HEREDITARY LOCAL RINGS
Abraham Zaks

Professor P. M. Cohn recently provided an example of a right principal. ideal
domain with prime factorization that is not a left hereditary ring [1], and we were
curious about the pathologies of a ring that allow this to happen.

In this note, we investigate some of the conditions under which a ring is a prin-
cipal ideal domain. The treatment of the local case is easiest. Our results (see the
lemma, and Corollaries 1 and 2) are closely related to those of G. A. Probert [5,
Theorems 6.4 and 6.5]. We also obtain a result in the semilocal case (Proposition 1)
that is similar to results obtained by G. O. Michler [3, Lemma 3.4 and Corollary
3.10]. (Our results are not obtainable from the results of Probert and Michler, nor
do they imply them.) Our final remarks deal with the relations between principal
ideal domains and rings all of whose proper residue rings are quasi-Frobenius.

By a local ring (R, M) we shall mean a ring R with a unique maximal ideal M
that is both a left maximal ideal and a right maximal ideal.

By a semilocal ving we shall mean a ring R with finitely many maximal ideals
M;, :--, M, each being both a left maximal ideal and a right maximal ideal.

Recall that in an Ore domain, Ra N Rb # 0 whenever a and b are nonzero ele-
ments of R, and that a left principal ideal domain is both a left hereditary ring and a
left Ore domain.

We shall also use freely the result that a projective module over a local ring is
a free module [2].

1. THE SEMILOCAL CASE

PROPOSITION 1. Let R be a semilocal ving. If Mj = Rm; = m;jR and
ﬂ;‘;l M; =0 for j=1, ---, t, then R is a left and vight principal ideal ring.
Observe that the result is unambiguous, since the assumptions are symmetric.
I J is not nilpotent - in which case R is an Artinian ring - then R is a domain.

Proof. By straightforward reasoning, one finds that M; N M.=M:M. for i #]j
S, J 177)
and 1 <i, j<t. Also,

i ig i) ig
2N e N S - M.t -er oM.
MJl MJS MJl MJs
for every set (i;, -, ig ) of nonzero integers whenever, p #q implies that jp #j q

1_<_j].s ".,js <t. Let

- %1 %s
K = MJ1 N N MJs .
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We can easily show that R/K is an Artinian ring, by constructing a Jordan.—Hc')'lder
1 1
series for R/K. It follows that R/K is isomorphic to R/Mji @ - (—DR/MJ-S , since
S

R/K is an Artinian restricted quasi- Frobenius ring. Consequently, R/K is a princi-
pal ideal ring. In particular, the result follows in case J is a nilpotent ideal.

0 .
Otherwise, let I be any left ideal. From the hypothesis nizl M} = 0 it easily fol-

lows that I D Mil M;t for suitable nonnegative integers i;, -*-, i, (MJ(.) = R).
Therefore, :
i+l igtl
JI D M, o My
. . . i1+l igtl . .
Considering the ring R/M; *** My~ , we see that there exists an element x in R
such that
ij+l i+l
I =Rx+M,; s My C Rx+JI.

Hence, if I is a finitely generated ideal, then I = Rx, whence I= M‘]lI M‘lt for
suitable integers j;, ***, j; . The result for an arbitrary ideal follows now if we no-
tice that Rx is a two-sided ideal and R/Rx is an Artinian ring.

A particular consequence is that every ideal of R is a two-sided ideal.

Finally, because J is not nilpotent, R must be a domain. In fact, it is an Ore
domain.

It seems reasonable to ask whether Proposition 1 holds under the weaker as-

©o . =) .
sumption ﬂ i=1 J* =0, instead of ni=1 M} = 0. This is probably so if the nonzero
prime ideals of R are maximal ideals.

2. THE LOCAL CASE

LEMMA. Let (R, M) be a local ving. Let M be a principal left ideal, and let

> o]

ﬂizl M" = (0). Then R is a left principal ideal domain, or else it is a left Artinian,
left principal ideal ving.

Proof. Let M = Rm; then M" = Rm" for every integer n (n>1). Let I (I #(0))

©0

be any left ideal, and let x # 0 be an element in I. Since ﬂ =1 M™ = (0), it follows
that x € MY and x ¢ M**! for some integer u. Hence x =rm%, r € R, and r ¢ M.
Therefore r is invertible in R, and consequently Rx = M“. This readily implies
that I= MY =Rm" for a suitable integer v. In particular, it follows that R is either
left Artinian or that it is a domain. This completes the proof.

It is easy to verify that in a left principal ideal domain
0 (-]
ARy ( N v
n=1 n=1

[=e]
therefore the relation ﬂn=1 M" = (0) is a consequence of either of the following two
assumptions on the local ring R: ’
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(a) R is right Noetherian,
(b) R is right hereditary.
However, under (a) it follows that R is right hereditary.

If R is not left Artinian (for example, if M is not nilpotent), then R is a
Noetherian prime ring, and thus it has a simple ring as its right ring of quotients. If
M were not principal as a right ideal, then R would contain direct sums with an
arbitrarily large number of summands. However, if M is generated by @ elements,
then MK is generated by ka elements. Therefore M is a principal right ideal. We
have now established the following result.

COROLLARY 1. Let (R, M) be a local ring, let M be a principal left ideal, and
let R be a right Noethevian ving. If M is not a nilpotent ideal, then R is a left and
vight principal ideal domain.

COROLLARY 2. A vight hereditary, vight Noetherian local ring (R, M) is a
vight principal ideal domain.

Proof. If M were nilpotent, it would follow that M = 0, since in this case R is
a semiprimary ring. However, a semiprimary local ring is hereditary if and only if
M = 0. Again, if M is free and R is a prime Goldie ring, then M is necessarily a
principal right ideal. Moreover, the same type of argument applies to all right
ideals.

Since a local, right hereditary, right Ore domain is right Noetherian, Corollary
2 may also be put as follows.

COROLLARY 3. A local, right hereditary, vight Ore domain is a vight principal
tdeal domain.

Notice that the condition that M is a left principal ideal is satisfied if either

(1) M/M2? is a one-dimensional R/M-module and M is a finitely generated left
R-module, or

(2) R is a left semihereditary Ore domain and M is a finitely generated module,
or

(3) R is an Ore domain and M is a free module.

If (R, M) is a local left hereditary ring, then its center Z is a discrete valua-
tion ring. In case Z is not a field, R is a left principal ideal domain (this was
proved by P. M. Cohn in [1]). It is also a consequence of the following proposition.

PROPOSITION 2: Let (R, M) be a local ving with center Z. Let 0 #z € M N Z,

and let M be a left projective R-module. Assume that ﬂie 1 A; is either a projec-
tive module ov the zervo module, whenever A; is a projective ideal for each i in I.
Then R is a left principal ideal domain.

(That the proposition implies Cohn’s result is obvious.)

Proof. Since R is a local ring, we may replace “projective” by “free”. We
claim that if A and N are left free ideals and N is a right ideal, then NA is a left
free ideal. Let (ag)qy €7 be a basis for A, and let (ng)s 1, be a basis for the left
free ideal N. Then the elements ngay with 8 € L and @ € J form a basis for NA.
To see this, observe that an element in NA is a sum of terms of the form na (n € N,
a € A). Therefore
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na=n 2 ryag = 2 (nry)a = 27 ( 27 saﬁnﬁ) = 2 SaB(nBaa) .
a€J aE€J aeJ "BeL a€eJ
BeL

Obviously, the set of pairs of indices («, 8) for which Sqp * 0 is finite. Assume

E uaBnBaa = O,
o €eJ
BeL

with only finitely many pairs (@, g) for which uyg # 0. Then

27 u npa, = 2 2 u n ay =0,
ael A eJ(BeL 8 B) *
BeL

whence EB € LUYgpng = 0, which in turn implies that uyg = 0 for all indices a € J
and § € L. Therefore the set of elements nga, with 8 € L and o € J forms a
basis for the free ideal NA.

In particular, since M is a free ideal, it follows that MX is a free ideal, whence

L .
either J = [ ;=1 M! is a free ideal, or else J = (0). We claim that J = (0). Assum-
ing that this is not the case, we shall obtain a contradiction.

Let z be a nonzero element in Z N M. Assume z € J. ¥ z ¢ MXJ and
z ¢ Mk“J then MkJ belng a free ideal implies that we can choose z to be an ele-
ment in a ba.s1s for MXJ, In particular, z is a nonzero d1V1sor This in turn leads
to the conclusion that MXJ is a principal ideal, namely MKJ = Rz. Since M isa

free ideal, J = JM; thus J% = JMKJ = MXJ? . This equality implies J% = 0, which

o0
contradicts the hypothesis 0 #z € J. As one verifies, nk= 1 Mk J = g2 , and it fol-
lows that z € J%. A similar argument proves that z € J™ for every integer m. In
oG

particular, z € J, = ﬂmzl J™ . Furthermore, J™ being free implies that J, isa
free ideal. Also, Jp =J, M. We set J; =d.
® k
Similarly we find that z € Jng, whence z € nk:1 J"J2. We set
3.= 012, 555,. Again, J5M =J3, and J3 is a free ideal.
3 k=1 2 ’
We define J, inductively for each ordinal «:

(1) if o is a limit ordinal, then J, = ﬂﬁ<a JB’ and

(o0}

(2) if @ =B +1, then Jg =1 V1, Jkag.

As we argued earlier, one verifies that for every ordinal «
(@) Io,M=J,,

(b) J is a free left ideal,

(c) z e dy,
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The ideals thus defined form a strictly decreasing sequence; indeed, for each
ordinal 6 <g, J52 JJ52 Jg, since Jg = JJ§ implies Jg5 = MJg; thus Jg = (0),

which contradicts (c).
But this is an impossible setting on the set R.

This contradiction is a result of assuming that z € J. Therefore z ¢ J. In
particular, there exists an integer k such that z € MX and z ¢ MK*1, As a conse-
quence, Rz = MK, From the relation J = JM it easily follows that J = JMEK . How-
ever, MK = Rz implies J = JMK=MKJ c MJ c J. Thus J = MJ implies J = (0).
This completes the proof of the claim.

We have now proved that

(i) M = Rm, since M is free and MK = Rz is a principal free ideal,

0
) 7=, M= ).
The proposition now follows from the Lemma.

The Artinian case is ruled out in our setting, since it is impossible for M to be
free in that case. Thus R is always a domain.

We observe that all the local rings we investigated turned out to be left (or right)
Ore domains. The case of the non-Ore domain is attractive; however, it seems that
its investigation requires some preparatory work. Also interesting seems the possi-
bility of replacing the hypothesis of the Ore condition with the assumption-that R is
a subring of a division ring.

A different approach to the topic under consideration results from the point of
view of quasi-Frobenius rings.

If R is a left-right Noetherian local ring (R, M) and R/M? is a quasi-
Frobenius ring, then R is a right principal ideal ring, and either R is right Artinian
or else R is a domain. Also, if R/I is a quasi- Frobenius ring whenever I #0 is a
two-sided ideal, then R is a right and left principal ideal domain whenever some
nonzero element in the center of R belongs to M.

There naturally arises the following question:

If R is a left and right principal ideal domain, is R/I a quasi-Frobenius ring,
for every nonzero, two-sided ideal I? That the answer is in the affirmative may be
verified as follows. The inclusion relation between left (right) ideals induces a par-
tial ordering of the left (right) ideals. Let I = Rx be any nonzero left ideal. There
exists a one-to-one order-reversing correspondence between left ideals Ry that
contain Rx and right ideals aR, where ay = x. Consequently, R/Rx is an Artinian
left R-module. Since a similar result holds for R/xR, we see that R/I is an Artin-
ian ring whenever I is a nonzero ideal. Because being a left and right principal
ideal ring is a property inherited by all the residue rings, it follows that every
proper residue ring R/I of R is an Artinian principal ideal ring (left and right).
Consequently, R/I is a quasi-Frobenius ring for every nonzero two-sided ideal I.
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