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CONVEXITY AND THE DIRICHLET PROBLEM OF TRANSLATING

MEAN CURVATURE FLOWS

Li Ma

Abstract

In this work, we propose a new evolving geometric flow (called translating mean

curvature flow) for the translating solitons of hypersurfaces in Rnþ1. We study the

basic properties, such as positivity preserving property, of the translating mean curva-

ture flow. The Dirichlet problem for the graphical translating mean curvature flow is

studied and the global existence of the flow and the convergence property are also

considered.

1. Introduction

In this note, we propose a new evolving flow (called translating mean cur-
vature flow) for the translating solitons of hypersurfaces in Rnþ1. This flow is
a modification of mean curvature flow with a translation by a fixed vector. We
study the basic properties of the translating mean curvature flow. The Dirichlet
problem for the graphical translating mean curvature flow is studied and the
global existence of the flow and the convergence property are also presented.
This work can be considered as a continuation of our paper [11]. For interesting
result about self similar solutions for the mean curvature flow in Riemannian
cone manifolds, we can see the paper of Futaki, Hattori, and Yamamoto [4].

We propose the translating mean curvature flow in the following way.
Given a fixed nonzero vector V A Rnþ1. The translating mean curvature flow for
translating soliton is defined as a one parameter family of properly immersed
hypersurface Mt ¼ X ðS; tÞ, where 0 < t < T and X : S� ½0;TÞ ! Rnþ1 evolved
by the evolution equation

Xt ¼ HðX Þ þ VN ; t > 0ð1Þ
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where HðXÞ is the mean curvature vector of the hypersurface Mt at the position
vector X and VN is the normal component of the vector V . We denote V T ¼
V � VN the tangential part of the vector V . Recall that for the outer unit
normal n :¼ nð�; tÞ on Mt, the mean curvature is defined by H ¼ divðnÞ and the
mean curvature vector is H ¼ �Hn. Let ðejÞ be a local orthonormal frame
on Mt. Let aij ¼ hDeiej; ni and let A ¼ ðaijÞ be the second fundamental form
on Mt. Then H ¼ �

P
ajj . Define X ¼ X � tV . Then we have the mean cur-

vature flow

Xt ¼ HðX Þ; t > 0

with the same initial hypersurface X0 up to di¤eomorphisms on X0. Therefore,
many geometric properties such as convexity, mean convexity, are preserved by
the flows. However, the global behaviors of two flows XðtÞ and XðtÞ are
di¤erent. Hence the flows (1) need to be considered independently.

Applying the maximum principle (and Hamilton’s tensor maximum princi-
ple) to derived evolution equations from (1) we obtain the following result.

Theorem 1. Given a translating mean curvature flow Mt with bounded second
fundamental form A, t A ½0;TÞ with T > 0.

(1). (i). If hV ; nib 0 on the initial hypersurface M0, then hV ; nib 0 on
the hypersurface Mt for any t > 0. Similarly, assume that Hb 0 on the
initial hypersurface M0. Then Hb 0 on the hypersurface Mt for any t > 0.
(ii). Assume that Ab 0 on the initial hypersurface M0. Then Ab 0 on the
hypersurface Mt for any t > 0.

(2). Assume that for some constant b, H � bhV ; nia 0 on the initial hyper-
surface M0 and H � bhV ; ni < 0 at at least point in M0. Then H � bhV ; ni < 0
on Mt for t > 0.

(3). If we assume Aþ b
hV ; ni

n
gb 0 at the initial hypersurface M0 and

Aþ b
hV ; ni

n
g > 0 at least one point p A M0, we have Aþ b

hV ; ni

n
g > 0 on Mt

for t > 0.

To derive this result, we shall do computations as in [3]. As we have
pointed out above, the property (1) can be derived from the mean curvature
flow. For completeness, we give a full proof. Related Harnack inequalities
for translating mean curvature flow similar to results in [6] may be the
same.

One example for hypersurfaces with H � hV ; ni < 0 is the graph of the

parabolic function uðxÞ ¼ l

2
jxj2, where x A Rn, nb 2 with l ¼ 1 and V ¼ �enþ1

¼ ð0; . . . 0;�1Þ. In this case, DuðxÞ ¼ x, v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jxj2

q
, n ¼ ð�x; 1Þ=v,

hn;Vi ¼ �1=v;
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and

�H ¼ div
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jxj2
q

0
B@

1
CA¼ 1

v

nþ ðn� 1Þjxj2

1þ jxj2

 !
>

1

v
:

One can compute that for l > 0 small we have H � hV ; ni > 0.
The Dirichlet problem for translating solitons on convex domain has been

studied by X. J. Wang (see Theorem 5.2 in [13] from the viewpoint of Monge-
Ampere equations). B. White [14] has given a geometric measure theory argu-
ment for the existence of minimizers of the weighted areað

e�lxnþ1 dAðxÞ

amongst integral currents over the mean convex domain. Namely, letting W be
a bounded domain in Rn with piecewise smooth mean convex boundary and
letting G be a smooth closed ðn� 1Þ manifold in qW � R that is a graph-like.
Then he has used the globally defined radially symmetric solitons y ¼ jðxÞ as
barriers for the minimizing process of integral currents which lie in the region R
defined by

R ¼ fðx; yÞ A W � R; ba ya jðxÞg
where b ¼ inffy; ðx; yÞ A Gg. We remark that his region R (in the proof of
Theorem 10 in [14]) may be replaced by the region

�RR ¼ fðx; yÞ A W � R; jðxÞ � Ca ya jðxÞg
for suitable constant C > 0. The choice of the lower barrier jðxÞ � C is nice in
the sense that it is a sub-solution to the mean curvature soliton equation. One
may get the minimizers by using BV functions. Our approach for the existence
of translating solitons with the Dirichlet boundary condition on convex domains
is the heat flow method. That is, we propose the translating mean curvature flow
to get the solitons as the limits. The uniqueness and convexity of the translating
solitons with convex boundary data f remain as open questions.

The Dirichlet problem for the graphical mean curvature flow on mean
convex domains has been studied by G. Huisken [7] and Lieberman [10]. Their
results show that the Dirichlet problem of the graphical mean curvature flow
on mean convex domains has a global flow and it converges to a minimal surface
at time infinity. Their result can not been directly applied to the following
graphical translating mean curvature flow.

qtu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jDuj2

q
div

Duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jDuj2

q
0
B@

1
CA� 1; in W� ½0;yÞð2Þ

with the Dirichlet boundary condition

u ¼ f; on qW; tb 0
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and the initial condition

uðx; 0Þ ¼ u0ðxÞ; x A W:

Here we assume W � Rn is a bounded domain with C 2 boundary, f A C2;aðWÞ,
u0 A C2;aðWÞ, and u0 ¼ f on qW. The flow (2) corresponds to the negative
gradient flow of the weighted area functional

F ðuÞ ¼
ð
W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jDuj2

q
euðxÞ dx:

If we let f ¼ uþ t, then f satisfies

qtu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jDuj2

q
div

Duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jDuj2

q
0
B@

1
CA; in W� ½0;yÞ

with the Dirichlet boundary condition

f ¼ fþ t; on qW; tb 0

and the initial condition

f ðx; 0Þ ¼ u0ðxÞ; x A W:

Observe that the boundary condition now depends on time variable and the
known result [7] can not be applied directly to it.

We have the following result.

Theorem 2. Assume W � Rn be a bounded convex domain with C2 boundary.
Assume that f A C2;aðWÞ, u0 A C2;aðWÞ, and u0 ¼ f on qW. Then the Dirichlet
problem of (2) has a smooth solution and uð�; tÞ converges to the translating soliton
with boundary data f as t ! y.

The plan of this note is below. In section 2 we discuss the positivity
preserving properties of the general translating mean curvature flow. In section
3 we consider the global existence of the Dirichlet problem of graphic mean
curvature flows on bounded convex domains in Rn.

2. Positivity preserving property of the translating mean curvature flow

We shall use Hamilton’s tensor maximum principle as below (see [2] for full
statement and the proof ).

Proposition 3. Let ðM; gðtÞÞ be a one parameter family of complete
noncompact Riemannian manifolds with bounded curvature. Suppose S ¼
Sijðx; tÞ dxidx j is a smooth time-dependent symmetric 2-tensor field such that

ðqt � DgðtÞÞSb‘XS þ BðS; tÞ
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where BðS; tÞ is locally Lipschitz in ðS; tÞ and X ¼ XðtÞ is a smooth time dependent
vector field on M. Assume that B satisfies the null-eigenvector assumption in the
sense that for some time-parallel vector field v and at some point x A M such that if
Sb 0 and Sðv; �Þ ¼ 0, then BðS; tÞðv; vÞb 0. Assume that Sb 0 at the initial time
t ¼ 0. Then Sb 0 for all t > 0.

Proof of Theorem 1. Recall the following formulae for the flow Xt ¼ f n
with local coordinates ðxjÞ on Mt, we have for the evolving metric gij ¼ hqxiX ;
qxjXi, outer unit normal n, and the second fundamental form ðaijÞ, we have

qtgij ¼ �2faij ;

qtn ¼ �‘f ;

and

qtaij ¼ fij � faikakj :

We shall let f ¼ hV ; ni�H, which is our translating mean curvature flow case.
Let ðgijÞ ¼ ðgijÞ�1.

We now use moving frames to compute formulae for the flow. As in [3]
and [8] we take ðeiÞ to be the evolving frame on Mt such that

qtei ¼
1

2
g jkqtgijek ¼ �fg jkaijek:

Then we have

qtgij ¼ 0:

At a fixed point p A Mt we may assume that hei; eji ¼ dij and ‘ei ej ¼ 0. Then

qtAðei; ejÞ ¼ fij þ faikakj :

Note that

‘ihV ; ni ¼ hV ;Deini ¼ �hV ; ekiaik;

and at p,

‘j‘ihV ; ni ¼ �hV ; ekiaik; j � hV ;Dej ekiaik ¼ �aij;V T � hV ; niaikakj :

Then we have

DhV ; ni ¼ ‘V TH � hV ; nijAj2:
Since qthV ; ni ¼ �hV ;‘f i ¼ �‘V T f and f þH ¼ hV ; ni, we get

ðqt � DÞhV ; ni ¼ �‘V T f � ‘V TH þ hV ; nijAj2

¼ �‘V ThV ; niþ hV ; nijAj2:

That is,

ðqt � DÞhV ; ni ¼ �‘V ThV ; niþ hV ; nijAj2:ð3Þ
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Recall the well-known formulae that

ðDAÞij ¼ �jAj2aij �Haikakj �Hij:

Then we have

ðqtA� DAÞðei; ejÞ ¼ ð f þHÞij þ ð f þHÞaikakj þ jAj2aij;
which implies that for the normalized mean curvature flow,

ðqtA� DAÞðei; ejÞ ¼ �‘V T aij þ jAj2aij;
that is,

ðqtA� DAÞ ¼ �‘V TAþ jAj2A:ð4Þ
Applying Hamilton’s tensor maximum principle above (see also Proposition 12.31
in [2]) we know that Ab 0 is preserved along the translating mean curvature
flow. Note that by taking the trace of (4), we have

ðqt � DÞH ¼ �‘V TH þ jAj2H:

We can apply the scalar maximum principle to this equation and to (3) too.
This gives the property (1) in Theorem 1.

By these formulae for A, H, and hV ; ni we obtain that

ðqt � DÞ Aþ b
hV ; ni

n
g

� �
¼ �‘V T Aþ b

hV ; ni

n
g

� �
þ jAj2 Aþ b

hV ; ni

n
g

� �
;

and

ðqt � DÞðH � bhV ; niÞ ¼ �‘V T ðH � bhV ; niÞ þ jAj2ðH � bhV ; niÞ:
Define the operator

L ¼ D� ‘V T þ jAj2 ¼ Lþ jAj2:
Then the above equations can be rewritten as

ðqt � LÞ Aþ b
hV ; ni

n
g

� �
¼ 0

and

ðqt � LÞðbhV ; ni�HÞ ¼ 0:

Applying the maximum principle (and Hamilton’s tensor maximum principle as
above) to above two equations, we complete the proof of Theorem 1. r

One immediate consequence is the following pinching estimate.

Corollary 4. Given a translating mean curvature flow Mt with bounded
second fundamental form A, t A ½0;TÞ with T > 0. Assume that for some uniform
constants b1 and b2, b1hV ; niaHa b2hV ; ni on the initial hypersurface M0.
Then b1hV ; niaHa b2hV ; ni on Mt for t > 0.

353translating mean curvature flows



The proof is the same as (2) in Theorem 1.
As in [3] we have for any symmetric 2-tensor f and positive function h on

the manifold M,

ðqt � LÞj f j2 a 2h f ; ðqt � LÞ f i;

ðqt � LÞ f

h

����
����
2

a 2
f

h
; ðqt � LÞ f

h

� �
;

and

ðqt � LÞ f
h
¼ ðqt � LÞ f

h
� f ðqt � LÞh

h2
þ 2

h
‘h;‘

f

h

� �
:

Then we have

ðqt � LÞ f

h

����
����
2

a 2 ‘
f

h

����
����
2

;‘ log h

* +

when we put

f ¼ Aþ l
hV ; ni

n
g

for any real number l and

h ¼ bhV ; ni�H:

Let

B ¼
Aþ l

hV ; ni

n
g

bhV ; ni�H
:

By the maximum principle, we have the following.

Lemma 5. Let Mt � Rnþ1 be a one parameter family of hypersurfaces
evolved by the translating mean curvature flow (1). Assume that bhV ; ni�H
> 0 on the initial hypersurface for some constant b, and jAj2 are bounded on each
Mt. Then

ðqt � LÞjBj2 a 2h‘jBj2;‘ logðbhV ; ni�HÞi; on Mt:

We now point out the geometric meaning of the operator D� ‘V T þ jAj2 on
the hypersurface M. Define the operator

L ¼ D� ‘V T þ jAj2;
which is the Jacobian operator for the weighted volume

FðMÞ ¼
ð
M

e�hV ;Xi dX :
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Then, F 0 ¼ �H � VN ¼ Hn� VN . In fact, for Xt ¼ X 0 ¼ f n and H 0 ¼ qtH,
we have

H 0 ¼ �Df � jAj2f
and

n 0 ¼ �‘f :

Then

ðH � hV ; niÞ0 ¼ �Df � jAj2f þ hV ;‘f i ¼ �Lf :

At the critical point of F where

H ¼ hV ; ni;

we have

F 00 ¼ �
ð
M

h f ;Lf i dm

where dm ¼ e�hV ;Xi dX .

3. The Dirichlet problem for the translating graphical mean
curvature flow

Recall that W � Rn is a bounded convex domain with C 2 boundary.
Note that the flow (2) corresponds to the negative gradient flow of the

weighted area functional

F ðuÞ ¼
ð
W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jDuj2

q
euðxÞ dx:

In fact,

dFðuÞdu ¼ �
ð
W

div
Duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jDuj2
q

0
B@

1
CA� 1

v

2
64

3
75dueuðxÞ dx;

where v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jDuj2

q
. The functional F ðuÞ corresponds to the functional FðMÞ

with V ¼ �enþ1 in the previous section.
We point out a similarity between the translating mean curvature flow (2)

and the graphical mean curvature flow. Fix any t0 > 0. Define U ¼ u� t0 þ t.
Then U satisfies the following

qtU ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jDU j2

q
div

DUffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jDU j2

q
0
B@

1
CA; in W� ½0;yÞð5Þ

with the Dirichlet boundary condition

U ¼ f� t0 þ t; on qW; tb 0
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and the initial condition

Uðx; 0Þ ¼ u0ðxÞ � t0; x A W:

Define Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jDU j2

q
. Then Q satisfies

qtQ ¼ DiðaijDjQÞ þHalDlQ� aijaklDiDkuDjDlu �Q; in W� ð0;TÞð6Þ

where ai ¼ Q�1DiU and aij ¼ qai=qxj. We shall use (6) to get the uniform
gradient bound of u. We need to control supqWjDuj first. Because of the
equation (6) (being the same as the case of mean curvature flow) we believe the
result of Theorem 2 should also be true for mean convex domains. However, we
shall not discuss this in this note.

We now begin the proof of Theorem 2.
The existence of short time solution to (2) can be obtained by the standard

method. Let T > 0 be the maximal existence time of the solution uðx; tÞ. We
claim that T ¼ þy. To obtain this, we need to find a priori estimates for
supWjuj and supWjDuj.

Define

Au ¼ �div
Duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jDuj2
q

0
B@

1
CA:

Let w be the bowl soliton constructed by Altschuler-Wu [1]. Then we have

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jDwj2

q
Aw ¼ 1; in Rn:

Note that w satisfies (2). By adding to w some uniform constant C we may
assume w� Ca�supWju0j and wþ Cb supWju0j. Using wGC as the barriers,
we obtain that

w� Ca uawþ C; in W� ½0;TÞ:

This gives us the uniform bound of supWjuj.
We now use the fact that the domain W is convex. Recall that by the result

of J. Serrin [12] or applying Cor. 14.3 in [5] to the operator

QðuÞ ¼ �ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jDuj2

q
Þ3Au� ð1þ jDuj2Þ;

we can construct barriers dþ and d� such that dGjqW ¼ f,

�ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jDdþj2

q
Þ3Adþ a 1þ jDdþj2; dþ b f

and

�ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jDd�j2

q
Þ3Ad� b 1þ jDd�j2; d� a f

in W. We may also assume d� a u0 a dþ (see [7]).
Applying the maximum principle to the evolution equation (2) we know that

d� a ua dþ on W� ½0;TÞ. Thus, we know that there is a uniform constant C0
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depending only on qW, u0, and f such that

jDujaC0; on qW� ½0;TÞ:

Applying the maximum principle to the equation (6) for Q, we obtain the
uniform bound for supWjDuj. Once these are done, we then get the existence
of the unique solution to the Dirichlet problem of (2) for all times 0 < t < y
with the uniform gradient bound on supWjDuj. The standard parabolic equation
theory [9] guarantees uniform bounds of all higher derivatives of u. Since qtu ¼ 0

on qW, by the equation we have H þ 1

v
¼ 0 on qW and for dm :¼ eu dx,

d

dt

ð
W

v dm ¼ �
ð
W

H þ 1

v

� �2
dm:

Then ðy
0

ð
W

H þ 1

v

� �2
dma

ð
W

v dmð0Þ:

Using the uniform bound about v, we can conclude that supWjqtuj and

supW H þ 1

v

����
���� converges to zero uniformly as t ! y. This completes the proof of

Theorem 2. r
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