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RANDOM REPLACEMENT SCHEMES AND MULTIVARIATE MAJORIZATION1
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In this note we obtain certain inequalities comparing random replacement schemes
to sampling with replacement. Some of the results are related to multivariate majorization
and Schur functions.

1. Various Stochastic Comparisons and Random Replacement Schemes. Let J*

= {aλ, ... , aN}, ai*.CR = the real line. We shall consider a sample of size n(n^N) drawn

from A, and denote the observations by Xλ, ... , Xn. In a symmetric random replacement

scheme the observation Xλ is drawn with equal probabilities from A, i.e.,

P(Xλ = at)= UN, i = 1, ... ,N. The element drawn for Xλ is replaced in A with probability

ττι, and removed from A with probability l-πι. Then X2 is sampled, and the element which

is drawn is replaced with probability τr2. Continuing to Xn_λ, the vector π = (TΓI , ... , irn_i)

defines the random replacement scheme R(τr). Note that for ΊΓ = 0 = (0, ... , 0), R(π)

is equivalent to sampling without replacement while forir = l = (l, ... ,1), R(π) corres-

ponds to sampling with replacement and Xί9 ... ,Xrtarei.i.d.

It follows from Joag-Dev and Proschan (1983) that under R(0), Xλ, ... , Xn are negatively

associated, i.e.,

(1.1) E{φ(Xif i j j

for any partition A,B of 1, ... ,n , where φ and ψ are increasing functions.

In particular, (1.1) implies

(l 2a) E{IIU φ, (X, )}*£ ΠUiEφfiCd

for any functions φ,, all increasing (or all decreasing) and nonnegative. Note that (1.2a)

can be written as

(l 2b) ER(0){ΠU φ/(X,)} * W Π 7 - i φ,(^)}

Inequalities for sampling schemes were obtained by various authors including Sen

(1970), Rosen (1972), Serfling (1973), Kemperman (1973), Karlin (1974), Van Zwet

(1983), and Krafft and Schaefer (preprint). The question of characterizing the class of

functions for which

(1.3) ER

remains unresolved. The next result provides a class of functions for which (1.3) holds.

THEOREM 1. ERM{Un

i=, φ(Xf)} ^ ER ( 1 ){Π7= ι <p(Xt)}for any<p>0.

Proof. We write ΊΓ instead of R(ττ) as an index for the expectation. For n = 2
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(1.4)

Now Σφ2(α*) ^ (Xφ(ak))2/N, and therefore with Σφ(fl*) = m the last expression in (1.4)

is bounded above by

>πλm
2IN2 + {(l-τri)/(W(ΛM))} {m\\ - \IN)} = m2IN2 = Λr 2 (Σ£=, φ(ak))2

and the case n = 2 is established. We now proceed by induction.
Letψ(X,, ... ,Xn) = Π7=1φ(Xί).Then(seeKarlin(1974),Lemma3.1)

where Ef computes the expectation when ak is removed from the sample space of

X2, ... , Xn. Invoking the induction hypothesis, i.e., Theorem 1 holding for n-\ variables

this leads to

Hence in order to complete the induction argument it suffices to prove

(1.5) %,,, . . . i l } φ(Y,, ... ,Xn)^E{ι 1}ψ(X,, ... ,Xn).

Since 9(0,) is only a relabeling of at we assume φ(di) = α, ̂  0 and also without loss

of generality aλ ̂  a2 ̂  ... =̂  aN. With this (1.5) becomes

(1.6) {NiN-lT-'V^M^aj-a^ ^N-n(^=ιaj)n

and with ̂  = ̂ (2^=10,) so that Σ ^ = i ^ = 1 we obtain that (1.6) is equivalent to

(1.7) Σ l 1

We now prove (1.7) by induction on Λf. For Λf = 1, (1.7) is trivial. If the maximum of

Σ*= A(l-fc*)n~! is obtained at a boundary point of the simplex {bt ̂  0, Σ^=i^ = 1}, then

some bi = 0 and by the induction hypothesis at the maximum point

If the maximum is at an interior point, then by differentiating Σfc*(l - bk)
n~ι - λ(Xbk - 1)

we obtain the equation (1 - bk)
n~ι -(n-1 )bk{ 1 - bk)

n~2 - λ = 0, and equivalently

(1.8) n(i-bky-1-(n

Summing in (1.8) over k we have

(19) n?,ΐ=ί(l-bky-ϊ-(

Now, using the Tchebycheff rearrangement inequality,

(l. 10) 2£L,(i -bύrι ^ (i/Wϊ^i-bάs^a -bkγ~2 = ((ΛM)/Λ0Σ£L,(I - bkr~2

and therefore from (1.9)

(N/n)λ ̂  ((N- l)/M)?,»=ι(l-bky-2-((n- l)/n)^=1(l-bk)
n-2 ^ 0.

Returning to the expressing in (1.8), λ > 0 implies that the polynomial rur-γ-(n-\)xr-2-\

has only one positive root by Descartes' rule of signs. Therefore, an interior maximum of
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- bk)
n~ι can occur only when all values of \-bk are equal to this root and hence

if an interior maximum exists it must occur at b1 = ... = bn = l/N. At this point (1.7)
holds with equality and thus (1.7) is now established. α

Remark. The inequality

for different φ f increasing does not hold in general. To see this note that for φj = l/N and

Φ/(flι) = ai> i = 2, ... , n we would have to prove instead of (1.7)

However (1.11) holds with equality when all bt = UN and the inequality is reversed for

any other choice of bt.

As a special case of Theorem 1 we obtain

PRM[XI ^ c, . . . , Xn ^ c] ^ {P{Xλ ^ c)Y

where on the right-hand side Xι takes the values {au ... , α j with equal probabilities, i.e.,

P(Xλ = ad = l/N. Also,

{P{Xλ

The next result should be compared with Theorem 3.1 of Karlin (1974).

THEOREM 2. Let

Ψ(*i, , nn) = Σl:sil< < J r ^ Π 5 = 1 ^ . ) , r < n

where φ^O. Then

(1.12) ERMψ(Xι, , Xn) ̂  Em)ty{Xx, ... , Xn).

The case r = n coincides with Theorem 1.

Proof. The case r — 1 is trivial so we take r ^ 2. Note that it suffices to assume

0<tf , < . . . < α N and take ψ(xl9 ... ,xn) = Σ 1 S l / < . . . ^ ^ I ζ . , ^ . .

Again, it suffices to prove (1.5) which for the present ψ becomes

( 1 . 1 3 ) ( V X M Λ w y r 1 Σ J L , ( i - t o Γ + ί 1 1 f 1

where Σ£=\bk = l,bi^0, which reduces to

(1.14) ((n-r)/(Λ^l))?ίL,(l -btf + rXjfL^^l - ^ Γ 1 ^ (1 -(1/ΛOΓ1*-

We prove (1.14) by induction on N. As before, on the boundary where some bt = 0,

(1.14) follows readily from the induction hypothesis. Differentiation with respect to bk of

the left hand side of (1.14) with the constraint ΣN

k=ιbk = 1 yields

(1.15) -((n-r)/(N-l))r(l-bkγ-> + r(l-bJ^-r(r-l)bk(l-bkγ-2-λ = 0

or

(1.16) r(r-(Aί-r)/(Λ^-l))(lΛ)Γ"1-Kr-l)(lΛ)Γ~2-^ = 0

Summation over k produces

and invoking the inequality

Σi^i ί l-^Γ 1 ^((^-l)W)Σ^=i(l-^Γ2; see(l.10)

we have
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Thus, again (1.16) has a unique critical point with bk = l/N. Since for bk = l/N (1.13)

hold with equality, the result follows. α

Examples. Theorem 2 implies inequality (1.12) for φ(xl9 ... , xn) = (Xi + ... + xnf

for any integer a > 0. For Σ^L^ < 1 we obtain by expansion that (1.12) also holds with

ψ(*j, ... , xn) = [ 1—(JCJ + ... + xn)
a]~ι or any positive combination Σck(xx + ... + xnT

k, otk

^ 0 integers.

The preceding inequalities are related to multivariate majorization and Schur function

as explained next.

2. Multivariate Majorization and Negative Association. A function φ{\) defined on

3?N is said to be Schur concave if φ(x) > φ(y) for any x,y c 9? such that x = yM for some

matrix Me 7) = the class of NxN doubly stochastic matrices. See Marshall and Olkin

(1979) for details, references and historical remarks. Let X and Y be nxNmatrices whose

columns are x,, ... , xN, and y,, ... , y ,̂ respectively. The inequality Σ^gίx,) ^

ΣN

i=ιg(yi) holds for every concave function g defined on 7?n if and only if there exists a

matrix M € 2) such that X = YM. (This result is due to Hardy, Littlewood and Pόlya

(1934) for n = 1, and to Sherman (1951), Stein and Blackwell (1953)).

In particular, the matrix function ψ(X) = Σy=1g(x, ) satisfies ψ(X) ^ ψ(Y) whenever X

= YM provided g is concave. Related notions of multivariate Schur concavity and prob-

abilistic applications were studied by Rinott (1973), Marshall and Olkin (1979), Karlin and

Rinott (1981), Tong (1982) and Karlin and Rinott (1983). In some of the applications one

obtains the inequality ψ(X) ^ ψ(Y) whenever X = YM where M belongs to a subclass

of 2) 4 Of particular interest is the class 3 of matrices which can be represented as

products of matrices of the form t l + (l-ί)P where I is the ΛfxΛf identity matrix, P is a

permutation matrix which interchanges only two coordinates, and 0 ^ t ^ 1.

Our next theorem describes an example of Schur concavity with respect to the class O.

A probabilistic interpretation of the result in terms of a birthday-problem of coincidence

probabilities will be given. We first need a lemma which extends Ostrowski's (1952) well-

known criterion for Schur concavity. The proof can be found in Rinott (1973), Marshall

and Olkin (1979).

LEMMA 1. A differentiable function ψ.•#«*.-> R is multivariate Schur concave with

respectto 7, i.e., ψ(X) < ψ(XT) for every T e 7 and nxN matrix X = ||x || ifandonlyif

(i) ψ(X) = φ(XP)for every NxN permutation matrix P; and

(ii) Σ?=, (^-^)[aψ(X)/a^-aψ(X)/axJ < O for all 1 < j'Φ k < N.

Let α 1 , ... , oC e 9?N denote the n rows of the nxN matrix A, cί: = (cή, ... , άn), i = 1,

... , n. We assume that the rows are similarly ordered, that is (oίj-άk)(άj-oΐ'k) ^ 0 for all

1 <y, k < N, 1 < /, /' < n. Note that if T = ίl + (l-ί)P where P is a permutation matrix

that interchanges only two coordinates, then applied to these two coordinates, T operates

like the matrix (,^ ι~') which preserves the order if t > xh and reverses the order if t < V2.

If the rows of A are similarly ordered, then so are the rows of AT for any T e 7.

THEOREM 3. Let ψ(A) be defined by
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(2-1) Ψ(A) = Σ > / # . . . ^ Π J . , 0 ^

where the sum extends over all (*) vectors of n different indices between 1 and N A =

\\a}\\ is nxN satisfying αj > 0, i = 1, ... , Λ, 7 = 1, ... ,N,n<N, and the rows of A,

α 1 , ... ,o? are similarly ordered. Then ψ(A) < ψ(AT) /or allΎ e7

Proof. In view of Lemma 1, we compute

Let

Then

(2.2) θψ/θα1, - aψ/aα!

2 = (Σ»k=2of2uk + «,)-(Σϊ. 2 α*n + «,)

Therefore

ΣLiK-^Xaψ/aαί - dφ/da2) = τuΐkΦiWx-*t2){ct2-ctx)uk < 0

since similar ordering implies (αj-α^αr-αf) ^ 0, and replacing 1,2 by any pair of indices

the required result follows from Lemma 1. •

Note that Theorem 3 involves Schur concavity with respect to y on the set of nonnega-

tivenxN matrices having similarly ordered rows.

In the proof of Theorem 3 consider the subclass S of 7 consisting of finite products of

matrices of the form T = tΎ + (l-ί)P, P a permutation matrix that interchanges only two

adjacent coordinates and V2 ̂  t ^ 1. Such a T preserves the ordering of the components

when applied to a vector. The calculation in (2.2) implies (α1, - aι

2)(dφ/da\ - aψ/dα'2) =

(α i-α2)Σ(α2-ot*)κ* ^ 0 and the same holds if we replace the pair of indices 1,2 by any

pair. By the well known criterion of Ostrowski (1952) it follows that ψ(A) =

ψ(αx, ... , α") is Schur convex in a1, when a2, ... , a" are fixed and a1, ... , a" are all

similarly ordered. This implies

THEOREM 4. Under the conditions of Theorem 3 φ(a\ ... , α") < ψίc^T,,

... ,cfΎn)forallΎl9... ,Ύne ό.

As a special case of Theorem 3 we obtain the inequalities (1.2a)-(1.2b). This is given

by

P R O P O S I T I O N 1. LetO^φibeincreasing functions, i = l , ... ,n,then

(2.3) Eκ(o){Π?= 1 φ,{X/)} ̂  E*<i){Π?« 1 M)}.

Proof. Set αj = φ,(α,), i = 1, ... , n, j = 1, ... , N. Then ER(0){Π7=1

ψ(A)/(MW-l) ••• (N-n+l)) where ψ(A) is defined by (2.1), while ER(ί){Ώ?=ι

ΛΓrlΠ7=1(ΣjLiαj). It is easy to see that inequality of (2.3) is homogeneous and we can as-

sume XjL ictj = 1, i = 1, ... , n, without loss of generality. Then (2.3) becomes

(2.4) ψ(A) = N(N-l)... (N-n H- 1)/ΛT

For J € 7 having all entries equal to ΛΓ1 we now have AJ = J, and a simple calculation

shows that ψ(J) = N(N-\) ... (N-n + 1)/ΛT Schur concavity of ψ implies ψ(A) < ψ(AJ)

- ψ(J) and (2.4) follows. D

3. A Generalized Birthday Problem. We finally apply Theorem 3 to obtain an exten-

sion of the "birthday problem" (see Marshall and Olkin, 1979, p. 305). Consider a group
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of n individuals. Let αj , i = 1, ... , n, j = 1, ... ,N =365 denote the probability that the

/th person's birthday occurs on the th day of the year, 1 < j < 365 = N. Then for ψ(A)

defined in (2.1) we have for n independent persons

ψ(A) = Probability that the n persons have n distinct birthdays,

i.e., no coincidences of birthdays occur.

This probability was studied in the case that the likelihood of a birthday on a particular

day is the same for all persons. Here we allow different persons to have different distribu-

tions of birthdays as long as the vectors (αί, ... , α^6 5) are similarly ordered, which means

that if day j has a higher probability of being one person's birthday than day k, then the

same holds for all individuals. We have ψ(A) ^ ψ(AT) for T e 7 and in particular

ψ(A) ^ ψ(AJ), which says that under the above assumptions the probability of no coinci-

dence of birthdays is maximized if all days are equally likely birthdays for all individuals.

Added in proof: Theorem 2 can be derived from the theorem in Van Zwet (1983).
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