree, that is, for which i + j + k is
maximal (i.e., (v, v, w) = max{(i, j,k) : cq,jk) # 0:i +j +k = d}, where d
is the degree of the polynomial } o; i x <, Ci.j) X Y/ Zk and max is the greatest
element in the lexicographic order). Let €(Rp[X,Y, Z]) denote the positive cone
of Rp[X,Y, Z].
Then €(Rp[X,Y, Z]), with R = Z% and D = Z, with

[2051‘, jke<n € i X Y7 Zk]
2
- 3 —C("’zf”‘)Xin zk + [—c“’;”o’],
0<i,jk<n,i+j+k#0
is a model of PA, of A16, of (2), and of (3), but not of (10), for all of XY — Z,
YZ — X,and ZX — Y are positive and are powers of 2. O
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