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OPTIMAL STOPPING OF LIFE-TESTING:
USE OF STOCHASTIC ORDERINGS IN THE CASE OF
CONDITIONALLY EXPONENTIAL LIFETIMES
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Some items with conditionally independent and exponential lifetimes are
tested simultaneously. One wants to determine the optimal time to stop the
experiment and the optimal decision between two, where optimality is relative
to a given cost structure. We show how to formulate this problem as an optimal
stopping problem for a suitable continuous time Markov process, which we prove
to be stochastically monotone. Next we discuss how this monotonicity property
is crucial to obtain an explicit solution of the system of variational inequalities
arising from the optimal stopping problem.

Let Ty,T3,- -+, T, be the lifetimes of n items for which the statistical
model {f(™(- | A)} is specified (T}, - - -, T}, are conditionally independent given
A and f™(.] A) denotes the conditional density of Ty, - - -, T}, given A = \.)

We begin to test the items simultaneously and at every instant ¢ > 0

we can decide whether to stop or to continue the experiment. During the
experiment we observe events of the form

{Tay > 3 {Tk41) > t,Ta) <ty o, Ty < e},
OStIS"'StkSt,k=1,"'an"1, (1)
or {T(l) < tla"'7T(n) < tn}70.<_t1 <<t Lt

where T(q),- -+, T{,) are the order statistics of Ty,T5,---,T,. For every t > 0,
let F; be the o-algebra generated by the events of the form (1). The flow
{Ft}t>0 (where Fy denotes the trivial o-algebra) is the observed history.

When we stop the experiment we must choose between the two actions
a; and az. The choice of a; gives rise to a cost per item /; which is a function
of A. In addition, there may be a cost for running the experiment. We face
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the decision problem of determining the optimal time to end the test. On the
other hand, in a Bayesian context, we also want to be able to decide whether
to end the test or not, based on the information collected up to the current
time, so we will restrict the choice of the terminal time o to the class of
{F ;}-stopping times, where, for each t, F;+ is a o-algebra which differs from
Fi+ (Fi+ = Nysy Ft) only by zero probability sets, that must be introduced
for technical reasons (essentially in order to make entrance times into all Borel
sets stopping times, cf. Shiryaev (1973), page 17). If the life-testing procedure
is arrested at a stopping time o, the Bayes terminal decision will give rise to
the risk

Yo = min{E[l(0) | F,+], E[l2(0) | F,+]}. (2)

Of course the simplest situation to analyze is obtained by assuming that
T3, -+, T, are conditionally independent exponentially distributed given A,
where A is a nonnegative random variable:

f(n)(tl,...,tnlA):A”exp{—/\zti} A2>0. (3)

The most relevant property of the statistical model (3) is that {f()(¢ |
A)} is an exponential family and, as such, it has, in particular, a monotone
likelihood ratio: for t; > t; and Ay > Ag

FO 1 M) fD (2 | A2) = FO(t | A2) V(82 | M) < 0. (4)

Moreover there exists a one-dimensional sufficient statistic.

Most of the existing literature deals with discrete-time sequential testing
(the lifetimes are observed in sequence and after each observation one must
decide whether to go on with a further observation or to stop and choose
one of the terminal decisions). The optimal sequential Bayes procedure turns
out to be a generalized sequential ratio test (see Sobel (1953), Brown, Cohen,
and Strawderman (1979)) and thus to have a certain monotonicity property.
However, most real life-testing problems cannot be modeled as discrete time
sequential problems, since one wants to allow to stop the observation at a
generic time instant (which may give rise to “survival data”). Moreover the
actual necessity of saving time usually suggests to test the items simultane-
ously. For these reasons one is led to consider the problem of optimal stopping
in continuous time.

We shall introduce below a continuous time two-dimensional stochastic
process {Z(t)} corresponding to the statistical model (3). Existence of a fixed
dimension sufficient statistic for the statistical model (3) translates into the
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Markov property for {Z(¢)}, while (4) yields that {Z(t)} is stochastically non-
decreasing. The life-testing problem introduced above can then be reduced to
an optimal stopping problem for {Z(t)}. In control theory, the stopping region
for a Markov process can be characterized by means of a system of equations
and inequalities on the value function, involving the infinitesimal generator
(see Grigelionis and Shiryaev (1966), Shiryaev (1973)). With the terminology
of the theory of partial differential equations, the system thus obtained gives
rise to a free-boundary problem. It is not, in general, possible to solve such a
problem.

The main purpose of this paper is to illustrate how one can overcome
this difficulty by bringing together the point of view of optimal control theory
and that of discrete-time sequential analysis. In fact one can exploit mono-
tonicity properties of the stochastic process {Z(t)} — obtained by stochastic
ordering arguments — to specialize and ultimately solve the above mentioned
free-boundary problem.

For each t > 0, let H(t) denote the number of failures already observed at
t, H(t) = 32, Ii1;<t), and Y (¢) denote the “total time on test” for the random
lifetimes Ty, - -+, Ty:

Y(t)= ) min(t,t;) =ty + -+ tye + (n - H())t
=1
and let Z(t) = (K(t),Y(t)), where we set K(t) = n— H(t). Now K(t) denotes
the number of items still alive at time ¢t and we can write

Y(t) = /0 t K(s)ds.

The stochastic process {Z(t)} describes completely our life-testing experi-
ment. The qualitative behavior of { Z(t)} is the following: K(0) = n, Y(0) = 0.
At random times T(y), - -+, T(n), { K (t)} decreases by 1, until it reaches 0, where
the process is absorbed. Until the absorption, {Y ()} is always increasing, but
with decreasing rate {K(t)}.

As is well known, under the statistical model (3), for every ¢t > 0,
(K(t),Y(t)) is sufficient with respect to A (see e.g. Barlow and Proschan
(1988)), i.e. letting IIxy be the probability distribution on [0, 00) defined by

Ak exp{—Ay}dII())
Is° An—kexp{-Ay}dII(A)’

dllx,y(A) = k=0,1,---,n, ye€0,o00)

(where II denotes the “prior” distribution on the parameter A and is assumed
to have at least n finite moments), I K(t),Y (¢) 1s the conditional distribution of
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A, given F+. In particular, for any measurable function f : [0,00) — R such
that [° [v(A)|dII(A) < oo, it holds

E[o(A) | For] = / " o(\dlTx o (M- (5)

From now on we shall use the notation
k)= [ oLy (6)

At each time ¢, conditionally on K(t) and A, the residual lifetimes of the
K (t) items still alive are independent exponentials, independent of F,+, for
every s < t. On the other hand, due to the sufficiency of (K(t),Y(t)), the

“posterior” distribution of A given F,+ is Mk (e),y(y)- Therefore {Z(t)} is an
{F+}-Markov process. It can be easily seen that {Z(t)} is time-homogeneous
and that its infinitesimal generator is

_ o BUC(+ 80) ] 2(0) = (k,9)] - S(k0)
Aftk) = fim, ai

—k {j—{/ + Ak, 9)[f(k - 1,9) — f(k,y)]} :

For a more complete analysis of the process {Z(t)} see Costantini and
Spizzichino (1990).

Now we wish to emphasize the dependence of the law of {Z(¢)} on the
initial number of components and the prior distribution of the parameter A
by setting, for every probability distribution II on [0,+00), for every n € IN,
and for every bounded measurable function u defined on Z4 x [0,00) = R

E™D[u(Z(2))] = E[w(Z(2))],

Eyy [u(Z(1)] = Elu(Z(t + 9)) | K(s) = k,Y(s) = o),
fors>0,t>0,y>0,k=0,1,---,n
For our purposes the following properties of {Z(t)} are particularly relevant:

(a) For any nondecreasing function v : [0, 0] — R such that [;° |v())|dII(A) <
00, the function 9(k,y) defined by (6) is nonincreasing both in k and y.

(b) For any nondcreasing function v : Z4 x [0,00) — R, E™D[w(Z(t))] is
nondecreasing in n and the following implication holds:

I <* 1T = EC[u(Z(1)] > E@Du(Z(1))] (7)
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(c) For any nondecreasing function u : Z4 x [0,00) — R it holds

E M w(Z(1)] < BEGRu(Z@)V k< K,y <y, ve>0  (8)

i.e.. {Z(t)} is stochastically nondecreasing.

Property (a) can be obtained first by observing that for the family of the
conditional densities (with respect to II) of A given (K(t) =k, Y(t) = y) we
have the monotonicity in A of the likelihood ratio, both with respect to £ and y,
so that we can apply Lemma 2, page74 of Lehmann (1959). As far as property
(b) is concerned, the first statement can be easily verified, while (7) follows by
observing that IE(™™[u(Z(t)) | A = A] is nonincreasing in A (see again Lemma
2, page 74 of Lehmann (1959)). Finally, by the conditional independence of
T1,Tz,---,T, and the lack of memory of the exponential distribution, we have

E& P u(Z(0)] = E®T9)[u(Z(2)). 9)

Inequality (8) can then be obtained by combining (a) and (b).

Note that, just as the sufficiency of the statistic (K(t),Y(¢)) for A, for
every t > 0,, translates into the Markov property for the process {Z(t)}, the
monotone likelihood ratio property (4) translates into (c).

Now we turn to the discussion of the problem of determining the optimal
time to end our life testing experiment.

Let a; and a3 be the two terminal actions between which we must choose
at the end of the test and let /;(A) and I3()A) be the corresponding loss func-
tions, which we assume to be continuous. Typically we can think of a; and
az as a “conservative” and an “optimistic” action respectively, and we can
assume that I;(A) —I5()) is a nonincreasing function of A; we will also suppose

lim+[ll()\) —I3(A)] > 0, where Ao =inf{) > 0| II([0, \]) > 0}.
A= g

Using the notation introduced in (6), the risk 7, in (2) gives rise to the terminal
cost X X
9(k,y) = kmin{l(k,y),la(k,y)} + c(n — k) (10)
whre c is the cost of the failure of a component during the test.
Suppose now that the cost of running the test up to a time o is of the
form [ ¥(K(s),Y(s))ds. In such a case, the problem of finding the optimal
Bayes stopping strategy for the life-testing experiment can be formulated as

an optimal stopping problem for the Markov process {Z(t)}: find a Markov
time o* such that E{J,+} < IE{J,} Vo € M, where

Jr = 9(K (), (o)) + /0 " (K (), Y(s))ds
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and M is the class of all {F+ }-stopping times. Note that in the case when ¢
has the form ¥(k,y) = pk (p > 0), J, becomes

Jo = 9(K(0),Y(0)) + pY(0),

so that the running cost becomes itself a terminal cost.

We shall illustrate only the above case. Let us define the “value function”

s(k,y) = inf Eyy[g(K(0),Y(0))+ pY)o)]. (11)

By Theorem 4, page 104 in Shiryaev (1973), an optimal stopping time o*
is given by o* = inf{t > 0 : Z(t) € T}, where T is the region defined by
I'= {(k,y): s(k,y) = g(k,y)+py}. The value function s satisfies the following
system of conditions, for k = 0,---,n

9(k,y)+py — s(k,y) >0
As(k,y) >0 (12)

lg(k,y) + py — s(k,y)]As(k,y) = 0.

As already mentioned, it is not in general possible to find the stopping region
I' by means of analytical tools; in particular it may happen that system (12)
has more than one solution so that it does not determine the value function
s. However one can exploit the regularity and the monotonicity properties of
{Z(t)} to get additional information on s and T'.

A first hint on the shape of I' comes from a fundamental consequence of
(4), namely the diminishing variation of sign property (see Karlin and Rubin
(1956), that allows us to conclude that there exist numbers yx (k= 1,---,n)
such that min{fl(k,y),ig(k,y)} = il(k,y) if and only if y < yx (for a more
detailed discussion of loss functions with intrinsic meaning in life-testing see
Clarotti and Spizzichino (1989) and Spizzichino (1990)). A more inspiring ob-
servation is the following: the analog, in continuous time, of the fact that the
optimal Bayes strategy is a generalized likelihood ratio test is that TN {(k,y):
k > 1} is the disjoint union of a nonincreasing closed set and a nondecreasing
one. Recall that a subset of a partially ordered set is nondecreasing (nonde-
creasing) if its indicator function is nondecreasing (nonincreasing) with respect
to the given partial order. In the state space of {Z(t)}, a nondecreasing (non-
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increasing) closed set is simply given by

n

U{k} X [yk,+oo), Yk 2> Yk+1, k= 0,"',72— 1
k=0

n
(U063 x 0,081, e 2 wesn, k= 0,000im 1),
k=0

Therefore, if I' N {(k,y) : ¥ > 1} is the disjoint union of a nomncreasmg
closed set and a nondecreasing one, then it is determined by palrs (yk , y,(f)),
k=1,2,---,n -1, where0<y(1) ,(c)orO—y() )((ky))are
the boundary points of I'), and, under some mild regularity assumptxons, (12)
yields the following system of equations, for £ = 1, -

d
—f(k,y) Ak, v)s(k,y) - s(k — 1,9)] for gV < ¥ < y,£ ) and 3 >

s(k, yy) = ki (k, y“)) + e(n — k) + py!) for y{ >
s(k,y7) = kia(k, 47 + e(n — k) + py¥
s3(0,y) = nc+ py Vy.
(13)

By adding regularity conditions on the derivative of s at y( ) and y( ) , namely

ds 1 di,'
gy U = kg +p (1)

one obtains a system for which it is much more feasible to prove existence and
uniqueness of solution than for (12).

This formulation brings together the point of view and the techniques
of discrete-time sequential analysis and those of optimal control theory. Our
program is to study the system (13)—(14) for specific choices of /; and I and
to show that the solution coincides with the value function.

In Costantini and Spizzichino (1990), this program has been carried out
completely for

L(A)=¢ (X)) = /Ooo C(r)Aexp{—Ar}dr, p=0,

where C is a decreasing function such that lim,_o+ C(r) > ¢ > lim, o C(7).
This is the burn-in decision problem with p = 0 as introduced in Clarotti and
Spizzichino (1990) (as a general reference on non-Bayes burn-in procedures
see Jensen and Petersen (1982)). In this case a; is the action of discarding
the item while as is the action of putting it into operation. Note that, since
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I1(A) = cand p = 0, if we start the test at all and stop it before { K (¢)} reaches
0, we necessarily take the decision a; for all still alive items. For this problem,
under some very mild regularity hypotheses and a monotonicity assumption
on the function

Ag(k,y) = I a1y Mk, y)[e = (k- 1,9)]

we have been able to show that I' N {(k,y) : ¥ > 1} is a closed nondecreasing
region (y,(cl) =0, k=1,---,n) and (s(k,-), y,(f)), k =1,---,n is the unique
solution of (13)~(14). As a particular application we have considered prior
distributions II in the gamma family and cost functions C linear or piecewise
constant. for this class of applications we have verified that all required as-
sumptions are satisfied and we have derived an algorithm that computes the
solution explicitly.
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