
IMS Lecture Notes–Monograph Series
Asymptotics: Particles, Processes and Inverse Problems
Vol. 55 (2007) 234–252
c© Institute of Mathematical Statistics, 2007
DOI: 10.1214/074921707000000382

Empirical processes indexed by

estimated functions

Aad W. van der Vaart1 and Jon A. Wellner2,∗

Vrije Universiteit Amsterdam and University of Washington

Abstract: We consider the convergence of empirical processes indexed by
functions that depend on an estimated parameter η and give several alterna-
tive conditions under which the “estimated parameter” ηn can be replaced
by its natural limit η0 uniformly in some other indexing set Θ. In particular
we reconsider some examples treated by Ghoudi and Remillard [Asymptotic
Methods in Probability and Statistics (1998) 171–197, Fields Inst. Commun. 44
(2004) 381–406]. We recast their examples in terms of empirical process theory,
and provide an alternative general view which should be of wide applicability.

1. Introduction

Let X1, . . . , Xn be i.i.d. random elements in a measurable space (X ,A) with law
P , and for a measurable function f : X → R let the expectation, empirical measure
and empirical process at f be denoted by

Pf =
∫

fdP, Pnf =
1
n

n∑
i=1

f(Xi), Gnf =
√

n(Pn − P )f.

Given a collection {fθ,η : θ ∈ Θ, η ∈ H} of measurable functions fθ,η : X → R

indexed by sets Θ and H and “estimators” ηn, we wish to prove that, as n → ∞,

(1) sup
θ∈Θ

∣∣∣Gn(fθ,ηn − fθ,η0)
∣∣∣ →p 0.

Here an “estimator” ηn is a random element with values in H defined on the same
probability space as X1, . . . , Xn, and η0 ∈ H is a fixed element, which is typically
a limit in probability of the sequence ηn.

The result (1) is interesting for several applications. A direct application is to
the estimation of the functional θ �→ Pfθ,η. If the parameter η is unknown, we may
replace it by an estimator ηn and use the empirical estimator Pnfθ,ηn . The result
(1) helps to derive the limit behaviour of this estimator, as we can decompose

(2)
√

n(Pnfθ,ηn − Pfθ,η0) = Gn(fθ,ηn − fθ,η0) + Gnfθ,η0 +
√

nP (fθ,ηn − fθ,η0).

If (1) holds, then the first term on the right converges to zero in probability. Un-
der appropriate conditions on the functions fθ,η0 , the second term on the right
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will converge to a Gaussian process by the (functional) central limit theorem. The
behavior of the third term depends on the estimators ηn, and would typically
follow from an application of the (functional) delta-method, applied to the map
η �→ (Pfθ,η : θ ∈ Θ).

In an interesting particular case of this situation, the functions fθ,η take the form

fθ,η(x) = θ
(
η(x)

)
,

for maps θ : R
d → R and each η ∈ H being a map η : X → R

d. The realizations
of the estimators ηn are then functions x �→ ηn(x) = ηn(x; X1, . . . , Xn) on the
sample space X and can be evaluated at the observations to obtain the random
vectors ηn(X1), . . . , ηn(Xn) in R

d. The process {Pnfθ,ηn : θ ∈ Θ} is the empirical
measure of these vectors indexed by the functions θ. For instance, if Θ consists
of the indicator functions 1(−∞,θ] for θ ∈ R

d, then this measure is the empirical
distribution function

θ �→ Pnfθ,ηn =
1
n

n∑
i=1

1{ηn(Xi) ≤ θ}

of the random vectors ηn(X1), . . . , ηn(Xn). The properties of such empirical proces-
ses were studied in some generality and for examples of particular interest in Ghoudi
and Remillard [6, 7]. Ghoudi and Remillard [6] apparently coined the name “pseudo-
observations” for the vectors ηn(X1), . . . , ηn(Xn). The examples include, for in-
stance, regression residuals, Kendall’s dependence process, and copula processes;
see the end of Section 2 for explicit formulation of these three particular examples.
One purpose of the present paper is to extend the results in these papers also to
other index classes Θ besides the class of indicator functions. Another purpose is to
recast their results in terms of empirical process theory, which leads to simplification
and alternative conditions.

A different, indirect application of (1) is to the derivation of the asymptotic
distribution of Z-estimators. A Z-estimator for θ might be defined as the solution
θ̂n of the equation Pnfθ,ηn = 0, where again an unknown “nuisance” parameter η
is replaced by an estimator ηn. In this case (1) shows that

Pnfθ̂n,ηn
− Pnfθ̂n,η0

= P (fθ̂n,ηn
− fθ̂n,η0

) + oP (1/
√

n),

so that the limit behavior of θ̂n can be derived by comparison with the estimating
equation defined by Pnfθ,η0 (with η0 substituted for ηn). The “drift” sequence
P (fθ̂n,ηn

− fθ̂n,η0
), which will typically be equivalent to P (fθ0,ηn − fθ0,η0) up to

order oP (1/
√

n), may give rise to an additional component in the limit distribution.
The paper is organized as follows. In Section 2 we derive general conditions for the

validity of (1) and formulate several particular examples to be considered in more
detail in the sequel. In Section 3 we specialize the general results to composition
maps. In Section 4 we combine these results with results on Hadamard differen-
tiability to obtain the asymptotic distribution of empirical processes indexed by
pseudo observations. Finally in Section 5 we formulate our results for several of the
particular examples mentioned above and at the end of Section 2.

2. General result

In many situations we wish to establish (1) without knowing much about the nature
of the estimators ηn, beyond possibly that they are consistent for some value η0.
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For instance, this is true if (1) is used as a step in the derivation of M− or Z−
estimators. (Cf. Van der Vaart and Wellner [12] and Van der Vaart [11].) Then an
appropriate method of establishing (1) is through a Donsker or entropy condition,
as in the following theorems. Proofs of the Theorems 2.1 and 2.2 can be found in
the mentioned references.

Both theorems assume that ηn is “consistent for η0” in the sense that

(3) sup
θ∈Θ

P (fθ,ηn − fθ,η0)
2 →p 0.

Theorem 2.1. Suppose that H0 is a fixed subset of H such that Pr(ηn ∈ H0) → 1
and suppose that the class of functions {fθ,η : θ ∈ Θ, η ∈ H0} is P -Donsker. If (3)
holds, then (1) is valid.

For the second theorem, let N(ε,F , L2(P )) and N[ ](ε,F , L2(P )) be the ε-covering
and ε-bracketing numbers of a class F of measurable functions (cf. Pollard [8] and
van der Vaart and Wellner [12]) and define entropy integrals by

J(δ,F , L2) =
∫ δ

0

sup
Q

√
log N(ε‖F‖Q,2,F , L2(Q)) dε,(4)

J[ ](δ,F , L2(P )) =
∫ δ

0

√
log N[ ](ε‖F‖P,2,F , L2(P )) dε.(5)

Here F is an arbitrary, measurable envelope function for the class F : a measurable
function F : X → R such that |f(x)| ≤ F (x) for every f ∈ F and x ∈ X . We
say that a sequence Fn of envelope functions satisfies the Lindeberg condition if
PF 2

n = O(1) and PF 2
n1Fn≥ε

√
n → 0 for every ε > 0.

Theorem 2.2. Suppose that Hn are subsets of H such that Pr(ηn ∈ Hn) → 1
and such that the classes of functions Fn = {fθ,η : θ ∈ Θ, η ∈ Hn} satisfy either
J[·](δn,Fn, L2(P )) → 0, or J(δn,Fn, L2) → 0 for every sequence δn → 0, relative
to envelope functions that satisfy the Lindeberg condition. In the second case also
assume that the classes Fn are suitably measurable (e.g. countable). If (3) holds,
then (1) is valid.

Because there are many techniques to verify that a given class of functions is
Donsker, or to compute bounds on its entropy integrals, the preceding lemmas give
quick results, if they apply. Furthermore, they appear to be close to best possible
unless more information about the estimators ηn can be brought in, or explicit
computations are possible for the functions fθ,η.

In some applications the estimators ηn are known to converge at a certain rate
and/or known to possess certain regularity properties (e.g. uniform bounded deriv-
atives). Such knowledge cannot be exploited in Theorem 2.1, but could be used for
the choice of the sets Hn in Theorem 2.2. We now discuss an alternative approach
which can be used if the estimators ηn are also known to converge in distribution,
if properly rescaled.

Let H be a Banach space, and suppose that the sequence
√

n(ηn −η0) converges
in distribution to a tight, Borel-measurable random element in H. The “convergence
in distribution” may be understood in the sense of Hoffmann-Jørgensen, so that ηn

need not be Borel-measurable itself.
The tight limit of the sequence

√
n(ηn−η0) takes its values in a σ-compact subset

H0 ⊂ H. For θ ∈ Θ, h0 ∈ H0, and δ > 0 define a sequence of classes of functions by

(6) Fn(θ, h0, δ) =
{
fθ,η0+n−1/2h − fθ,η0+n−1/2h0

: h ∈ H, ‖h − h0‖ < δ
}
.
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Let Fn(θ, h0, δ) be arbitrary measurable envelope functions for these classes.

Theorem 2.3. Suppose that the sequence
√

n(ηn − η0) converges in distribution to
a tight, random element with values in a given σ-compact subset H0 of H. Suppose
that

(i) supθ |Gn(fθ,η0+n−1/2h0
− fθ,η0)| →p 0 for every h0 ∈ H0.

(ii) supθ |GnFn(θ, h0, δ)| →p 0 for every δ > 0 and every h0 ∈ H0;
(iii) supθ suph0∈K

√
nPFn(θ, h0, δn) → 0 for every δn → 0 and every compact

K ⊂ H0;

Then (1) is valid.

Proof. Suppose that
√

n(ηn − η0) ⇒ Z and let ε > 0 be fixed. There exists a
compact set K ⊂ H0 with P (Z ∈ K) > 1 − ε and hence for every δ > 0, with Kδ

the set of all points at distance less than δ to K,

lim inf
n→∞

Pr
(√

n(ηn − η0) ∈ Kδ/2
)

> 1 − ε.

In view of the compactness of K there exist finitely many elements h1, . . . , hp ∈
K ⊂ H0 (with p = p(δ) depending on δ) such that the balls of radius δ/2 around
these points cover K. Then Kδ/2 is contained in the union of the balls of radius δ,
by the triangle inequality. Thus, with B(h, δ) denoting the ball of radius δ around
h in the space H,

{√
n(ηn − η0) ∈ Kδ/2

}
⊂

p(δ)⋃
i=1

{
ηn ∈ B(η0 + n−1/2hi, δ)

}
.

It follows that with probability at least 1 − ε, as n → ∞,

sup
θ

|Gn(fθ,ηn − fθ,η0)|

≤ sup
θ

max
i

sup
‖h−hi‖<δ

|Gn(fθ,η0+n−1/2h − fθ,η0)|

≤ sup
θ

max
i

sup
‖h−hi‖<δ

[
|Gn(fθ,η0+n−1/2h − fθ,η0+n−1/2hi

)|

+ |Gn(fθ,η0+n−1/2hi
− fθ,η0)|

]

≤ sup
θ

max
i

|GnFn(θ, hi, δ)| + 2 sup
θ

sup
h0∈K

√
nPFn(θ, h0, δ)

+ sup
θ

max
i

|Gn(fθ,η0+n−1/2hi
− fθ,η0)|,

where in the last step we use the inequality |Gnf | ≤ |GnF |+2
√

nPF , valid for any
functions f and F with |f | ≤ F . The maxima in the display are over the finite set
i = 1, . . . , p(δ), and the elements h1, . . . , hp(δ) ∈ K depend on δ. By assumptions
(i) and (ii) the first and third terms converge to zero as n → ∞, for every fixed
δ. It follows that there exists δn ↓ 0 such that these terms with δn substituted
for δ converge to 0. For this δn, all three terms converge to zero in probability as
n → ∞.

The rate of convergence
√

n in the preceding theorem may be replaced by another
rate, with appropriate changes in the conditions, but the rate

√
n appears natural in

the following context. For more general metrizable topological vector spaces there
are similar, but less attractive, results possible.
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The two conditions (i), (ii) of Theorem 2.3 concern the empirical process indexed
by the classes of functions

{fθ,η0+n−1/2h0
− fθ,η0 : θ ∈ Θ},(7)

{Fn(θ, h0, δ) : θ ∈ Θ}.(8)

These classes are indexed by Θ only, and hence Theorem 2.3, if applicable, avoids
conditions for (1) that involve measures of the complexity of the class {fθ,η : θ ∈
Θ, η ∈ H} due to the parameter η ∈ H.

Condition (iii) of Theorem 2.3 involves the mean of the envelopes of the classes
Fn(θ, h0, δ). For the minimal envelopes this condition takes the form

sup
θ

sup
h0∈K

√
n P sup

‖h−h0‖<δn

|fθ,η0+n−1/2h − fθ,η0+n−1/2h0
| → 0(9)

for all δn ↓ 0. This is an “integrated uniform local Lipschitz assumption” on the
dependence η �→ fθ,η. In some applications it may be useful not to use the minimal
envelope functions. The lemma is valid for any envelope functions, as long as the
same envelopes are used in both (ii) and (iii).

The set K in (iii) or (9) is a compact set in the support of the limit distribution
of the sequence

√
n(ηn − η0). In some cases condition (iii) may be valid for any

compact K ⊂ H, whereas in other cases more precise information about the limit
process must be exploited. For instance, if the sequence

√
n(ηn − η0) converges in

distribution to a tight zero-mean Gaussian process G in the space H = �∞(T ) of
bounded functions on some set T , then K may be taken to be a set of functions
z : T → R that is uniformly bounded and uniformly equicontinuous relative to the
semimetric with square d2(s, t) = E(Gs − Gt)2 (and T will be totally bounded for
d). Cf. e.g. van der Vaart and Wellner [12], page 39.

Condition (iii) is an analytical condition, whereas conditions (i) and (ii) are
empirical process conditions. In many cases the latter pair of conditions can be
verified by standard empirical process type arguments. For reference we quote two
lemmas that allow handling the empirical process indexed by a sequence of classes,
as in (8) or (7). (For proofs see e.g. van der Vaart [10, 11].) Both lemmas apply to
classes Fn of measurable functions f : X �→ R such that

sup
f∈Fn

Pf2 → 0.(10)

Lemma 2.1. Suppose that the class of functions
⋃

n Fn is P -Donsker. If (10)
holds, then supf∈Fn

|Gn(f)| →p 0.

Lemma 2.2. Suppose that either J[·](δn,Fn, L2(P )) → 0 or J(δn,Fn, L2) → 0 for
all δn ↓ 0 relative to envelope functions Fn that satisfy the Lindeberg condition. In
the second case also assume that each class Fn is suitably measurable. If (10) holds,
then supf∈Fn

|Gn(f)| →p 0.

Example 1 (Regression residual processes). Suppose that (X1, Y1), . . . , (Xn,
Yn) are a random sample distributed according to the regression model Y = gη(X)+
e. For given estimators ηn we can form the residuals êi = Yi − gηn(Xi) and may be
interested in the empirical process corresponding to ê1, . . . , ên, i.e. for a collection
Θ of functions θ : R → R we consider the process

{
n−1

∑n
i=1 θ(êi) : θ ∈ Θ

}
. This

fits the general set-up with the functions fθ,η defined as fθ,η(x, y) = θ
(
y − gη(x)

)
.
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In many cases it will be possible to apply Theorem 2.1. For instance, if x ∈ R
d, gη

is a polynomial in x, and Θ is the class of indicator functions 1(−∞,θ] for θ ∈ R, then
the functions fθ,η are the indicator functions of the sets {(x, y) : y−gη(x)−θ ≤ 0}.
Because the set of functions (x, y) �→ y−gη(x)−θ is contained in a finite-dimensional
vector space, it is a VC-class, and hence so are their negativity sets (e.g. van der
Vaart and Wellner [12], Lemma 2.6.18). Thus the class of functions fθ,η is Donsker,
and Theorem 2.1 can be applied directly.

Example 2 (Kendall’s process). Let ηn be the empirical distribution function of
a random sample X1, . . . , Xn from a distribution η0 on R

d. Barbe, Genest, Ghoudi
and Remillard [2] and Ghoudi and Remillard [6] study the behavior of the empirical
distribution function Kn of the pseudo-observations ηn(Xi),

Kn(θ) =
1
n

n∑
i=1

1{ηn(Xi) ≤ θ}, θ ∈ [0, 1],

and the resulting Kendall’s process

(11)
√

n(Kn(θ) − K(θ)), θ ∈ [0, 1]

where K(θ) = P (η0(X) ≤ θ). This fits the general set-up with fθ,η the composition
function fθ,η = θ◦η, and θ the indicator function 1(−∞,θ] (where we abuse notation
by using the symbol θ in two different ways).

An attempt to apply Theorem 2.1 to this problem would lead to the consideration
of the class of all indicator functions of sets of the form {x ∈ R

d : η(x) ≤ θ} for
η ranging over the cumulative distribution functions on R

d and θ ∈ [0, 1]. This
class is similar to the collection of all “lower layers” in R

d, and, unfortunately,
fails to be Donsker for most distributions (cf. Dudley [3], page 264, 373 or Dudley
[4]). In this case it appears to be necessary to exploit the limit behaviour of the
sequence

√
n(ηn−η0). Ghoudi and Remillard [6] have shown that (1) is valid in this

case, under some strong smoothness assumptions on the underlying measure η0. In
Sections 4 and 5 we rederive some of their results by empirical process methods
using Theorem 2.3.

We also consider the empirical process of the variables ηn(X1), . . . , ηn(Xn) in-
dexed by classes of functions other than the indicators 1(−∞,θ]. If the indexing func-
tions are smooth, then this empirical process will converge even without smoothness
conditions on η0. A proof can be based on Theorem 2.3.

Example 3 (Copula processes). Suppose that X1, . . . , Xn are a sample from
a distribution η0 on R

d. Write Xi = (Xi,1, . . . , Xi,d) and let η0,1, . . . , η0,d be the
marginal distributions. The copula function C associated with η0 is the distribu-
tion function of the vector

(
η0,1(X1,1), . . . , η0,d(X1,d)

)
, i.e. with η−1

0,j (u) = inf{x :
η0,j(x) ≥ u} for u ∈ [0, 1],

C(u1, . . . , ud) = η0(η−1
0,1(u1), . . . , η−1

0,d(ud))

for (u1, . . . , ud) ∈ [0, 1]d. For j = 1, . . . , d let ηn,j be the empirical distribution
function of X1,j , . . . , Xn,j (on R), and let ηn be the empirical distribution function
of X1, . . . , Xn (on R

d). Then a natural estimator Cn of C is given by

Cn(u) =
1
n

n∑
i=1

1{ên,i ≤ u}, u ∈ [0, 1]d,
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for the “pseudo-observations” ên,i =
(
ηn,1(Xi,1), . . . , ηn,d(Xi,d)

)
. The resulting

“copula processes”,

(12)
√

n(Cn(u) − C(u)), u ∈ [0, 1]d,

have been considered by Stute [9], Gänssler and Stute [5], and Ghoudi and Remil-
lard [7]. This example can be treated using Theorem 2.3, but also with the more
straightforward Theorem 2.1, or even by employing the theory of Hadamard differ-
entiability, as in Chapter 3.9 of Van der Vaart and Wellner [12].

3. Composition

In this section we consider the case where the functions fθ,η take the form

(13) fθ,η(x) = θ(η(x)),

for θ ranging over a class Θ of functions θ : R
d → R and η ranging over a class H of

measurable functions η : X → Rd. We first give general conditions for the validity
of condition (iii) of Theorem 2.3, and next consider also the conditions (i) and (ii)
for the special cases of functions θ that are Lipschitz and monotone, respectively.
We develop these results for the case that the sequence

√
n(ηn − η0) converges in

distribution in the space H = �∞(X , Rd) of uniformly bounded functions z : X →
R

d, equipped with the uniform norm ‖z‖ = supx∈X
∥∥z(x)

∥∥. (Variations of these
results are possible. For instance, R

d could be replaced by a more general Banach
space, and H could be equipped with a weighted uniform norm.)

3.1. Condition (i)

For fθ,η taking the form (13), condition (i) of Theorem 2.3 takes the form

(14) sup
f∈Fn

|Gn,Qf | →Q 0

for Q = P ◦ (η0, h0)−1, Gn,Q the empirical process of a random sample from the
measure Q, and Fn the class of functions

(15) Fn =
{
(y, z) �→ θ(y + n−1/2z) − θ(y) : θ ∈ Θ

}
.

Condition (i) requires that (14) is valid for every fixed choice of h0 ∈ H0, i.e. for
every measure Q determined as the law of (η0(X), h0(X)) for some h0 ∈ H0 and X
distributed according to P .

This situation is of the form considered in Lemmas 2.1 and 2.2, and both lemmas
may be applicable in a given setting. It is not especially helpful to restate these
lemmas for the present special situation. Instead, we give one easy to check set of
sufficient conditions. This covers VC-classes Θ, and much more.

If Θenv : R
d → R is an envelope function for Θ, then

(16) Fn(y, z) = Θenv(y + n−1/2z) + Θenv(y)

is an envelope function for Fn. (A crude one, because we do not exploit that the
functions in Fn are differences.)
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Lemma 3.1. Suppose that J(1, Θ, L2) < ∞, that Θ is suitably measurable, that
P (Θenv◦η0)2 < ∞, and that the functions Θenv◦(η0+n−1/2h0) satisfy the Lindeberg
condition in L2(P ), for every h0 ∈ H0. If

sup
θ∈Θ

P
(
θ ◦ (η0 + n−1/2h0) − θ ◦ η0

)2 → 0,

for every h0 ∈ H0, then condition (i) of Theorem 2.3 is satisfied for the functions
fθ,η given by (13).

Proof. It suffices to prove (14) for the classes Fn given in (15). The class Fn is
contained in the difference of the classes

F ′
n = {(y, z) �→ θ(y + n−1/2z) : θ ∈ Θ},

F ′′ = {(y, z) �→ θ(y) : θ ∈ Θ}.

These classes possess envelope functions F ′
n and F ′′ defined by

F ′
n(y, z) = Θenv(y + n−1/2z),

F ′′(y, z) = Θenv(y).

The uniform entropy of F ′′ relative to F ′′ is finite by assumption. The uniform
entropy of F ′

n relative to F ′
n is exactly the same, as the law of Y + n−1/2Z runs

through all possible laws on R
d if the law of (Y, Z) runs through all possible laws

on R
d × R

d. The uniform entropy of Fn relative to Fn is bounded by the sum of
the uniform entropies of F ′

n and F ′′. (Cf. e.g. Theorem 2.10.20 of van der Vaart
and Wellner [12].) Now apply Lemma 2.2.

3.2. Lipschitz functions θ

Assume that every function θ : R
d → R in the class Θ is uniformly Lipschitz in

that

(17) |θ(r1) − θ(r2)| ≤ ‖r1 − r2‖.

Then, for every x ∈ X ,

∣∣∣θ(η0(x) + n−1/2h(x)
)
− θ

(
η0(x) + n−1/2h0(x)

)∣∣∣ ≤ ‖h(x) − h0(x)‖√
n

.

The norm in the right side is bounded by the supremum norm ‖h − h0‖ on �∞(X ,
R

d). It follows that the classes Fn(θ, h0, δ) as in (6) possess envelope functions

(18) Fn(θ, h0, δ) = δ/
√

n.

Theorem 3.1. If Θ is a suitably measurable collection of uniformly bounded, uni-
formly Lipschitz functions θ : R

d → R such that J(1, Θ, L2) < ∞ (relative to a
constant envelope function), η0 ∈ �∞(X , Rd), and the sequence

√
n(ηn − η0) con-

verges weakly in �∞(X , Rd) to a tight random element, then

sup
θ∈Θ

∣∣Gn

(
θ(ηn) − θ(η0)

)∣∣ →p 0.
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Proof. With the envelope functions Fn(θ, h0, δ) as defined in (18), condition (ii) of
Theorem 2.3 is trivially satisfied because the envelopes are actually constants, and
the validity of condition (iii) is immediate.

By assumption we can choose the envelope function of Θ equal to a constant
and J(1, Θ, L2) < ∞. This suffices for the verification of most of the conditions of
Lemma 3.1. Finally, it suffices to note that

P
(
θ ◦ (η0 + n−1/2h0) − θ ◦ η0

)2 ≤ ‖h0‖2/n.

By Lemma 3.1 we conclude that condition (i) of Theorem 2.3 is also satisfied,
whence the theorem follows from Theorem 2.3.

For the verification of condition (i) of Theorem 2.3 it suffices to consider the
functions θ on the range of the functions η0 + h0/

√
n for a fixed h0 in the support

of the limit distribution of the sequence
√

n(ηn − η0). Thus we may restrict the
functions θ to a subset of R

d that contains the ranges of these functions and in-
terpret the condition J(1, Θ, L2) < ∞ in Lemma 3.1 accordingly. In particular, in
Theorem 2.3 we may replace this condition by the condition that J(1, ΘK , L2) < ∞
for every norm-bounded subset K ⊂ R

d, where ΘK is the collection of restrictions
θ : K → R of the functions θ ∈ Θ.

Any collection of uniformly bounded, Lipschitz functions θ : K → R on a com-
pact interval K satisfies J(1, Θ, L2) < ∞. (Cf. e.g. van der Vaart and Wellner [12],
page 157.) Thus in the case that d = 1 the assertion of the preceding theorem is
true for any collection of uniformly bounded Lipschitz functions.

For d > 1 further restrictions on the class Θ may be necessary. For instance, any
subset of the unit ball in the Hölder space Cα(K) for a compact interval K ⊂ R

d

possesses a finite uniform entropy integral provided α > d/2. (Cf. e.g. van der Vaart
and Wellner [12], page 157.) The assertion of the preceding theorem is also true for
such a class.

There are many other examples of classes of Lipschitz functions with finite uni-
form entropy integrals. For instance, VC-classes of Lipschitz functions.

3.3. Monotone functions θ

Assume that every function θ : R
d → R in Θ is the survival function θ(x) =∫

1[x,∞) dθ of a subprobability measure on R
d. Then each θ is nonincreasing in each

of its arguments. If H = �∞(X , Rd) equipped with the uniform norm relative to the
max-norm on R

d, then
∣∣∣θ(η0 + n−1/2h) − θ(η0 + n−1/2h0)

∣∣∣
≤ θ(η0 + n−1/2h0 − n−1/2‖h − h0‖) − θ(η0 + n−1/2h0 + n−1/2‖h − h0‖).

It follows that the classes Fn(θ, h0, δ) possess envelope functions, with δ the vector
(δ, . . . , δ),

Fn(θ, h0, δ) = θ(η0 + n−1/2h0 − n−1/2δ) − θ(η0 + n−1/2h0 + n−1/2δ).

In order to verify condition (iii) of Theorem 2.3, we assume that for given (possibly
infinite) a < b in R

d and every δn ↓ 0 and compact set K ⊂ H0 ∪ {0},

(19) sup
t∈Rd,a≤t≤b

sup
h0∈K

√
nP

(
1η0+n−1/2h0≤t+n−1/2δn

− 1η0+n−1/2h0≤t

)
→ 0.
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Theorem 3.2. Let Θ be a collection of survival functions θ : R
d → [0, 1] of subprob-

ability measures supported on an interval (a, b) ⊂ R
d. If the sequence

√
n(ηn − η0)

converges in distribution in �∞(X , Rd) to a tight Borel measure concentrating on the
σ-compact set H0, and (19) holds for every δn ↓ 0 and every compact K ⊂ H0∪{0},
then

sup
θ

∣∣Gn

(
θ(ηn) − θ(η0)

)∣∣ →p 0.

Proof. The survival functions of subprobability measures are in the convex hull of
the set of indicator functions 1[t,∞), which is a VC-class. Therefore the entropy
integral J(1, Θ, L2) of Θ relative to a constant envelope is finite. (Cf. e.g. van der
Vaart and Wellner [12], page 145.)

Defining Fn(θ, η0, δ) as in the display preceding the theorem, we can write

PFn(θ, η0, δ)

=
∫

P
(
1(−∞,s](η0 + n−1/2h0 − n−1/2δ) − 1(−∞,s](η0 + n−1/2h0)

)
dθ(s)

≤ ‖θ‖ sup
a≤s≤b

P
(
1(−∞,s](η0 + n−1/2h0 − n−1/2δ) − 1(−∞,s](η0 + n−1/2h0)

)
.

By assumption (19) the right side converges to zero faster than 1/
√

n, for every
δ = δn ↓ 0, uniformly in h0 ∈ K, and uniformly in θ because the total variation
norms ‖θ‖ are uniformly bounded. This verifies condition (iii) of Theorem 2.3.

Because θ is monotone with range contained in [0, 1],

P
(
θ(η0 + n−1/2δ) − θ(η0)

)2 ≤ sup
a≤s≤b

P
(
1(−∞,s](η0 − n−1/2δ) − 1(−∞,s](η0)

)
.

By assumption (19) with h0 = 0 this converges to zero faster than 1/
√

n for every
sequence δn ↓ 0. This can be seen to imply that the expression in the display (which
does not have the leading

√
n) converges to zero also for fixed δ. By monotonicity

of θ we can bound
∣∣θ(η0 + h0/

√
n)− θ(η0)

∣∣ by
∣∣θ(η0 − δ/

√
n)− θ(η0)

∣∣ for δ = ‖h0‖.
By Lemma 3.1 we now conclude that condition (i) of Theorem 2.3 is satisfied.

In the present case the envelope functions Fn(θ, h0, δ) are equal to the functions
fθ,η0+n−1/2h − fθ,η0−n−1/2h for h = h0 − δ. Therefore, the validity of condition (ii)
of Theorem 2.3 follows by the same arguments as used for the validity of condition
(i).

Condition (19) is a uniform Lipschitz condition on the distribution functions of
the variables η0(X) + h0(X)/

√
n. If the distribution of η0(X) is smooth, then we

might expect that the distribution functions of the perturbed variables η0(X) +
h0(X)/

√
n will be smooth as well. However, this appears not to be true in general,

and it will usually be necessary to exploit some information about the functions h0.
(We need to consider functions in the support of the limit measure of the sequence√

n(ηn − η0).) In this respect the conditions of Theorem 3.2 for composition with
monotone functions are much more stringent than the conditions of Theorem 3.1
for the composition with Lipschitz functions.

The condition (19) is in terms of the indicator functions 1(−∞,s], and would have
exactly the same form if we considered only indicator functions θ = 1(−∞,θ], rather
than general monotone functions. Thus the restrictive condition is connected to
studying the classical empirical process.

The following lemma allows the verification of condition (19) in many cases. It
will also be used in the next section to prove applicability of the delta-method. The
lemma is similar to Lemma 5.1 of Ghoudi and Rémillard [6].
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Lemma 3.2. Suppose that X, Y, Yt (with t > 0) are real-valued random variables
on a common probability space such that

(i) X possesses a Lebesgue density f that is continuous in a neighbourhood of x;
(ii) ‖Yt − Y ‖∞ → 0 and ‖Y ‖∞ < ∞;
(iii) the conditional distribution of Y given X = s can be represented by a Markov

kernel K(s, ·) such that the map s �→ K(s, ·) is continuous at x for the weak
topology.

Then for every continuous function g : R → R and every converging sequences
xt → x, at → a and 0 ≤ bt → b, as t → 0,

1
t
Eg(Yt)1xt<X+tatYt≤xt+tbt → b

∫
g(y)K(x, dy) f(x).

Proof. First consider the case that Yt = Y for every t. By the definitions of K and
f , we can write

1
t
Eg(Y )1xt<X+tatY <xt+tbt

=
1
t

∫
E

(
g(Y )1(xt−s)/t<atY ≤(xt−s)/t+bt

|X = s
)
f(s) ds

=
∫ ∫

g(y)1u<aty≤u+bt K(xt − ut, dy) f(xt − ut) du.

The inner integral is equal to Eg(Yt)1u<atYt≤u+bt for Yt possessing the law K(xt −
ut, ·). By assumption atYt converges in distribution to the law of aY for Y possessing
the law K(x, ·). It follows that the inner integral converges to

∫
g(y)1u<ay<u+b K(x,

dy) for any (u, b) such that u and u + b are not among the atoms of the law of aY .
This includes almost every u for every fixed b. Because Y has bounded range, the
double integral can be restricted y in a compact set and hence u in a compact set;
the argument xt − ut fo f is then restricted to a neighbourhood of x. Therefore,
we can apply the dominated convergence theorem to see that the right side of the
display converges to

∫ ∫
g(y)1u<ay≤u+b K(x, dy) f(x) du.

This reduces to b
∫

g(y)K(x, dy) f(x) by Fubini’s theorem. This concludes the proof
of the lemma for the case that Yt = Y .

Because g is continuous, Y possesses bounded range and ‖Yt − Y ‖∞ → 0 we
have that ‖g(Yt) − g(Y )‖∞ → 0. Therefore

1
t
E

∣∣g(Yt) − g(Y )
∣∣1xt<X+tatYt<xt+tbt

≤ o(1)
1
t

Pr
(
xt − tat‖Yt‖∞ < X < xt + t + tat‖Yt‖∞

)
.

This converges to zero as X has a density that is bounded on bounded intervals.
Finally the difference 1xt<X+tatYt<xt+tbt − 1xt<X+tatY <xt+tbt is nonzero only if

X + tatY is in the union of intervals of total length bounded by tat‖Yt − Y ‖∞ in a
neighbourhood of x. By the lemma with Yt = Y and g = 1, which is already proved,
t−1 Pr(xt < X + tatY < xt + tct) → cf(x) for any sequences xt → x and ct → c.
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Hence this probability converges to zero for ct = tat‖Yt − Y ‖∞, which satisfied
ct → 0. We conclude from this that

1
t

∣∣Eg(Y )(1xt<X+tatYt<xt+tbt − 1xt<X+tatY <xt+tbt)
∣∣

≤ ‖g(Y )‖∞
1
t
E|1xt<X+tatYt<xt+tbt − 1xt<X+tatY <xt+tbt |

converges to zero. The proof of the lemma is complete upon combining the preced-
ing.

In order to verify (19) with K = {h0} a single function we can apply the preceding
lemma with (X, Y ) equal to the pair of variables

(
η0(X), h0(X)

)
, bt = δn, and t =

1/
√

n. Then the conditions of the lemma require that the variable η0(X) possesses a
continuous density, and that the conditional distribution of h0(X) given η0(X) = z
depends continuously on the value of z. The second condition is clearly unpleasant,
but appears to be natural in the present situation. It will involve a closer analysis
of the support of the limit distribution of the sequence

√
n(ηn − η0).

To verify (19) with a general compact set K ⊂ �∞(X , R) we simply note that in
view of the compactness it suffices to verify that for every sequence hn such that
‖hn − h0‖∞ → 0 for some h0 ∈ H0,

sup
t∈Rd,a≤t≤b

√
n P

(
1η0+n−1/2hn≤t+n−1/2δn

− 1η0+n−1/2hn≤t

)
→ 0.

Thus we can apply the preceding lemma with the variables (X, Y, Yt) equal to(
η0(X), h0(X), hn(X)

)
and t = 1/

√
n.

Example 2, continued. Suppose that ηn is the empirical distribution of a ran-
dom sample from the cumulative distribution function η0 on R

d. Then the limit
distribution of the sequence

√
n(ηn − η0) is the d-dimensional η0-Brownian sheet

on R
d.

If d = 1, then the Brownian sheet is a Brownian bridge and can be represented
as B ◦ η0 for B a standard Brownian bridge on the unit interval. A typical function
in the support of the limit distribution of the sequence

√
n(ηn − η0) can be repre-

sented as h0 = h ◦ η0 for some function h : [0, 1] → R. The conditional law of the
variable h0(X) given η0(X) = z is the Dirac measure at h(z). Because the standard
Brownian bridge is continuous, the function h can be taken continuous and hence
the corresponding Markov kernels K(z, ·) = δh(z)(·) are weakly continuous in z, as
required by the preceding lemma.

If d > 1, then we can, without loss of generality, suppose that η0 is a distribution
function on [0, 1]d with uniform marginal distributions (i.e. a copula function). Then
the conditioning event η0(X) = z will typically restrict X to a one-dimensional
curve in [0, 1]d. Under sufficient smoothness of η0, this curve will vary continuously
with z, and under smoothness conditions on the law of X, the conditional distribu-
tion of h0(X) given η0(X) = z for a continuous function h0 will vary continuously
as well. Ghoudi and Remillard [6] give sufficient conditions for this continuity in a
number of examples.

The preceding lemma can be extended to the case of multidimensional variables.
For simplicity we only consider the two-dimensional case.

Lemma 3.3. Suppose that X, Y, Yt (with t > 0) are random variables in R
2 defined

on a common probability space such that
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(i) X possesses a Lebesgue density f that has continuous conditional densities;
(ii) ‖Yt − Y ‖∞ → 0 and ‖Y ‖∞ < ∞;
(iii) the conditional distribution of Y given X = s can be represented by a Markov

kernel K(s, ·) such that the map s �→ K(s, ·) is continuous at x for the weak
topology.

Then for every continuous function g : R → R and every converging sequences
xt → x, at → a and bt → b > 0, as t → 0,

1
t
Eg(Yt)(1X+tatYt≤xt+tbt − 1X+tatYt≤xt)

→ b1

∫ x2

−∞

∫
g(y)K

(
(x1, s2), dy

)
f(x1, s2) ds2

+ b2

∫ x1

−∞

∫
g(y)K

(
(s1, x2), dy

)
f(s1, x2) ds1.

Proof. The event {X + tatYt ≤ xt + tbt} ∩ {X + tatYt ≤ xt}c can be decomposed
in the three events

I = {x1t < X1 + tatY1t ≤ x1t + tb1t, X2 + tatY2t ≤ x2t},
II = {x1t < X1 + tatY1t ≤ x1t + tb1t, x2t < X2 + tatY2t ≤ x2t + tb2t},

III = {X1 + tatY1t ≤ x1t, x2t < X2 + tatY2t ≤ x2t + tb2t}.

In view of the boundedness of the Yt the event II is contained in an event of the
form {X ∈ B1} for Bt rectangles of area O(t2). Therefore, this event does not
contribute to the limit.

The contribution of the event I with Yt = Y can be written
∫ ∫ ∫

g(y)1u1<aty1≤u1+b1t 1s2+taty2t≤x2t K
(
(x1t − u1t, s2), dy

)
× f(x1t − u1t, s2) du1 ds2.

By arguments as given previously this can be shown to converge to
∫ ∫ ∫

g(y)1u1<ay1≤u1+b1 K
(
(x1, s2), dy

)
1s2≤x2 f(x1, s2) du1 ds2.

The integral with respect to u1 can be computed explicitly and the expression
reduces to the first term on the right of the lemma.

The contribution of the event III gives the second term.
We can replace Yt by Y by similar arguments as in the one-dimensional case. (In

fact, bound x2t by ∞ and use exactly the same arguments.)

4. Pseudo observations

In this section we consider the asymptotic behaviour of the process {√n(Pnθ ◦ηn −
Pθ◦η0) : θ ∈ Θ} for a given class Θ of functions θ : R

d → R. The set-up is the same
as in Section 3. As explained in the introduction we can decompose this process as

Gn(θ ◦ ηn − θ ◦ η0) + Gnθ ◦ η0 +
√

nP (θ ◦ ηn − θ ◦ η0).

Under the conditions of Theorem 3.1 or Theorem 3.2, Theorem 2.3, or their exten-
sions, the first term will converge to zero in probability in �∞(Θ). The second term
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will converge in distribution to a Gaussian process in this space if and only if the
class of functions Θ is Donsker for the law P ◦ η−1

0 . If the third term also converges
in distribution, then the sum of the three processes is asymptotically tight, and it
will usually be straightforward to deduce its limit distribution from consideration
of the marginal distributions.

The behaviour of the third term will follow by the (functional) delta-method if
the sequence

√
n(ηn − η0) converges in distribution in the Banach space H and the

map η �→ (Pθ ◦ η : θ ∈ Θ) from H to �∞(Θ) is suitably differentiable. If the limit
distribution of the sequence

√
n(ηn−η0) concentrates on the space H0 ⊂ H, then it

suffices that the map η �→ (Pθ◦η : θ ∈ Θ) be “Hadamard differentiable tangentially
to H0”, i.e. for every converging sequence ht → h0 ∈ H0 ⊂ H

1
t
P

[
(θ ◦ (η0 + tht) − θ ◦ η0)

]
→ L(h0)(θ),

uniformly in θ ∈ Θ, for a continuous linear map L : linH0 → �∞(Θ). Under the
additional condition that L is defined on all H, this implies

√
nP (θ ◦ ηn − θ ◦ η0) = L(

√
n(ηn − η0))(θ) + oP (1).

Cf. van der Vaart and Wellner [12], page 374.
As in the preceding section we consider the cases that the functions θ are smooth

or of bounded variation separately. In the former case the differentiability is relative
to a weak norm on H (and is easy to prove), but for discontinuous functions θ, such
as the indicator functions 1(−∞,θ], the differentiability requires a strong norm on
H and some conditions on the underlying distribution.

4.1. Smooth functions θ

If the functions θ are differentiable with bounded derivatives, then the Hadamard
differentiability is true for H equipped with the L1(P )-norm on H.

Lemma 4.1. Let the functions θ : R
d → R in Θ be continuously differentiable with

derivative θ̇ such that ‖θ̇(x)‖ ≤ 1 for every x ∈ R
d. Then the map η �→ (Pθ ◦ η :

θ ∈ Θ) from L1(X ,A, P ) to �∞(Θ) is Hadamard differentiable at η0 with derivative
h �→

(
P θ̇ ◦ h : θ ∈ Θ

)
.

Proof. Given a sequence ht with P |ht −h0| → 0 we can write, by Fubini’s theorem,
∣∣∣1
t
P

(
θ(η + tht) − θ(η)

)
− P θ̇(η)h

∣∣∣
=

∣∣∣
∫ 1

0

P
(
θ̇(η + stht)ht − θ̇(η)h

)
ds

∣∣∣

≤
∫ 1

0

P
∥∥θ̇(η + stht) − θ̇(η)

∥∥‖ht‖ ds + P‖θ̇(η)‖‖ht − h0‖.

The second term on the right is bounded above by P |ht − h0| and converges to
zero by assumption. The first term on the right converges to zero by the dominated
convergence theorem.

4.2. Functions θ of bounded variation

In the second result we let Θ be a set of functions of bounded variation on a
bounded interval in R, and consider the Hadamard differentiability of the map
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η �→ (Pθ ◦ η : θ ∈ Θ) as a map from �∞(X ) to �∞(Θ). For simplicity of notation,
let X be a random variable with law P .

Lemma 4.2. Let the functions θ ∈ Θ be distribution functions of subprobability
measures supported on a compact interval I ⊂ R. Suppose that the variable η0(X)
possesses a Lebesgue density f that is continuous on a neighbourhood of I. Then
the map η �→ (Pθ ◦ η : θ ∈ Θ) from �∞(X ) to �∞(Θ) is Hadamard differentiable at
η0 tangentially to the set of all h0 such that there exists a version of the conditional
distribution of h0(X) given η0(X) = s that is weakly continuous in s ∈ I. The
derivative is given by h0 �→

(∫
E

(
h0(X)|η0(X) = s

)
f(s) dθ(s) : θ ∈ Θ

)
.

Proof. Let h0 be as given and suppose ht → h0 in �∞(X ).
For given s ∈ R and u > 0 let χs,u be the continuous function that takes the

value 0 on (−∞, s − u], takes the value 1 on [s,∞) and is linear on the interval
[s − u, s]. Then 1[s,∞) ≤ χs,u, and hence

P (1s≤η0+tht − 1s≤η0) ≤ P
(
χs,u(η0 + tht) − χs,u(η0)

)
+ P

(
χs,u(η0) − 1[s,∞)(η0)

)
.

Because η0(X) possesses a Lebesgue density that is bounded on a neighbourhood
of I and 1[s,∞) −χs,u vanishes off the set (s− u, s), the second term on the right is
bounded in absolute value by a multiple of u, uniformly in s ranging through I, for
small u. By choosing u = δt this term divided by t can be made arbitrarily small
by choice of δ.

Because χs,u is absolutely continuous with derivative 1/u on (s − u, s) and 0
elsewhere, the first term on the right divided by 1/t can be written in the form

∫ 1

0

1
u

P (ht1s−u<η0+vtht≤s) dv.

For u = δt this converges to E
(
h0(X)|η0(X) = s

)
f(s), by Lemma 3.2, uniformly in

s ranging over I.
It follows that, uniformly in s ranging over I,

lim sup
t↓0

(1
t
P (1s≤η0+tht − 1s≤η0) − E

(
h0(X)|η0(X) = s

)
f(s)

)
≤ 0.

A similar argument using the functions χs+u,u instead of χs,u gives a corresponding
lower bound, whence the expression in brackets converges to zero, uniformly in s
ranging through compacta. This concludes the proof of the lemma for Θ equal to
the set of functions 1[s,∞) with s in a compact interval.

For a general collection Θ of functions of bounded variation we can write

P
(
θ(η0 + tht) − θ(η0)

)
=

∫
P (1s≤η0+tht − 1s≤η0) dθ(s).

Next we use the assumption that the functions θ ∈ Θ are supported on the compact
interval I with total variation bounded by 1.

The applicability of the second lemma depends on whether the set H0 of func-
tions such that the conditional distribution of h0(X) given η0(X) = s is weakly
continuous in s is large enough to support the limit distribution of the sequence√

n(ηn − η0). As noted in the preceding section, under some smoothness conditions
on η0 and on the distribution of X, the set H0 typically contains all continuous
functions. Then it suffices that the sequence possesses a continuous weak limiting
process.
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5. Examples: completion

In this section we return to two of the three examples discussed at the end of
Section 3, Example 2 and Example 3. We give the theorems (and proofs) resulting
from our approach. The general theme here is that the traditional results given in
Corollaries 5.1 and 5.3 for indicator functions involve non-trivial restrictions on the
underlying distribution η0 of the data, while the results for indexing by Lipschitz
functions given in Corollaries 5.2 and 5.4 involve almost no restrictions on η0 (but
significantly smoother indexing functions θ).

5.1. Two corollaries for Kendall processes

For the Kendall process, Example 2, it suffices to consider the case in which η0 is
concentrated on [0, 1]d and has uniform marginal distributions (i.e. is a copula func-
tion), as noted by Ghoudi and Remillard [6]. We first give a corollary for indexing
by indicator functions, and then a corollary for indexing by Lipschitz functions.

Corollary 5.1. Suppose that for a given interval [a, b] ⊂ (0, 1):

(i) The variable η0(X) possesses a density k with respect to Lebesgue measure
that is continuous on a neighbourhood of [a, b].

(ii) The conditional distribution of X given η0(X) = s, has a regular version
representable as a Markov kernel K(s, ·) such that s �→ K(s, ·) is continuous
on [a, b] for the weak topology.

Then the sequence of processes
√

n(Kn −K) as in (11) tends in �∞[a, b] in distrib-
ution to the process

(
Gη0fθ : θ ∈ [a, b]

)
for Gη0 an η0-Brownian bridge process and

fθ : [0, 1]d → R defined as

fθ(x) = 1η0(x)≤θ − k(θ) E[1x≤X |η0(X) = θ].

Corollary 5.2. (Kendall processes, Example 2, indexed by Lipschitz functions).
Suppose that Θ is a suitably measurable collection of continuously differentiable
functions θ : [0, 1] → [−1, 1] with derivatives θ̇ satisfying ‖θ̇(x)‖ ≤ 1 for every
x ∈ [0, 1]. Then the sequence of processes n−1/2

∑n
i=1

(
θ(ηn(Xi)) − Pθ(η0)

)
tends

in distribution in �∞(Θ) to the process
(
Gη0fθ : θ ∈ Θ

)
for Gη0 an η0-Brownian

bridge process in �∞(Θ) and fθ : [0, 1]d → R defined as

fθ(x) = θ
(
η0(x)

)
− P θ̇(1x≤X).

Proof of Corollary 5.1. We apply the decomposition (2) with fθ,η(x) = 1{η(x) ≤
θ}, for distribution functions η on [0, 1]d, θ ∈ [0, 1] and x ∈ [0, 1]d.

As discussed following the proof of Lemma 3.2, hypotheses (i) and (ii) imply that
the condition (19) for Theorem 3.2 (with d = 1) holds by way of Lemma 3.2, and
hence the first term on the right side of (2) converges in probability to 0 uniformly
in θ ∈ [a, b].

The second term is simply the usual empirical process for the i.i.d. one-dimen-
sional random variables η0(X1), . . . , η0(Xn), and hence it converges weakly as claim-
ed by standard theory.

To handle the third term, note that (i) and (ii) imply that the hypotheses of
Lemma 4.2 hold, and hence that the map η �→ {Pfθ,η : θ ∈ Θ} from �∞(X )
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to �∞([a, b]) is Hadamard differentiable tangentially to C([0, 1]d) with derivative
L : C([0, 1]d) → �∞([a, b]) given by

L(h0)(θ) = −E
(
h0(X)||η0(X) = θ

)
k(θ).

Weak convergence of the third term then follows from van der Vaart and Wellner
[12], Theorem 3.9.5, page 375.

The joint limit law of the second and third term can be determined from the
marginals, and the limit of the sum of the two terms can be represented in the
form as given. An insightful way to derive this is from asymptotic linearity of the
two terms as follows. The second term is already linear with influence functions
x �→ 1η0(x)≤θ. The third term can be approximated by L((

√
n(ηn − η)

)
, where ηn −

η = n−1
∑n

i=1(1Xi≤x − η(x)), so that L((
√

n(ηn − η)
)

= n−1/2
∑n

i=1 L(1[Xi,1] − η).
The terms in the latter sum should be understood as L acting on the functions
x �→ 1[Xi,1](x) − η(x) for fixed Xi. We thus obtain that

L((
√

n(ηn − h)
)

= n−1/2
n∑

i=1

L(1[Xi,1]) −
√

nL(η) = Gη0L(1[Xi,1]).

The representation of the limit process as given in the corollary follows.

For many distribution functions η0 the corresponding density k of K is un-
bounded at 0 and hence not continuous on [0, 1]. See Barbe, et al. [2], pages 202-
208, for a number of explicit examples. In particular this is true even when η0 is
the uniform distribution on [0, 1]d. For such distributions the preceding corollary
does not yield convergence of Kendall’s process in the space �∞([0, 1]). However,
this convergence may be valid even when k is unbounded. Barbe et al. [2] show that
under the growth condition

k(t) = o(t−1/2(log(1/t))−1/2−ε), t ↓ 0, ε > 0.

convergence in the full domain still holds. They achieve this using results of Alexan-
der [1] to show that the empirical process

√
n(ηn − η0)1{η0 ≥ an} converges in the

weighted metric ‖ · /q(η0)‖∞ if q(t) = t1/2(log(1/t))p for some 1/2 < p < r/2
and an = n−1(log n)r. This strengthening of the convergence of

√
n(ηn − η0) then

compensates for the growth of k at 0.

Proof of Corollary 5.2. This follows by combining Theorems 3.1 and Lemma 4.1
with the fact that F = {θ ◦ η0 : θ ∈ Θ} is Donsker.

5.2. Two corollaries for copula processes

For the copula processes (12) in Example 3 it again suffices to consider the case
in which η0 = C, so that all all the marginal distributions η0,j , j = 1, . . . , d, are
Uniform(0, 1). The first of the following two corollaries was obtained in Stute [9]
and Ghoudi and Remillard [7].

Corollary 5.3. Suppose that:

(i) η0 = C is continuous.
(ii) The copula function η0 = C is continously differentiable on [0, 1]d with gra-

dient ∇C(u).
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Then the sequence of copula processes
√

n(Cn − C) given in (12) converges in dis-
tribution in �∞([0, 1]d) to the process (Gη0fu : u ∈ [0, 1]d) for Gη0 an η0-Brownian
bridge process, and fu : [0, 1]d → R defined as

fu(x) = 1x≤u −∇C(u)′(1x1≤u1 , . . . , 1xd≤ud
).

Corollary 5.4. (Copula processes, Example 3, indexed by Lipschitz functions).
Suppose that Θ is a suitably measurable collection of continuously differentiable
functions θ : [0, 1]d → R such that with derivative ‖θ̇(x)‖ ≤ 1 for every x ∈ [0, 1]d

and satisfying J(1, Θ, L2) < ∞. Then the sequence of processes n−1/2
∑n

i=1

(
θ(ηn(Xi))−

Pθ(η0)
)

tends in distribution in �∞(Θ) to the process
(
Gη0fθ : θ ∈ Θ

)
for Gη0 an

η0-Brownian bridge process in �∞(Θ) and fθ : [0, 1]d → R defined as

fθ(x) = θ(x) − P θ̇
(
1x1≤X1 , . . . , 1xd≤Xd

)
.

Proof of Corollary 5.3. We apply the decomposition (2) with

fθ,η(x) = 1{η1(x1) ≤ θ1, . . . , ηd(xd) ≤ θd}

for θ = (θ1, . . . , θd) ∈ [0, 1]d, x = (x1, . . . , xd) ∈ [0, 1]d, and ηj the jth one-
dimensional marginal distribution function on [0, 1] of the distribution function
η (so ηj(uj) = η(1, . . . , 1, uj , 1, . . . , 1)).

To show that the first term in (2) converges to zero uniformly in θ ∈ [0, 1]d, we
can apply Theorem 2.1. The class of functions

fθ,η(x) = 1{x1 ≤ η−1
1 (θ1), . . . , xd ≤ η−1

d (θd)}

is a class of indicators of a Vapnik-Chervonenkis-class of sets. Thus Theorem 2.1
applies if we show that (3) holds. But this is easily verified by the assumed continuity
of η0 = C and the uniform consistency of the empirical quantile functions η−1

n,j for
j = 1, . . . , d. Thus (1) holds.

The second term in (2) is simply the classical empirical process of the random
vectors X1, . . . , Xn in [0, 1]d, and converges weakly by classical theory.

Finally, the third term in (2) converges weakly to ∇C(u)′ · Gη0(v(X, u)), for
v(x, u) = (1x1≤u1 , . . . , 1xd≤ud

), by the delta-method for the map η �→ Pfu,η. This
map can be decomposed as

η �→
(
η−1
1 (u1), . . . , η−1

d (ud)
)
�→

(
C ◦

(
η−1
1 (u1), . . . , η−1

d (ud)
)
, u ∈ [0, 1]d

and can be shown to Hadamard-differentiable from the domain of distribution func-
tions in �∞(X ) = �∞([0, 1]d) to �∞(Θ) = �∞([0, 1]d) by the chain rule, using the
continuity of ∇C and the fact that the quantile transformation is Hadamard dif-
ferentiable.

It is possible to extend Corollary 5.3 to the case in which ∇C is continuous on
(0, 1)d but satisfies certain growth restrictions at 0 and/or 1. Then weighted metrics
are involved in the proof.

Proof of Corollary 5.4. This follows by combining Theorems 3.1 and Lemma 4.1
with the fact that F = {θ : θ ∈ Θ} is Donsker and the delta-method, e.g. van der
Vaart and Wellner [12], Theorem 3.9.5, page 375.



252 A. W. van der Vaart and J. A. Wellner

References

[1] Alexander, K. (1987). The central limit theorem for weighted empirical
processes indexed by sets. J. Mult. Anal. 22 313–339.

[2] Barbe, P., Genest, C., Ghoudi, K. and Remillard, B. (1996). On
Kendall’s process. J. Mult. Anal. 58 197–229.

[3] Dudley, R. M. (1999). Uniform Central Limit Theorems. Cambridge Univ.
Press, Cambridge.

[4] Dudley, R. M. (1984). A Course on Empirical Processes. École d’Été de St.
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