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A Generalization to thg-Convex Case of a
Theorem of Fornaess and Narasimhan

ANcCA PorA-FISCHER

1. Introduction

Fornaess and Narasimhan proved (in [8, Thm. 5.3.1]) that, for any complex space
X, the identity WPSHKX) = PSH X) holds, where WPSHY ) denotes the weakly
plurisubharmonic functions ok and PSHX ) denotes, as usual, the plurisubhar-
monic functions orx.

WhenX has no singularities, this identity is clear. For the singular case, how-
ever, the inclusion WPSHE') € PSH X) is no longer trivial; one must find locally
a plurisubharmonic extension to the ambient space of an embedding of

In this paper we give another proof for this identity (Theorem 3.3). Itis shorter
and easier and has the advantage that it can be generalizgalugsubharmonic
functions (Theorem 4.16). However it has the disadvantage that it works only for
continuous functions. The-plurisubharmonic functions were introduced by Hunt
and Murray in [10] (see also [9]), but we will call hegeplurisubharmonic what
they call(¢ — 1)-plurisubharmonic.

We also obtain a generalization of a theorem of Siu [16]; namely, we show
(Lemma 4.18) that every-complete subspace with corners of a complex space
admits a neighborhood iK that isq-complete with corners. This will be needed
in the proof of our main result.

The results and proofs of this paper have been announced in [13]. This paper is
part of the author’s doctoral thesis written in Wuppertal. | thank Prof. Mtddol,
and Prof. K. Diederich for many helpful discussions during the whole time of pre-
paring my thesis. | thank the Department of Mathematics of the University of
Wuppertal for providing me a nice working atmosphere.

2. Preliminaries

Let X be a complex space (with singularities). We denote by RSkhe plurisub-
harmonic functions orX. We use SPSHX) to denote thestrongly plurisubhar-
monic functionon X, that is, those PSH functions for which we have: for every
0 € CF (X, R), there exists ang > 0 such thap + 6 € PSHX) for 0 < ¢ < ¢o.

We will denote by WPSKIX) the class ofveakly plurisubharmonic functions
on X (as they are defined in [8]), that is, the class of upper semicontinuous func-
tionsg: X — [—o0, 00) such that, for any holomorphic functiofi: A — X
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(whereA denotes the unit disc il), the compositiop o f is subharmonic or.
We use SWPSHX) to denote thetrongly weakly plurisubharmonic functiona
X, thatis, those WPS{X) functions for which we have: for evetye C3° (X, R),
there exists ang > 0 such thaty + 6 is in WPSHX) for 0 < ¢ < «o.
In our alternative proof of Forneess—Narasimhan’s theorem, we will use an ex-
tension theorem of Richberg (see [15, Satz 3.3]).

THEOREM 2.1 (Richberg). Let X be a complex space and a closed complex
subspace ok. Then, for every functiofy onY that is continuougresp. smooth
and strongly plurisubharmonic, there exist a neighborh&oaf ¥ and a function
¥ onV that is continuougresp. smooth strongly plurisubharmonic, and such
that /|y = .

We also shall need a theorem by @il in [3].

THEOREM 2.2 (Coloiu). LetX be a complex space that admits a strongly pluri-
subharmonic exhaustion functign X — [—o0, 0c0). ThenX is 1-convex.

REMARK 2.3. If ¢ in Theorem 2.2 is supposed to be real-valued, as remarked in
[3], then it follows that the exceptional set &f (i.e., the maximal compact ana-
lytic subset) is empty, hencé is Stein. This had been proved before by Forneess
and Narasimhan in [8, Thm. 6.1].

3. Another Proof of Fornaess—Narasimhan’s Theorem

We first prove a lemma that shows the interplay between SWPSH and SPSH func-
tions on a complex space under certain conditions.

LemMma 3.1. Let Q be an open subset of a reduced Stein spaeeith dim X <
400 and such that2 admits a SWPSH exhaustion functipn — R. ThenQ
is Stein.

Proof. Without loss of generality, we may assume that- 0. The proof is by
induction onn = dim X.

If » = 0 thenX has only isolated points and is therefore a manifold, so there is
nothing to prove.

Suppose now that the lemma is true for all complex spacesth dimY <
n —1, and let dimX = n. ConsiderY = Sing(X), the singular locus ok. We
have dimf < n —1and, since|ynq € SWPSHY N Q) is an exhaustion function
for Y N @, by the induction hypothesis it follows th&tN Q is Stein. Sa¥ N
admits a smooth SPSH exhaustion function, which we shall denogg by

Now Theorem 2.1 yields a SPSH and smooth extensiah @b an open neigh-
borhoodV of ¥ N Qin 2, denoted byj: V — R. By shrinkingV, if necessary,
we can suppose thdt is defined in a neighborhood &f (the closure being i)
and that{x € V | ¥(x) < ¢} is compact inV for all real numbers.
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However, sinceY is a closed analytic subset of a Stein spacethere exist
i, fm € OX) suchthaty = {x € X | fu(x) = --- = fnu(x) = 0}. If we
definep :=log(| ful? + - - - + | ful® thenY = {x e X | p(x) = —o0}.

Let nowy : (0, o0) — R be a smooth, convex, rapidly increasing function (to
be made precise later), and define

_ | max@, xo@+p) onV,
Xop+p on Q\V.

We chooseg( such that:

(1) x o ¢ + p > ¥ ondV (the border being considered); and
(2) ¢ is an exhaustion function @&.

These two conditions can be achieved for a suitable choige fufr example, in
the following way.

Consider a sufficiently small open neighborhdddof ¥ N € in Q such that
W C V and such thaly > x o ¢ + p onW. Let (c,), be a strictly increasing se-
guence of nonnegative numbers with= 0 and lim,_. ., ¢, = +00, and consider
the relatively compact sets given by

A ={xeQ|c¢ <plx) <ciy1}, ielN

All we need in order to satisfy our conditions (1) and (2) is the existence of a
convex, smooth, and strictly increasing functipn (0, co) — R that satisfies

X |[Ci7¢‘i+1) > max(M;, ciy1+ L),

where the positive constant$; andL; are chosen so thgp| < L; onA;\W and
M; >y — p on A; N aV. The existence of suchais a well-known fact.

Now, to finish the proof of Lemma 3.1 we observe that, by the definitiogi of
and our choice of, obviouslyy € PSH). If now r > 0 is a smooth strongly
plurisubharmonic function o, theny + 7| o € SPSHQ) andy + | is exhaus-
tive. By Theorem 2.2Q2 is Stein and the proof of our Lemma 3.1 is completgl

The next result needed is due to Siu [16].

THEOREM 3.2. LetY be a closed Stein subspace in a complex spacéheny
has a Stein open neighborhoodXn

Now we are ready to give our proof of Fornaess-Narasimhan’s theorem for the case
of continuous functions.

THeoreM 3.3. On any reduced complex spa&e any continuoudVPSH X)
function is aPSH X)) function.

Proof. Because the problem is local, we may assume Xhet a closed analytic
subset in some Stein open sub&edf C”.
Letp e WPSH X) be continuous. Considef := X x C, which is Stein, and

Q= {(z,w) € X | ¢(z) + loglw| < O}.
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We notice thaf2 is itself Stein. Indeed, to see this, chogse 0 a smooth, SPSH
exhaustion function foX x C and define

1
@(2) + loglw|’

which is in SWPSHQ) and exhaust$2 (here we need the continuity ¢f). By
Lemma 3.1Q is Stein. We hav& C X x C C U x C c C"*. Consider now an
open se® in C"*1 with the property tha N (X x C) = Q. By [16, Thm. 3.2]
applied toQ c W, it follows that there exists an open Stein $&tn C"*+* with
VN (X xC) = Q. SinceV is Stein, we have thatlogs,, is plurisubharmonic on
V, wheres,, denotes the boundary distancébin thew-direction (or the Hartogs
radius of V with respect taw). To defines,,, fix a point (z°, w®) e V and look
at all polydiscs of the formz; — 2% < r;, i € {1,...,n}, lw — w° < r,qq, that
are subsets of. Thens,, (z°, w?) is the supremum over all suep, ;. Identifying
X with X x {0}, it follows at once from the definition a2 = V N (X x C) that
—logé,|x = ¢ and so we have the required plurisubharmonic extensign ofJ]

h(z, w) = g(z, w)

4. A Generalization to thegq-Convex Case

4.1. General Setup

In generalizing Fornaess-Narasimhan’s theorem togtipdurisubharmonic case
(but for continuous functions only) we will follow the general ideas of the proof in
Section 3. Butfirst of all we will give the precise definitionggplurisubharmonic

(in notation, g-PSH and weakly g-plurisubharmonic(g-WPSH) functions on
complex spaces. We recall the definitions for open se'in

DEerINITION 4.1 (see e.g. [9]). An upper semicontinuous functionD —
[—o0, 00), whereD c C”" is an open subset, is calledbpluriharmonidf, for
every relatively compact subsétcc D and for every pluriharmonic functian
defined on a neighborhood 6f, the inequalityp|s6 < u|sc impliesg < u onG.

REMARK 4.2. One may verify that a functiop € C?(U, R), whereU c C" is
an open subset, is subpluriharmonic if and only if its Levi form has at least one
nonnegative>0) eigenvalue at every point @f.

DeriNITION 4.3 [10]. Afunctiondefined o® < C" andwithvaluesinfoo, co)

is calledg-plurisubharmoniql < g < n) in D if it is upper semicontinuous and
if itis subpluriharmonic on the intersection of everndimensional complex plane
with D.

REMARK 4.4. The notiom-plurisubharmonic means subpluriharmonic, and 1-
plurisubharmonic means plurisubharmonic.

Now we define the-plurisubharmonic functions on an arbitrary complex space.

DEeFINITION 4.5. LetX be a complex space and ket X — [—o0, 00) be an
upper semicontinuous function ox. Theng is calledg-plurisubharmonic on
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X if for every pointx € X there exists a local embeddingU < U c C",
whereU is a neighborhood aof, U an open subset @&”, and there exists a-
plurisubharmonic functiog on U such thatp o i = ¢.

REMARK 4.6. Even ifp in Definition 4.5 happens to be continuous, we do not
requirep to be continuous; it is always only assumed to be upper semicontinuous.

We also define the weakly-plurisubharmonic functions on complex spaces as
follows.

DEerFINITION 4.7. LetX be a complex space. An upper semicontinuous func-
tion¢: X — [—o0, 00) is calledweaklyg-plurisubharmonic onX if for every
holomorphic functionf : G — X, whereG is open inC4, the functiong o f is
subpluriharmonic ort.

ReEMark 4.8. 1. Ifafunction is weakly-plurisubharmonic, thenit also is weakly
q’-plurisubharmonic for every’ > ¢.

2. A real-valuedC?-function defined on an open sét in C" is weakly ¢-
plurisubharmoniaql < ¢ < n) if and only if the Levi form ofg has at least
n — g + 1 nonnegative eigenvalues at every poinfofNote that eacly-convex
function, in the sense of Andreotti and Grauert [1], is weaklyiurisubharmonic.

3. It is known that, on a complex manifold, the two clasge&/PSH and
q-PSH coincide (see a remark in [11] about a preprint of Fujita). In the manifold
case, the nontrivial inclusion ig-PSH C ¢-WPSH This inclusion generalizes
at once to the singular case. However, in the singular case the other inclusion,
qg-WPSHC ¢-PSH becomes nontrivial. This is because we must now find locally
ag-plurisubharmonic extension of the respective function to the ambient space of
an embedding.

4. For D open inC", weakly g-plurisubharmonic functions op are what Fu-
jita [9] called “pseudoconvex functions of order ¢".

We may define the-SPSH and;-SWPSH functions on a complex spaken a
similar way to that in Section 2.

We denote byF, (X) the set of thez-convex functions with corners oH, as
they were introduced by Diederich and Fornaess [6; 7]. Theorem 2.1, which was
needed in Section 3, must in theconvex case be replaced by the following.

THEOREM 4.9 [4]. LetX be a complex spacel, C X a closed analytic subset,
f € F;(A), andn > 0 a continuous function or. Then there exists an open
neighborhoodV of A in X and f € F,(V) such that| f — f| < nponA.

We will also need the following approximation result due to Bungart [2].

THEOREM 4.10 (Bungart). Let X be a complex manifold and: X — R a con-
tinuousg-SPSHX) function. Then, for any continuous functipnX — (0, co),
there exists a functio@ € F,(X) such that|p — ¢| < nonX.

REMARK 4.11. In fact, Bungart proved this result only wh&nis an open sub-
set of some Euclidian spad#’. But as Matsumoto [11] remarked, this result still



488 ANCA PoPA-FISCHER

holds whenX is a complex manifold. For the sake of completeness we give here
a proof for the manifold case, using Bungart’s theorem.

Proof of Theorem 4.10Fix three locally finite open covering®/;);cn, (Vi)ien,
(W))ien Of X such thatl; cc V; cc W; cc X foralli e N and such that each
W; is the domain of a biholomorphic map W; — W;, whereW; is an open set
in C™i,

For each index € N, consider a functio®; € Cg°(X, R) such thay; = —1
onaV;, ¥; = LlonU;, andd; = 0 onX\W;. Lete; > 0 be small enough so that
2e;0; < n and(D + ¢€;6; is still q-SPSH

SinceV; c W; ~ W;, we can apply Bungart’s theorem to obtain, foriadi N,

a functiong; € F,(W;) with the property that

0(x) + 8:0i(x) — 9i(2)] < min<si, @)

on a neighborhood of; .

It follows that we havep; < ¢ ondV; andg; > ¢ on U;. Hence we may de-
fineg: X — Rby¢(x) := max{e;(x) | x e V;}. Clearlyg € F,(X), ¢ < ¢, and
¢ < ¢ + n as desired. 0

We shall also use the following result due to Fuijita [9, Thm. 1].

THEOREM 4.12 (Fujita). Let D be an open subset @” that isq-complete with
corners, letw € C" (Jw| = 1), and denote by, the boundary distance func-
tion of D along thew-direction. Then-logs,, is weaklyg-plurisubharmonic on
D and thus als@-plurisubharmonic.

ReMark 4.13. In fact, Fujita proves this result for the more general case of
“pseudoconvex domains of ordet — ¢)”.

Finally, we also will use a theorem of Peternell ([12, Lemma 5]; see also [5]). For
this we need the following.

DEeFINITION 4.14. LetX be a manifold. A function: X — [—o0, c0) is called
almost plurisubharmonidf it can be written locally as a sum of a plurisubhar-
monic and a smooth function. K is a complex space, we require thatan be
locally extended as an almost plurisubharmonic function in the ambient space of
an embedding.

THeoreM 4.15 (Peternell). If Y is a closed analytic subset in a complex space
X, then there exists an almost plurisubharmonic functioon X such thatv
C®(X\Y)andY = {x € X | v(x) = —o0}.

4.2. The Equivalence gfWPSH and;-PSH Functions

We can now state our main result as follows.

THEOREM 4.16. Every continuoug-WPSH function on a reduced complex space
X is ag-PSH function onX.
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In order to prove this theorem, we first show the following two lemmas.

Lemma 4.17. Let X be a reduced complex space of finite dimension for which
there exists a continuous exhaustion functionX — R that is ing-SWPSHX).
Then there exists @-convex function with corneng: X — R, exhaustingX.

Proof. We may assume that > 0. In the regular case (i.e., X is a complex
manifold) then this lemma is a direct consequence of Bungart’s approximation
theorem, because in the manifold case the inclugi@®WPSHC ¢-SPSH is triv-

ial. In the singular case, the proof is by inductionmoe: dim(X).

The case: = 0 is obvious. Now suppose that Lemma 4.17 holds for all com-
plex spaced withdimY <n —1, and let dimX = n.

ConsiderY = Sing(X), the singular locus oX. Because din¥ < n —1and
¢y satisfies the conditions of our lemma, we conclude that there exists an exhaus-
tion functionyr; : ¥ — R that isq-convex with corners. By Theorem 4.9, we can
find a neighborhood of ¥ in X and ay € F, (V) such thaiy; — y1| < 1onY.

By shrinkingV if necessary, we can suppose tiatis defined on a neighbor-
hood ofV andthafx € V | y1(x) < c}is relatively compact ity for all real num-
bersc. By Peternell's theorem, there exists an almost plurisubharmonic function
0: X — [—00,00) such that|reqx) is smooth and such that = {x € X |
0(x) = —oo}.

Now let x : [0, o0) — R, be a continuous, convex, increasing function that is
linear on segments. This means thatthereisadivisiend@ < a; < --- < a, <
-+ of [0, 00) such that, ond;, a; 1], we havex(t) = A;t + B; with A; > 0, and
the convexity ofy givesA; 1 > A;.

If x increases rapidly at infinity thety c¢+0)|reqx) is iNg-SWPSHReg X)).

This can be seen as follows. Take alocally finite open covélifgey, U; CC X,
of X such that, for eacjion a neighborhood df;, one ha® = 6; ; + 60, ; with 61 ;
smooth and,, ; plurisubharmonic. Then, if the constamts > 0 in the definition
of x are chosen large enoughy ¢ + 61 ; is g-SWPSH or;. We can thus fing
as before so thaty o ¢ + 0)|regx) iSiNg-SWPSHReg X)) C ¢-SPSHRedg X)).
Also, if x increases rapidly then we may assume that ¢ + 6)|5y > 1|5y and
that(x o ¢ + 0)|x\v exhaustsy\V.

By Bungart’s approximation theorem, there is a functiorReg X) — R that
is ¢g-convex with corners and such that:

(1) lu— (x o9 +6)| < 1onRegX);
(2) ulav > Yalav.
We define nowy : X — R as follows:
max(y1, u) on V\Y,
v =1 V1 on Y,
u on X\V.

Then clearlyy is an exhaustion function ok ands is g-convex with corners.
Hence our lemma is proved. O
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The second needed statement is the following generalization of Siu's theorem
(previously formulated as Theorem 3.2).

LemMa 4.18. Let S be a closed analytic subset of a complex sp&Ecand as-
sume thatS is g-complete with corners. Then there exists an open neighborhood
V of S in X such thatV is g-complete with corners.

Proof. SinceS C X is a closed complex subspace, by Peternell’s theorem there
exists an almost plurisubharmonic functioon X suchthatS = {x e X | A(x) =
—oo} and such that|x\s € C*(X\S).

Denote byy : § — R a positive,g-convex exhaustion function with corners.
Applymg Theorem 4.9, we deduce that there exisjsa@nvex function with cor-
ners zp in a neighborhood of S such thafy — | < 1onS. We can assume
thaty, > 0. We may suppose, by eventually shrinkitigthat v is defined on a
neighborhood ot/ and thaty exhaustd).

Considery : [0, c0) — R, a continuous, convex, increasing function that is lin-
ear on segments and such that:

(1) if V={xeU | xo¥(x)+Ar(x) <0}, thenaV N U = ¥; and
(2) the functiony := max(—1/(x o ¥ + A), ¥) defined onV is g-convex with
corners.

The choice ofy satisfying (2) is possible as in Lemmal4. Wealso can real-
ize condition (1) by choosing a sequence of real numbess, \, —oo such that
{(x eU | ¥(x) < n, A(x) < A,}is relatively compact iU and requiring that
x: [0, 00) — R additionally satisfyyx |[,—1,) > —A, foralln e N.

It then follows that the se¥ = {x € U | x o ¥(x) + A(x) < 0} is an open
g-complete with corners neighborhood $ifwhereg is the exhaustion function;
hence, Lemma 4.18 is proved. O

We are now in a position to prove Theorem 4.16.

Proof of Theorem 4.16Because the problem is local, we can assume (without
loss of generality) thaX is a closed analytic subset in a Stein openlset C".
Let g € ¢-WPSH X) be continuous.
We haveX x C ¢ U x C ¢ C"*! and conside C X x C, the open set
given by
Q={(z,w)eX xC| |w| < e ¥?}.

On @ there exists a continuousSWPSH exhaustion function. Indeed, denote
bys: X x C — R a smooth, SPSEX x C), positive exhaustion function and
consider 1

— Q>R

@(2) + loglw|

This function has the desired properties, so thatfave can apply Lemma 4.17
and thus obtain a-convex with corners exhaustion functign 2 — R. But this
means thaf2 is g-complete with corners.

s(z, w) —
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Consider now an open st in C"+1 with the property tha N (X x C) = Q.
Then Lemma 4.18 can be applied for the situatibic W. We conclude with the
existence of an open s@t c C"*! that isq-complete with corners and for which
QN (X x C) = Q holds.

Now it is enough to conside,,, the distance to the boundary Sfalong the
w-direction. By Theorem 4.12:log$,, is ag-PSH2) function (not necessarily
continuous). By the definition &2, it follows that—log s, |x = ¢ and so we have
the desired conclusion thatis ag-PSHX) function. O

REMARK 4.19. In the manifold case, the standard proof for the inclusion SH
WPSH can not be used to prove tlRaPSH C ¢-WPSH forq > 1 because the
class ofg-plurisubharmonic functions is not additive fgr> 1.

However, using the methods just described, one can show for a manifold that
the inclusiong-PSH C ¢-WPSH holds for continuous functions. Then we can
also get rid of the continuity condition by using an approximation result of Slod-
kowski [17].

More precisely, to provg-PSHM) € ¢g-WPSH M) for continuous functions
when M is a manifold, letp € g-PSHM ). Because the problem is local, we can
suppose (without loss of generality) thdt= U is an open Stein set i@i". As in
the proof of Theorem 4.16, we introduce the set

Q={z,w)eU xC||w| <e*?}

and observe that now the function
1
- Q

@(z) + loglw|
is continuous, exhaustive, apeSPSH Applying Theorem 4.10, it follows tha®
is g-complete with corners. Using Theorem 4.12, as before it follows-thag 5.,
is ¢-WPSH ong. Its restriction toU, which coincides withy, is therefore also
qg-WPSH as desired.

Now, if ¢ is no longer continuous then we apply a result of SlodkovilKi
Rem. 2.10]. Namely, every-PSH functionp on an open sa/ € C” can be ap-
proximated (on a compact s&t) by a pointwise convergent and nonincreasing
sequenceéy,,) of continuousy-PSH functions (defined on a neighborhoodkof

Now, since th€g,,) are continuous angtPSH functions, they are algegWPSH
functions. But it is known (see e.g. [9]) that the pointwise limit function of a non-
increasing sequence gfWPSH functions is itsel§-WPSH

Note that the reverse inclusiop;WPSH C ¢-PSH is trivial in the manifold
case. We thus have the equaiyVPSHM ) = ¢-PSH M) on each manifold/.

s(z, w) —R

References

[1] A. Andreotti and H. GrauerfThéoremes de finitude pour la cohomologie des espaces
complexesBull. Soc. Math. France 90 (1962), 193—259.

[2] L. Bungart,Piecewise smooth approximationsgeplurisubharmonic functions,
Pacific J. Math. 142 (1990), 227-244.



492 ANcA PoPA-FISCHER

[3] M. Coltoiu, A note on Levi's problem with discontinuous functidBeseign. Math.
(2) 31 (1985), 299-304.

, n-Concavity ofn-dimensional complex spacedath. Z. 210 (1992),
203-206.

[5] J. P. DemaillyCohomology ofj-convex spaces in top degre&fath. Z. 204 (1990),
283-295.

[6] K. Diederich and J. E. FornasSmoothingz-convex functions and vanishing
theorems|nvent. Math. 82 (1985), 291-305.

, Smoothingz-convex functions in the singular caséath. Ann. 273 (1986),
665—671.

[8] J. E. Fornaess and R. Narasimh@hg Levi problem on complex spaces with
singularities,Math. Ann. 248 (1980), 47-72.

[9] O. Fujita, Domaines pseudoconvexes d’ordre général et fonctions pseudoconvexes
d’ordre général J. Math. Kyoto Univ. 30 (1990), 637—-649.

[10] L. R. Hunt and J. J. Murray;-Plurisubharmonic functions and a generalized
Dirichlet problem ,Michigan Math. J. 25 (1978), 299-316.

[11] K. Matsumoto,Boundary distance functions amdconvexity of pseudoconvex
domains of general order in Kéhler manifolds Math. Soc. Japan 48 (1996), 85-107.

[12] M. Peternell,Continuousz-convex exhaustion functionsyent. Math. 85 (1986),
249-262.

[13] A. Popa,Sur un théoreme de Fornaess et Narasimi@rRR. Acad. Sci. Paris Sér. |
Math. 329 (1999), 1-14.

[14] A. Popa-FischerGeneralized Kéhler metrics on complex spaces and a supplement
to a theorem of Fornaess and Narasimhih, D. dissertation, Bergische Universitat
Wuppertal, 2000.

[15] R. RichbergStetige streng pseudokonvexe Funktiodath. Ann. 175 (1968),
257-286.

[16] Y.-T. Siu, Every Stein subvariety admits a Stein neighborhdodent. Math. 38
(1976/77), 89-100.

[17] z. Slodkowski,The Bremmermann—Dirichlet problem fgtplurisubharmonic
functions Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 11 (1984), 303—326.

(4]

(7]

Bergische Universitat Wuppertal
FB 7 Mathematik

Gauss-Str. 20

D-42097 Wuppertal

Germany

apopa@wmka8.math.uni-wuppertal.de

Institute of Mathematics of the Romanian Academy
P.O. Box 1-764

R0-70700 Bucharest

Romania



