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A Half-Space Theorem for Ideal Scherk Graphs in M ×R

Ana Menezes

Abstract. We prove a half-space theorem for an ideal Scherk graph
� ⊂ M ×R over a polygonal domain D ⊂ M , where M is a Hadamard
surface whose curvature is bounded above by a negative constant.
More precisely, we show that a properly immersed minimal surface
contained in D ×R and disjoint from � is a translate of �.

1. Introduction

A well-known result in the global theory for proper minimal surfaces in the
Euclidean 3-space is the so-called half-space theorem due to Hoffman and
Meeks [11], which says that if a properly immersed minimal surface S in R

3 lies
on one side of some plane P , then S is a plane parallel to P . They also proved the
strong half-space theorem: two properly immersed minimal surfaces in R

3 that
do not intersect must be parallel planes.

The problem of giving conditions that force two minimal surfaces of a Rie-
mannian manifold to intersect has received considerable attention, and many peo-
ple have worked on this subject.

Notice that there is no half-space theorem in Euclidean spaces of dimensions
greater than 4 since there exist rotational proper minimal hypersurfaces contained
in a slab.

Similarly, there exists no half-space theorem for horizontal slices in H
2 × R

since rotational minimal surfaces (catenoids) are contained in a slab [13; 14].
However, there are half-space theorems for constant mean curvature (CMC) 1/2
surfaces in H

2 ×R [10; 15]. For instance, Hauswirth, Rosenberg, and Spruck [10]
proved that if S is a properly immersed CMC 1/2 surface in H

2 × R, contained
on the mean convex side of a horocylinder C, then S is a horocylinder parallel
to C; and if S is embedded and contains a horocylinder C on its mean convex
side, then S is also a horocylinder parallel to C. Nelli and Sa Earp [15] showed
that in H

2 ×R the mean convex side of a simply connected rotational CMC 1/2
surface cannot contain a complete CMC 1/2 surface besides the rotational simply
connected ones.

Other examples of homogeneous manifolds where there are half-space theo-
rems for minimal surfaces are Nil3 and Sol3 [1; 4; 5]. For instance, we know that
if a properly immersed minimal surface S in Nil3 lies on one side of some entire
minimal graph �, then S is the image of � by a vertical translation.

Mazet [12] proved a general half-space theorem for constant mean curvature
surfaces. Under certain hypothesis, he proved that in a Riemannian 3-manifold of
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bounded geometry, a constant mean curvature H surface on one side of a para-
bolic constant mean curvature H surface � is an equidistant surface to �.

In this paper, we consider the half-space problem for an ideal Scherk graph �

over a polygonal domain D ⊂ M , where M denotes a Hadamard surface whose
curvature is bounded above by a negative constant, that is, M is a complete simply
connected Riemannian surface with curvature KM ≤ −a2 < 0 for some constant
a ∈R. More precisely, we prove the following result.

Theorem 1. Let M denote a Hadamard surface with curvature bounded above
by a negative constant, and let � = Graph(u) be an ideal Scherk graph over
an admissible polygonal domain D ⊂ M . If S is a properly immersed minimal
surface contained in D ×R and disjoint from �, then S is a translate of �.

We remark that Mazet’s theorem does not apply in our case for Scherk surfaces.
In fact, in the case of minimal surfaces, one of his hypotheses on the geometry of
equidistant surfaces to the parabolic one is that the mean curvature points away
from the original surface. However, since an end of a Scherk surface is asymptotic
to some vertical plane γ ×R, where γ is a geodesic, we know that an equidistant
surface is asymptotic to γs ×R, where γs is an equidistant curve to γ . Hence, in
the case of a Scherk surface, the mean curvature vector of an equidistant surface
points toward the Scherk surface.

2. Preliminaries

In this section, we present some basic properties of Hadamard manifolds and state
some previous results. For more details, see [9] or [6; 7; 8].

Let M be a Hadamard manifold, that is, a complete simply connected
Riemannian manifold with nonpositive sectional curvature. We say that two
geodesics γ1, γ2 of M , parameterized by arc length, are asymptotic if there exists
a constant c > 0 such that the distance between them satisfies

d(γ1(t), γ2(t)) ≤ c for all t ≥ 0.

Note that to be asymptotic is an equivalence relation on the oriented unit speed
geodesics of M . We call each of these classes a point at infinity. We denote by
M(∞) the set of points at infinity and by γ (+∞) the equivalence class of the geo-
desic γ . Throughout this section, we only consider oriented unit speed geodesics.

Let us assume that M has sectional curvature bounded from above by a nega-
tive constant. Then we have two important facts:

1. For any two asymptotic geodesics γ1, γ2, the distance between the two curves
γ1|[t0,+∞), γ2|[t0,+∞) is zero for any t0 ∈R.

2. Given x, y ∈ M(∞), x �= y, there exists a unique geodesic γ such that
γ (+∞) = x and γ (−∞) = y, where γ (−∞) denotes the corresponding point
at infinity when the orientation of γ is changed.

For any point p ∈ M , there is a bijective correspondence between the set of unit
vectors in the tangent plane TpM and M(∞), where a unit vector v is mapped
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to the point at infinity γv(∞), γv denoting the geodesic with γv(0) = p and
γ ′
v(0) = v. Analogously, given a point p ∈ M and a point at infinity x ∈ M(∞),

there exists a unique geodesic γ such that γ (0) = p and γ (+∞) = x. In particu-
lar, M(∞) is bijective to a sphere.

There exists a topology on M∗ = M ∪ M(∞) satisfying that the restriction
to M agrees with the topology induced by the Riemannian distance. This topology
is called the cone topology of M∗ (see [9] for instance).

In order to define horospheres, we consider Busemann functions. Given a unit
vector v, the Busemann function Bv : M → R associated to v is defined as

Bv(p) = lim
t→+∞(d(p, γv(t)) − t).

This is a C2 convex function on M , and it satisfies the following properties.
Property 1. The gradient ∇Bv(p) is the unique unit vector w in TpM such that

γv(∞) = γw(−∞).
Property 2. If w is a unit vector such that γv(∞) = γw(∞), then Bv − Bw is a

constant function on M .

Definition 1. Given a point at infinity x ∈ M(∞) and a unit vector v such that
γv(∞) = x, the horospheres at x are defined as the level sets of the Busemann
function Bv .

We have the following important facts with respect to horospheres.

• By Property 2, the horospheres at x do not depend on the choice of the vector v.
• The horospheres at x give a foliation of M , and since Bv is a convex function,

each bounds a convex domain in M called a horoball.
• The intersection between a geodesic γ and a horosphere at γ (∞) is always

orthogonal by Property 1.
• Take a point p ∈ M and let Hx denote a horosphere at x. If γ is the geodesic

passing through p with γ (+∞) = x, then Hx ∩ γ is the closest point on Hx

to p.
• Given x, y ∈ M(∞), if γ is a geodesic with these points at infinity, and Hx , Hy

are disjoint horospheres, then the distance between Hx and Hy coincides with
the distance between the points Hx ∩ γ and Hy ∩ γ .

From now on, we restrict M to be a Hadamard surface with curvature bounded
above by a negative constant, and by horocycle and horodisk we mean horosphere
and horoball, respectively.

Let � be an ideal polygon of M , that is, � is a polygon all of whose sides are
geodesics and the vertices are at infinity M(∞). We assume that � has an even
number of sides α1, β1, α2, β2, . . . , αk,βk . Let D be the interior of the convex hull
of the vertices of �, so ∂D = �, and D is a topological disk. We call D an ideal
polygonal domain.

Definition 2. An ideal Scherk graph over D is a minimal surface that is the
graph of a function defined on D and taking the values +∞ on each side αi

and −∞ on each side βi .
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For the sake of completeness and in order to understand the hypothesis on our
main result (Theorem 3), let us describe the necessary and sufficient conditions
on the domain D, proved by Gálvez and Rosenberg [9], for the existence of an
ideal Scherk graph over D.

At each vertex ai of �, place a horocycle Hi so that Hi ∩ Hj = ∅ if i �= j .
Each αi meets exactly two horodisks. Denote by α̃i the compact arc of αi

outside the two horodisks and denote by |αi | the length of α̃i , that is, the distance
between these horodisks. Analogously, we can define β̃i and |βi |.

Now define

a(�) =
k∑

i=1

|αi |

and

b(�) =
k∑

i=1

|βi |.

Observe that a(�) − b(�) does not depend on the choice of the horocycles
because given two horocycles H1, H2 at a point x ∈ M(∞) and a geodesic γ

with x as a point at infinity, the distance between H1 and H2 coincides with the
distance between the points γ ∩ H1 and γ ∩ H2.

Definition 3. An ideal polygon P is said to be inscribed in D if the vertices of P
are among the vertices of �. Hence, its edges are either interior in D or equal to
some αi or βj .

The definition of a(�) and b(�) extends to inscribed polygons:

a(P) =
∑
αi∈P

|αi | and b(P) =
∑
βi∈P

|βi |.

We denote by |P| the length of the boundary arcs of P exterior to the horodisks
bounded by Hi at the vertices of P . We call this the truncated length of P .

Definition 4. An ideal polygon � is said to be admissible if the two following
conditions are satisfied.

1. a(�) = b(�);
2. For each inscribed polygon P in D, P �= �, and for some choice of the horo-

cycles at the vertices, we have

2a(P) < |P| and 2b(P) < |P|.
Moreover, an ideal polygonal domain D is said to be admissible if its boundary
� = ∂D is an admissible polygon.

The properties of an admissible polygon are necessary and sufficient conditions
for the existence of an ideal Scherk graph over D ⊂ M [9].
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An important tool for studying minimal (and more generally, constant mean
curvature) surfaces are the formulas for the flux of appropriately chosen ambient
vector fields across the surface.

Let u be a function defined in D whose graph is a minimal surface, and con-
sider X = ∇u

W
defined on D, where W 2 = 1 + |∇u|2. For an open domain A ⊂ D

and a boundary arc α of A, we define the flux formula across α as

Fu(α) =
∫

α

〈X,ν〉ds;
here α is oriented as the boundary of A, and ν is the outer conormal to A along α.

Theorem 2 (Flux theorem). Let A ⊂ D be an open domain.

1. If ∂A is a compact cycle, then Fu(∂A) = 0.
2. If α is a compact arc of A, then Fu(α) ≤ |α|.
3. If α is a compact arc of A on which u diverges to +∞, then

Fu(α) = |α|.
4. If α is a compact arc of A on which u diverges to −∞, then

Fu(α) = −|α|.
Another useful result related to the flux formula is the following.

Proposition 1. Let D be a domain whose boundary is an ideal polygon, and let
u, v be functions defined on D whose graphs are minimal surfaces. If u ≤ v on D

and u = v on ∂D, then Fu(∂D) ≤ Fv(∂D). Moreover, equality holds if and only
if u ≡ v on D.

For a proof of this result, see, for example, the proof of the generalized maximum
principle in [2, Theorem 2].

3. Main Result

In this section, we consider a Hadamard surface M whose curvature is bounded
above by a negative constant, that is, M is a complete simply connected Riemann-
ian surface with curvature KM ≤ −a2 < 0 for some constant a ∈ R. We now can
establish our main result.

Theorem 3. Let M denote a Hadamard surface with curvature bounded above
by a negative constant, and let � = Graph(u) be an ideal Scherk graph over
an admissible polygonal domain D ⊂ M . If S is a properly immersed minimal
surface contained in D ×R and disjoint from �, then S is a translate of �.

The idea to prove this result is based on the proof of the classical half-space
theorem in the Euclidean three-space due to Hoffman and Meeks [11]. In their
proof, they use as barrier a family of minimal surfaces (obtained from the catenoid
by homothety) that converges to the plane minus a point, where the plane is the
minimal surface for which they want to prove the half-space theorem. Hence, in
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Figure 1 Convex smooth domain Dn

order to prove our result, using their ideas, we need a family of minimal surfaces
that play the role of barriers and converge to our ideal Scherk graph, at least
outside a compact set. To construct such a family, we follow an idea of Rosenberg,
Schulze, and Spruck [16] by constructing a discrete family of minimal graphs in
D ×R.

Let � = Graph(u) be an ideal Scherk graph over D with � = ∂D. Given any
point p ∈ D, consider the geodesics starting at p and going to the vertices of �.
Take the points over each of these geodesics that are at a distance n from p.
Now consider the geodesics joining two consecutive points. The angle at which
two of these geodesics meet is less than π ; hence, we can smooth the corners
to obtain a convex domain Dn with smooth boundary �n = ∂Dn and such that
D1 ⊂ D2 ⊂ · · · ⊂ Dn ⊂ · · · is an exhaustion of D. (See Figure 1.)

Denote by An the annular-type domain Dn \ D̄1 and by �n the graph of u

restrict to An. Hence, �n is a stable minimal surface, and any sufficiently small
perturbation of ∂�n gives rise to a smooth family of minimal surfaces �n,t with
�n,0 = �n. We use this fact to the deformation of ∂�n that is the graph over ∂An

given by ∂1 ∪∂n,t for t ≥ 0, where ∂1 = (�1 ×R)∩�, ∂n,t = (�n ×R)∩T (t)(�),
and T (t) is the vertical translation by height t . Then for t sufficiently small, there
exists a minimal surface �n,t that is the graph of a smooth function un,t defined
on An with boundary ∂1 ∪ ∂n,t (see Figure 2). Note that un,t satisfies the minimal
surface equation on An, and, by the maximum principle, �n,t stays between �

and �(t) = T (t)(�). We show that there exists a uniform interval of existence
for un,t , that is, we prove that there exists δ0 > 0 such that for all n and 0 ≤ t ≤ δ0,
the minimal surfaces �n,t = Graph(un,t ) exist.

Consider δ0 > 0 sufficiently small so that u2,t exists for any t ∈ [0, δ0]. We will
show this δ0 works for all n ≥ 2, that is, we will prove that for n > 2, the set
Bn = {τ ∈ [0, δ0];un,t exists for 0 ≤ t ≤ τ } is in fact the interval [0, δ0].
Claim. The set Bn is open and closed in the interval [0, δ0]. Hence, Bn = [0, δ0].
Proof. Consider an (increasing) sequence τk ∈ Bn such that τk → τ as k → ∞.
First, observe that the family of minimal surfaces �n,τk

= Graph(un,τk
) is con-

tained in the region bounded by � and �(τ), in particular, |un,τk
| ≤ Cn for all k
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Figure 2 Minimal surface �n,t

and that the boundary component ∂1 is contained in the boundary ∂�n,τk
for all k.

Then there exists a minimal surface �n,τ that is the limit of the surfaces �n,τk

with ∂1 ⊂ ∂�n,τ . It remains to prove that �n,τ is a graph.
Since D2 ⊂ Dn, using the maximum principle with vertical translations

of u2,δ0 , we get that un,τk
≤ u2,δ0 in a neighborhood of �1. Then the gradi-

ent of un,τk
is uniformly bounded in a neighborhood of �1. We affirm that we

also have a uniform bound for points in �n. In fact, suppose that this is not
true, so there exists a sequence pk ∈ �n with un,τk

(pk) → p ∈ ∂n,τ such that
|∇un,τk

(pk)| → ∞. This implies that the minimal surface �n,τ is vertical at p.
Considering the horizontal geodesic γ that passes through p and is tangent to ∂n,τ

(recall that ∂n,τ is convex), we can apply the maximum principle with bound-
ary to �n,τ and γ × (−∞, τ ] to conclude that they coincide, which is impos-
sible. Thus, there exists a constant C′

n such that |∇un,τk
(p)| ≤ C′

n for all k and
p ∈ ∂An = �1 ∪ �n.

Since un,τk
are uniformly bounded functions and we have uniform gradient es-

timates for un,τk
in ∂An, we get uniform gradient estimates for un,τk

in the whole
domain An (for instance, see [3], Lemma 2.5). Thus, the DeGiorgi–Nash–Moser
and Schauder estimates imply locally uniform estimates for all higher derivatives.
Then, using Arzelà–Ascoli’s theorem, there is some subsequence of {un,τk

} that
converges to a function un,τ defined on An, which also satisfies the minimal
surface equation; hence, its graph �̂ = Graph(un,τ ) is a minimal surface with
boundary ∂1 ∪ ∂n,τ . By the uniqueness of the limit of �n,τk

we conclude that
�n,τ = �̂ = Graph(un,τ ). Then τ ∈ Bn, and Bn is closed.

From the previous discussion we know that, as a consequence of the maximum
principle, if τ ∈ Bn, then the tangent plane to the boundary of �n,τ = Graph(un,τ )

is never vertical. Then �n,τ is strictly stable, and, in particular, a sufficiently small
perturbation of its boundary ∂�n,τ = ∂1 ∪∂n,τ to ∂1 ∪∂n,τ+t gives rise to a smooth
family of minimal surfaces �n,τ+t with boundary ∂1 ∪ ∂n,τ+t . Thus, Bn is open.

�
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Therefore, we have proved that for all n ≥ 2 and 0 ≤ t ≤ δ0, there exists a func-
tion un,t defined on An such that �n,t = Graph(un,t ) is a minimal surface with
boundary ∂�n,t = ∂1 ∪ ∂n,t .

Fix t ∈ (0, δ0]. For a fixed n0, consider the sequence {un,t |An0
} for n > n0.

We already know that un,t ≤ un0,t in a neighborhood of �1; hence, we have uni-
form gradient estimates in such a neighborhood. Moreover, since we have uni-
form curvature estimates for points far from the boundary [17] and �n �⊂ An0 for
all n > n0, we get that the sequence of minimal surfaces �n,t , n > n0, restricted
to the domain An0 has uniform curvature estimates up to the boundary. Then the
DeGiorgi–Nash–Moser and Schauder estimates imply locally uniform estimates
for all higher derivatives. Thus, there exists a subsequence {unj ,t |An0

} that con-

verges to a function ûn0 defined over An0 whose graph �̂n0 is a minimal surface
with ∂1 ⊂ ∂�̂n0 and u ≤ ûn0 ≤ u + t over An0 .

Now consider the subsequence {unj ,t } restricted to A2n0 for nj > 2n0. Using
the same argument as before, the sequence {unj ,t |A2n0

} for nj > 2n0 has a sub-
sequence {unjk,t |A2n0

} that converges to a function û2n0 defined over A2n0 whose

graph �̂2n0 is a minimal surface with ∂1 ⊂ ∂�̂2n0 and u ≤ û2n0 ≤ u+ t over A2n0 .
Since the sequence {unjk,t |A2n0

} is a subsequence of {unj ,t |An0
}, we conclude,

by the uniqueness of the limit, that û2n0 = ûn0 in An0 .
We continue this argument to Akn0 for all k > 2, obtaining a function ûkn0

defined on Akn0 whose graph �̂kn0 is a minimal surface with ∂1 ⊂ ∂�̂kn0 , u ≤
ûkn0 ≤ u + t over Akn0 , and ûkn0 = ûln0 in Aln0 for each 1 ≤ l ≤ k. Hence, using
a diagonal process, we obtain a subsequence of {un,t } that converges to a function
û∞ defined over � = D \ D̄1 (the limit of the domains An) whose graph �̂∞ is a
minimal surface with ∂�̂∞ = ∂1, u ≤ û∞ < u+ t over �, and û∞ = ûkn0 in Akn0

for all k.
For simplicity, let us write û and �̂ to denote û∞ and �̂∞.
Note that, since u ≤ û ≤ u + t over �, the minimal surface �̂ = Graph(û)

assumes the same infinite boundary values at � as the ideal Scherk graph � =
Graph(u). Consider the restriction of u to � and continue denoting by � the
graph of u restricted to �. We will show that � and �̂ coincide by analyzing the
flux of the functions u, û across the boundary of �, which is �1 ∪ �, and using
Proposition 1.

Let α1, β1, α2, β2, . . . , αk,βk be the geodesic sides of the admissible ideal
polygon � with u(αi) = +∞ = û(αi) and u(βi) = −∞ = û(βi). For each n, con-
sider pairwise disjoint horocycles Hi(n) at each vertex ai of � such that the con-
vex horodisk bounded by Hi(n + 1) is contained in the convex horodisk bounded
by Hi(n). For each side αi , let us denote by αn

i the compact arc of αi that is the
part of αi outside the two horodisks and by |αn

i | the length of αn
i , that is, the

distance between the two horodisks. Analogously, we define βn
i for each side βi .

Denote by cn
i the compact arc of Hi(n) contained in the domain D and let Pn be

the polygon formed by αn
i , βn

i , and cn
i .
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Since the function u is defined in the interior region bounded by Pn and Pn

is a compact cycle, by the flux theorem it follows that Fu(Pn) = 0. On the other
hand, since u ≤ û, we have Fu(Pn) ≤ Fû(Pn) and then Fû(Pn) ≥ 0. Moreover,
the flux of û across Pn satisfies

Fû(Pn) =
∑

i

Fû(α
n
i ) +

∑
i

Fû(β
n
i ) +

∑
i

Fû(c
n
i )

≤
∑

i

(|αn
i | − |βn

i |) +
∑

i

|cn
i |.

Notice that |cn
i | → 0 as n → ∞, and, since � is an admissible polygon, we

have
∑

i |αn
i | = ∑

i |βn
i | for any n. Hence, we conclude

Fû(Pn) → 0 as n → ∞.

Then Fu(�) = limn→∞ Fu(Pn) = 0 = limn→∞ Fû(Pn) = Fû(�).
On the other hand, since Pn is homotopic to �1, it follows that Fû(�1) =

Fû(Pn) for any n, and we conclude that Fû(�1) = 0. Analogously (or using the
flux theorem as we did for Pn), Fu(�1) = 0. Therefore, we have proved that the
functions u and û have the same flux across the boundary ∂� = �1 ∪ �.

Since � = Graph(u) and �̂ = Graph(û) are two minimal graphs over � =
D \ D̄1 such that u ≤ û on �, u = û on ∂�, and Fu(∂�) = Fû(∂�), we conclude,
using Proposition 1, that u ≡ û over �, that is, �̂ is the Scherk graph over � with
∂�̂ = ∂1.

Remark 1. We have proved that for any t ∈ (0, δ0], we can get a subsequence
of the minimal surfaces �n,t that converges to a minimal surface �̂, which is the
Scherk graph over D \ D̄1 with ∂�̂ = ∂1.

Now we are able to prove the theorem.

Proof of Theorem 3. Since � ∩S = ∅, we can suppose that S is entirely under �.
Pushing down � by vertical translations, we have two possibilities: either a trans-
late of � touches S for the first time in an interior point, and then, by the maximum
principle, they coincide; or S is asymptotic at infinity to a translate of �. Let us
analyze this last case.

Without loss of generality, assume that S is asymptotic at infinity to �.
We want to prove that, in fact, they coincide. Suppose that this is not true. Then
since S is proper, there are a point p0 ∈ � and a cylinder C = B�(p0, r0) ×
(−r0, r0) for some r0 > 0 such that S ∩ C = ∅, where B�(p0, r0) is the intrinsic
ball centered at p0 with radius r0. We can assume that r0 is less than the injec-
tivity radius of � at p0. In our construction of the surfaces �n,t , we can choose
the first domain of the exhaustion D1 sufficiently small so that ∂1 ⊂ B�(p0, r0/2)

and take t = min{r0/2, δ0}.
Observe that when we translate �n,t vertically downward by an amount t , the

boundaries of the translates of �n,t stay strictly above S. Thus, by the maximum
principle, all the translates remain disjoint from S. We call �′

n,t this final translate
with boundary ∂�′

n,t = ∂ ′
1 ∪ ∂ ′

n, where T (t)(∂ ′
1) = ∂1 ⊂ � and ∂ ′

n ⊂ �. Hence, all
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the surfaces �′
n,t lie above S, and, as we proved before, there exists a subsequence

of �′
n,t that converges to the ideal Scherk graph �′ defined over D \ D̄1 with

T (t)(�′) = �. In particular, we conclude that S lies below �′, which yields a
contradiction since we are assuming that S is asymptotic at infinity to �. �
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