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Lesniewski's Strategy and Modal Logic

JOHN T. KEARNS

Abstract Lesniewski used formal systems and artificial languages to capture
and explore concepts expressed in ordinary language. This strategy, which is
the appropriate strategy for the philosophical logician, is illustrated by devel-
oping a system of modal logic to investigate the concept of analyticity. The
ordinary concept of analyticity applies only to sentences; it is de dicto. This
is a shortcoming of the ordinary concept, which is overcome by extending
the concept to constitute the corresponding de re concept. A semantic
account and a deductive system are developed for a first-order language with
identity to capture this concept. The system is shown to be sound and com-
plete with respect to the semantic account.

1 The strategy In [4] Lesniewski attacks the very idea of a set, and writes
off set theory as an illicit enterprise. He cites remarks about sets made by Can-
tor, Frege, Hausdorff, Sierpinski, Fraenkel, Zermelo, and Russell, and finds
fault with all of them. There are two principal faults that Lesniewski fastens on:
(1) The existence of the null set is simply postulated. The null set is an inven-
tion, a fiction of mathematicians. Sets are fictitious entities. (2) Attempts to con-
strue a set as the extension of an idea are unintelligible. Talk of sets doesn’t even
make good sense.

Being fictitious is different from being incoherent, which is the status of
objects which can only be “described” in an unintelligible fashion. But both of
Les$niewski’s criticisms exemplify a common theme: He believes there is a cer-
tain strategy that is appropriate in developing logical and mathematical theories,
which the advocates (the perpetrators) of set theory have not pursued.

It is not clear to me what Le$niewski accepted, or would have accepted, as
a principle of significance or intelligiblity. But he was surely wrong in thinking
that talk about sets lacks significance. My own view is that an expression is sig-
nificant if it belongs to a linguistic or conceptual system whose expressions are
linked by various semantic relations, and if the system can be used to describe
experience or to describe things linked in identifiable ways to objects we expe-
rience. The expressions of set theory certainly qualify; Le$niewski was misguided
in rejecting set theory. His own foundation for mathematics is not satisfactory;
it is as good as that presented in Principia Mathematica (minus its nonlogical
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axioms). And Lesniewski’s system, as he presents it, is not characterized by the
confusion that we sometimes find in Principia Mathematica. But this is not good
enough.

However, I want to endorse Le$niewski’s strategy for developing logical sys-
tems. Le$niewski developed artificial languages (and formal systems) with the
explicit goal of capturing features of natural languages. He wanted to incor-
porate selected features in artificial languages, and to explore the consequences
of these features for them. He was trying to come up with a perspicuous lan-
guage for describing the world. Lesniewski used artificial languages to explore
concepts expressed or embodied in ordinary language. Doing this can help us
get a better understanding of these concepts; it can reveal their strengths and
weaknesses. And artificial languages provide the resources for repairing the
shortcomings of ordinary concepts.

The founders of set theory may have thought they were investigating ordi-
nary concepts (or ordinary mathematical concepts), and analyzing the natures
of objects falling under these concepts. But it seems more accurate to deny that
our concept of a set is an ordinary concept. Set theory postulates the existence
of sets, characterizes them, and develops the consequences of this postulation
and characterization. Sets are what set theory says they are—we have no inde-
pendent access to the set-theoretic universe, which would enable us to judge a
certain formulation to be inaccurate.

In contrast, Lesniewski constructed the artificial languages’ protothetic and
ontology. These incorporate what he took to be essential features of natural lan-
guages, and they constitute the logical skeletons of languages suited for talking
about things in the world. (Lesniewski’s languages need to be supplemented with
nonlogical expressions before they can be used to make useful nonlogical state-
ments.) In his system of mereology, Lesniewski explored the ordinary concept
of a collective class (to use Sobocinski’s terminology). Lesniewski initially hoped
to use mereology to provide an acceptable substitute for set theory, but his inves-
tigations revealed that mereological concepts are not suited for that task. Sub-
sequent theorists have tried to supplement mereology with additional concepts
or postulates, but this is not widely regarded as a promising approach.

I think that the artificial languages that Le$niewski produced in carrying
out his strategy are something of a disappointment. Protothetic is unnecessar-
ily complicated, and ontology is inferior to first-order languages in capturing
the important features of natural languages. First-order languages are not
entirely adequate. (In [1] and [3] I have supplemented a first-order language in
a way which I think makes it more adequate.) But in a first-order language, the
category of singular terms is a fundamental syntactic category. In contrast, the
corresponding fundamental category of ontology is that of common nouns; sin-
gular terms are regarded as common nouns that label a single object. This mis-
represents the syntax of natural languages.

I am not applauding the results that Lesniewski achieved by employing his
strategy. I am applauding the strategy itself. I don’t think that this strategy is
appropriate for mathematics; mathematicians may need to invent new concepts
and postulate new objects to achieve suitable mathematical ends. There is no rea-
son to hold it against sets that the concept of a set is not one of our ordinary
concepts. But it is appropriate for a philosophical logician, as opposed to a
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mathematical logician, to construct artificial languages that incorporate selected
features of natural ones, and to use artificial languages to investigate concepts
expressed or embodied in natural languages.

Natural languages are highly complex, and have a multiplicity of features.
In an artificial language we can separate these, and explore them one (or two,
etc.) at a time. For example, natural languages have plural forms, while most
artificial logical languages do not. This simplifies the artificial languages, and
makes them appropriate for exploring singular but not plural constructions.
Figuring out how to express a given concept in a relatively simple artificial
language —which may have to be enriched for this purpose —can provide a much
deeper understanding of the concept than is achieved by other means.

I believe that Le$niewski devised the appropriate strategy for philosophi-
cal logicians. But arguments pro and con this claim are likely to be inconclu-
sive; the best argument for the claim is actually to employ the strategy, and get
someplace with it. Unfortunately, Le$niewski’s own achievements do not make
a convincing case for his strategy. In the remainder of this paper I will use his
strategy to deal with modal logic, as a way of illustrating the fruitfulness of the
strategy.

2 Modal concepts In this century, modal logic really “took off” after
Kripke’s development of set-theoretic semantics for modal languages. The key
elements in these semantic accounts have come to be called possible worlds,
which are used to determine when a sentence is necessary or possible (are used
to explain what it is for a sentence to be necessary or possible). While modal
logic with set-theoretic semantics is interesting, I do not find it enlightening. I
do not feel that I now know what necessity and possibility really are. Instead,
I am perplexed about the right, or best, way to relate my ordinary concepts of
necessity and possibility to these formal constructions.

It does not seem reasonable to postulate the existence of entities in the con-
text of modal logic. The situation is not like that of set theory, where sets help
to understand and explain numbers, order, and measurement. And it is not like
postulating entities in scientific theories, where nonobservable items help explain
observable ones. In the modal sphere, we have ordinary concepts of possibil-
ity and necessity, but there are no readily identifiable modal phenomena. It is
unreasonable to postulate entities to explain our modal concepts; we need to
understand these concepts, not reduce them to items we invent rather than dis-
cover.

To use modal logic to help understand our ordinary modal concepts it is
not necessary that we come up with definitions for these concepts. It is suffi-
cient if we can use modal logic to determine how the concepts “behave” —how
they are related to each other and to other concepts. To accomplish this, it is
helpful to reflect on ordinary concepts of necessity and possibility. We do not
have just one concept of necessity, or one concept of possibility, we have sev-
eral. I will call a concept of possibility and the corresponding concept of neces-
sity a modal concept pair. In ordinary English, we actually use the words
‘possible’, ‘possibility’, etc. to express different concepts of possibility, but we
do not always use ‘necessary’, ‘necessity’, etc. for the corresponding concepts of
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“necessity”. I will begin by considering what I think are the principal concepts
of possibility. (Each principal concept is the paradigm case of a related family
of concepts.) I recognize four principal concepts of possibility; two are epistemic,
and two I will call metaphysical.

Epistemic possibility comes in absolute and relative versions. A sentence
is absolutely epistemically possible if its truth is not ruled out by its meaning.
For this concept, it is appropriate that being ruled out be understood epistem-
ically. It is not clear to me whether an epistemic conception must be understood
deductively; deductive conceptions would involve being able to deduce a con-
tradiction from incompatible sentences (for example, being able to deduce this
by specified means, or by any acceptable means). If a truth-conditional concep-
tion could count as epistemic, it would still seem that we must be able, in prin-
ciple, to determine that incompatible sentences cannot be true together. Some
philosophers would use the expression ‘logical possibility’ for absolute epistemic
possibility, but I prefer to use ‘logically possible’ for sentences whose truth is
not ruled out by their logical form, and I understand logical form as in [3]. My
concept of logical possibility belongs to the family whose paradigm member is
absolute epistemic possibility. The concept of necessity that corresponds to abso-
lute epistemic possibility is analytic truth. (And logical truth corresponds to log-
ical possibility.)

Relative epistemic possibility is relative to the knowledge of a person (or
community) at a given time. A sentence is relatively epistemically possible if its
truth is not ruled out by current knowledge; a sentence is relatively epistemically
necessary if it follows from current knowledge. Different conceptions of follow-
ing from correspond to different conceptions of incompatibility, yielding dif-
ferent versions of relative epistemic necessity.

The metaphysical concept pairs also admit of an absolute and a relative ver-
sion. Relative metaphysical possibility is relative to the way the world is at pres-
ent. A sentence is possible in this sense if its truth is not ruled out by present
and past states of the world. We ordinarily conceive the world to be such that
the present and past are fixed, or determined, and that some things in the future
are determined, but not everything. We think of the future as containing some
alternative possibilities. Different alternatives cannot all be realized. Some one
of them will, yet it is not now determined which will be. But even if everything
in the future were determined, we could still employ this concept, though it
would not be very interesting, for possibility and necessity would coincide. In
considering what sentences are and are not ruled out by present and past states
of the world, it is no longer appropriate to use an epistemic conception of incom-
patibility. I am not sure what is the appropriate way to understand this incom-
patibility; I will content myself with saying that present and past states preclude
the sentences they rule out.

To understand absolute metaphysical possibility and necessity, we must
realize that we ordinarily conceive the world to contain individuals of various
kinds, and that we conceive of them as having natures which determine what
they are like and, in some respects, how they behave. A sentence is absolutely
metaphysically possible if its truth is not precluded by the natures of the rele-
vant individuals. This sense of possibility is involved in such sentences as the fol-
lowing:
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For most fish, it is not possible to live on land.
A person can have a heart transplant and lead an active life.

A sentence is necessary in the corresponding sense if its truth is required by the
natures of the individuals involved.

3 Capturing the concepts One way to explore concepts is by developing a
deductive system. In an artificial or a natural language one can incorporate
expressions for the relevant concepts, and then present rules and axioms which
indicate how these concepts are related to one another. This was Le$niewski’s
procedure, and it was the practice of those working in modal logic before the
advent of set-theoretic semantics for modal logic. This technique is still useful,
but when used in isolation it does not always yield the desired insight. It is
difficult to determine whether a deductive system captures all the important
features of a concept or set of concepts; C. I. Lewis developed a number of
systems of modal logic, but could not determine which, if any, was the right
one. This is partly due to his not reflecting sufficiently on the different modal
concept pairs, and deciding which pair he wanted to capture. It is also due to
relying exclusively on the formulation and (deductive) development of deduc-
tive systems.

When we supplement a deductive system with an account of the truth con-
ditions of the sentences in an artificial language we very much increase our
understanding of the language and the concepts it expresses. The failure to
achieve a good “fit” between truth conditions and deductive system can reveal
that a concept has not been captured, and it may also show what is required to
capture it. The standard semantics for systems of modal logic have not been de-
veloped with ordinary modal concepts in mind, and they do not provide much
in the way of conceptual clarification. But if we begin with these concepts, and
develop truth conditions for sentences which contain expressions of these con-
cepts, we can increase our understanding of our modal concepts.

In giving an account of the truth conditions of sentences in an artificial lan-
guage it is convenient to follow the lead of Lesniewski’s student Tarski, and
make use of set-theoretic techniques. This does not show that the concepts we
are trying to capture involve set-theoretic notions. Set theory provides the
resources for constructing a mathematical model (in the model airplane sense
of ‘model’) that illustrates the truth conditions of sentences. The set-theoretic
truth conditions are a “scaled down” version of the real thing.

In [2] I gave an account of the truth conditions of a modal language that
exemplifies Lesniewski’s strategy. However, not many people seem to have
understood what I was doing, or why I would do it that way. The “idea” of my
account was not to define necessity, or possibility, it was instead to get clear
about how these “work”. Given a modal concept pair, we can distinguish two
“varieties” of truth, and two of falsity. A sentence can be necessarily true (I use
T to indicate necessary truth) or contingently true —true-but-not-necessary (t).
A false sentence can be impossible (F) or false-but-not-impossible (f). We gain
an understanding of the way our modal concepts work when we devise a means
to assign the values T, t, F, f to sentences in a language, and our distribution
of values is intuitively seen to be correct. (Having the right intuition simply
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shows that we have grasped the appropriate concepts: that we know how to use
certain English —or French, or Italian, etc. —expressions.)

Different modal concept pairs work differently, but the different pairs
share some common features; a “minimal” deductive system-semantic account
will capture these common features. If L, is a language with (unspecified)
atomic sentences and these logical symbols: ~, v, &, D, [, O, the following
matrix shows the (intuitively correct) behavior of the four modal concept pairs:

A B|~A (AvB) (A& B) (ADB)
T T| F T T T
T t| F T t t
T f F T f f
T F| F T F F
t T| f T t T
t ot f T,t t T,t
t f f T,t f,F f
t F f t F f
f T t T f T
f ot t T,t f,F T,t
f f t f f,F T,t
f F t f F t
F T| T T F T
F t T t F T
F f|| T f F T
F F| T F F T

For some assignments of values to the components of a sentence two values are
possible for the complex; the connectives are not completely functional for the
four values. A completely safe modal matrix is the following:

Not all assignments of values consistent with the matrices are intuitively sat-
isfactory. If A and B are distinct atomic sentences, then this assignment should
be allowed:

But a sentence (A v ~A) should have value T—though the matrices would
allow this sentence to have value t. A sentence that is necessarily true is one that
“has to” be true; it cannot help being true. Any sentence that the matrices will
not allow to be false is one that is necessarily true. But once we restrict our atten-
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tion to valuations that assign T to all such sentences, we find additional sentences
that never come out false. These sentences are also necessarily true.

A systematic account of valuations that do the right thing is below:

A Oth-level Ty-valuation is a function V that assigns one of T, t, F, f to
each sentence of Ly, in a manner consistent with the matrices above.

Let V be an nth-level Ty-valuation. V is an n + 1st-level Ty-valuation if
V assigns T to every sentence A which is true (T or t) for every nth-level Ty-
valuation.

V is a Ty-valuation of Ly if ‘V is an nth-level Ty-valuation for every n = 0.

The system T, is a natural deduction system for L, that employs tree
proofs. It has a sound and complete set of rules for the nonmodal connectives,
and these rules for [J:

O Elimination %4

A
O Introduction 0a A is the conclusion of a (sub)proof with no
uncancelled hypotheses.

0 >B) OA

(T) B

The diamond is defined in terms of the box, so it does not get rules of its own.
In [2] I showed that T, is sound and complete for Ty-valuations.

With respect to the epistemic modal concept pairs the semantic account
above represents a conjecture. Epistemic criteria were not used in determining
when an nth-level valuation is also an n + 1st-level valuation; but T, is deduc-
tively complete, and deduction is an epistemic procedure. The combined deduc-
tive system-semantic account is genuinely a minimal modal logic.

If we modify the modal matrix to yield the following, we get semantic
accounts that fit the systems S4 and S5:

S4 A4 04 D04
T T T
t || T,t fF
f | Tt fF
F| F F

S5 A 04 DA
T| T T
t| T F
f| T F
F| F F

(The appropriate matrices are used to define S4,-valuations and S5,-valua-
tions.) With respect to the pair absolute epistemic possibility/analyticity, I think
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the S5 matrix is correct. The deductive system S5, is obtained from T, by add-
ing this rule:
CA

&5 Foa

4 Extending a concept Ly is a very simple language; developing semantic
accounts and deductive systems for L, gives only modest insights into the vari-
ous modal concept pairs. With respect to the pair semantic possibility/analyticity
(absolute epistemic possibility is semantic possibility), the interesting cases of
analyticity depend on nonlogical expressions occurring in sentences. Our logi-
cal approach does not give us access to these, but the logical approach does pro-
vide a framework within which we can begin to explore the modal concept pairs.
This approach must be supplemented before it will yield a more complete under-
standing.

Some readers may think that arguments by Quine and others have shown
that the logical account of analyticity is the best we can do. Those arguments
only show that analyticity belongs to a class of semantic concepts that are inter-
definable, but that cannot be defined in terms of concepts (or by means of tech-
niques) that (latter day) empiricists regard as privileged. While the arguments
are correct, they do not discredit the semantic concepts. We have no reason to
adopt a principle of significance that requires expressions to be definable in
terms of some privileged class of concepts (expressions) or experiences, and we
have no reason for thinking that there is not a lot to be learned about analyticity.

Even though a modal concept pair is imperfectly understood on the basis
of logic alone, a successful treatment of a quantificational language will yield
considerably more understanding than does a treatment of L,. This claim is
true in general, but it may not seem true in the case of semantic possibility/
analyticity. The great difficulties in developing semantic accounts for modal logic
arise in determining what it means for an open formula to have modal values
with respect to individuals as values of its free variables, and how these values
should be awarded. (These constitute the problem of making sense of de re
modality.) It is clear that for many of our ordinary concepts of possibility we
do allow that a predicate (or a property) can be possible—or not—for an in-
dividual. But the pair semantic possibility/analyticity are not really ordinary
concepts, they are philosophical ones. And as far as the standard concept of
analyticity is concerned, only sentences (propositions) can be analytic. With
respect to this concept of analyticity the question whether ‘(A(x) v ~A(x))’ is
analytic for 2 as a value of x is senseless.

However, this restriction of the ordinary concept of analyticity is a short-
coming of the ordinary concept. With respect to relative epistemic possibility
(that is, possibility “for all we know”) it makes sense to speak of a property being
possible, or not, for an individual. Every sentence which is absolutely epistem-
ically necessary — which is analytic —is also always relatively epistemically nec-
essary. The “minimum” amount of knowledge we can allow a person to have
is knowledge of the language she speaks. For such a person (who knew as lit-
tle as possible), the relative and absolute epistemic modal pairs would amount
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to nearly the same. If there are de re relative modalities, then we also need de
re absolute modalities; the received concept of analyticity needs to be extended
to constitute a suitable “backup” for relative epistemic necessity.

Before I consider how we should extend the received concept, I must
acknowledge that there is more than one such concept. I am not going to attempt
a survey of these concepts at this time, and give reasons for focusing on one
rather than another. I’ll just pick one. A rough idea of the concept I have in
mind is given by this epistemic definition: An analytic sentence is one that can
be determined to be true on the basis of understanding it. (Note that analytic
sentences are not required to be self-evident. It does not have to be easy to deter-
mine that an analytic sentence is true.) This definition is pretty rough, but it will
serve at present. If we are successful in using logical techniques to capture the
concept, we will have made headway in moving beyond the rough definition.

Given our ordinary concept of analyticity which applies to sentences, there
are different ways this concept may be extended to yield a concept suited to a
first-order language (a concept which allows de re modalities). The different
extended concepts are all legitimate concepts, and can be investigated by devel-
oping systems of modal logic. But the different extended concepts do not all
have equally valid claims to be the “repaired” concept of analyticity. They do
not all constitute “limiting cases” of relative epistemic necessity.

In [2] T formulated a semantic account-deductive system that was intended
to express the appropriate extended concept of analyticity. However, the com-
pleteness proof in that paper contains an error (Lemma 3 is incorrect). The
deductive system is not complete for the semantic account presented, and that
semantic account is not satisfactory. In the following sections I will correct these
failings.

5 De re analyticity The language L is a first-order language with identity
containing the same operators and connectives as Ly, and these additional
expressions:

Individual variables: x, y, z, xi,...
Individual constants: a, b, c, a;,. ..
For every n > 0, n-place predicates: F", G", H", F{,....

The universal quantifier (Vo) is primary, the existential quantifier is a defined
symbol; vacuous quantification is not permitted in L.

In developing a logical system (deductive system and statement of truth
conditions) for L, we are trying to capture/express a certain concept which
applies to natural languages. However, the language L is unlike natural lan-
guages in several respects; because of this, modal concepts suited to L will differ
from the corresponding concepts which apply to, say, English. The differences
are especially prominent as concerns singular terms. In L it is given as a mat-
ter of convention that every individual constant names a real individual: For any
constant «, it is analytic that « exists. It is also given as a matter of convention
that the domain of interpretation is nonempty.

I will treat L as much as possible as if it were a natural language. Some
individual constants will be thought of as meaningful and others will not be (the
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latter are purely proper names). For names with meanings it is given as a mat-
ter of convention that exactly one individual satisfies the meaning of a name.
I will also allow some predicates to give access to a particular individual (‘is pres-
ently a mayor of New York City’), and that for some predicates it is given as
a matter of convention that they do or do not label real individuals. (For exam-
ple, I think it is part of the meaning of ‘dog’ that dogs are real, and part of the
meaning of ‘unicorn’ that unicorns are not.)

In presenting semantic accounts for quantificational languages I find it
convenient to “pretend” that individuals in a domain can be treated like names.
If A is a formula containing free occurrences of distinct individual variables
ay,...,ay, and py,...,p, are individuals in our domain of interpretation, then
A(ay,...,an; p1,...,0,) is the pseudoformula obtained from A by replacing
the free occurrences of «y,...,«, (respectively) by p,,...,0,. The value of
A(ay,...,an; p1,--.,0,) for a certain function is the same as the value of A
for py,...,0, as values of ay,...,a,. (A pseudoformula with no free variables
is a pseudosentence.)

With such a treatment, issues about de re modality reduce to problems con-
cerning the assignment of modal values to pseudosentences. If 4 is a pseudo-
wif containing free occurrences of the individual variable o and no other, and
p is an individual in our domain, under what conditions should 4 («;p) receive
the value T (or F)? The pseudosentence A («a;p) should be counted as analytic
just in case knowing/understanding the language L is sufficient to determine that
the pseudosentence is true. Some philosophers and logicians hold that de re
epistemic modalities depend on some form of acquaintance, but I do not. I think
that the access we have to most things is indirect. It is often symbolic —through
information “incorporated” in language and information expressed with lan-
guage. Following Frege, I think that we know a given individual under one or
more aspects. I will develop an account of truth conditions for L based on these
ideas. Since this semantic account models epistemic ideas, it should not be taken
to be ontologically valid.

I will construe an individual in a domain as a collection of aspects. Each
aspect “gives” the whole individual, but a person can know less than all the
aspects “constituting” an individual. A name or other expression will typically
give access to only some aspects of an individual (it will give access to an indi-
vidual through only some of its aspects). The formula 4 will not be analytic sim-
ply with respect to some individual as the value of the free variable «; it can be
analytic with respect to this individual under one aspect, and fail to be analytic
with respect to the individual under a different aspect. (It can be analytic of
Smith under his aspect of mayor that he is a politician, but not under his aspect
of owning the house at 174 Elm Street.) For the formula to be analytic with
respect to an individual under an aspect there must be some expression which
gives access to that aspect; it must be part of the meaning of some expression
that there is an individual with that aspect.

In developing the truth conditions for L, I will consider three domains. &
is a nonempty domain of aspects. Dy is the nonempty domain of individuals;
the members of D; are disjoint nonempty sets of elements of &. In considering
pseudoformulas and pseudosentences, it is not individuals in 9y that are treated
like names, but elements of individuals in D;—aspects replace free variables.
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L5, s is the pseudolanguage obtained by expanding L with pseudosentences
constructed with aspects of elements of D;.

A modal valuation V of L, ¢, is a function which (1) determines a
nonempty domain D+, whose elements are disjoint nonempty sets of aspects,
where every element of D+ is a subset of an element of Dy; (2) assigns one of
T, t, F, f to each pseudosentence of L, gy; (3) divides the individual con-
stants into two disjoint sets:

Cy (the meaningful constants),
Cpy (the constants with no linguistic meaning, the purely proper names)

and assigns nonempty sets of aspects to individual constants such that

(i) If @ € Cy, then V() € Doy
(i) If &, B € Cp, V() N V(B) # B, then V(a) = V(B)
(iii) If & € Cpn;, then V(a) € Dy.

The aspects which belong to elements of D« are accessible: if p is an
aspect of an individual in Dy, but not of an individual in D+, then p is inacces-
sible. The inaccessible aspects are not beyond human comprehension, but an
understanding of L is not sufficient for determining that there is an individual
with such an aspect. It takes extralinguistic information to know what is labelled
by a purely proper name, but it is a matter of language if a purely proper name
is purely proper.

Many modal valuations are intuitively unsatisfactory; we must narrow
down the class of modal valuations to capture the desired extension of the con-
cept of analyticity. But first we must consider the difference between accessi-
ble and inaccessible aspects. No pseudosentence containing an inaccessible aspect
can be analytic (T) or contradictory (F); since we cannot know about those
aspects on the basis of understanding the language, we also cannot know about
those pseudosentences. We must add new matrices to those considered previ-
ously. The following matrices are for pseudosentences which contain an inac-
cessible aspect.

A B|~A (AvB) (A&B) (ADB) A 0O4 04
T t - t t t t f t
T f - t f f f f t
t T f t t t

t ot f t t t

t f f t f f

t F f t f f

f T t t f t

f t t t f t

f f t f f t

f F t f f t

F t - t f t

F f - f f t
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Let (va)A be a pseudosentence of L, sy. The extended matrix condi-
tions for v are as follows:

(1) (Va)A is true iff A(a;p) is true for every p which is an element of a
member of Dy

(2) If (Vo)A has the value T, then A («;p) has T for every p which is an
element of a member of D+

(3) (Va)A has the value F if A(«;p) has F for some aspect p.

The extended matrix conditions for 3 can be derived from those for v.
For what follows, I will borrow Church’s notation for substitution. The ex-
pression ‘S§ A |’ labels the result of replacing all free occurrences of « in 4 by .
Let V be a modal valuation of Lg, gy. V is a Oth-level S5A(nalytic)-
valuation iff

(1) V does not assign T or F to any pseudosentence which contains an
inaccessible aspect

(2) V satisfies the matrices for connectives and the S5 matrix for (J (and
Q), except that the modified matrices characterize those pseudosen-
tences which contain inaccessible aspects

(3) V satisfies the extended matrix conditions for v (and 3)

(4) Let A be a pseudo-wff which contains free occurrences of the individ-
ual variable v and no others, let A contain no occurrence of (1, and
let p, 0 be elements of a single member of ;. Then A(y;p) is true for
V iff A(y;o0) is true for V

(5) Let A be as in (4), and let o € Cpy and p € V(). Then SYA| is true
for V iff A(vy;p) is true for V

(6) Let A be a pseudo-wff containing free occurrences of the individual
variable v and no others, and let p, o be elements of a single member
of . Then V(A(y;p)) = V(A(y;0))

(7) Let A be as in (6), and let « € Cy; and p € V(). Then V(SYA|) =
V(A(y;p))

(8) Let p,0 be aspects. p = o is true iff p,o are elements of a single
member of »;. p = ¢ has value T iff p,o are elements of a single
member of D+

(9) Let o be an individual constant and p an aspect. Then o = p is true
iff there is an X € 3y such that V(a) € X and p € X. o = p has
value T iff « € Cy and p € V()

(10) Let «, 8 be individual constants. « = (3 is true iff there is an X € Dy
such that V(«) € X and V(B) € X. o = « has value T. If o, are dis-
tinct, then V(a = B) = T iff o, 8 € Cy and V(a) = V()

(11) Let A be a pseudo-wff which contains free occurrences of the in-
dividual variable v and no others, and let «, 3 be individual constants
not occurring in A such that «,8 € Cpn. Then V(S2A|) = T iff
V(SEAl) =T

The rationale for the various clauses should be obvious. Clause (11) is

needed because any analytic sentence which contains a purely proper name can-
not owe its analytic character to the meaning of that name; any other purely
proper name should play the same role.

To give an inductive clause defining m + 1st-level SSA-valuations, we must
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consider a class of mth-level valuations. Let V be an mth-level S5SA-valuation
of L(p, sy, D1 a domain of disjoint nonempty sets of elements of &, and let
V'’ be an mth-level S5A-valuation of L . ¢, such that every element of D
is a subset of an element of D+, and for every pseudosentence A of Lg, ¢y,
V(A) = Tiff V' (A) =T. Then V' is a member of the mth-level family of valu-
ations determined by V.

Only the sentences of L and the pseudosentences of L5, which contain
accessible individuals can be understood on the basis of understanding L. As far
as knowledge of the language is concerned, the inaccessible aspects might not
be there. Different aspects might be there instead. In bringing in the mth-level
family we consider the linguistically understood portion of L5, ¢y to be a sub-
language of a (possibly) more inclusive linguistically understood pseudolanguage.

Let 'V be an mth-level S5A-valuation of L(p, g,. V is an m + lst-level
S5A-valuation iff V assigns T to every pseudosentence A which (1) does not con-
tain an inaccessible aspect, and (2) is true for every mth-level S5A-valuation in
the mth-level family determined by V.

V is an S5A-valuation of L g, gy iff V is an mth-level S5A-valuation of
L(p,.¢) for every m = 0.

6 Reasoning with the extended concept of analyticity In L g, ¢, individual
constants do not completely “reflect” the behavior of individuals or aspects of
individuals; not even purely proper names do this. For example, for every indi-
vidual constant «, the sentence o = « is analytic (has value T); but if p is an inac-
cessible aspect then p = p is not analytic—though (of course) it is true. And the
sentence (vx)(3y)(x = y) might be true—its significance is that all aspects are
accessible; but if « is a purely proper name we cannot infer (3y) 0 (a =), for
this is false.

For the deductive system SS5A we will expand L with these individual pa-
rameters: 1, 2, 3,. ... These occupy the same positions in formulas as individ-
ual constants. Their logical behavior is intended to reflect the behavior of aspects
of individuals. We will call this expanded language L™.

In presenting the deductive system I will use ‘M(«)’ to abbreviate
‘(3y)0 (a =y).’ If a is an individual constant, then M («) is true (and has value
T) iff « € Cy. If o € Cpy, then M(«) has value F. If « is an aspect, then
M () is true (and has value T) iff « is accessible. If « is not accessible, then
M () has value f.

In S5A the rules for connectives are the same as in a system of proposi-
tional logic. The rules CJElimination and (T) are taken from the propositional
system S5,. The other rules are below.

S5 A M(my)...M(m,) my, ..., m, are the individual parameters
(55 O00A occurring in 4.
M(my)...M(m,) A is the conclusion of a proof

U Introduction OA with no uncancelled hypothe-

ses. my, ..., m, are the individ-
ual parameters occurring in A.



304 JOHN T. KEARNS

Va)A . N
v Elimination ( aa) m is an individual parameter.
SmAl
(Va)A B is an individual constant. No free occurrence
SgA| of o in A is within the scope of [J.
v Introducti SmA| m is an individual parameter that does not occur
nirocuction (Va)A in A or in any uncancelled hypothesis.

= Introduction We can always introduce o = o as a conclusion from no
premises, where « is an individual constant or parameter.

a=4 A A’ is obtained from A by replacing occur-
A’ rences of o by 3, or by replacing occurrences
of B by «, so long as no occurrence that is
replaced is within the scope of (. «,f3 are
individual constants or parameters.

= Elimination

O(a =B) A A’ is obtained from A by replacing
A’ occurrences of «a by 3, or by replac-
ing occurrences of 3 by a. «a,3 are

individual constants or parameters.

O = Elimination

. OSGA| . NPT
M Introduction ————— m is an individual parameter.
M(m)
E(a—-—-B) a, 3 are distinct individual constants.
M(a)
. M (o) . e
M Introduction ——— « is an individual constant or parameter.
OM(«x)
~M
O~M Introduction _=M(a) « is an individual constant.
O~M(a)
~[~M Introduction _;Al(_m)_ m is an individual parameter.
~O~M(m)
. ~M(B) ~M (6) OS5A| « i1s an individual variable
(Analytic) S§A| occurring free in 4. 3,6 are

individual constants not oc-
curring in A.

The deductive system S5A is sound and complete with respect to the seman-
tic account of the preceding section. I will outline the proofs of these results,
stating the relevant lemmas and theorems, but I will not provide the proofs.
These are straightforward; an interested reader can easily supply them.

For soundness, we first extend SSA to include pseudosentences of L g, g5 -
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Aspects are treated like individual parameters, except that aspects are not gener-
alized by v Introduction.

A proof in S5A or S5Ap, ey s standardized if each occurrence of v
Introduction generalizes a different individual parameter, and that parameter
occurs only in the subproof above the occurrence of ¥ Introduction that gener-
alizes the parameter.

Lemma 1 Let A be a pseudo-wff containing free occurrences of the individ-
ual variable oo and no others, where no free occurrence of o is within the scope
of O, V a Oth-level S5A-valuation, 38 an individual constant and p an aspect such
that there is an X € 9y for which p € X and V(B8) < X. Then $S§A| is true for
V iff A(a;p) is true for V.

This is proved by induction on the length of A.

Lemma 2 Let V be a Oth-level S5A-valuation, o, aspects or individual con-
stants such that o = (3 is true for V, A a pseudosentence containing occurrences
of «, and let A’ be obtained from A by replacing one occurrence of o by 8, where
the occurrence that is replaced is not within the scope of 1. Then A is true for
V iff A’ is true for V.

Lemma 3 Let T be a proof in S5A(n, sy Jrom uncancelled hypotheses
Ay, ..., A, to the conclusion B. Let each of m,n be an aspect or a parameter
that is not generalized in T' by Vv Introduction. Let T'' be obtained from I" by
replacing every occurrence of m by n. Then I'" is a proof from A1,...,A] to the
conclusion B’, where A1,...,A],B’ are obtained from A,,...,A,,B by replac-
ing every occurrence of m by n.

Lemma 4 Let T be a proof in S5A or S5A(s,,¢y- Then there is a standard-
ized proof of the same result.

For evaluating pseudo-sentences occurring in proofs we will employ valu-
ations V and assignments @. An assignment @ is a function which assigns
aspects to individual parameters. The value of a pseudosentence 4 for ‘V and
@ is the same as the value of A’ for V, where A’ is obtained from A by replacing
every parameter m by Q(m).

The rank of a proof is the number of occurrences of inference figures it
contains.

Lemma 5 Let T be a rank m proof in S5A o, gy from uncancelled hypoth-
eses Ay, ...,A, to the conclusion B, V an mth-level S5A-valuation and @ an
assignment of aspects to the parameters in T'. Let each of A,,...,A, be true for
V and Q. Then B is true for V and Q.

This is proved by induction on m.

Theorem 1 The deductive systems S5A s, sy are sound. The system S5A is
sound.

For the completeness proof, let & = {1,2,...; dy,ds,...}. LEVENis L with
the even numerals added to serve as parameters.
Let X be a set of sentences of LEVEN that is consistent with respect to SSA
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when the even numerals serve as parameters, and let X be extended to a max-
imal consistent set X *.

Let the sentences of L™ that have the form (3a)A be enumerated:
Aa)Ay, (3ay)A,,. ... Let g be a 1-1 function from the positive integers to the
odd numerals such that g (i) does not occur in any of (3a;)A44,...,(3a;)A;. Let
W be the set of all sentences ((3a;)A; D SgiiyA4il).

Lemma 1 The set X* U W is consistent.
Let X* U W be extended to a maximal consistent set ¥ of sentences of L*.

Lemma 2 The set Y is instantially sufficient i.e., if (3a)A € Y, then for
some parameter m, SLA| € Y.

For each parameter m let I(m) = {n: n is a parameter and m = n € Y}.
Then D; = {I(m): m is a parameter}.
Let V be the function such that

(1) If A is a sentence of LY, then V(4) =Tiff 04 € Y
V(A) =tiff A€ Y, JA¢Y
V(A)=fiffA¢ Y, O~A&Y
V(A)=Fiff 0~A4 € Y.

(2) For each parameter m such that M(m) € Y, let A(m) = {n: nis a
parameter and O(m = n) € Y}. Then Dy = {A(m): m is a
parameter}.

(3) Cym = {«: « is an individual constant and M(«) € Y}, Cpny = {a: o is
an individual constant and M («) & Y.

@ If o € Cyp, V(o) = {m: m is a parameter and (e = m) € Y}, if
a € Cpn, V(a) = {m: mis a parameter and « = m € Y}.

Lemma 3 The elements of both Dy and D, are disjoint nonempty sets of
individuals from &.

Lemma 4 Each element of D~ is a subset of an element of D).

Lemma 5 Let o be an individual constant. If o € Cy;, then V(o) € D If
o € CPN’ then eV(O[) (S iDI.

Lemma 6 V is a Oth-level S5A-valuation of Ls, ¢, .

Lemma 7 Suppose V is an mth-level S5A-valuation of L, gy. Then V is
an m + Ist-level S5A-valuation of L(p, ¢).

Lemma 8 V is an S5A-valuation of L, s, .

Theorem 2 The system S5A is complete for S5A-valuations.

7 Conclusion I have explained what I take to be Le$niewski’s strategy, which
I think is his most important contribution to logic, since his logical systems pos-
sess only modest interest, and his painstaking treatment of syntax is more painful
than enlightening. But the strategy he devised is the appropriate strategy for a
philosophical logician to employ.

I have illustrated how Lesniewski’s strategy can be applied in the area of
modal logic. This strategy is not a method which solves problems mechanically;
to employ the strategy successfully requires insight, imagination, and luck. How-
ever, this strategy is helpful in getting its followers to focus attention on the right
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issues. The strategy shows us what it takes to achieve understanding of one or
another topic, and enables us to know when we have reached this goal.
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