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Abstract This paper, a contribution to “micro set theory”, is the study
promised by the first author in [M4], as improved and extended by work of
the second. We use the rudimentarily recursive (set-theoretic) functions and the
slightly larger collection of gentle functions to initiate the study of provident
sets, which are transitive models of PROVI, a subsystem of KP whose mini-
mal model is Jensen’s J! . PROVI supports familiar definitions, such as rank,
transitive closure and ordinal addition—though not ordinal multiplication—and
(shown in [M8]) Shoenfield’s unramified forcing. Providence is preserved under
directed unions. An arbitrary set has a provident closure, and (shown in [M8])
the extension of a provident M by a set-generic G is the provident closure of
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M [ ¹G º. The improvidence of many models of Z is shown. The final section
uses similar but simpler recursions to show, in the weak system MW, that the
truth predicate for P�0 formulæ is �1.

Contents

0 Introduction

The research reported in this paper has evolved in response to the following question:
What is the minimal context in which set forcing works well?

It has long been known that the full power of ZF is not needed; but the results of
[M4] show that forcing can go pathologically wrong if done over models of set theo-
ries which, even if strong in other ways, offer no support for set-theoretic recursion.

So let us ask a more specific question:
How much set-theoretic recursion is needed to do set forcing?

Again, an upper bound has long been known, as Kripke–Platek set theory, KP,
is certainly strong enough to allow recursive definitions of the right sort, such as
defining the interpretation of names; the validity of such definitions follows easily
from the †1 recursion theorem which proves that, in KP, if G is a total †1 function
then so is the function F given by the recursion

F.x/ D G.F �x/:

But what transpires is that even†1 recursion is much stronger than needed for set
forcing, and that a coherent and sufficiently strong recursion theory emerges if as our
starting point we restrict attention to the above recursions when the defining function
G is not merely †1 but actually rudimentary in the sense of Jensen [J2]. In such
cases we shall speak of F as given by a rudimentary recursion, or, more briefly, that
F is rud rec.

In the present paper we present a theory that in the sequel [M8] supplies the
answer to our initial question; and we give many counterexamples delimiting the
scope of our current theory. But it is plain that, forcing aside, there are many aspects
and applications yet to be explored.

Now for some examples: for the present we assume a knowledge of rudimentary
functions, but shall develop their theory ab initio in Section 2.

Some rudimentary recursions

0.0 Example The definition of rank:

%.x/ D

[®
%.y/C 1

ˇ̌
y
y 2 x

¯
0.1 Example The definition of transitive closure:

tcl.x/ D x [

[®
tcl.y/

ˇ̌
y
y 2 x

¯
0.2 Example Let S.x/ be the set of finite subsets of x. Restricted to ordinals, this
has a rudimentarily recursive definition:

S.0/ D ¹¿ºI S.�C1/ D S.�/[
®
x[¹�º

ˇ̌
x
x 2 S.�/

¯
I S.�/ D

[
�<�

S.�/:
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All those are recursions of type I, meaning that no parameter occurs; and we may
speak of such functions as pure rud rec.

0.3 Example Ordinal addition is given by the recursion

A.˛; 0/ D ˛I A.˛; ˇ C 1/ D A.˛; ˇ/C 1I A.˛; �/ D

[
�<�

A.˛; �/

which is a rudimentary recursion on the second variable, the first remaining free;
so the definition is of the form F.ˇ/ D G.p; F � ˇ/ with G rudimentary, where
of course we set the parameter p equal to ˛. Such definitions we call recursions of
type II, and we speak of such an F as p-rud rec.

0.4 Here is a good moment to remind the reader of some of our set-theoretic con-
ventions. An indecomposable ordinal is an infinite ordinal closed under addition.
The finite ordinals closed under addition are 0 and 1. We do not count 0 as a limit
ordinal. We write the product of two ordinals ˛ and ˇ as ˛ˇ or, for greater clarity,
˛�ˇ. We should mention that, the power set axiom not usually being assumed in these
weak systems, we do not assume when we write P .X/ for the class ¹x jx x � Xº of
all subsets of X that it is necessarily a set. “A � P .X/” is simply a convenient way
of saying that every member of A is a subset of X .

0.5 Example The relation x 2? y, meaning x is in the transitive closure of y, is
given by a rud recursion on the second variable y, the first variable x remaining free:

x 2
? y ” x 2 y V 9z2yx 2

? z:

0.6 Example If M is an (intransitive) elementary submodel of a transitive set or
class, then the Mostowski collapsing isomorphism $M is given by the recursion

$M .x/ D
®
$M .y/

ˇ̌
y
y 2 x \M

¯
so that, in some sense, $M is rudimentarily recursive in the predicate M.

Rudimentary recursions in the theory of constructibility

0.7 Example Let T be the unary rudimentary function introduced in [M3] and to
be re-examined in Section 3. Then this rudimentary recursion on ON , the class of
von Neumann ordinals,

T0 D ¿I T�C1 D T.T�/I T� D

[
�<�

T�

generates the constructible universe L and the Jensen hierarchy .J�/� , in that
L D

S
�2ON T� , and J� D T!� .

0.8 Remark If challenged by a purist to define L by a recursion on V rather
than on ON , we would define T .x/ D

S
y2x T.T .y//, and verify that T .x/ always

equals T%.x/.

0.9 Historical note Gödel evolved the notion of constructibility in the 1930s, and
his first hierarchy was that now notated hL� j � 2 ON i. He was implicitly doing †1

recursion, a notion that became explicit in the 1960s.
His 1940 monograph aimed to present his relative consistency proof for AC to

non-logicians, and therefore sought an exposition avoiding ˆ and Def, and relying
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on what are now (unfairly to Bernays) called the Gödel functions. Here he comes
much closer to a rudimentary recursion.

0.10 In the 1960s, Gandy and independently Jensen identified a more extensive
and satisfactory collection of functions, called basic by Gandy and rudimentary by
Jensen, which became the basis of Jensen’s fine structure theory of L. It might be
said that Jensen was implicitly doing rudimentary recursion, a notion that the present
paper seeks to make explicit.

0.11 Indeed the definition given by Jensen of his auxiliary hierarchy is a rudimen-
tary recursion, using the single rudimentary function S that he gave in [J2, p. 243],
which lacks the property that its value for transitive argument is transitive. At each
limit stage, he obtains the rud-closed set J� , and it is clear by induction that Jensen’s
J� equals our T!� for every �.

0.12 Comment The referee asks us to comment on the relationship of our pre-
sentation to that of Schindler and Zeman in their article on fine structure for the
Handbook of Set Theory.

At successor stages, they use not Jensen’s S but another rudimentary function
S which has the advantage over S that its value for transitive argument is always
transitive; but their function raises rank by more than 1, which is a disadvantage not
shared by T.

The reader should note that Schindler and Zeman use only limit ordinals to index
the Jensen hierarchy, so their J!� is exactly our T!� . It should also be noted that
Jensen defined rud.u/ to be the rud closure of u[¹uº, whereas Schindler and Zeman
define it to be the rud closure of u. We follow Jensen.

Though the two papers both start from the theory of rudimentary functions, their
main concern is the study of acceptable structures, that is, certain levels of Jensen-
like hierarchies, which naturally come with a lot of “built-in” rudimentary recursion;
but acceptability involves the notion of an initial ordinal, which is well beyond our
present concern.

Relativisations of constructibility

0.13 Two ways of relativising constructibility have long been known; notation for
them has varied, but we shall follow Jech’s treatise in writing LŒA� for the result of
constructing from a set or class A as a predicate and L.a/ for the result of construct-
ing from a set a as a set. LŒA� will be the smallest inner model M with x \ A 2 M

for each x 2 M ; and L.a/ will be the smallest inner model M with a 2 M .

0.14 Construction from a predicate A presents little difficulty: simply replace
T by the function TA defined either by setting TA.u/ D T.u/ [ ¹u \ Aº or
TA.u/ D T.u/[¹x\A j x 2 T.u/º: the first is simpler but the second gives a faster
construction. If A is a �0 class, TA (in either version) is still rudimentary, as what
we shall call �0 separators are rudimentary, indeed basic; and then the following
will be a pure rudimentary recursion:

T0ŒA� D ¿I T�C1ŒA� D TA

�
T� ŒA�

�
I T�ŒA� D

[
�<�

T� ŒA�I

and we may set LŒA� D
S

�2ON T� ŒA�.
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0.15 Remark For A the classON of ordinal numbers, T� ŒA�\ON D � for every
ordinal �.

0.16 For a a set let c be tcl.¹aº/, the transitive closure of its singleton. Then the fol-
lowing rudimentary recursion in the parameter c is close to the traditional definition
of construction from a as a set:

T0.c/ D cI T�C1.c/ D T
�
T�.c/

�
I T�.c/ D

[
�<�

T�.c/:

Then L.a/ D L.c/ D
S

�2ON T�.c/.

0.17 But if F is rud rec and we wish to compute F.a/, that start is too abrupt, even
though F.a/ 2 L.a/, for we must first compute F.b/ for b 2 tcl.a/. We are therefore
led to consider a different hierarchy, notated .P c

� /� , with L.c/ D
S

�2ON P
c
� , which

proves to be the central definition of this paper, as it is the rud recursion to which all
other rud recursions reduce, as we shall show in Section 7. We outline the definition.

For a transitive set c, let c� D c \ ¹x j %.x/ < �º. Since c is transitive, c�C1

will be a set of subsets of c� ; in fact c�C1 D c \ ¹x j x � c� º, which we may use
to give a direct recursive definition inspired by but not calling the rank function %.
If c�C1 D c� , then c� D c and for all � > �, c� D c� ; so that that first happens when
� D %.c/.

Our definition of P c
� will have these properties:

P c
! D T! I P c

�C1 D ¹c� º [ c�C1 [ T.P c
� /I P c

� D

[
�<�

P c
� I and

L.c/ D

[
�2ON

P c
� :

The reader will notice that we have above used the definition of c� to define P c
� : so

we appear to be using one rud rec function to define another; that creates a risk that
our second function might not be not rud rec, so in our “official” definition we run
the two definitions simultaneously.

Some illustrative counter-examples and more adventurous recursions

0.18 Remark In Model 13 of [M3], all axioms of Z hold but the rank function is
not total, and therefore cannot be rudimentary.

0.19 Example In Section 12 of [M3], a transitive model of ZC is given in which
TCo, the principle that every set is a member of a transitive set, fails. Thus tcl though
rud rec, cannot be rud. Note that the rank of tcl.x/ always equals that of x.

0.20 Remark The function x 7! S.x/ of Example 0.2 is not given by a pure rud
rec function, as we shall see below by estimating the rate of growth of its cardinality
for x 2 HF. But we could define it by a recursion with parameter ! by remarking
that for k a positive integer,

Œa�kC1
D

°
x [ ¹yº

ˇ̌̌
x;y

x 2 Œa�k & y 2

[
Œa�k

±
X Œa�k :

0.21 Remark The function ˇ 7! ˇ C !, simple though it be, is not given by a
pure rudimentary recursion, as we shall show in Section 6; still less are the other
functions of ordinal arithmetic; nor is Jensen’s map � 7! J� . The reason is that, as
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was known to Gandy and to Jensen, to any rud function G there is a finite bound
k, which we may call the rudimentary constant of G, such that for all arguments Ex,
%.G.Ex// 6 %.Ex/C k. From that it will follow that for a pure rud rec function F , for
each argument x, %.F.x// < %.x/C !.

0.22 Remark The functions x 7! S.x/ and ˇ 7! ˇ C ! are examples of recur-
sions of type III, a term we shall define in Section 5.

0.23 Example The function � 7! 2 � � is given by a rudimentary recursion. Nev-
ertheless it is not rudimentary, for the rud closure of ¹!º has ! as a member but, by
Gandy [G], not EVEN Ddf ¹2 � n jn n 2 !º.

0.24 Example The characteristic function of EVEN is given by a rud recursion
on !:

�.0/ D 1I �.nC 1/ D 1 X �.n/:

Note that ��! … rud cl.J1 [ ¹!º/.

0.25 Remark Corollary 14.5 of Weak Systems shows that J2 is not the rud closure
of J1 [ ¹!º, J1 not being a member of that latter set; but J2 is the rud rec closure of
J1 [ ¹!º; indeed of ! C 1.

0.26 Remark The function g given by the recursion

g.0/ D 1I g.� C 1/ D f
�
g.�/

�
I g.�/ D supg“�

where f .�/ D 2 � � is given by a rud-rec recursion, but not by a rud recursion, as its
rate of growth for finite arguments is too great. We shall explore iterated recursions
of that sort in Section 6.

0.27 Remark We shall see in Section 6 that Gödel’s original definition of L is not
given by a rudimentary recursion, though every initial segment of it is.

0.28 Remark J2 has recently been the object of study by Nik Weaver in his paper
Analysis in J2 [W].

Rudimentary recursions in the theory of forcing

0.29 Example Suppose we are making a forcing extension using a notion of forc-
ing P that is a set of the ground model, assumed transitive. In the theory of forcing,
a member y of the ground model is represented by the term Oy of the language of
forcing, given by the recursion

Oy Ddf
®
.1P; Ox/

ˇ̌
x
x 2 y

¯
:

That is a rudimentary recursion in a parameter, being of the form

F.a/ D G.1P; F �a/

where G is the rudimentary function .1P; a/ 7! ¹1Pº � Im.a/: though it would be
a simple matter to specify that 1P is always to be some hereditarily finite set, for
example 1, when G could be rewritten as a pure rud function.
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0.30 Example If G is a generic filter on a notion of forcing P in a transitive model
M , and we follow Shoenfield in treating all members ofM as P-names, the function
valG .�/ defined for a 2 M is given by a rudimentary recursion with G as a parameter:

valG .b/ Ddf
®
valG .a/

ˇ̌
a

9p2G .p; a/ 2 b
¯
:

The generic extension MŒG � is then defined as ¹valG .a/ ja a 2 M º.

0.31 Remark Note that the definition of the forcing relation k� has not been in-
voked in making these definitions, but its properties would be needed to show that
MŒG � has properties of interest.

0.32 Remark The function valG .�/ combines two functions, which we might call
transforming and collapsing. For example, if G is .M;P/-generic, one might first
define for x 2 M ,

Q�.x/ D
®�
1P; Q�.a/

� ˇ̌
p;a

.p; a/ 2 x & p 2 G
¯
;

thus transforming P-names to P1-names (P1 being the partial order whose sole mem-
ber is 1); and then one would collapse the class of pure P1-names, to obtain the
desired generic extension, by setting for x 2 =. Q�/,

$.x/ D
®
$.y/

ˇ̌
y
.1P; y/ 2 x

¯
;

which of course is the inverse of the function x 7! Ox when the latter is taken to be
defined on MŒG �.

Both recursions are rudimentary in appropriate parameters or classes.
We trust that these examples have given the reader a sense of the scope and limits

of rudimentary recursion. We turn to the other unexplained terms in the title of the
paper.

Gentle functions
A gentle function is one of the formH ıF whereH is rudimentary and F is rud rec.
The importance of the notion lies in the second author’s results, presented in Sec-
tion 4, that while the collection of rud rec functions is not closed under composition,
the slightly larger collection of gentle functions is.

0.33 Example In their paper [SMcC], Scott and McCarty propose the following
recursive definition of ordered pair:

hx; yi
SM
2 D

®
h0; tiSM

2

ˇ̌
t
t 2 x

¯
[

®
h1; ui

SM
2

ˇ̌
u
u 2 y

¯
:

They show that if at least one of x and y is of infinite rank, the rank of the pair
hx; yiSM

2 equals the maximum of %.x/ and %.y/. We follow their alternative approach
to that definition, but with slight changes to their notation and exposition.

Consider the four recursions, of which the first is taken from and the others in-
spired by their paper:

�.y/ D ¹¿º [
®
�.u/

ˇ̌
u
u 2 y

¯
I �.y/ D

®
�.u/

ˇ̌
u
u 2 y & ¿ 2 u

¯
I

�.x/ D
®
�.t/ [ ¹¿º

ˇ̌
t
t 2 x

¯
I  .y/ D

®
 .u X ¹¿º/

ˇ̌
u
u 2 y

¯
:

Definition

leftSM.a/ Ddf  “
�
a \ ¹d jd ¿ … dº

�
I

rightSM.a/ Ddf �“
�
a \ ¹c jc ¿ 2 cº

�
:
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Definition (Scott, McCarty) hx; yiSM
2 Ddf �“x [ �“y.

Remark � , � and � are pure rud rec; results in Section 4 will show that  , leftSM

and rightSM are gentle; h�; �iSM
2 is a composite of gentle functions.

0.34 Lemma ¿ is a member of every �.y/ and of no �.x/; and for all z,
�.z/ D �.z/ X ¹¿º; �.�.z// D z; and  .�.z// D z.

0.35 Lemma Let a D hx; yiSM
2 : then leftSM.a/ D x and rightSM.a/ D y.

Remark (Scott, McCarty) The two versions of the definition of h�; �iSM
2 are equiv-

alent as �.v/ D h1; viSM
2 and �.v/ D h0; viSM

2 .

Provident sets
A non-empty transitive set A is called p-provident if it is closed under all functions
rudimentary recursive in the parameter p, .B/-provident if it is p-provident for all
p 2 B , and provident if it is .A/-provident.

For the more restrictive notions, it must be specified that A is closed under un-
ordered pairs.

0.36 Remark Natural examples of provident sets abound: for example Jensen’s
J1 and J! . In Section 6 we shall give a very general notion of hierarchy such that
the �th stage in any such hierarchy is provident whenever � is an indecomposable
ordinal: in particular, that will hold for the L and J hierarchies.

0.37 Remark The main results of [M8] are that provident sets support the
Shoenfield–Kunen approach to set forcing and that a set-generic extension of a
provident set is provident. Those results taken with the counter-examples of [M4]
are our grounds for asserting that the minimal context for set forcing is that afforded
by provident sets.

The plan of the paper
Sections 1, 2, and 3 give background material; much of the material here is taken
from two previous papers, The strength of Mac Lane set theory [M2] and Weak Sys-
tems of Gandy, Jensen and Devlin [M3].

Section 1 prepares the reader for the study of rudimentary recursion by reviewing
with some care the syntax and fundamental definitions of set theory.

Section 2 uses the first author’s theory of companions to give a short proof of
the fundamental theorem 2.16 concerning the collection of rudimentary functions.
We give an example of a unary function with �0 graph and of finite rank-bounded
growth that is not rudimentary, thus answering negatively a question of Sy Friedman.

Section 3 re-examines the function T introduced in [M3]; this function is enor-
mously helpful in the sequel. The subsections titled “The intransitive case” and
“Gandy reproved” are peripheral, but included for completeness: we use the func-
tion T to improve some arguments of Gandy.

Sections 4, 5, and 6 contain the hard work of the paper.
Section 4 introduces rudimentary recursion without parameters, and the second

author’s analysis of the composition of rud rec functions. We enlarge our enquiry
to include recursions from an additional predicate and show that a function that is
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gentle in a gentle predicate is gentle, which theorem is the key to simplifying the
main proof of the sequel [M8].

Section 5 advances the discussion to include recursions from parameters and finds
a single rudimentary recursion, with parameter, to instances of which all others re-
duce.

Section 6 introduces provident sets which are non-empty, transitive and closed
under all rudimentarily recursive functions, allowing parameters from within the set
in question. We obtain various characterizations of provident sets, and build many
examples as the union of a sequence of transitive sets, the sequence being of a kind
we call a progress. It turns out that to be provident it is enough for a transitive
set to be closed under rather few rudimentary recursions; the main one being the
one generating what we call the canonical progress .P c

� /� , which we have already
mentioned, and which is discussed more fully on page 39.

0.38 We show in Theorem 6.12 that to every rudimentary function R there corre-
sponds an integer cR, which we call the rudimentary constant of R, such that for
every progress P0; : : : ; PcR

, and all arguments Ex 2 P0, the value R.Ex/ will lie
in PcR

. Armed with that result, forms of which were certainly known to Gandy and
Jensen and other early workers in fine structure, we compute in Proposition 6.32 an
equally uniform bound on the rate of evolution of a rudimentary recursion; that leads
rapidly to the central result, Theorem 6.34, which implies for example that for every
transitive set c and indecomposable ordinal � , P c

�
is provident.

0.39 We examine two related notions: ¿-providence involves closure only under
pure, rather than parametrised, rudimentary recursive functions. Limit providence
involves closure under functions produced by iterated recursion, such as that in Re-
mark 0.20. We show in Proposition 6.39 that provident sets are closed under re-
cursions of type III. We then make a first study of functions obtained by iterated
recursions; this subsection is looking to future investigations of a hierarchy that is
slowly emerging.

0.40 Our study of progresses enables us to show rapidly that the Gödel and Jensen
segments L!� and J� are provident if and only if !� is indecomposable. We show
that the recursion underlying Gödel’s original definition of the constructible hier-
archy is not rudimentary. We show that each infinite level of the Gödel hierarchy
is closed under the Scott–McCarty pairing and unpairing functions, and apply this
observation to represent arbitrarily long segments of that hierarchy as rudimentary
recursions in some parameter.

The going now becomes easier: Sections 7, 8, and 9 apply the ideas developed in
the preceding sections and in [M3].

Section 7 explains a simple construction that gives, for any set x, the minimal
provident set Prov.x/ including x. We call Prov.x/ the provident closure of x. Provi-
dent closures allow the following transparent formulation of the relationship between
providence and forcing, which will be proved in [M8]:

MŒG � D Prov
�
M [ ¹G º

�
when M is provident.

Here M and G are as in Example 0.30.
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Remark In [M4, Section 3], an even simpler definition was given of Prov.M/ for
non-empty M that are transitive and model AxPair and TCo. By Theorem 7.0 and
[M4, Proposition 3.2], for such M the two definitions are equivalent.

We show that it is enough to require closure under a particular finite basis of
rudimentary recursive functions, which leads to a finite axiomatisation of the notion
of providence. The phenomena of finite axiomatisability and regular presence in
natural hierarchies also hold for the collections of sets mentioned in 0.39.

Section 8 gives models of Zermelo set theory that fail in various ways to support
rudimentary recursion; in one, the failure is of Scott’s celebrated trick for defining
cardinal number; in another, the addition of a Cohen generic real goes awry. Other
models show the inability of Zermelo set theory to pass in either direction from the
set of Zermelo naturals to that of von Neumann.

Other examples of the weakness for recursive definitions of the unimproved set
theories of Zermelo and Mac Lane are given in [M1] and [M2]. In [M4] it is shown
how passage to the provident closure of transitive models of those theories preserves
the theories but adds the capacity for rudimentary recursion and therefore for doing
set forcing. In [M2] it was shown that passage to what in [M4] is called the lune of
such models again preserves the theory (Zermelo or Mac Lane as the case may be)
but adds the capacity for †1 recursion.

Section 9 shows, as promised in [M3], that the weak system MW supports a truth
definition for P�0 formulæ.

In the endmatter, we record the origins of the paper and its sequel, and close
with acknowledgments and references.

1 A Rapid Development of Weak Set Theory

1.0 We regard set theory as formalised in a syntax with a class-forming opera-
tor and both restricted and unrestricted quantifiers. We have two two-place relation
symbols 2 and D, propositional connectives :, &, V , H), ”, unrestricted quan-
tifiers 8, 9, restricted quantifiers 8r , 9r , a class-forming operator Kand a supply of
variables.

1.1 Our collection of well-formed formulæ is defined thus: atomic wffs are

x 2 y; x D y

and if ˆ and ‰ are well-formed, so are &ˆ‰, V ˆ‰, :ˆ, 8xˆ, 9xˆ, y 2

K

xˆ,
8rxyˆ, and 9rxyˆ, where in the last two, x and y are distinct variables, so that
restricted quantifiers Qrxy bind x but not y, in harmony with the axioms, given
below, that express their intended meaning. The expressions 8rxxˆ and 9rxxˆ are
ill-formed.

We write 8x2yˆ for 8rxyˆ, 9x2yˆ for 9rxy and ¹y j ˆº for K

yˆ. Officially we
use Polish notation and write &ˆ‰; unofficially we use brackets, writing .ˆ & ‰/.
Similarly we shall often adopt conventional ways of indicating negation, such as …

and ¤.
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1.2 A string K

xˆ, where ˆ is a wff, is a class. Here are five examples:

V Ddf ¹x j x D xº

¿ Ddf ¹x j x ¤ xº

¹x; yº Ddf ¹z j z D x V z D yº

x n y Ddf ¹z j z 2 x & z … yº[
x Ddf ¹z j 9y2xz 2 yº

Since ¿ is the smallest von Neumann ordinal, we shall also set 0 Ddf ; Ddf ¿,
and will tend to use the notation 0 when we are thinking of this set in its ordinal
capacity, ¿ when thinking of it as the empty set, and ; when thinking of it as the
sequence of length 0. In the review of set-theoretic notation which we now give, we
are liable to omit definitions of familiar extensions such as writing ¹xº for ¹x; xº.

1.3 We denote by Œˆ y
x
� the result of substituting the variable x for the free occur-

rences of the variable y in the formula ˆ, bound occurrences of x in ˆ being first
changed to an as yet unused variable. Less formally, we permit ourselves informally
to indicate the result of substituting one variable for another by such usages as A.x/
and A.y/.

We progressively extend our notation to permit more liberal use of classes. Thus
if ˆ is a wff, t a variable or a class, and B a class, then

9z2B ˆ ”df 9z .z 2 B & ˆ/

8z2B ˆ ”df 8z .z 2 B H) ˆ/

t D B ”df 8x .x 2 t ” x 2 B/

B D t ”df 8x .x 2 B ” x 2 t /

B 2 t ”df 9y2ty D B

The first two would normally be used only when z is a variable not occurring in
B , otherwise nonsense might result. In the last three x and y are presumed to be new
variables occurring in neither B nor t .

1.4 Definition Let x be a variable, B a class andˆ a wff. Then Œˆ x
B
� is the result

of
(i) changing all bound occurrences of variables in ˆ to occurrences of variables

not occurring in B or free in ˆ;
(ii) replacing all free occurrences of x in the new formula by B;
(iii) expanding occurrences of the strings “B 2 t”, “B D t”, “t D B”, “8y2B”

and “9y2B” according to the definitions above.
Similarly one may define ŒA x

B
� for A a class. Expressions such as ŒˆA

B
� are not

defined.

Axioms of logic
All our systems of set theory will have among their axioms those of classical proposi-
tional and predicate logic, these two schemes of axioms relating restricted quantifiers
to unrestricted ones,

8x2yˆ ” 8x.x 2 y H) ˆ/

9x2yˆ ” 9x.x 2 y & ˆ/
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and the Church conversion scheme
x 2 ¹y j ˆº ” Œˆ y

x
�

by which all occurrences of the class-forming operator are in principle eliminable.

The system S0

S0 Extensionality: .8w2xw 2 y& 8w2yw 2 x/ H) x D y S0

Empty Set: ¿ 2 V

Pair: ¹x; yº 2 V

Difference: x n y 2 V

Union:
S
x 2 V

1.5 Definition We define a �0 formula or a �0 class to be one containing no
unrestricted quantifiers; a …1 formula is one of the form 8xA where A is �0; a †1

formula is one of the form 9xA where A is�0; a†2 formula is one of the form 9yB
where B is …1; and so on.

1.6 Definition Foundation, the axiom of (set) foundation, is x ¤ ¿ H)

9y2xx \ y D ¿.

S0
0 S0 C Foundation S0

0

1.7 Definition If S is any system of set theory containing S0 we say that a class
A or a wff ˆ is �S

0 iff there is a �0 class B or a �0 wff ‰ such that `S A D B or
`S ˆ ” ‰ respectively.

1.8 Definition A class A is S-suitable if `S A 2 V and for each �0 wff ‰ and
variable w not occurring freely in A, 8w2A‰ is �S

0.

1.9 Remark If S is a subsystem of T, then all S-suitable classes are T-suitable.
This notion is important in building a calculus of �0 wffs, which we now do.

1.10 Proposition If ˆ and ‰ are �S
0, so are 9w2zˆ, 8w2zˆ, where w and z are

distinct variables, .ˆ&‰/, :ˆ and x 2 ¹y j ˆº.

1.11 Proposition Let A be S-suitable.
(i) if ˆ is �S

0, so is 9w2Aˆ, provided w is not free in A;
(ii) w 2 A, w D A, A 2 w are �S

0, even if w occurs in A;
(iii) if ˆ is �0, Œˆ x

A
� is �S

0;
(iv) if ˆ is �S

0, so is Œˆ x
A
�.

It is necessary to prove (iii) before (iv), since a subformula of a �S
0 formula need

not be �S
0.

1.12 Proposition If A and B are S-suitable, so is ŒB x
A
�.

1.13 Proposition The classes ¿, ¹x; yº, ¹xº, x n y and
S
x are S0-suitable.
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Note that if we define

x [ y Ddf
[

¹x; yº

x \ y Ddf x n .x n y/;

we have `S0
x [ y 2 V & x \ y 2 V ; indeed both x [ y and x \ y are S0-suitable.

We would wish to define \
x Ddf ¹z j 8y2xz 2 yºI

but as `S0

T
¿ D V , and (by Russell) °S0

V 2 V ,
T
x cannot be S0-suitable. We

therefore make an additional definition.

1.14 Definition
T0
x Ddf

S
x \

T
x, which will prove to be suitable in our next

system ReS0. For now, we can prove that
T
x is nearly suitable.

1.15 Proposition If `S A ¤ ¿ and A is S-suitable, then so is
T
A.

Descriptions are defined so that should the defining clause not have exactly one
witness, the description is taken to mean the empty set.

1.16 Definition �xˆ Ddf
S

¹x j ¹xº D ¹x j ˆºº.

The next proposition echoes the recursion-theoretic concept of a bounded search.

1.17 Proposition Let A be S-suitable, ˆ �S
0 and x a variable not free in A. If

`S ˆ H) x 2 A, then �x ˆ is S-suitable.

Ordered pairs
Following Kuratowski, we introduce a pairing function, in the definition of which we
exploit our new freedom to compose suitable classes.

1.18 Definition .x; y/2 Ddf ¹¹xº; ¹x; yºº.

1.19 Proposition .x; y/2 is S0-suitable.

1.20 Lemma “w is a singleton”, “w is an un-ordered pair”, and “w is an ordered
pair” are all �S0

0 .

Now we define the un-pairing functions.

1.21 Definition .x/` Ddf �y.x is an ordered pair and
S T

x D y/.

1.22 Proposition .x/` is S0-suitable.

1.23 Definition .x/r Ddf �y.x an ordered pair and either
S
x D

T
x&y DS T

x or
S
x ¤

T
x&y D

S
.
S
x n

T
x//.

1.24 Proposition .x/r is S0-suitable.
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Foundation, ordinals and the axiom of infinity
With Foundation added, the formulation of “ordinal” becomes �0 and much of the
elementary theory of ordinals can then be developed in S0

0. In this paper we shall usu-
ally be assuming the scheme of foundation for …1 classes, which of course implies
Foundation.

Although in one model that we shall mention, we must use a different formulation,
we shall usually take the axiom of infinity in the form ! 2 V , ! being defined as the
class of all von Neumann ordinals such that they and all their predecessors are either
0 or successor ordinals.

PZ S0 plus the �0 separation scheme: x \ A 2 V for A a �0 class. PZ
ReS ReS0 plus the scheme of …1 foundation: ReS

A ¤ ¿ H) 9x2Ax \ A D ¿ for A a …1 class.
ReSI ReS C ! 2 V . ReSI

Digression: Models with failures of �0 separation
We digress to construct, in some conveniently strong system, a transitive model of
the system S0 in which an instance of �0 separation fails. Recall that a set u is
transitive if

S
u � u.

Let � be a limit ordinal, for example, !2. A � -interval is a set ¹˛ 2 ON j ˇ �

˛ < º with ˇ;  < � . LetK�
0 be the set of all finite unions of � -intervals. Note that

K�
0 is already a transitive model of all the axioms of S0 except pairing, and that it is

closed under finite unions. To get something which in addition models the pairing
axiom, we define a sequence of setsK�

n , whereK�
nC1 is the set of all sets of the form

k [ l with k 2 K�
n and l a finite subset of K�

n , and we define K� D
S

n2! K
�
n .

1.25 Proposition

(i) Each K�
n is a transitive set.

(ii) K� is transitive and K� \ON D � .
(iii) The axioms of extensionality, infinity, pairing, union and difference are all

true in K� .

1.26 Proposition If � is a limit ordinal at least !2, then the set of limit ordinals
less than � is not a member of K� , and accordingly �0 separation fails there.

Proof It is sufficient to note that every element of K� is a union of an element of
K�

0 with a finite set. a (1.26)

The definition of Cartesian product
We introduce, successively, ordered k-tuples:

.y1; y2; y3/3 Ddf
�
y1; .y2; y3/2

�
2

.y1; y2; y3; y4/4 Ddf
�
y1; .y2; y3; y4/3

�
2

.y1; y2; y3; y4; y5/5 Ddf
�
y1; .y2; y3; y4; y5/4

�
2

and so on, and we may verify that all those are S0-suitable.
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1.27 Remark Thus all Kuratowski k-tuples are generated from the single binary
function ¹x; yº.

1.28 Definition x � y Ddf ¹z j 9a2x9b2yz D .a; b/2º.
It would be more convenient to formulate such a definition in this way:

x � y Ddf
®
.a; b/2

ˇ̌
a 2 x & b 2 y

¯
:

That is, though, ambiguous: where the context demands, we may remove the
ambiguity by listing the variables to be quantified beside the j sign. Thus®

.a; b/2
ˇ̌
b
a 2 x & b 2 y

¯
would mean ¹aº � y if a is in x, and the empty set otherwise. Hence we make the
following.

1.29 Definition Let A be a class; then
¹A jx1:::xn

ˆº Ddf ¹y j 9x1 : : : 9xn y D A & ˆº:

1.30 Remark Define inductively
SkC1

x Ddf
S
.
Sk

x/. Then each
Sl

x is
S0-suitable. S0 easily proves that if x D .y; z/2, then y 2

S2
x and z 2

S2
x;

hence, using these S0-suitable restrictions, one verifies easily that if A is �0, then
the class ¹.y1; y2; : : : ; yk/k jy1;y2;:::;yk

Aº of k-tuples is equal, provably in S0, to a
�0 class. But in general, if A is S-suitable andˆ is�0, then ¹A jx;y ˆ.x; y/º might
not be a �S

0 class.

1.31 Remark In both Models 1 and 2 of [M3, Section 4], ReSI holds but ! �! is
not a set.

Relations and functions
We may now develop the usual theory of relations, k-ary functions and so on: we
treat functions as a subclass of their image � their domain. In discussing relations
we shall often write Rxy to mean .x; y/2 2 R, though this notation is perhaps too
perilous to adopt in a general definition.

1.32 Definition Let R be a variable or class: write
Rel.R/ ”df R D

®
.x; y/2

ˇ̌
Rxy

¯
:

We distinguish two relations by special, if inelegant, names:

1.33 Definition

id Ddf
®
.x; x/2

ˇ̌
x 2 V

¯
eps Ddf

®
.x; y/2

ˇ̌
x 2 y

¯
:

Let F be a set or class.

1.34 Definition Fn.F / ”df Rel.F / & 8x8y8z.F xz & Fyz H) x D y/.
Note that we are following a convention in which .x; y/2 2 F corresponds to the

statment x D F.y/, rather than y D F.x/.

1.35 Definition

F.t1; : : : tn/ Ddf �x .xt1 : : : tn/nC1 2 F

ht jx1;:::xn
ˆi Ddf

®
.t; x1; : : : xn/nC1

ˇ̌
ˆ

¯
:
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1.36 Proposition f .x/ is ReS0-suitable.

1.37 Definition For R and t sets or classes, set
R“t Ddf

®
y

ˇ̌
9x .Ryx & x 2 t /

¯
R� t Ddf

®
.x; y/2

ˇ̌
Rxy & y 2 t

¯
R�1

Ddf
®
.x; y/2

ˇ̌
Ryx

¯
Dom.R/ Ddf R

�1“V
=.R/ Ddf R“V

Field.R/ Ddf Dom.R/ [ =.R/:

1.38 Remark Note that by our system of definitions, f .x/ is always defined, with
default value ¿; hence 9y y D f .x/ is not equivalent to x 2 Dom.f /. We shall
occasionally write f .x/ # for the latter.

Our definition of well-founded relation includes the concept of being “set-like”:

1.39 Definition Wf .R/ ”df Rel.R/ & 8x9y.x 2 y & R“y � y/&
8x.x D 0 V 9y2xx \R“¹yº D 0/.

Relativisation of a formula to a class

1.40 Definition Let M be a class. For each formula ˆ of the language of set
theory, we define .ˆ/M , the relativisation of ˆ to M by recursion on the length
of ˆ.

1.41 Definition .x 2 y/M is x 2 y; .x D y/M is x D y; .:ˆ/M is :.ˆ/M ;
.ˆ&‰/M is ..ˆ/M & .‰/M /; .ˆ H) ‰/M is ..ˆ/M H) .‰/M /; and similarly
for the other propositional connectives:

.8x ˆ/M is 8x2M .ˆ/M ; .8x2y ˆ/
M is 8x2y\M .ˆ/M ;

.9x ˆ/M is 9x2M .ˆ/M ; .9x2y ˆ/
M is 9x2y\M .ˆ/M ;�

x 2 ¹y j ˆº
�M is x 2

®
y j y 2 M & .ˆ/M

¯
.

We also define the relativisation of a class by:

1.42 Definition .¹y j ˆº/M is ¹y j y 2 M & .ˆ/M º.

The systems DB, BS and MW
The next system, which we call DB for “Devlin Basic”, adds the existence of Carte-
sian product to PZ, but as it thereby becomes finitely axiomatisable, we give it offi-
cially as that finite axiomatisation.

DB0 The system of which the set-theoretic axioms are Extensionality DB0

and the in following nine set-existence axioms:
¿ 2 V

S
x 2 V a \ ¹.x; y/2 jx;y x 2 yº 2 V

¹x; yº 2 V Dom.x/ 2 V ¹.y; x; z/3 jx;y;z .x; y; z/3 2 bº 2 V

x X y 2 V x � y 2 V ¹.y; z; x/3 jx;y;z .x; y; z/3 2 cº 2 V

1.43 Remark All those nine are theorems of PZ C Cartesian product.
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1.44 Theorem (Bernays) All instances of�0 separation are provable in the system
DB0.

1.45 Definition We shall call a function of the form x 7! x \ A, where A is a
class, a separator, or a �0-separator if A is a �0 class.

DB DB0 plus …1 foundation. DB
DB0I DB0 plus ! 2 V . DB0I
DBI DB C ! 2 V . DBI

1.46 Proposition (DB0I) Œ!�1 and Œ!�2 exist.

Proof ! 2 V is an axiom of DB0I. By the definition of ordered pair, Œ!�1 [ Œ!�2 �S
.! � !/, and the result follows by �0 separation. a (1.46)

If we add the axiom of infinity plus the scheme of foundation for all classes to DB
we obtain the system BS as formulated on page 36 of Devlin’s book Constructibility:

BS ReS0 C Cartesian product C full foundation C ! 2 V . BS

The system BS is used extensively by Devlin in his study [De] of constructibility:
for each limit ordinal � the set L� in Gödel’s constructible hierarchy models BS. But
counterexamples of Solovay show that it is not quite strong enough for its intended
tasks, one of which was to give a definition of the truth predicate ˆu ' where u is a
set and ' is a sentence of an appropriate object language. To decide whether an exis-
tential statement

W
x#.x/ is true in a model M (here the symbol

W
is the existential

quantifier of the object language), one considers the set S# Ddf ¹#Œ a � j a 2 Mº

of substitution instances of # , where a is the constant of the relevant language inter-
preted by the element a.

1.47 Definition For each k > 0, we write Œ!�k for the class of subsets of ! of
size k.

Now Model 6 of [M3, Section 5], where the defects of BS are discussed in detail,
shows that although BS can prove the existence of Œ!�1 and Œ!�2 it cannot prove the
existence of Œ!�3, or indeed any Œ!�k for k > 2. Thus BS is unable to form the set S#

and hence cannot define ˆ. The following strengthening suffices:

MW DBI C 8a8k2! Œa�
k 2 V MW

That the truth relation ˆu ' is, provably in MW, �1-definable was shown in
[M3, Section 10]. Section 9 of this paper will give a new proof of that, and also of
the corresponding result for ˆ

0, which has this interesting consequence:

1.48 Theorem MW is finitely axiomatisable, modulo one subtlety.

Proof We already know that DB0 is; to that we have added an axiom of infinity,
the axiom just given, and the scheme of …1 foundation. The subtlety is this: we
use the truth definition for P�0 wffs: what are they? Here we are quantifying in the
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language of discourse, not in the metalanguage, so we are getting slightly more than
the scheme, but only in non-standard models will we be able to tell the difference.
We invite the reader to complete the proof by using ˆ

0 to formulate P̆
1 foundation.

a (1.48)

1.49 Remark In the transitive Model 7 of [M3, Section 5], MW is true but for
some element a, ¹

S
x jx x 2 aº is absent.

The system GJ

1.50 We now reach a system of the greatest importance in the study of constructibil-
ity, which was discovered independently by Gandy [G] and by Jensen [J2]. The tran-
sitive models of this system are precisely the transitive sets closed under a certain
collection R of functions, which we have yet to define. The members of this col-
lection were called basic by Gandy and rudimentary by Jensen; the second adjective
has been generally adopted in the literature, and is customarily shortened to rud. We
follow that usage, and shall define a subcollection B of R, calling the members of B

basic functions. The transitive sets closed under the members of B are the transitive
models of DB.

GJ0 DB0 C ¹x“¹wº j w 2 yº 2 V . GJ0

GJ GJ0 C the scheme of …1 foundation. GJ
GJI GJ C ! 2 V . GJI

1.51 Proposition The class ¹x“¹wº j w 2 yº is GJ0-suitable.

In the next section we shall prove the important eyebrow principle that if F is
a rudimentary function so is F “. For its proof we shall introduce companions and
establish the Gandy–Jensen lemma.

1.52 Remark An application of that principle is that a 2 V H) ¹
S
x jx

x 2 aº 2 V is provable in GJ0.

Again using the eyebrow principle, we may prove the following scheme of theo-
rems:

1.53 Proposition (GJ0) For each set a, Œa�k exists.

Proof Œa�0 D ¹¿º 2 V . Œa�1 D A0“a 2 V . Œa�kC1 D ¹s [ ¹xº j .s; x/2 2

.Œa�k � a/ \ ¹.s; x/2 j x … sºº, which is in V , being of the form h“b for some set b
and rudimentary function h. a (1.53)

That scheme becomes a single theorem once the right instances of…1 foundation
are available.

1.54 Theorem (GJ) 8a8k2! Œa�
k 2 V .

Once we know Theorem 2.93 of [M3], which runs:
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Theorem (GJ) 8a8m2!
ma 2 V ,

where ma is the set of functions from m to a, and which is proved by using …1

foundation to find for given a the least counterexample m, we may again invoke the
eyebrow principle to obtain the desired result, since

Œa�k D
®
=.f /

ˇ̌
f
f 2

ka & f is injective
¯
: a (1.54)

1.55 Corollary MW is a subsystem of GJI.

1.56 Remark Section 6 of [M3] recalls the result of Gandy [G] that GJI does not
prove the existence of S.!/. Thus by Theorem 1.54 the function .a; k/2 7! Œa�k is
not rudimentary.

2 Review of the Elementary Theory of Rudimentary Functions

We introduce the rudimentary functions R0; : : : ; R8 and certain auxiliary functions
A0; : : : ; A14 generated by them under composition: this is not the shortest possible
list, but one that conveniently extends the list, given in the axioms of DB0, that
generates the �0 separators.

R0.x; y/ D ¹x; yº

A0.x/ D ¹xº
�
D R0.x; x/

�
A1.x; y/ D .x; y/2

�
D R0

�
A0.x/; R0.x; y/

��
A2.x; y; z/ D

®
x; .y; z/2

¯
A3.x; y; z/ D .x; y; z/3

�
D A1

�
x;A1.y; z/

��
R1.x; y/ D x n y

A4.x; y/ D x \ y
�
D x n .x n y/

�
A5.x/ D ¿ ŒD x n x�

A6.x/ D x ŒD x n ¿�
R2.x/ D

[
x

R3.x/ D Dom.x/
R4.x; y/ D x � y

R5.x/ D x \
®
.a; b/2

ˇ̌
a;b

a 2 b
¯

A7.x/ D eps�x
h
D R5

�[
x � x

�i
R6.x/ D

®
.b; a; c/3

ˇ̌
a;b;c

.a; b; c/3 2 x
¯

R7.x/ D
®
.b; c; a/3

ˇ̌
a;b;c

.a; b; c/3 2 x
¯

A8.x/ D
®
.a; c; b/3

ˇ̌
a;b;c

.a; b; c/3 2 x
¯ �

D R6

�
R7

�
R7.x/

���
A9.x/ D x�1

�
D Dom

�®
.a; c; b/3

ˇ̌
a;b;c

.a; b; c/3 2 ¹¿º � x
¯�

D R3

�
A8

�
R4

�
A0

�
A5.x/

�
; x

����
A10.x/ D =.x/

�
D Dom.x�1/

�
A11.x; y/ D eps \ .x � y/

�
D R5.x � y/

�
A12.x; y/ D ¹w jw x 2 w 2 yº

�
D Dom

�
A11

�
¹xº � y

���
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A13.x; y/ D id \ .x � y/

A14.x; y/ D x“¹yº

h
D Dom

��
x \

�h[ [
x

i
� ¹yº

���1�i
R8.x; y/ D

®
x“¹wº

ˇ̌
w
w 2 y

¯
:

2.0 Proposition Each of R0; : : : ; R7 and A0; : : : ; A14 is DB0-suitable.

Separators, basic functions and �0 branching

2.1 Definition Let R, the collection of rudimentary functions, be the closure of
R0; : : : ; R8 under composition. Let B, the collection of basic functions, be the clo-
sure of R0; : : : ; R7 under composition.

2.2 Proposition

(i) For each �0 class A the map x 7! x \ A is in B.
(ii) It is a theorem of MW that for each P�0 wff ' the map a 7! a \ ¹x jˆ

0
'Œx�º

is in B.
The proposition is well expressed by the slogan “�0 separators are basic”.
The difference between the two results lies in the quantification, which in part (i)

is in the metalanguage and in part (ii) in the language of discourse. So really we have
cheated in not specifying in which language B is being defined. A similar ambiguity
is inherent in our definition of R.

Proposition 2.2 implies that branching over�0 choices can be coded by rudimen-
tary functions.

2.3 Proposition For each �0 class A the map x; y; z 7!
® x if z 2 A

y otherwise is rudimen-
tary.

Proof The map can be expressed as

x; y; z 7! Dom.x �
�
¹zº \ A

�
[ Dom.y �

�
¹zº \ .V n A/

�
: a (2.3)

Resolution of a question of Sy Friedman
We may now answer a question of Sy Friedman, whether a unary function F with a
�0 graph and such that for some k 2 ! and all x, %.F.x// 6 %.x/Ck is necessarily
rudimentary.

Write HF for the class of hereditarily finite sets, defined as the union of all finite
transitive sets.

2.4 Lemma Let k 2 !; then for any x, x � VkC1 ”
S
x � Vk; hence

x � VkC1 ”
SkC1

x � V0 D ¿.

2.5 Lemma The predicate a D HF is �0.

Proof To say a D HF, say that ¿ 2 a, that a is transitive and closed under
S

and
(unordered) pairing, that no member of a is a limit ordinal, and if b 2 a then there
is an f 2 a with domain a successor ordinal ` C 1 such that f .0/ D b, for every
k < `, f .k C 1/ D

S
f .k/ and f .`/ D ¿. a (2.5)
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2.6 Proposition HF is not a member of the rud closure of ¹!º.

Proof Otherwise S.!/ would be, contradicting the result of Gandy mentioned in
Remark 1.56. a (2.6)

Now let F be ¹.x; y/2 jx;y .y D ! & x D HF/ V .y ¤ ! & x D ¿/º.
Then F is a function, its graph is �0 and for any y, %.F.y// 6 %.y/. But F is not
rudimentary, for F.!/ D HF.

Companions for rudimentary functions
The collection of functions in R is closed under formation of images: by which is
meant that if F is in R so is x 7! F “x. To prove that, we introduce the notion of
a companion—we will actually have two such notions—and establish the Gandy–
Jensen lemma.

Let S be some system of set theory extending DB0, and letG and F be�0 classes
such that S proves that both G and F are total functions.

2.7 Definition G is a 1-companion of F in S if G is S-suitable and

`S Ex 2 Eu H) F.Ex/ #2 G.Eu/:

2.8 Definition H is a 2-companion of F in S if H is S-suitable and

`S Ex 2 Eu H) F.Ex/ #� H.Eu/

where Ex 2 Eu abbreviates x1 2 u1 & : : : xn 2 un for an appropriate n.

2.9 Proposition If G1 is a 1-companion of G in S and H 1 is a 1-companion of H
in S, then G1 ıH 1 is a 1-companion of G ıH in S.

The function F “, if available in S, is the best 1-companion of F in S, and in
favourable cases separators may be used to reduce a given 1-companion F 1 of F to
that one, since

`S F “a D F 1.a/ \
®
y

ˇ̌
9x2a y D F.x/

¯
so that if F is given by an S-suitable term,

`S y D F.x/ ” 8w2yw 2 F.x/ & 8w2F .x/w 2 y:

2.10 Proposition Each one of the nine functions R0; : : : ; R7 and A14 has a
2-companion in DB.

Proof

R0: a 2 x& b 2 y H) ¹a; bº � x [ y D
S

¹x; yº.
R1: a 2 x& b 2 y H) a n b � a �

S
x.

R2: a 2 x H)
S
a �

S S
x.

R3: a 2 x H) Dom.a/ �
S S

x.
R4: a 2 x& b 2 y H) a � b �

S
x �

S
y.

R5: t 2 x H) t \ ¹.a; b/2 j a 2 bº � t �
S
x.

R6: If t 2 x, then ¹.b; a; c/3 j .a; b; c/3 2 tº is, by reasoning similar to that given
below for R7, a subset of =.Dom.

S
x// � .=.

S
x/ � Dom.Dom.

S
x///.
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R7: Let t 2 x. It is enough to show that ¹.b; c; a/3 j .a; b; c/3 2 tº is a subset
of =.Dom.

S
x// � .Dom.Dom.

S
x// � =.

S
x//. To see that, note that

¹.b; c; a/3 j .a; b; c/3 2 tº � =.Dom.t// � .Dom.Dom.t// � =.t//, and
apply these principles: t 2 x H) t �

S
x; t � s H) Dom.t/ � Dom.s/;

t � s H) =.t/ � =.s/; and t � s& v � u H) t � v � s � u.
A14: a 2 x & b 2 y H) a“¹bº � =.

S
x/. a (2.10)

2.11 Remark The above 2-companions are generated by the four functions =,
Dom,

S
and �. We can get that down to two,

S
and �, by using the above principles.

For u transitive, a single generator, namely the function u 7! u? Ddf u [ Œu�62 [

.u � u/, is enough.

2.12 Proposition If F has a 1-companion F 1, then
S
F 1 is a 2-companion of F .

2.13 Proposition If G has a 2-companion G2 andH has a 1-companionH 1, then
G2 ıH 1 is a 2-companion of G ıH .

The Gandy–Jensen lemma
The Gandy–Jensen lemma is the core of the proof that R is closed under formation
of images. Versions of it are to be found in the papers of Gandy [G] and Jensen [J2].
We discuss it only for 1-ary functions. The extension to n-ary functions poses no
problems.

2.14 The Gandy–Jensen lemma Let S be a system extending DB0. Suppose that
H is a 2-companion of F in S, and that ‘a 2 F.b/’ is �S

0. Then F is generated by
composition fromH and members of B, and so is S-suitable; if in addition S extends
GJ, then `S F “x 2 V and F “ (as a function) is generated by H and members of R

and (as a term) is S-suitable and is a 1-companion of F in S.

Proof We have
`S x 2 u H) F.x/ � H.u/:

Working in S, form

h.u/ Ddf
�
H.u/ � u

�
\

®
.a; b/2

ˇ̌
a;b

b 2 u & a 2 F.b/
¯
:

Since “a 2 F.b/” is�S
0 and for each�0 A, the function x 7! x\A is in B and is

DB-suitable, we have that h is S-suitable, and is generated byH and functions in B.
Now note that for b 2 u, F.b/ D h.u/“¹bº D A14.h.u/; b/, so F is built from

H and functions in B; if R8 is available in the system S, we may argue further that
F “u D R8.h.u/; u/ so F “ is built from H and rudimentary functions, and is thus
S-suitable; hence `S F “u 2 V , and the function F “ now forms a 1-companion of F
in S. a (2.14)

2.15 Proposition R8 has a 2-companion in GJ.

Proof By the Gandy–Jensen lemma, A14“ is GJ-suitable, and so for a in x and b
in y,

R8.a; b/ D
®
A14.a; w/

ˇ̌
w 2 b

¯
D A14“.¹aº � b/ � A14“

�
x �

[
y

�
: a (2.15)

2.16 Corollary R8 has a 1-companion in GJ.
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Proof By the Gandy–Jensen lemma. a (2.16)

2.17 Theorem R is closed under formation of images and of unions of images.

Proof We have seen that each of R0; : : : ; R8 has a 1-companion in GJ; the col-
lection of functions possessing a 1-companion is closed under composition, and
hence each function in R has a 1-companion in GJ; but if G is a 1-companion of
F , then u 7!

S
.G.u// is a 2-companion of F . Hence each function F in R has a

2-companion in GJ; each such function is GJ-suitable, Proposition 1.11 proving the
survival of suitability under composition, and so by the Gandy–Jensen lemma, F “ is
in R; composition with

S
yields the last clause. a (2.17)

2.18 Remark Gandy shows in [G] that these three are equivalent: (i) F is rudi-
mentary; (ii) “a 2 F.b/” is �0 and F has a 1-companion in GJ; (iii) “a 2 F.b/” is
�0 and F has a 2-companion in GJ.

2.19 Remark Gandy in [G] and Jensen in [J2] supply other characterisations of
R and other axiomatisations of GJ.

3 A Single Generating Function for rud.u/

In developing further properties of the collection of rudimentary functions we shall
use the function T introduced in Definition 2.73 of Weak Systems.

The function T

3.0 Definition

T.u/ Ddf u [ ¹uº

[ Œu�1 [ Œu�2

[ ¹x X y jx;y x; y 2 uº

[

°[
x

ˇ̌̌
x
x 2 u

±
[

®
Dom.x/

ˇ̌
x
x 2 u

¯
[

®
u \ .x � y/

ˇ̌
x;y

x; y 2 u
¯

[
®
x \

®
.a; b/2

ˇ̌
a;b

a 2 b
¯ ˇ̌

x
x 2 u

¯
[

®
u \

®
.b; a; c/3

ˇ̌
a;b;c

.a; b; c/3 2 x
¯ ˇ̌

x
x 2 u

¯
[

®
u \

®
.b; c; a/3

ˇ̌
a;b;c

.a; b; c/3 2 x
¯ ˇ̌

x
x 2 u

¯
[

®
x“¹wº

ˇ̌
x;w

x 2 u;w 2 u
¯

[
®
u \ ¹x“¹wº

ˇ̌
w
w 2 yº

ˇ̌
x;y

x; y 2 u
¯
:

3.1 Remark The successive lines of the definition of T, after the first, may be
written more prosaically asR0“.u�u/, R1“.u�u/, R2“u, R3“u, ¹u\R4.x; y/ jx;y

x; y 2 uº, R5“u, ¹u \ R6.x/ jx x 2 uº, ¹u \ R7.x/ jx x 2 uº, A14“.u � u/ and
¹u \ R8.x; y/ jx;y x; y 2 uº. It will be notationally convenient to treat all these
functions as having three variables, so let us define Si .uI x; y/ WD Ri .x; y/ for
i D 0; 1; Si .uI x; y/ WD Ri .x/ for i D 2; 3; 5; Si .uI x; y/ WD u \ Ri .x; y/ for
i D 4; 8; Si .uI x; y/ WD u\Ri .x/ for i D 6; 7; and S9.uI x; y/ WD A14.x; y/. Then
each of those lines now takes the form Si “.¹uº � .u � u// for some i .
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We have proved the first clause of the following, and the others are easy.

3.2 Proposition T is rudimentary, u � T.u/ and u 2 T.u/. Further, if u is
transitive, then T.u/ is a set of subsets of u, and hence T.u/ is transitive.

3.3 Remark It will not in general be true that u � v H) T.u/ � T.v/, the prob-
lem being that u 2 T.u/, but if v is countably infinite, so is T.v/, which therefore
cannot contain all the subsets of v. Fortunately, u � T.u/ � T2.u/ : : : .

3.4 Lemma If x and y are in u, then R0.x; y/, R1.x; y/, R2.x/, R3.x/, and
R5.x/ are all in T.u/.

In the next five results, it is supposed that u is transitive.

3.5 Lemma For x, y in u, R4.x; y/ D x � y � u � u � T2.u/.

3.6 Corollary For x, y in u, R4.x; y/ 2 T3.u/.

3.7 Lemma For a, b, c in u, .a; c/2 2 T2.u/ and .b; a; c/3 2 T4.u/.

3.8 Corollary For x 2 u, R6.x/ and R7.x/ are in T5.u/.

3.9 Lemma For x, y 2 u, R8.x; y/ 2 T2.u/.

Proof For x, w in u, x“w 2 T.u/, so R8.x; y/ D T.u/ \ ¹x“w jw w 2 yº;
x; y 2 T.u/, so R8.x; y/ 2 T2.u/. a (3.9)

Those remarks, which were proved in Weak Systems, though regrettably without
the requirement that u be transitive being clearly stated, and of which more general
forms will be proved below, immediately yield:

3.10 Proposition If F.Ex/ is a rudimentary function of several variables, there is an
` 2 ! such that for all transitive u, if each argument in Ex is in u, then F.Ex/ 2 T`.u/.

Proof The stated property holds of the nine generating functions and is preserved
under composition. a (3.10)

3.11 Remark Strictly, we should give this as two different results, like Proposi-
tion 2.2, in one of which we quantify in the metalanguage (and so get a fact about
each externally definable rudimentary function) and in the other of which we quantify
internally, and so get a single fact about the internal set of all (codes for) rudimentary
functions.

3.12 Corollary (Gandy; Jensen) IfF is rudimentary, then there is a finite ` such that
the rank of the value is at most the maximum of the ranks of the arguments, plus `.

Proof The function T increases rank by exactly 1. a (3.12)

3.13 Corollary For any transitive u,
S

n2! Tn.u/ is the rudimentary closure of
u [ ¹uº and models TCo.
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Functions rudimentary in a predicate
Let B be a unary predicate. The collection of functions rudimentary in B is that
obtained by adding to the generators of R the function x 7! x \ B .

To extend Proposition 3.10 to the collection of functions rudimentary in B , we
introduce a function TB , rudimentary in B , given by

TB.u/ D T.u/ [
®
x \ B

ˇ̌
x 2 T.u/

¯
:

3.14 Proposition If F.Ex/ is a rudimentary function in B of several variables, then
there is an ` 2 ! such that for all transitive u, if each argument in Ex is in u, then
F.Ex/ 2 .TB/

`.u/.

Example TON , used in 6.86, is itself rudimentary, by Proposition 2.2(i).

The intransitive case
The function T works very happily for transitive argument, but for intransitive argu-
ment it starts to create non-trivial problems. The aim, in the two cases, is not quite
the same. The purpose of T is to proceed by rud steps from any transitive set u to
rud.u/, which will be of strictly greater rank; with an intransitive argument of limit
rank, our first concern would be to fatten it to a transitive rud closed set, without
raising rank. Here are two ways of doing so, using the new functions trud and krud.

3.15 Definition trud.u/ Ddf
S

¹F.Ex/ j F rud & Ex 2 uº.
That is a legitimate definition because we are quantifying over programs for rud

functions; the axiom of infinity is at work here. Here Ex denotes a finite sequence
of arguments of F , and we follow Devlin’s convention that Ex 2 u means that each
argument is in u; if we wanted to say that the sequence is in u we would write
hExi 2 u.

3.16 Proposition For any set u, trud.u/ is transitive, rud closed and includes u;
and if A is transitive, rud closed and includes u, then trud.u/ � A. The rank of
trud.u/ will be the least limit ordinal greater than or equal to the rank of u.

Proof If a 2 b 2 F.Ex/, then a 2
S
F.Ex/ � trud.u/,

S
ıF being rud; and so

trud.u/ is transitive.
If G.�; �/ is rud, b1 2 F1.Ex/, b2 2 F2. Ey/, then G.b1; b2/ 2 G“H.Ex; Ey/ for some

rud H ; G“ ı H is rud, and so G.b1; b2/ 2 trud.u/. Similarly for functions of a
different number of variables.

If a 2 u, then a 2 ¹aº � trud.u/.
If Ex 2 u, then Ex 2 A as A includes u; then F.Ex/ 2 A, A being rud closed; so

F.Ex/ � A, as A is transitive. Thus trud.u/ � A. a (3.16)

The definition of trud can be given recursively.

3.17 Definition K.u/ D u [
S
u [ ¹Ri .x; y; z/ j 0 6 i 6 8 & x; y; z 2

u [
S
uº.

That definition is intended for use even when u is intransitive. Note that K is
rudimentary, and that it has the agreeable property that u � v H) K.u/ � K.v/.

3.18 Definition K0.u/ D uIKnC1.u/ D K.Kn.u//I krud.u/ D
S

n2! Kn.u/.

3.19 Proposition For any u, krud.u/ D trud.u/.
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Proof Plainly krud.u/ includes u, is transitive and is rud closed; so trud.u/ �

krud.u/.
If u � A where A is transitive, rud closed and includes u, then one verifies by an

easy induction that each Kn.u/ � A. Hence krud.u/ � trud.u/. a (3.19)

3.20 Remark K has the property that for any rud function R there is a d such that
Kd is a 1-companion of R.

Gandy reproved
The proofs of a couple of the very interesting results of Gandy’s paper Set theoretic
functions are unfortunately flawed, which may have resulted from Gandy encounter-
ing similar difficulties to those created by “the intransitive case”. We shall give a
brief review of the problems, and shall explain how to obtain proofs of those results
which are right but not supported by Gandy’s arguments as they stand. See especially
Propositions 3.25 and 3.27 below.

The first problem is in his Lemma 1.5.3 on page 111. We will begin our discussion
from his definition 1.5.2: he uses a bold-face x to denote the (meta) finite sequence
x1; : : : ; xm: cf. the bottom of page 105. This usage is a little ambiguous; the letterm
here may be a variable of the meta-language.

Let us for simplicity take the case m D 1, and write x for x1. Then the first part
of his Definition 1.5.2 runs

Cc0¹xº D ¹xºI

CcqC1¹xº D Ccq¹xº [
®
Ccq¹xº

¯
[

®
Fiuv W 1 6 i 6 9 & u; v 2 Ccq¹xº

¯
:

For the purposes of this discussion, we shall take the letter q here to be a variable
of the language of discourse.

3.21 Proposition For any q 2 ! and any x, Ccq¹xº is a finite set.

Proof By induction on q. Indeed, for a given x, let nq be the number of elements
in Ccq¹xº. Then n0 D 1; nqC1 6 nq C 1C 9 � nq

2. a (3.21)

3.22 Thus the second statement of part (ii) of Lemma 1.5.3 is false: if x is actually
an infinite set, it cannot be a subset of any Ccq¹xº.

Similarly, Cc¹xº is defined as
S

q2! Ccq¹xº, which will be a countable infinite
set; so if x is uncountable, it cannot be a subset of Cc¹xº, even if it is transitive.

Lemma 1.5.4 is also incorrect—the difficulty is with step (C) of the proof. The
“only if” direction of Theorem 1.5.5, which relies on Lemma 1.5.4, is also wrong.
Theorem 1.5.6 is false: Bc¹xº is always transitive but Cc¹xº need not be.

We now turn to the ways in which some of the correct results may be recovered.

3.23 Lemma If u is a finite transitive set with u D `, then T.u/ 6 1
2
.2 C

13`C 9`2/.

Proof By inspection. a (3.23)

3.24 Definition (Gandy) �.x/ Ddf the cardinal of the transitive closure of x.

3.25 Proposition (Gandy) If F is rud, then there is a k such that �.F.Ex// is less
than .�.¹Exº/C 1/k .
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Here ¹Exº for many variables means the set of them.

Proof We know that there is an ` such that for u transitive and the arguments
of F in u, F.Ex/ 2 T`.u/. For u transitive, T.u/ is transitive, and iterating the
previous estimate, we find that there is a polynomialQ.X/ of degree 2` (for example
132`�1X2` ) such that x 2 u implies that �.F.Ex// is at most Q.uC 1/. a (3.25)

3.26 Remark We may now justify our earlier remark that there is no pure rud
recursion for S.x/ for x an arbitrary set. If we look at S.x/ for x 2 HF, we see that
S.Vn/ D VnC1; if S.x/ were pure rud rec, given by G, we would have

G.S �Vn/ D VnC1:

But if Vn D N , VnC1 D 2N , whereas
tcl.S �Vn/ �

®�
S.x/; x

� ˇ̌
x 2 Vn

¯
[

®
¹S.x/º

ˇ̌
x 2 Vn

¯
[

®®
S.x/; x

¯ ˇ̌
x 2 Vn

¯
[

®
S.x/

ˇ̌
x 2 Vn

¯
[ Vn

which has cardinality at most 5N ; but for each k, .5N /k will, for large N , be much
less than 2N .

Gandy remarks on page 114 that there is a primitive recursive function which
returns the value ! given any argument of infinite rank. Indeed the example he gives
is rud rec: define

F.x/ D ! \

[®
F.y/ [ ¹F.y/º

ˇ̌
y
y 2 x

¯
;

which is rud rec as intersection with ! is given by a�0 separator; and show first that
if x 2 HF, then F.x/ D %.x/. His Theorem 2.1.3 then states:

3.27 Proposition (Gandy) There is a set c of infinite rank such that for no rud func-
tion G is G.c/ D !.

Indeed there will be many such sets in any transitive model of Z containing sets
of infinite rank but not !, as such models are automatically rud closed and absolute
for rud functions. Proposition 8.12 and [M7, Section 2] give examples.

4 The Collections of Pure rud rec and Gentle Functions

4.0 Definition (Mathias) By type I or pure rudimentary recursions we mean those
given by a recursion equation of the form

F.x/ D G.F �x/
where G is a pure rud function with no hidden parameters. We call functions which
may be defined in this way rudimentary recursive, or rud rec. For example, as was
shown in the introduction, the rank function % is rud rec. We will now explore the
closure properties of rud rec functions.

4.1 Proposition Every (unary) rud function is rud rec.

Proof If F.�/ is unary and rud, let G.f / Ddf F.Dom.f //; then G is rud and
8x F.x/ D G.F � x/. Other rud functions can be transformed to unary functions
by using the pairing and un-pairing functions, which are rudimentary. a (4.1)

4.2 Proposition If F1 and F2 are rud rec, so is x 7! .F1.x/; F2.x//2.
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Proof Let K.x/ D .F1.x/; F2.x//2. Then K.x/ D .G1.F1 � x/;G2.F2 � x//2,
and K �x D ¹..F1.a/; F2.a//2; a/2 ja a 2 xº. There are rud G3 and G4 such that
G3.K�x/ D F1 �x and G4.K�x/ D F2 �x. So

K.x/ D
�
G1

�
G3.K�x/

�
; G2

�
G4.K�x/

��
2

D G5.K�x/

where G5.z/ Ddf .G1.G3.z//; G2.G4.z///2. G5 is rudimentary. a (4.2)

4.3 Proposition Let G1 and G2 be rudimentary, and suppose that F1 and F2 are
defined by the simultaneous recursion

F1.x/ D G1.F1 �x; F2 �x/I F2.x/ D G2.F1 �x; F2 �x/:

Then the function x 7! .F1.x/; F2.x//2 is rud rec.

Proof Let K.x/ D .F1.x/; F2.x//2. Then K.x/ D .G1.F1 � x; F2 � x/;

G2.F1 � x; F2 � x//, and K � x D ¹..F1.a/; F2.a//2; a/2 ja a 2 xº. There are
rud G3 and G4 such that G3.K�x/ D F1 �x and G4.K�x/ D F2 �x. So

K.x/ D
�
G1

�
G3.K�x/;G4.K�x/

�
; G2

�
G3.K�x/;G4.K�x/

��
2

D G6.K�x/

where G6.z/ Ddf .G1.G3.z/; G4.z//; G2.G3.z/; G4.z///2. G6 is rudimentary.
a (4.3)

4.4 Corollary Let F be a rud rec function and H a rud function. ThenH ı F is a
projection of a rud rec function.

Proof Suppose that F is given by F.x/ D G.F � x/. Then F and H ı F are
definable by the simultaneous recursion given by that equation and H ı F.x/ D

H.G.F �x//, and hence Proposition 4.3 applies. a (4.4)

Significantly, H ı F need not be rud rec:

4.5 Proposition (Bowler) The functionH W x 7!
® ! if %.x/ D !

0 otherwise is a composite of a
rud function with a rud rec fuction, but is not rud rec.

Proof H is the composite ı! ı %, where the function ı! W x 7!
® ! if x D !

0 otherwise is
rudimentary by Proposition 2.2. For any unary rud G and ` as in Proposition 3.10
(in fact ` D cG as in Definition 6.13) and any transitive x,

`C1[
G.x/ �

`C1[
G00

�
x [ ¹xº

�
�

`C1[
T`

�
x [ ¹xº

�
D

[�
x [ ¹xº

�
D x:

Suppose that H were rud rec, given by G0 say. Let ` D cG where G is the rud
function G W y 7! G0.¹0º � y/. Let Z be the transitive set, of rank !, of Zermelo
integers: Z D ¹sn.¿/ j n 2 !º, where s W x 7! ¹xº. Then

! D

`C1[
! D

`C1[
H.Z/ D

`C1[�
G0.H �Z/

�
D

`C1[�
G0

�
¹0º �Z

��
D

`C1[�
G.Z/

�
� Z—a falsehood! a (4.5)
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We therefore turn our attention to a collection of functions with better closure
properties: those of the form G ı F with G rud and F rud rec. We call such func-
tions gentle. Our first concern will be to show that, unlike the collection of rud rec
functions, the collection of gentle functions is closed under composition.

4.6 Lemma Let F be rud rec, given by F.x/ D G.F � x/ where G is rud. Then
there is a rud function HG obtainable uniformly from G such that for every u, not
necessarily transitive, and every v � Pu, F �v D HG.v; F �u/.

Proof For x 2 v, F �x D .F �u/�x. Let �.f; x/ D .G.f �x/; x/2. Then � is
rud, and

F �v D
®
�.F �u; x/

ˇ̌
x
x 2 v

¯
D HG.v; F �u/

where HG is rud. a (4.6)

4.7 Corollary Let F be rud rec, given by F.x/ D G.F �x/ where G is rud. Then
there is a rud functionHT

G obtainable uniformly fromG such that for every transitive
u, F �T.u/ D HT

G.F �u/.

Proof We take HT
G.f / D HG.T.Dom.f //; f /. a (4.7)

4.8 Proposition (Bowler) If F1 and F2 are rud rec, then F1 ı F2 is gentle.

Proof Let F1 be given by F1.x/ D G1.F1 �x/ and F2 by F2.x/ D G2.F2 �x/.
We say that a set is sufficient for x if it is the restriction of F1 to a transitive set u

containing .F2.x/; x/2. We proceed by showing that there is a function F , definable
by mutual rudimentary recursion with F2 as in Proposition 4.3, with the property
that for any x, F.x/ is sufficient for x. For that, we must find a rudimentary function
E in two variables such that, for any function f with domain x and sending each y
in x to a set sufficient for y, E.F2 �x; f / is sufficient for x.

Suppose we have such an f , with f .y/ D F1 � u.y/ for each y 2 x

(where we write u.y/ for the domain of f .y/). Then
S

=.f / D F1 � Nu,
where Nu Ddf

S
y2x u.y/ is a transitive set of which F2 � x is a subset. Thus

HG1
. Nu[ ¹F2 �xº; F1 � Nu/ D F1 �. Nu[ ¹F2 �xº/ is a restriction of F1 to a transitive

set containing F2 � x. The rudimentary function K W f 7! .G2.f /;Dom.f //2
has the property that for any x we have K.F2 � x/ D .F2.x/; x/2. So if we
choose ` as in Proposition 3.10 for this K, then .HT

G1
/`.F1 � . Nu [ ¹F2 � xº// D

F1 �T`. Nu [ ¹F2 �xº/ is sufficient for x. So the rudimentary function

E W g; f 7! .HT
G1
/`

�
HG1

�
Dom

�[
=.f /

�
[ ¹gº;

[
=.f /

��
has the property stated above: the function F defined by F.x/ D E.F2 �x; F �x/
sends each x to something sufficient for x.

By Proposition 4.3, x 7! .F2.x/; F.x//2 is rud rec. Thus F1 ı F2 is gentle, as it
can be obtained by precomposing this rud rec function with the rudimentary function
q 7! right.q/.left.q//. a (4.8)

4.9 Theorem (Bowler) Any composite of gentle functions is gentle.
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Proof Suppose that H1 and H2 are gentle, with Hi given by Hi D Gi ı Fi with
Gi rud and Fi rud rec. Then by Propositions 4.1 and 4.8 F2 ı G1 is gentle—
say it is given by G ı F with G rud and F rud rec. By Proposition 4.8 again,
F ı F1 is gentle—say it is given by G0 ı F 0 with G rud and F rud rec. Thus
H2 ıH1 D G2 ı F2 ıG1 ı F1 D G2 ıG ı F ı F1 D .G2 ıG ıG0/ ı F 0 is gentle.

a (4.9)

The collection of gentle functions is closed in other good ways: for example, by
Proposition 4.2. If H1 and H2 are gentle, then so is x 7! .H1.x/;H2.x//2.

4.10 Proposition If F is rud rec, so is x 7! F �x.

Proof Let F be given by G, and let H.x/ D F �x. Then

H.x/ D F �x
D

®�
F.a/; a

�
2

ˇ̌
a
a 2 x

¯
D

®�
G.F �a/; a

�
2

ˇ̌
a
a 2 x

¯
D

®�
G

�
H.a/

�
; a

�
2

ˇ̌
a
a 2 x

¯
D G2.H �x/

where, setting G1 to be the rud function x 7! .G.left.x//; right.x//2, we take
G2.x/ Ddf G1“x. a (4.10)

4.11 Corollary If H is gentle, thenH“, being equal to Im ı .H �/, is also gentle.

Thus any gentle function has a gentle 1-companion. It is also clear that any gen-
tle function has a gentle 2-companion, obtained by precomposing this 1-companion
with

S
.

Gentle predicates

4.12 Proposition Let B be a predicate. The following are equivalent:
(i) The characteristic function of B is gentle.
(ii) The separator x 7! x \ B is gentle.

Proof (i) ) (ii) is immediate from Proposition 4.10, and (ii) ) (i) follows from
Theorem 4.9 and the fact that x 2 B iff ¹xº \ B ¤ ¿. a (4.12)

We call predicates with those properties gentle, and may view the proposition
as saying that gentle predicates give gentle separators. There is a variant of Corol-
lary 4.7 for TB with B gentle.

4.13 Lemma If B is a gentle predicate, with the function x 7! x \ B given by
H ı F with H rudimentary and F rud rec, then there is a rudimentary function
GTB such that, for any transitive set u, GTB

.F �u/ D F �TB.u/.

Proof Let F be given by F.x/ D G.F � x/. We take the function f 7!

HG.T.Dom.f // [ =.H ı f /; f /. a (4.13)
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4.14 Lemma If B is a gentle predicate, with the function x 7! x \ B given by
H ıF ,H rud and F rud rec, and G is a unary function which is rudimentary in B ,
then there is a binary rudimentary function OG such that OG.x; y/ D G.x/ whenever
y is a restriction of F to a transitive set containing x.

Proof Using Proposition 3.10, we can find some ` such that, for any transitive
set u containing x and any subterm G0 of some fixed term representing G as a
function rudimentary in B , G0.x/ 2 .TB/`.u/. Thus for y as in the statement,
f D .GTB

/`.y/ is a restriction of F to a transitive set containing all of the G0.x/.
Thus G.x/ can be obtained by using H ı f in place of z 7! z \ B in the term
defining G. a (4.14)

Variants
There are some natural variations on the definition of rudimentary recursion, which
we now show do not give more general collections of functions. For example, we
could vary the relation used in the recursion.

4.15 Proposition Let F be defined by F.x/ D G.x; F � tcl.x//, where G is rudi-
mentary. Define H by H.x/ D F � tcl.¹xº/. Then H is rud rec and therefore F is
gentle.

Proof F � tcl.x/ D
S

y2x H.y/, so

H.x/ D
®�
F.x/; x

�
2

¯
[

[
y2x

H.y/

D

°�
G

�
x;

[
y2x

H.y/
�
; x

�
2

±
[

[
y2x

H.y/

D G1.H �x/

where G1.h/ D ¹.G.Dom.h/;
S

=.h//;Dom.h//2º [
S

=.h/, so that G1 is rudi-
mentary and H is rud rec. Then F.x/ D ŒH.x/�.x/, the evaluation of H.x/ at
argument x, and is thus a trivial rud function of x and H.x/. a (4.15)

4.16 Corollary Recursions of the form F.x/ D G.x; F �
S S

x/, where again G
is rudimentary, thus yield gentle functions.

4.17 Remark Recursions of that kind occur in the definition of forcing.

We could also restrict the domain of the recursion, for example to the ordinals.

4.18 Remark For G a rudimentary function, define G0.f / D G.f / \

¹z j Dom f 2 Onº. Then G0 is rudimentary, by Proposition 2.2; and if we
recursively define F.x/ D G0.F �x/, then F is rudimentarily recursive and

F.x/ D

´
G.F �x/ if x 2 On

¿ otherwise:

We could also consider gentle functions of more than one variable—for example,
any gentle function H can be considered as giving the function x; y 7! H..x; y/2/

of two variables. Gentle functions in multiple variables are still closed under com-
position. We could also consider functions defined by mutual recursions—but as
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Proposition 4.3 shows, that does not take us outside the collection of gentle func-
tions.

The final variant we shall consider is rudimentary recursion in a predicate. We
call a function rud rec in B if it is of the form

F.x/ D G.F �x/
where G is rud in B . We say K is gentle in B iff it is of the form H ı F withH rud
in B and F rud rec in B . It is clear that rudimentary recursion in arbitrary predicates
is more general than pure rudimentary recursion. However, rudimentary recursion in
gentle predicates is not.

4.19 Theorem (Bowler) Let F2 be a gentle function in a gentle predicate B . Then
F2 is gentle.

Proof Suppose that x 7! x \ B is given by H1 ı F1, with F1 given by
F1.x/ D G1.F1 � x/, where G1 and H1 are rud. Since any gentle function in
B is a composite of rud rec functions in B and any composite of gentle functions is
gentle, we may suppose without loss of generality that F2 is rud rec in B , given by
F2.x/ D G2.F2 �x/, where G2 is rud in B .

We say that a set is sufficient for x if it is the restriction of F1 to a transitive
set u containing .F2.x/; x/2. We proceed, as in the proof of Proposition 4.8, by
showing that there is a function F , definable by mutual rudimentary recursion with
F2 as in Proposition 4.3, with the property that for any x F.x/ is sufficient for x.
As in that proof (but using Lemma 4.13 in place of Corollary 4.7), we can find a
rudimentary function E in two variables such that, for any function f with domain
x and sending each y in x to a set sufficient for y, E.F2 � x; f / is sufficient for x.
It also follows from this construction that F2 � x is in the domain of E.F2 � x; f /.
Thus F2.x/ D OG2.F2 � x;E.F2 � x; f //, where OG2 is as given by Lemma 4.14.
Therefore there is an F which is definable together with F2 by the simultaneous
rudimentary recursion

F.x/ D E.F2 �x; F �x/I F2.x/ D OG2

�
F2 �x;E.F2 �x; F �x/

�
:

And so by Proposition 4.3 F2 is gentle. a (4.19)

An illusory recursion
Just to warn the reader:

4.20 Proposition There are rud functions G and H such that for any function F ,
F.x/ D G.F �H.x//.

5 Rudimentary Recursion from Parameters

5.0 We have defined functions of type I, or pure rud rec functions to be those given
by a recursion equation of the form

F.x/ D G.F �x/
where G is a pure rud function with no hidden parameters.

5.1 Definition (Mathias) For recursions involving parameters, the following defini-
tion seems the most satisfactory, which we call type II:

F.x/ D G.p; F �x/:
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Here G is a pure rud function of two variables and p is some set. We shall call
such an F p-rud rec or a function of type II. Similarly, we call F p-gentle if it is a
composite of a rudimentary function with a p-rud rec function.

5.2 It might be asked whether a simpler kind of recursion, which we might call
type II0, will suffice. Let us say that F is rud rec from p, where p is some set, if there
are G0 and G, pure rud functions of one variable, such that

F.x/ D

´
G0.p/ if x D ¿;
G.F �x/ if x ¤ ¿.

For such an F and for any rudimentary function H we shall say H ı F is gentle
from p.

Thus in type II recursion the parameter p may be re-used throughout the recur-
sion, whereas in type II0, use of the parameter p occurs only at the beginning.

5.3 Example To form L.d/, the constructible closure of d , a transitive set, re-
quires a rud recursion in the parameter d : define

D.x/ D d [

[
y2x

T
�
D.y/

�
:

Then D.x/ D D%.x/ where D0 D d ; D�C1 D T.D�/; D� D
S

�<�D� , which is
the usual ordinal recursion for this purpose. L.d/ D

S
x D.x/ D

S
� D� .

5.4 A delicate distinction has to be made here. The two collections of functions
given by recursions of type II and of type II0 from a given parameter are not the same:
for example, for p of infinite rank, the function F W x 7! p � x is p-rud rec but not
rud rec from p, since there is no rud G with p � ¹¿º D F.¹¿º/ D G.F � ¹¿º/ D

G.¹.¿;¿/2º/. The closure property given in Proposition 4.10 holds for the collec-
tion of p-rud rec functions, by essentially the same proof, but fails for the collection
of functions rud rec from p, since if K is the constant function with value !, K is
rud rec from !, but x 7! K�x D ¹!º � x is not. It is for such reasons that we have
preferred type II to type II0.

But when we pass to the associated gentle collections, we may breathe again, as
that distinction no longer applies:

5.5 Proposition (Bowler) A function F is p-gentle iff it is gentle from p.

Proof The “if” direction is clear from the definitions and from Proposition 2.2.
For the “only if” direction, note that without loss of generality F is p-rud rec, given
by F.x/ D G.p; F �x/. Let K W x 7! .p; F.x//2. There is a rudimentary function
G1 such that for any x we have G1.K�x/ D F �x, and so

K.x/ D

´
.p;G.p;¿//2 if x D ¿;
.
S

=.=.K�x//;G.
S

=.=.K�x//;G1.K�x///2 if x ¤ ¿.

Thus K is rud rec from p and so F is gentle from p. a (5.5)
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5.6 Essentially the same arguments as in the last section show that the p-gentle
functions have good closure properties. For example, if F is p-gentle then so is
x 7! F � x. However, it is not true that any composite of p-gentle functions is
p-gentle: for example, the function x 7! ! C x is !-gentle, but its composite with
itself is not. This composite is, however, ! C !-gentle and there is a similar phe-
nomenon in general.

5.7 Proposition (Bowler) Let F1 be p1-rud rec and F2 be p2-rud rec. Then F1 ıF2

is .p1; F1 � tcl¹p2º/2-gentle.

5.8 Proposition (Bowler) Let B be a p1-gentle predicate, with x 7! x \ B repre-
sented asH1ıF1, and letF2 bep2-gentle inB . ThenF2 is .p1; F1 � tcl¹p2º/2-gentle.

The proofs are like those in the last section. Apart from these two cases, the results
of the last section transfer directly to p-gentle functions, and we may refer to them in
the future as if they were stated in those terms. Specifically, in Propositions 4.1, 4.2,
4.3, 4.12 and 4.15, Corollary 4.16 and Remark 4.18, we may replace rud, rud rec and
gentle respectively by p-rud (that is, of the form x 7! G.p; x/ with G rud), p-rud
rec and p-gentle.

The parametrized forms of Lemma 4.6 and its corollary are now given: note the
uniformity. H depends only on G and not on the specific parameter p.

5.9 The Propagation Lemma LetG be a binary rudimentary function. Then there is
a ternary rudimentary function HG , obtainable uniformly from G, such that for any
set p, if F is the p-rud rec function given by the recursion F.x/ D G.p; F �x/, and
if PC and P are transitive sets with PC � P .P /, then

F �PC
D HG.p; F �P;PC/:

Proof If x 2 PC, then x � P , so F � x D .F � P / � x so F.x/ D G.p;

.F �P /�x/. Hence

F �PC
D

®�
G

�
p; .F �P /�x

�
; x

�
2

ˇ̌
x
x 2 PC

¯
:

We take HG.p; f; q/ � ¹.G.p; f �x/; x/2 jx x 2 qº. a (5.9)

5.10 Corollary Let G be rud. Then there is a binary rud function HT
G obtainable

uniformly fromG such that for every set p F rud rec, given by F.x/ D G.p; F �x/,
and every transitive u, F �T.u/ D HT

G.p; F �u/.

Proof We take HT
G.p; f / D HG.p;T.Dom.f //; f /. a (5.10)

5.11 Remark Type II recursions will underlie the discussion of rudimentary forc-
ing in [M8], with the poset P of conditions as an ever-present parameter.

5.12 Remark The first Jensen fragment after J1 that is closed under functions of
type II is J! , as given Jk we could set f .0/ D Jk If .n C 1/ D T.f .n//If .�/ DS
f “�, and then f .!/ D JkC1.
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Recursions of Type III

5.13 Finally, we ask what happens to type II if we turn the parameter back into a
variable and consider recursion equations of the following form

F.v; x/ D G
�
v; F �

�
¹vº � x

��
which we shall call type III.

5.14 Remark The recursion here is on the second variable, in harmony with the
form of the definition of ordinal addition as given in Example 0.3.

5.15 Proposition For each fixed v the map x 7! F.v; x/ is rud recursive of type
II, in the parameter v.

Proof Let E.x/ D F.v; x/. Then E�x D ¹.F.v; b/; b/2 jb b 2 xº, whereas
F �

�
¹vº � x

�
D

®�
F.v; b/; .v; b/2

�
2

ˇ̌
b
b 2 x

¯
D

®�
E.b/; .v; b/2

�
2

ˇ̌
b
b 2 x

¯
D H.v;E�x/

for a certain rud function H ; so E.x/ D G.v;H.v;E � x// D G1.v; E � x/, for
some rud function G1. a (5.15)

5.16 Remark Since x is recoverable by a rud function from F � .¹vº � x/, as the
domain of its domain, no new functions result from equations of the form

F.v; x/ D H
�
v; x; F �

�
¹vº � x

��
:

6 Provident Sets

6.0 Definition (Mathias) A setA is p-provident, where p is a set, if it is non-empty,
transitive, closed under pairing and for all p-rud rec F (or equivalently all p-gentle
F ) and all x in A, F.x/ 2 A.

6.1 Remark If A is p-provident, p 2 A.

6.2 Example We shall see that the Jensen fragment J� is ¿-provident for all
� > 1.

6.3 Theorem Any directed union of ¿-provident sets is ¿-provident. Explicitly, if
A is a nonempty set of ¿-provident sets such that for any A;B 2 A there is C 2 A

with A [ B � C , then
S

A is ¿-provident.

Proof
S

A is nonempty since A and allA 2 A are nonempty. It is transitive since
each A 2 A is. For any x; y 2

S
A, we can find A;B 2 A with x 2 A and y 2 B ,

and we can find C 2 A with A[B � C . Since C is provident, ¹x; yº 2 C �
S

A.
Finally,

S
A is closed under ¿-rud rec functions since each such function is unary.

a (6.3)

6.4 Definition (Mathias) A is provident if it is p-provident for every p 2 A.

6.5 Remark The only provident set not containing an infinite set is HF.

6.6 Remark For provident sets, it is unnecessary to demand that they be closed
under pairing, for if x 2 A, the function y 7! ¹x; yº is x-rud rec, being given by
the recursion F.y/ D ¹x;DomF �yº. But the union of two sets each closed under
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¿-rud rec functions might not be closed under pairing, though as rud rec functions
are unary, that union would be closed under ¿-rud rec functions: for example, let a
and b be mutually Cohen-generic subsets of ! and consider the model J2.a/[J2.b/.

6.7 Theorem Any directed union of provident sets is provident.

Ranks of provident sets
If A is an ¿-provident set, then for � < %.A/ we have � D %.x/ for some x 2 A and
so � 2 A. Thus %.A/ D On \ A. Since the function � 7! � C 1 is rudimentary,
we can deduce that %.A/ is a limit ordinal. If A is provident, then since the function
� 7! �C � is �-rud rec, %.A/ is closed under addition.

6.8 Remark The discussion above shows that the rank of any provident set is an
indecomposable ordinal, as defined in 0.4.

6.9 Lemma An ordinal � is indecomposable iff it is of the form !˛ for some ˛ > 0.

Proof If ˛ D ˇC 1 then for �; � < !˛ we can choosem; n < ! with � � !ˇ �m

and � � !ˇ �n, so that �C� � !ˇ .mCn/ < !˛ . If ˛ is a limit, then for �; � < !˛

we can choose � < ˛ with �; � < !� and so �C � < !� < !˛ .
Conversely, suppose that � is indecomposable. Let ˇ be minimal such that

!ˇ > � . Since exponentiation by ! is continuous, ˇ must be a successor: say
ˇ D ˛ C 1. Now choose n < ! maximal so that !˛ � n � � . If n ¤ 1, then
the identity !˛ � .n � 1/ C !˛ D !˛ � n contradicts indecomposability of � , so
we must have n D 1. Let � D !˛ C  . Since n D 1,  < !˛ and so since � is
indecomposable we must have  D 0. Thus � D !˛ , as required. a (6.9)

A familiar provident set is J!� .c/ provided !� is greater than the rank of the
transitive set c. But we shall replace the traditional definition of L.a/ recalled
in 0.16 by the one outlined in 0.17.

Bounding rudimentary functions in a finite progress

6.10 Definition Let � be an ordinal orON . A �-progress is a sequence hP� j � < �i

of transitive sets such that for each � with � C 1 < � , T.P�/ � P�C1 and for each
limit ordinal � < � ,

S
�<� P� � P�; the progress is strict if for each � with

�C 1 < � , P�C1 � P .P�/; continuous if for each limit � < � , P� D
S

�<� P� ; and
solid if it is strict and continuous and P0 D ¿.

6.11 Proposition If the progress is strict and continuous, then for each � < � ,
%.P�/ D %.P0/C �.

Proof By induction on �. a (6.11)

6.12 Theorem Let R be a rudimentary function of n variables. There is a cR 2 !

such that for every .cR C 1/-progress P0; P1; : : : ; PcR
, R“P n

0 � PcR
.

6.13 Definition We call cR the rudimentary constant of R. For R W a 7! a \

¹x jˆ
0
'.x; b/º with ' a P�0 formula, we also call cR the separational delay.

6.14 Remark More precisely, there is a recursive function sending a program for
R to a bound; but the function sending a program for R to the minimal bound is not
recursive.
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We prove the theorem in a series of lemmata.

6.15 Lemma If x and y are in P� , then ¹x; yº 2 P�C1, x X y 2 P�C1,S
x 2 P�C1 and Dom.x/ 2 P�C1.

Proof Immediate from lines 2, 3, 4 and 5 of the definition of T. a (6.15)

6.16 Lemma x; y 2 P� H) x � y 2 P�C3.

Proof If x and y are in P� , then both ¹xº and ¹x; yº are in P�C1; so ¹¹xº; ¹x; yºº

are in P�C2; P� being transitive, we may infer that if a 2 x and b 2 x, then .a; b/2
is in P�C2; thus x�y � P�C2, which, since P� � P�C2, implies that x�y 2 P�C3.

a (6.16)

6.17 Lemma x; y 2 P� H) R5.x; y/ 2 P�C1.

6.18 Lemma a; b; c 2 P� H) Œ.a; c/2 2 P�C2 & .b; a; c/3 2 P�C4�.

6.19 Lemma x 2 P� H) R6.x/ 2 P�C5.

6.20 Lemma x 2 P� H) R7.x/ 2 P�C5.

6.21 Lemma x;w 2 P� H) x“¹wº 2 P�C1.

6.22 Lemma x; y 2 P� H) R8.x; y/ 2 P�C2.

Proof of Theorem 6.12 The lemmata show that for i D 0; : : : ; 8, we may take cRi

to be 1, 1, 1, 1, 3, 1, 5, 5, 2 respectively. The theorem now follows by remarking that
if S and Ti are rudimentary and for all x, Q.Ex/ D S.T0.Ex/; : : : ; Tk.Ex//, we may
take cQ D cS C maxi cTi

. a (6.12)

6.23 Corollary If hP� j � < �i is a �-progress, then at each limit ordinal � 6 � ,S
�<� P� is rud closed.

The canonical progress towards a given transitive set

6.24 Let c be a transitive set. Let c� D c \ ¹x j %.x/ < �º. Since c is transitive,
c�C1 will be a set of subsets of c� ; in fact c�C1 D c \ ¹x j x � c� º, which we shall
use below as a direct recursive definition.

If c�C1 D c� , then c� D c and for all � > �, c� D c� ; so that that first happens
when � D %.c/.

Using c as a parameter we define a sequence of pairs ..c� ; P
c
� //� by a rud recur-

sion on �. Each P c
� will be of rank �; we shall use the function T, but we shall also

“feed” stages of c into the process.
The sequence .P c

� /� forms a solid progress, which we shall call the canonical
progress towards, to, or through c, the choice of preposition depending on the length
of the sequence as compared to the rank of c.
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6.25 Definition

c0 D ¿ c�C1 D c \ ¹x j x � c�º c� D

[
�<�

c�

P c
0 D ¿ P c

�C1 D T.P c
� / [ ¹c�º [ c�C1 P c

�
D

[
�<�

P c
�

6.26 Lemma Each P c
� is transitive. P c

� � P c
�C1. P c

� 2 P c
�C1; and so for � < �,

P c
� � P c

�
and P c

� 2 P c
�

.

6.27 Remark c� D c \ P c
� ; %.P c

� / D �.

6.28 Remark P c
� may be defined by a single rud recursion on ordinals:

P c
0 D ¿I P c

�C1 D T.P c
� /[¹c\P c

� º[
�
c\¹x j x � P c

� º
�
I P c

� D

[
�<�

P c
� :

With that definition, one should then verify by induction that for each �,
c \ P c

� D c \ ¹x j %.x/ < �º, and thence that the two definitions agree.

6.29 Remark Each P c
�

is rud closed, for � a limit ordinal, by Theorem 6.12.

6.30 Remark P c
! D V! : for each P c

n � Vn and so P c
! � V! ; equality will follow

from the fact that P c
! is a non-empty rud closed set, by the previous remark.

Bounding rudimentarily recursive functions in a progress
To see why and how quickly progresses tend to become closed under p-rud rec func-
tions, we recall the notion of an F -attempt.

6.31 Definition Let F be the p-rudimentarily recursive function defined by
F.x/ D G.p; F �x/. A set f is an F -attempt iff it satisfies

Fn.f / &
[

Dom.f / � Dom.f / & 8x2Dom.f / f .x/ D G.p; f �x/:

Note that that is �0 in f and p; we will denote the separational delay of that
predicate by sF .

We say that an F -attempt f attains x iff x 2 Dom.f /.

6.32 Proposition Let F be a p-rud rec function. Then there is a natural number
cF such that for any set x and any .cF C 1/-progress P0; P1; : : : ; PcF

such that P0

contains p and x and contains, for each y 2 x, an F -attempt attaining y, the set
PcF

contains an F -attempt attaining x.

Proof Under those hypotheses, f0 Ddf
S

¹f 2 P0 j f is an F -attemptº is an
F -attempt attaining every y 2 x. Further, f0 2 PsF C2, as P0 2 P1, so the set
P0 \ ¹f j f is an F -attemptº is in P1CsF

, and its union will be in P1CsF C1 by the
definition of T.

Now F �x D f0 �x, and so f0[¹.G.p; f0 �x/; x/2º is an F -attempt attaining x.
It is therefore enough to take cF D sF CcR C2, whereR is the rudimentary function
.x; p; f / 7! f [ ¹.G.p; f �x/; x/2º. a (6.32)

6.33 Theorem Let F be a p-rud rec function, x a set, and hP� j � < �/i a
�-progress with � > cF � .%.x/C 1/, and p and x in P0. Then PcF �.%.x/C1/ contains
an F -attempt attaining x.
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Proof By induction on %.x/. For each y0 2 x, we have %.y0/C 1 6 %.x/ and so
the induction hypothesis will imply that PcF :%.x/ contains an F -attempt attaining y0.
By Proposition 6.32, PcF :%.x/CcF

contains an F -attempt attaining x, which is the
desired result, as cF :%.x/C cF D cF :.%.x/C 1/. a (6.33)

6.34 Theorem Let hP� j � 6 �i be a solid .� C 1/-progress. Then P� is provident
iff � is an indecomposable ordinal.

Proof The “only if” direction is immediate from Remark 6.8. For the “if” direc-
tion, let x; p 2 P� ; choose � < � with x; p 2 P� . Let F be p-rud rec. Then
%.x/ < � and so F.x/ 2 P�CcF �� � P� . a (6.34)

6.35 Proposition Let c be a transitive set and � an indecomposable ordinal. Then
P c

�
is provident, and

P c
� D P

c�

�
D

[
�<�

P
c�

�
:

Proof That P c
�

is provident is an immediate corollary of Theorem 6.34.
If x 2 P c

�
, then for some � < � , x 2 P c

�
D P

c�

�
� P

c�

�
.

Conversely, if � < � , c� is in P c
�

, which we now know to be provident, and the
map � 7! P

c�
� is given by a c�-rudimentary recursion, and so each P c�

� , for � < � ,
is in P c

�
; thus P c�

�
� P c

�
. a (6.35)

In fact, the inductive argument of Theorem 6.33 gives the following slightly
sharper version:

6.36 Theorem Let F be a p-rud rec function and hP� j � < �i a solid �-progress,
and let p 2 P� and x 2 P� , where � C cF � � < � . Then there is an F -attempt
attaining x in P�CcF �� .

6.37 Corollary Let hP� j � � �i be a solid .� C 1/-progress. Then P� is
¿-provident iff � is a limit ordinal.

Indeed something a little more general is true.

6.38 Theorem Let hPi j i < !i a strict !-progress with P0 p-provident. ThenS
i<! Pi is also p-provident.

Proof Let F be p-rud rec. As in Proposition 4.15, x 7! F � tcl¹xº is p-gentle
and so for any x 2 P0 there is an F -attempt attaining x in P0. Then by induction
on i , with i < !, using Proposition 6.32, we obtain that for any x 2 Pi there is an
F -attempt attaining x in PcF �i , and in particular that F.x/ 2 PcF �i . a (6.38)

A criterion for providence in terms of Type III

6.39 Proposition A transitive set A is provident iff it contains the graph of the
restriction of F to X �X for any X 2 A and any F which is recursive of type III.

Proof It is clear that if A contains all these graphs then it is provident.
Conversely, suppose A is provident of rank � and X 2 A. If A D HF, the result

is clear, so we assume � > !. Let F be defined by F.v; x/ D G.v; F � .¹vº � x//.
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Then for each v 2 X we have by Theorem 6.36 that there is an F.v;�/-attempt
attaining X in PX

%.X/:2C!
. The graph in question is then given by�

PX
%.x/:2C! � .X �X/

�
\

[®�
y; .v; x/2

�
2

ˇ̌
9f

2P X
%.x/:2C!

f is an F.v;�/-attempt attaining x & f .x/ D y
¯
: a (6.39)

Iterated recursion and limit provident sets
We can obtain similar bounds on the growth of functions obtained by recursing rud
rec functions, or by recursing functions obtained in that way, and so on. More pre-
cisely:

6.40 Definition A unary class function F W V ! V is p-rud [rec]0 iff it is rud.
F is p-rud [rec]nC1 iff there is a p-rud [rec]n function G such that for all x we have
F.x/ D G..p; F �x/2/. F is p-rud [rec]<! iff it is p-rud [rec]n for some n < !.

Thus F is p-rud [rec]1 iff it is p-rud rec.

6.41 Remark That is more powerful than rudimentary recursion, but it is still
fairly weak. For example, as we shall see in Corollary 6.52, for no p is � 7! � C !

p-rud [rec]<! , in contrast to the fact that � 7! ˛C� is ˛-rud rec for each ˛. Similarly
these recursions are too weak to define ordinal multiplication.

6.42 Remark Provident sets need not be closed under p-rud [rec]n functions for
n > 1. For example, the ordinal function x 7! !Cx is !-rud rec, and so the ordinal
function F W x 7! !2 \ .! � x/ obtained from it by recursion is !-rud [rec]2. But
P¿

!2 is not closed under F , since F.!/ D !2.

However, we shall find that to check whether a provident set is closed under such
recursions it is enough to know the rank of that provident set. To prove that, we shall
consider bounds on the growth of such functions; and for that we must first consider
a notion of limitation for ordinal functions.

6.43 Definition For � an ordinal, we say that an ordinal function l W On ! On is
�-restrained iff for all ordinals � we have l.�/ < �C � C !.

6.44 Lemma If l is �-restrained, then it is �0-restrained for any �0 � �.

6.45 Lemma If l1 and l2 are �-restrained, then so is � 7! l1.�/ [ l2.�/.

6.46 Lemma If l1 is �1-restrained and l2 is �2-restrained then l1 ı l2 is �1 C �2-
restrained.

Proof For any �, we can pick m 2 ! with l2.�/ � �2 C � C m and so
l1.l2.�// < �1 C l2.�/ C ! � �1 C �2 C � C m C ! D �1 C �2 C � C !.

a (6.46)

6.47 Lemma If l is �-restrained and increasing then the function l 0 defined by
l 0.�/ D l.

S
�<� l

0.�// is � � !-restrained and increasing.
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Proof l 0 is clearly increasing. l 0.0/ D l.0/ < � C ! � ! � � C 0 C !. For � a
successor, say � D �C 1, we can pick m < ! such that l 0.�/ � � � ! C �Cm, so
that l 0.�/ D l.l 0.�// � l.� �!C�Cm/ < �C� �!C�CmC! D � �!C�C!.
Finally, for � a limit, for every � < � we have l 0.�/ < � � ! C �C ! � � � ! C �

and so
S

�<� l
0.�/ � � � ! C �, and so l 0.�/ � l.�C �/ < �C � � ! C � C ! D

� � ! C � C !. a (6.47)

6.48 Definition For ordinals � and � and a set p, a unary class function F is
.p; �; �/-restrained if there are an increasing �-restrained ordinal function l and a
rudimentary functionH such that for any solid progress P with p 2 P� and x 2 P�

and any ˛ � l.�/ we have H.p;P˛; x/ D F.x/.

That notion is designed to make the following true:

6.49 Lemma Any p-rud rec function is .p; �; �/-restrained for every �.

Proof Let H W p;P; x 7! Œ
S

¹f 2 P j f is an F -attemptº�.x/. Let
l W � 7! � C cF � �. By Proposition 6.11 and Theorem 6.36, if P , � and x are
as in Definition 6.48, and ˛ � l.�/, then P˛ contains an F -attempt attaining x, and
so H.p;P˛; x/ D F.x/. a (6.49)

We now mimic the argument used to obtain Theorem 6.36, to show that functions
obtained by recursion from restrained functions are still restrained.

6.50 Theorem (Bowler) Suppose that F is defined by F.x/ D G..p; F � x/2/,
where G is .p; �; �/-restrained. Then F is .p; �; .�C �/ � !/-restrained.

Proof Let H and l witness the fact that G is .p; �; �/-restrained, as in Defini-
tion 6.48. We say that f is an F -attempt using P if

Fn.f / &
[

Dom.f / � Dom.f / & 8y2Dom.f /f .y/ D H
�
p;P; .p; f �y/2

�
:

We shall refer to this �0 formula again, so we denote it by A.p;P; f /. Let
K W p;P; x 7! Œ

S
¹f 2 P j A.p;P; f /º�.x/. We say that x is attained by P

iff there is some f 2 P such that A.p;P; f / and x 2 Dom.f /, and for every
y 2 tcl¹xº we haveH.p;P; .p; f �y/2/ D G..p; f �y/2/. Thus if x is attained by
P , then K.p;P; x/ D F.x/.

Next we define a sequence of variously restrained ordinal functions which
will help us restrain the growth of F . Let l1 W � 7! � C � C cR1

C 1,
where R1 is the rudimentary function P; p 7!

S
¹f 2 P j A.p;P; f /º. Let

l2 W � 7! l1.�/C cR2
, where R2 is the rudimentary function p; f; x 7! .p; f �x/2.

Let l3 D l ı l2. Let l4 W � 7! l3.�/ C cR5
, where R4 is the rudimentary function

p;P; f; x 7! H.p;P; .p; f �x/2/. Let l5 W � 7! .l4.�/ [ ctcl � �/C cR5
, where R5

is the rudimentary function f; t; v; x 7! f � t [ ¹.v; x/2º. Finally, let l6 be defined
by l6.�/ D l5.

S
�<� l6.�//. Each of the li is increasing. Evidently l1 and l2 are

�-restrained. Thus by Lemma 6.46, l3 is � C �-restrained and therefore so are l4
and l5. Therefore by Lemma 6.47, l6 is .�C �/ � !-restrained.

Now suppose that we have a solid progress P with p 2 P� . We shall show by
induction on � that for x 2 P� and ˛ � l6.�/ x is attained by P˛ . For given �, write
l7.�/ D

S
�<� l6.�/. Let

f0 D

[®
f 2 Pl7.�/

ˇ̌
A.p;Pl7.�/; f /

¯
;
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which is in Pl1.l7.�//. By our induction hypothesis, for any y 2 x we have
f0.y/ D K.p;Pl7.�/; y/ D F.y/. Thus .p; F � x/2 D .p; f0 � x/2 2 Pl2.l7.�//.
Therefore for ˛ � l3.l7.�//, F.x/ D G..p; F �x/2/ D H.p;P˛; .p; f0 �x/2/, and
in particular F.x/ 2 Pl4.l7.�//. Thus f1 D f0 � tcl.x/[ ¹.F.x/; x/2º 2 Pl5.l7.�// D

Pl6.�/ and A.p;P; f1/, so x is attained by any ˛ � l6.�/.
Thus K and l6 witness that F is .p; �; .�C �/ � !/-restrained. a (6.50)

6.51 Theorem Any p-rud [rec]n function is .p; �; � � .!n�1 C n � 1//-restrained
for every �.

Proof By induction on n. The base case follows from Lemma 6.49, and for
the induction step let F be p-rud [rec]nC1, given by F.x/ D G..p; F � x/2/

for some p-rud [rec]n function G. Then by the induction hypothesis G is .p; �;
� �.!n�1Cn�1//-restrained, and so by Theorem 6.50 F is .p; �; .� �.!n�1Cn�1/C

�/ � !//-restrained, which is the desired result as .� � .!n�1 C n � 1/ C �/ � ! D

� � .!n�1 C n/ � ! � � � .!n C n/. a (6.51)

6.52 Corollary For no p is F W � 7! � C ! is p-rud [rec]<! .

Proof Suppose for a contradiction that F is p-rud [rec]n for some p and n.
Let c D tcl¹pº, � D %.p/ C 1 and � D � � .!n�1 C n � 1/. Then F

is .p; �; �/-restrained: let l and H witness that. As p 2 P c
� , we must have

� � ! C ! D F.� � !/ 2 P c
l.��!/CcH

, which is the desired contradiction as
%.P c

l.��!/CcH
/ D l.� � !/C cH < �C � � ! C ! D � � ! C !.

6.53 Theorem (Bowler) Let A be a provident set other than HF. The following are
equivalent:

(i) %.A/ is of the form !˛ for some ordinal ˛ which is a limit.
(ii) A is closed under p-rud [rec]2 functions for p 2 A.
(iii) A is closed under p-rud [rec]<! functions for p 2 A.

Proof It is clear that (iii) ) (ii). To see that (ii) ) (i), we know by Remark 6.8 and
Lemma 6.9 that there is some ˛ > 0 with %.A/ D !˛ . Suppose for a contradiction
that ˛ is a successor ordinal, say ˛ D ˇC1. Then � 7! !ˇ C� is !ˇ -rud rec and so
F W � 7! !˛ \!ˇ � � is !ˇ -rud [rec]2, which contradicts (ii), as ! 2 A and !ˇ 2 A

but F.!/ D !˛ … A.
For (i) ) (iii), let p; x 2 A and let F be p-rud [rec]n. Let � D %.¹p; xº/. By

Theorem 6.51, F is .p; �; � �.!n�1 Cn�1//-restrained: letH and l witness this. We
have x; p 2 P

¹p;xº
� , and so F.x/ 2 P

¹p;xº

l.�/CcH C1
. Since � < !˛ , we can pick some

ˇ < ˛ with � � !ˇ , and so l.�/CcH C1 � � � .!n�1 Cn�1/C�C!CcH C1 �

!ˇ .!n�1 � !/ D !ˇCn < !˛ and so, since A is provident, P ¹p;xº

l.�/CcH C1
2 A and so

F.x/ 2 A as required. a (6.53)

6.54 Definition We call such sets limit provident sets.

6.55 Theorem Any directed union of limit provident sets is limit provident.

Proof The rank of such a directed union is a union of ordinals of the form !˛ with
˛ limit, and so is of the same form. a (6.55)
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6.56 Theorem Let hP� j � 6 �i be a solid .� C 1/-progress. Then P� is limit
provident iff � is of the form !˛ with ˛ a limit ordinal.

Proof Immediate from the definition, Theorem 6.34 and Proposition 6.11.
a (6.56)

Provident levels of the Gödel, Jensen and related hierarchies
Let us start with parameter-free versions of results already proved.
6.57 Lemma Let F be pure rud recursive, given by G. Then “f is an F -attempt”
is a �0 predicate of f .

Proof Here the formula required is

Fn.f / &
[

Dom.f / � Dom.f / & 8x2Dom.f / f .x/ D G.f �x/: a (6.57)

6.58 Proposition If u is transitive and ¿-provident then so is rud.u/.

Proof We take Pn D Tn.u/, and P! D
S

n Pn. hP� j � 6 !i is then a strict
continuous !-progress, so we may apply Theorem 6.38 with p D ¿. a (6.58)

6.59 Corollary Each non-empty J� is ¿-provident,

Proof J1 D HF; J�C1 D rud.J�/; the induction at limit stages is trivial.
a (6.59)

6.60 Remark More generally, although for a given p in L we must go to the first
indecomposable ordinal above the moment of construction of p to find a J� which is
p-provident, every subsequent J� will also be p-provident.

The following is a corollary of Theorem 6.34.

6.61 Theorem J� is provident iff !� is indecomposable.

6.62 Example J! is provident. The next one will be J!2 .
To summarise: J� is ¿-provident iff � > 0, provident iff � is positive and closed

under addition, and limit provident iff � is of the form !˛ with ˛ a limit ordinal.

The T�ŒA�’s
They were defined in 0.14 and form a solid progress, so similar remarks will apply.

The T�.c/’s and J�.c/’s
Let c be a transitive set; in 0.16 we defined

T0.c/ D cI T�C1.c/ D T
�
T�.c/

�
I T�.c/ D

[
�<�

T�.c/I

L.c/ D

[
�

T�.c/:

That sequence is not solid, but since %.T�.c// D %.c/ C �, we have by Theo-
rem 6.34 that T�.c/ is provident iff � is an indecomposable ordinal greater than %.c/,
and is limit provident iff � is greater than %.c/ and is of the form !˛ with ˛ a limit.
An induction argument using Theorem 6.38 then shows that T�.c/ is ¿-provident
for � a limit ordinal at least as big as the least indecomposable ordinal greater than
%.c/. The condition that � exceed the rank of c is inescapable, as ¿-provident sets
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contain the ranks of their members. For that reason we have in 6.24 preferred the
solid progress P c

� .
With the T�.c/’s in hand, we turn to the Jensen hierarchy: by an induction argu-

ment, for any ordinal � we have J�.c/ D T!��.c/. Thus J�.c/ is provident iff � is
nonzero and closed under addition with ! �� > %.c/. It is limit provident iff � is big-
ger than %.c/ and of the form !˛ with ˛ a limit ordinal. Finally, J�.c/ is ¿-provident
if � > 0 and ! � � is at least as big as the least indecomposable ordinal greater than
%.c/; as before, that condition is necessary for ¿-providence.

Provident levels of the L hierarchy

6.63 Gödel in his original paper used the function Def, where for transitive u,
Def(u) is the set of subsets of u definable over u in the language of set theory al-
lowing constants for members of u. Thus his recursion reads

L0 D ¿I L�C1 D Def.L�/I L� D

[
�<�

L� :

Then we set L D
S

�2ON L� .

6.64 Proposition The sequence hL� j � 2 ON i is a solid progress.

Proof Two of the requirements are clear from the definition; we must show that
for any �, T.L�/ � L�C1. But it is immediate from the definition of T that each
member of T.L�/ is a definable subset of L� . a (6.64)

6.65 Corollary L� is ¿-provident iff � is a limit, provident iff � is indecomposable,
and limit provident iff � is of the form !˛ with ˛ a limit ordinal.

Proof Immediate from Theorems 6.37, 6.34 and 6.56. a (6.65)

6.66 Corollary For each limit �, L� � T�.

6.67 Let us remark next that Gödel’s recursion is not rudimentary. Note that for
finite n, Ln D Vn and thus by Remark 3.26 the rate of growth is too large to be
that of a pure rudimentary recursion. But that particular argument collapses if we
admit parameters, for P V!

n D Vn for every n. Suppose, towards a contradiction, that
there is a rud function G and parameter p 2 L with L�C1 D G.p;L�/ for every �.
Choose � indecomposable with � D !� and p 2 J� D L� D T� . Then for every
limit ordinal � > � , L� and T� are both p-provident, so we should have L� D T�.
But that is false for � D � C !:

6.68 Proposition If L� D T� then T�C! ¦ L�C! .

Proof in outline For transitive u, every element in T.u/ is of the form G. Ey/ with
G one of the rudimentary functions used in defining T and the arguments Ey in u.
Iterating that observation shows us that there is a definable subset Cn of T� which
codes T�Cn in a sufficiently simple way to permit a diagonal argument to show that
Cn … T�Cn ; but Cn 2 L�C1. Hence L�C1 is not a member of T�, but it is a member
of L�. a (6.68)

The proof of [M3, Theorem 9.7] includes details, which readily generalise, of this
argument for the case � D !.
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6.69 The L� ŒA�’s behave well: since they too form a solid progress, the same re-
marks apply to them as to the L� .

Remark Fairly brutal methods will show that for each � the initial segment
hL� j� � < �i can be represented as a progress rudimentary in a well-chosen set
parameter.

6.70 Construction from a set a: the sequence .L�.a//�2ON as traditionally
defined is a strict and continuous progress, but it is not solid. Thus, since
%.L�.a// D %.a/ C 1 C �, we have by Theorem 6.34 that L�.a/ is provident
iff � is an indecomposable ordinal greater than %.a/, and is limit provident iff � is
greater than %.a/ and of the form !˛ with ˛ a limit. An induction argument using
Theorem 6.38 then shows that L�.a/ is ¿-provident for � a limit ordinal at least as
big as the least indecomposable ordinal greater than %.a/; the need for that condition
will be illustrated in Example 8.10.

Two other progresses

6.71 We mention briefly that it is possible to combine construction from a set and
from a predicate. For example, we might wish to define a progress .P cIB

� /� where c
is a transitive set and B a class. The simplest method would be to replace T by the
simpler form of TB , and to do nothing else; thus we should have this definition:

6.72 Definition

c0 D ¿ c�C1 D c \ ¹x j x � c�º c� D

[
�<�

c�

P
cIB
0 D ¿ P

cIB
�C1 D T.P cIB

� / [ ¹P
cIB
� \ Bº [ ¹c�º [ c�C1 P

cIB
�

D

[
�<�

P
cIB
�

6.73 In [M8] we shall have a use for a progress P cID where the relationD is itself
being defined as the progress advances.

Suppose that A is provident and that D � A is a relation, defined by a p-rud
recursion, using the rud function GD; and that HD is the rud function given by the
Propagation Lemma. Let c be a transitive set of which p is a member. We may define
by a simultaneous p-rudimentary recursion sequences .c�/� , .P�/� , .D�/� thus:

6.74 Definition

c0 D ¿ c�C1 D c \ ¹x j x � c�º c� D

[
�<�

c�

P0 D ¿ P�C1 D T.P�/ [ ¹c�º [ c�C1 [ ¹P� \D�º P� D

[
�<��

D0 D ¿ D�C1 D HD.p;D� ; P�C1/ D� D

[
�<�

D�

In fact in [M8] we shall use Theorem 4.19 and its parametrized form above to
simplify the further discussion.
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Closure of Gödel levels under Scott–McCarty pairing
In Example 0.33 we considered these recursions:

�.y/ D ¹¿º [
®
�.u/

ˇ̌
u
u 2 y

¯
I �.y/ D

®
�.u/

ˇ̌
u
u 2 y & ¿ 2 u

¯
I

�.x/ D
®
�.t/ [ ¹¿º

ˇ̌
t
t 2 x

¯
I  .y/ D

®
 

�
u X ¹¿º

� ˇ̌
u
u 2 y

¯
:

And we stated this lemma, which may be proved by an induction on %.z/:

Lemma ¿ is a member of every �.y/ and of no �.x/; and for all z, �.z/ D

�.z/ X ¹¿º; �.�.z// D z; and  .�.z// D z.

6.75 Lemma

(i) For k 2 !, �.k/ D k C 1 and �.k/ D k C 1 X ¹¿º;
(ii) for � > !, �.�/ D � and �.�/ D � X ¹¿º;
(iii) restricted to ordinals, � and � are rudimentary.

6.76 Definition We introduce four pure rudimentary functions:

A.x/ Ddf x [ ¹¿ºI B.y/ Ddf y \ ¹x j ¿ 2 xºI

C.x/ Ddf x X ¹¿ºI D.y/ Ddf y \ ¹x j ¿ … xº:

In terms of those functions, the lemma states, in part, that �.x/ D C.�.x//; and
the definitions of � , � , � and  simplify to

�.x/ D A“�“xI �.y/ D A.�“y/I �.y/ D �“B.y/I  .y/ D  “C “y:

6.77 Definition If u is transitive and f is a unary function, we shall say that u is
definably closed under f if x 2 u H) f .x/ 2 u and for x; y in u, the relation
y D f .x/ is definable over u (by a formula P̂ f .y; x/ of a set-theoretic object lan-
guage, possibly with constants for members of u occurring as parameters); and for
binary f the corresponding definition would require the relation z D f .x; y/ to be
definable over u.

6.78 Proposition Let � be one of the functions � , � , �, or  . Then each infinite L�

is definably closed under � and under �“.

6.79 Lemma Suppose that u is transitive and definably closed under a unary func-
tion f , specifically by the formula P̂ f . Then Def.u/ is definably closed under f “.

Proof If x D ¹a 2 u jˆu #Œa; p�º, f “x D ¹b 2 u jˆu

W
aŒ#.a; p�^ P̂ f Œb; a/�º.

Further, for y and x in Def.u/,

y D f “x ”ˆDef.u/

^
a�y

_
c�x

�
P̂ f .a; c/

�u
^

^
c�x

_
a�y

�
P̂ f .a; c/

�u
:

a (6.79)

Remark The convention followed in the notation of the first line of that proof is
this: when # is a formula of an object language, we use Fraktur lowercase letters
for formal variables and indicate their occurrence by writing #.a;y/; when those
formal variables are interpreted, say by (names for) elements a and y of the model
in question, we write #Œa; y�; and usages such as #.a; p� indicate that the second but
not the first of the variables is being interpreted. The cumbersome use of an explicit
substitution function Subst is thus avoided.
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6.80 Lemma Each (infinite) L� is closed under A, B ,D, C , A“ and C “; all those
six are rudimentary.

Proof If F.x/ � x and is rud, then every L� will be closed under it: at limits
by rud closure; at successor stages by adding a condition to the definition of x as
a subset of the stage before. That argument does B , C and D; and closure under
A happens as each L� is closed under union of two members, and, if non-empty,
contains ¿. Lemma 6.75 now does A“ and C “. a (6.80)

Proof of Proposition 6.78 � is pure rud rec; so the relation x D �.y/ is defin-
able over every L� (� a limit ordinal) as also is �“, as it is (pure) rud rec or gentle
and we know from Corollary 6.65 that L� is ¿-provident; further the definition is
independent of �. Fix � and write Mk for L�Ck .

Suppose that we have reached a k where Mk is definably closed under � and �“.
By Lemma 6.79, MkC1 is definably closed under �“. We then use the recursion
equation for �, as simplified in 6.76, to deduce thatMkC1 is definably closed under �.
Depending on which of the four functions � is, we may have to invoke Lemma 6.80
for A“, A, B , or C “. a (6.78)

We recall and reformulate definitions given in Section 0:

6.81 Definition (Scott, McCarty) hx; yiSM
2 Ddf �“x [ �“y.

6.82 Definition leftSM.a/ Ddf  “.D.a//; rightSM.a/ Ddf �“.B.a//.

6.83 Theorem For each � > !, L� is definably closed under Scott–McCarty pair-
ing and unpairing functions.

Proof Immediate from the above. a (6.83)

6.84 Remark In fact, for a an SM pair, rightSM.a/ D �.a/; and if d D D.a/

then  .d/ D  “.d/, so that leftSM.a/ D  .D.a//: but those simplifications are
misleading, as in the proof of closure in Proposition 6.78, �“ precedes �!

6.85 Remark The above proof generalises easily to show that for a predicate A
and each infinite � the levels L� ŒA� are closed under Scott–McCarty pairing and un-
pairing: but if c is a transitive set of infinite rank which is not SM-closed, the levels
L�.c/ are liable not to be SM-closed for small �. For � at least the first indecom-
posable ordinal exceeding the rank of c, all will be well, as the limit levels thereafter
will be c-provident, and the successor levels will be covered by the arguments of
Lemma 6.79.

6.86 Remark T!C1 D T! [ ¹T!º and is thus not closed under Scott–McCarty
pairing. If we used TON instead of T then, whichever of the two definitions suggested
in 0.14 we adopt, we would get at level ! C 1 the set T! [ ¹T!º [ ¹!º and do no
better.
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7 Provident Closures and the Finite Basis Theorem

Provident Closures

7.0 Theorem Suppose that M is a non-empty set. Let � be the least indecompos-
able ordinal not less than %.M/. Set

Prov.M/ Ddf
[®

P
tcl.s/

�

ˇ̌
s 2 S.M/

¯
:

Then Prov.M/ is provident and includes M , and if P is any other such,
Prov.M/ � P .

Here the notation S.M/ is as introduced in Example 0.2.

Proof Prov.M/ is provident by Theorems 6.7 and 6.35. Suppose that P is provi-
dent and M � P . Then S.M/ � P ; � 6 On \ P ; for each s 2 S.M/, tcl.s/ 2 P ,
and for � < � , P tcl.s/

� 2 P , and so Prov.M/ � P . a (7.0)

7.1 Definition We call Prov.M/ the provident closure of M .

7.2 Theorem Suppose that M is a non-empty set. Let � be the least ordinal not
less than %.M/ and of the form !˛ with ˛ a limit ordinal. Set

LProv.M/ Ddf
[®

P
tcl.s/

�

ˇ̌
s 2 S.M/

¯
:

Then LProv.M/ is limit provident and includes M , and if P is any other such,
LProv.M/ � P .

7.3 Definition We call LProv.M/ the limit provident closure of M .

The theories PROV, PROVI and LPROV

Theorem 7.0 implies that there is a finitely axiomatisable set theory (which we call
PROV) of which the transitive models are the provident sets.

Let PROV be the following axioms:
(7.3.0) extensionality;
(7.3.1) the ten axioms of GJ0, as given in Section 1:
¿ 2 V

S
x 2 V a \

®
.x; y/2

ˇ̌
x 2 y

¯
2 V

¹x; yº 2 V Dom.x/ 2 V
®
.y; x; z/3

ˇ̌
.x; y; z/3 2 b

¯
x X y 2 V x � y 2 V

®
.y; z; x/3

ˇ̌
.x; y; z/3 2 c

¯
2 V®

x“¹wº
ˇ̌
w 2 y

¯
2 V

(7.3.2) each set is in the domain of an attempt at the
rank function;

(which implies both TCo and set foundation)
(7.3.3) any two ordinals are in the domain of an attempt

at ordinal addition;
(7.3.4) for each transitive c each ordinal is in the do-

main of an attempt at the sequence hPc
� j � � ON i.

We write PROVI for PROV C ! 2 V .
Theorem 7.0 will suffice to prove that the transitive models of PROV are the prov-

ident sets; the reasoning in this paper has been mainly semantic, but experience of
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the weak systems in [M3] suggests that if one wished to use PROV for syntactical
reasoning, it would be desirable to enhance it by adding the axiom of infinity and
the scheme of …1 foundation. The result will be finitely axiomatisable in the subtle
sense of 1.48.

We write LPROV for the theory obtained from PROVI by adding the axiom
(7.3.5) for each ordinal ˛, ! is in the domain of an at-

tempt at the recursion F.�/ D ˛ C
S

�<� F.�/.

Note that a formal statement of this axiom should include the postulation of a
sufficiently long attempt at the function � 7! ˛ C �.

Then the transitive models of LPROV are the limit provident sets.

The theory ¿-PROV

Next, we will obtain a finite theory whose transitive models are the ¿-provident sets.
For this, we will present a finite collection of rud rec functions which capture all
rud rec functions, in the same sense that the canonical progresses .P c

� / capture all
parametrized rud rec functions.

7.4 Definition Let Y1 W x 7! ¹Y1.y/ j y 2 xº [ ¹xº, Y2 W x 7! ¹¹Y2.y/º j

y 2 xº [ x and Y3 W x 7!
S

y2x T.Y3.y// [ x.

Each of these is rud rec, and Y3.x/ is transitive for any x.

7.5 Lemma For any n < ! and any x we have x 2 Y n
2 .Y1.x//.

Proof By induction on n. The case n D 0 is immediate from the definition of Y1,
and for the induction step, for any x we have x 2 Y n

2 .Y1.x// � Y2.Y
n

2 .Y1.x///.
a (7.5)

7.6 Definition We define the relations 2n for each n < ! by x 20 y iff x D y,
and x 2nC1 y iff there is z with x 2n z 2 y. Thus y 2n x iff there is a sequence
y D y0 2 y1 2 y2 2 � � � 2 yn D x.

7.7 Lemma For any n < ! and any y 2 x we have Y n
2 .y/ 22n Y n

2 .x/.

Proof By induction on n. The case n D 0 holds by definition. For the induc-
tion step, we have Y2.y/ 2 ¹Y2.y/º 2 Y2.x/ and so by the induction hypothesis
Y n

2 .Y2.y// 22n Y n
2 .¹Y2.y/º/ 22n Y n

2 .Y2.x//, so that Y nC1
2 .y/ 22nC1 Y nC1

2 .x/.
a (7.7)

7.8 Theorem (Bowler) Let F be rud rec, and let n < ! with 2n � cF . Then for
any x, and any y 2 x, Y3.Y

n
2 .Y1.x/// contains an F -attempt attaining y.

Proof By induction on %.x/. Let y 2 x. Then Y1.y/ 2 Y1.x/ and so by
Lemma 7.7 Y n

2 .Y1.y// 22n Y n
2 .Y1.x// and so we can find a sequence Y n

2 .Y1.y// D

y0 2 y1 2 � � � 2 y2n D Y n
2 .Y1.x//. Define a 2n C 1-progress P by Pi D Y3.yi /.

By the induction hypothesis P0 contains, for each z 2 y, an F -attempt attaining z,
and by Lemma 7.5 and the definition of Y3 we have y 2 P0. So by Proposition 6.32
we know that PcF

contains an F -attempt attaining y, which F -attempt must then
be contained in each Pj with j � cF , and in particular in P2n D Y3.Y

n
2 .Y1.x///.

a (7.8)
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Thus if we let ¿-PROV be the following axioms then the transitive models of
¿-PROV are the ¿-provident sets:

(7.8.0) extensionality;
(7.8.1) the ten axioms of GJ0, as given in Section 1;
(7.8.2) each set is in the domain of an attempt at each

of Y1, Y2 and Y3.

In fact, we need only add a very simple kind of parametrized recursion to obtain a
theory equivalent to PROV. The recursive definition of ordinal addition makes sense
even if the first input is not an ordinal: for any set x define x C ˇ by recursion on
the ordinal ˇ, as x C 0 D x and x C ˇ D

S
<ˇ ..x C / [ ¹x C º/ for ˇ > 0.

(This definition is intermediate between the ordinary ˛ C ˇ of ordinal addition and
the definition of ACB for arbitrary sets A and B given in [SMcC].) We get a theory
whose transitive models are provident sets by adding the following axiom to ¿-PROV:

(7.8.3) For any set x, each ordinal is in an attempt at
the function ˇ 7! x C ˇ.

This works because for any set x, the sequence .Y3.xC ˇ//ˇ is a progress, so we
can get any value of any parametrized rud rec function using Theorem 6.33.

8 Models of Stunted Growth

We have mentioned “Model M13;�” studied in Weak Systems [M3], which is super-
transitive and a proper class but which contains only the ordinals < �; so in that
model rank is stunted.

8.0 Aside Consider that model in the special case � D !; ! is not a member
of M13;! , which is otherwise a model of Z, save for the axiom of infinity in its
customary form. But that axiom is not used in defining the finite basis of rudimentary
functions; so M13;! is rud closed; and therefore ! is not of the form F.x/ for any
rud function F and x 2 M13;! .

That is the promised sketch of the argument for Gandy’s Theorem 2.1.3. It also
demonstrates the claim in Remark 0.18 that the rank function is not rudimentary.
Note that in Model M13;�, TCo holds; by supertransitivity, the actual transitive clo-
sure of each member of the model is a member of the model.

8.1 Historical note Priority for the underlying idea of the definition of the model
M13;! , in a different context, must go to Jonathan Stavi. In Example 3 on page 610
of his paper [Stav], he considers a countable admissible setM and the set T of those
x 2 M with ! not a subset of tcl.x/, and shows that T is not closed under rank and
is not a union of admissible sets.

The first author records his gratitude to Zachary McKenzie for drawing his atten-
tion to Stavi’s paper.

We may generalise the idea behind model M13 thus:

8.2 Definition Suppose that F W On �! V is a function such that for � < � we
have F.�/ 2 F.�/. For limit �, set

AF;� Ddf

°
u

ˇ̌̌ [
u � u & sup

®
� 2 On

ˇ̌
F.�/ 2 u

¯
< �

±
I

MF;� D

[
AF;�:
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8.3 Proposition If there is � < � with F.�/ … !, then MF;� is a supertransitive
model of Z for which F.�/ 2 MF;� ” � < �. For any F and �, the model MF;�

will be a proper class.

Proof As in Section 7 of [M3]. The union of two members of AF;� is in AF;�,
and if u 2 AF;�, so is P .u/; so that MF;� will be a supertransitive model of Z. If
F �� only takes ordinals as values, the argument in [M3, p. 182] shows that MF;�

will contain sets of all ranks. Otherwise, there is some � < � such that F.�/ is not
an ordinal for � > �, and in that case MF;� will contain all ordinals. a (8.3)

8.4 Definition For limit �, set A17;� Ddf ¹u j
S
u � u & sup¹� j P¿

� 2 uº <

�º; M17;� Ddf
S

A17;�.

8.5 Proposition M17;� is a supertransitive proper class, containing all ordinals
but the T hierarchy only up to � but no further. In this model the rud recursion
defining rank is total but that defining the growth of the Jensen auxiliary hierarchy
stops prematurely.

8.6 Proposition There is a supertransitive class model M18;� of Z which contains
a Cohen generic real c, and all constructible sets, but such that neither L!C!.c/ nor
P c

!C! is in M18;�.

Proof This time take � D ! C ! and F.�/ D P c
�

and M18;� D MF;�. c 2 P c
�

whenever � > ! C 1, so that each L� 2 AF;� and L � MF;�. a (8.6)

In the above model the Jensen hierarchy exists for all ordinals, but the same hier-
archy relativised to c is defined before but not at level ! C !.

8.7 Remark We have seen that in the model K, which should have been called
M16, of Section 12 of [M3], the definition of tcl is stunted, and therefore also the
definition of rank, for if every set is a member of the domain of some attempt at %,
that domain will be a transitive set; so TCo holds, and hence tcl may be recovered
using the full strength of the axioms of Z.

M13 is a model of ZC in which rank is stunted but tcl not; M17 is a model of ZC
in which the Jensen hierarchy is stunted but tcl and rank not; M18 is a model of ZC
in which the relative Gödel and Jensen hierarchies L�.c/ and J�.c/ are stunted but
the hierarchies L� and J� and tcl and rank are not. So there is a certain ordering to
some rudimentary recursions; but we have seen in Section 7 that there is, in a sense,
a finite basis to the collection of rud recursions.

Failure of Scott’s trick in a model of Zermelo
We record here another variant of the above construction.

8.8 Definition Let A D 6R be a well-ordering, viewed as a binary relation
6R on the set ¹x j .x; x/2 2 Aº. For such A, define I.A/ to be the class
of well-orderings isomorphic to A, and, in imitation of Scott’s celebrated trick
for reducing equivalence classes to equivalence sets, let ST .A/ be the class
¹B 2 I.A/ j 8C2I.A/%.C / > %.B/º, the class of well-orderings of minimal
rank isomorphic to A.

The following shows that Z is too weak a set theory for Scott’s trick to work.
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8.9 Theorem Let � D Æ� be a beth fixed point. Let A� be the epsilon relation
restricted to �, thus a well-ordering of length �. There is a supertransitive, proper
class, model M19 of Z containing all ordinals and the well-ordering A� , in which
every set has a rank, but in which .ST .A�//

M19 , though a definable class of the
model, is not a set.

Proof Take F.�/ D V� and M19 D MF;� . V� 2 M19 ” � < �. As �
is a beth fixed point, V� D H� , so that all well-orderings of length � in the uni-
verse must be of rank at least �. Thus A� 2 I.A�/. Let B� be the well-ordering
¹.b� ; b� /2 j�;� � 6 � < �º where for � 6 � , b� D V� , and for � < � < �, b� D �.

Then each B� 2 M19, being obtained from V�C1 and A� by rudimentary opera-
tions. Further each B� is of rank �, and thus is in ST .A�/, even as defined in M19.
Thus the class ST .A�/ cannot be a set in M19, as

S4
ST .A�/ D V� . a (8.9)

Remarks on Zermelo and von Neumann natural numbers

Definition The Zermelo natural numbers are those in the set D Ddf ¹¿; ¹¿º;

¹¹¿ºº; : : :º. The von Neumann natural numbers are of course the members of !.

With the help of the set D we may illustrate a point arising in Section 6.

8.10 Example By induction on �, L�.D/ \ON � 2C �, whereas %.L�.D// D

!C 1C �. Thus L�.D/ cannot be closed under the rank function for � < !2, and in
particularL�.D/ is ¿-provident only at limit ordinals at least as big as !2. A similar
argument shows that J�.D/ is ¿-provident only for � > !.
8.11 Proposition There is a supertransitive model of Z of which ! but not D is a
member.

Proof Proposition 14.7 of Weak Systems reads:

Proposition Suppose that .xn/n and .un/n are two sequences of sets such that for
each n < !:

(14.7.0) xn 2 un;
(14.7.1) un � unC1;
(14.7.2) un is transitive;
(14.7.3) xn 2 tcl.xnC1/;
(14.7.4) xnC1 … un.
Then Nu Ddf

S
n un is transitive and if w is a transitive set with x0 … w, the set

Nx Ddf ¹xn j n 2 !º is not a member of the rud closure of Nu [ w [ ¹wº. If in
addition ! � w, then there is a supertransitive model of Zermelo set theory of which
Nu [ w [ ¹wº is a subset but Nx and Nu are not members.

Take xn = Zermelo’s nC 2, so x0 D ¹¹¿ºº which is not a member of !, and take
un D VnC3. Then conditions 14.7.0–14.7.4 are satisfied.

Take w D ! and let K be the supertransitive model of Z supplied by the last
sentence of the proposition. Then ! 2 K and Nx … K. As Nx D D X ¹0; 1º and K is
rud closed, D … K. a (8.11)

8.12 Proposition There is a supertransitive model of Z of which D but not ! is a
member.
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Proof Such a model is model M13;! ; for D [ ¹Dº is transitive and contains only
the ordinals 0 and 1, and is thus a subset of M13;! . a (8.12)

9 The Truth Predicate for P�0 Sentences

In [M3, Section 10, culminating in page 211] it is shown that the truth predicate
ˆu ' is, provably in MW, �1-definable. The comment on Devlin’s Lemma VI.1.14
in [M3, page 210, lines 6 and 7] inadvertently omitted the words “defer to” between
“but” and “Rudimentary Recursion”. We now exceed our intended promise by prov-
ing the following sharpening.

9.0 Theorem (Mathias) Truth for P�0 sentences is uniformly �1 for transitive mod-
els of MW.

Our method derives from those of [M3]: the notion of “attempt at integer addi-
tion”, used below, is that of the discussion of [M3, paragraph 2.56, page 165], and
“sufficiently long” is to be understood in the sense explained in [M3, paragraph 10.3,
page 200].

Proof We must begin by introducing some notation for P�0 formulae, in order to
maintain the distinction between formulae in the object language and those in the
language of discourse. Thus we denote conjunction, disjunction, and negation in the
object language by ^, _ and q rather than &, V and :. We denote unversal and
existential quantification by

V
and

W
, and we denote the equality and membership

relations by = and �. We shall typically denote variables in the object language
by lowercase letters in the Fraktur font, such as x or y, and formulae in the object
language with variant forms of lowercase Greek letters, such as # or '. The notation
for restricted quantifiers in the object language is also new: for example, instead of
8x2y , we write

V
x�y. For any set a, the object language contains a name �a for a.

Let M be a transitive model of MW, and ' a P�0 sentence of LM . It suffices to
find a †1 definition of ˆM ', for if a truth predicate for a class of sentences that is
closed under negation is †1 it will automatically be …1, since ˆ ' ” : ˆ q'.

We have a sentence '; let k be its length; let N' be the finite set comprising those
members of M of which the names occur in '; let q' be the number of occurrences
of quantifiers in '.

Step 1: We rewrite ' by de-nesting restricted quantifiers: for example,

replace
V

x�� a
W

y�x# by
V

x�� a
W

y�� c Œy � x ^ #�, where c D
S
a.

We thus reach within q' steps a formula '0 in which all quantifiers are restricted
by free terms, each of the form <name of>

Sm
a, where a 2 N' and m < q' . As

the Axiom of Union is among those of MW, each such
Sm

a will be in M . Let F'

be the finite set comprising those members of M of which the names occur in '0.
A similar process is described in some detail in Section 8 of [M3], though there,

but not here, the formalism admits limited quantifiers as well as restricted ones.
Step 2: Using the usual procedures of predicate logic, we rewrite '0 in prenex

form, thus reaching a sentence '� in which a string of quantifiers, all restricted by
free terms, precedes a quantifier-free formula # .

These two steps may be achieved by primitive recursive processes applied to the
formulæ in question.
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We must now show that M contains a set which contains all the constants that
will occur in substitution instances of subformulæ of '�: but such a set will be
P' Ddf F' [

S
F' .

Let S' be the class of quantifier-free sentences, of length no longer than k, in
which the only names occurring are those of members of P' , That, provably in MW,
will be a set.

Step 3: We show that truth for members of S' is uniformly †1 for transitive
models of MW.

Specifically, we show that there is an evaluation g' W S' �! 2, that is, a function
which obeys the rules for evaluation of Boolean combinations of atomic statements.
These rules are:

g. �x = �y/ D

´
1 if x D y

0 if x ¤ y

g. �x � �y/ D

´
1 if x 2 y

0 if x … y

g.q#/ D 1 � g.#/

g.#1 ^ #2/ D inf
®
g.#1/; g.#2/

¯
g.#1 _ #2/ D sup

®
g.#1/; g.#2/

¯
and similarly for other propositional connectives if they have also been taken as prim-
itive.

We saw in [M3] that a statement of the form # D #1 ^#2 is not�0 but will be�0

in any sufficiently long attempt at addition. As the sentences to be considered are all
of length not exceeding that of ', a single sufficiently long attempt, ˛, will exist, and
we shall be able to express the above rules for g as a statement that is �0.˛; g; S'/.
Thus the desired †1 truth predicate for sentences # in S' will be of the form

9˛; a sufficiently long attempt at addition, and
9g W S' �! 2; g an evaluation, with g.#/ D 1:

Step 4: We show how to reduce the computation of truth of '� to that of numer-
ous substitution instances in S' .

9.1 Remark This step would be possible even if we had not done Steps 1 and 2,
but would be more complicated to express.

Suppose that '� has nC 1 quantifiers, so that there are a0; : : : ; an inM such that
'; is

Q0x0�� a0
Q1x1�� a1

: : :Qnxn�� an
#

where # 2 S' but may contain other names besides those shown. n is not greater
than k.

We consider the tree T of all finite sequences hc0; : : : ; c`i of members of P'

where ` 6 n and for each i , ci 2 ai . Provably in MW, T is a set. We write ; for the
empty sequence.

We define for each t 2 T a sentence 't by recursion on the length of t .
Let '; D '�.
Once we have defined 't then for c 2 a`h.t/ we define 't ahci to be Subst.'t ;

x`h.t/; � c/.
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Let T' D ¹'t j t 2 T º, a tree of sentences.
Let g' be the evaluation defined on S' in Step 3. Extend it to T' by a reverse

induction: if `h.t/ D n C 1, 't will be a member of S' , and so g'.'t / has been
defined in Step 3. If g'.'u/ has been defined for all u 2 T of length `h.t/C 1, then
define

g'.'t / D

´
sup¹g.'t ahci/ j c 2 a`h.t/º if Q`h.t/ is

W
;

inf¹g.'t ahci/ j c 2 a`h.t/º if Q`h.t/ is
V
:

So ˆ
0
' ” g'.';/ D 1.

We have finally to observe that as M models MW, then for ' a P�0 sentence of
LM , all the above sets and functions, in particular P' , S' , T' and g' are in M ; so
the desired†1 formula simply says that there exist sets and functions which obey the
rules imposed on them and which lead to the evaluation of '.

The same argument with very few changes will give a less laborious proof of the
result proved in Section 10 of [M3]:

9.2 Theorem The truth predicate ˆu ', for u a transitive set and ' an arbitrary
sentence of Lu, is �MW

1 .

Proof Immediate from Theorem 9.0, since the process of replacing each un-
bounded quantifier

V
x or

W
x by the corresponding bounded quantifier

V
x�� u orW

x�� u is primitive recursive. a (9.2)

9.3 Remark A similar argument shows that the predicate ˆA ' is�MW
1 , where '

is a sentence of some language (not necessarily the language of sets) and A is a small
internal structure for that language, where the functions and relations of the language
are all coded in the usual way by sets.

Notes and Acknowledgments

The first author’s interest in the problems addressed in this paper and its sequel was
fired in 1987 by Stanley’s call, in his review [Stan] of Devlin’s treatise [De], for a
development of constructibility that would meet Devlin’s unachieved aims. Subse-
quently, in Barcelona in the mid 90s, the author became greatly interested in the
problem of finding the weakest system of set theory that will support a recognis-
able theory of forcing. Over the following decade he accumulated assorted obser-
vations about weak systems, which during the set theory year, 2003–4, at the CRM
at Barcelona, grew into a coherent apparatus [M3] for addressing the problems with
Devlin’s book, and which sowed the seeds of the theory of rudimentary recursion and
the sense that the search for the correct minimal theory for a development of forcing
was getting warm.

He began a series of draft papers, called rudrec or fifo, with a draft number;
rudrec4, dated October 2004, gives the definition of rudimentarily recursive and the
beginning of a discussion of forcing in that context, and asks for an example of a
function that, in today’s terminology, is gentle but not rud rec.

The author was encouraged by a correspondence [S] in February and March 2006
with Dana Scott who had found the Gandy–Jensen theory of rudimentary functions
useful in the study of certain problems in formal geometry, and who was relieved to
find that [M3] had, as he put it, “rescued” Devlin’s book.
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Gradually the theory of rudimentary recursion matured; by November 2007 the
idea of what is now called a provident set was there, and a scenario for a proof that
a generic extension of a provident set would be provident. That scenario ran into
difficulties but the proof was saved by the idea of construction from a “dynamic”
predicate: one defined by simultaneous recursion with a particular strict continuous
progress, as in [M5, Definition 8.5]. Without this notion, the proof as it stood would
have needed the ground model to be limit provident, not just provident.

Progressively more mature versions of this material were presented in the ERMIT
seminar in Réunion, where they benefitted from the comments of Dr Olivier Esser; in
talks in January 2008 at University College, London and at Oberwolfach, following
which the term “provident” was adopted; in a talk in May 2008 at Leeds; and in
October 2008 at Lisbon, in talks based on rudrec36 and fifo27. At the Zermelo
centenary meeting at Brussels in late October 2008, the complementary theme of the
inadequacy of Zermelo’s sytem for forcing was discussed, as was the compensatory
use of the passage to the provident closure or to the lune [M4].

In March 2009 copies of rudrec39 and fifo29 were sent to an Editor of Funda-
menta Mathematicæ, who declined the first as being on a topic unsuited to his pages
but asked for formal submission of the second, on forcing over provident sets, to be
made: accordingly on May 5, 2009, fifo31 [M6] was submitted, with rudrec41 [M5]
attached for the assistance of the referee.

In July 2009 the material was presented in condensed form in talks at Oxford and
at Bedlewo, and an extended abstract prepared for the website of the latter meeting.

The first author received the referee’s conditionally favourable report from Fun-
damenta on July 5 2010, a week or so after receiving the kind invitation of Pro-
fessor Martin Hyland to give a course of twenty-four lectures to a graduate and
post-doctoral audience at Cambridge (U.K.) in the Michaelmas Term, 2010. He ac-
cepted with pleasure this invaluable opportunity of testing in detail his approach to
constructibility and forcing via weak systems, rudimentary recursion and provident
sets.

In the Cambridge audience was the second author, who promptly found the coun-
terexample given in Proposition 4.5 to the question whether the composition of two
rud rec functions is rud rec, and who went on to prove Proposition 4.8 and Theo-
rem 4.9. The elegance and strength of his notion of a gentle function have subse-
quently been confirmed in his Theorem 4.19; and comparison with [M5] will show
how his ideas have interacted with those of the first author, in some cases, such as
those of “dynamic predicate” and “function of uniform affine growth”, supplanting
them, and in others, clarifying and developing them and where necessary giving
them appropriate concrete form and generality.

Besides those mentioned above, the first author thanks Carlos Montenegro in Bo-
gotà, and in Barcelona James Harris and the seminar of Joan Bagaria, for their pa-
tience in listening to immature versions of these ideas; and for their steadfast en-
couragement in his study of weak systems, Kai Hauser, Ronald Jensen and Colin
McLarty.
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