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EXISTENCE AND MULTIPLE SOLUTIONS FOR NONAUTONOMOUS
SECOND ORDER SYSTEMS WITH NONSMOOTH POTENTIALS

YAN NING* AND TIANQING AN

Abstract

This paper is concerned with the nonautonomous second order Hamiltonian systems
with nondifferetiable potentials. By using the nonsmooth least action principle and the
nonsmooth local linking theorem, we obtain some new existence and multiplicity results
for the periodic solutions.

1. Introduction and main results

In this paper we consider the following second order periodic system with a
nonsmooth potential
(1) ii(t) e OF (t,u(t)) a.e. tel0,T],

u(0) —u(T) =u(0) —a(T) =0,

where T >0, the potential function F:[0,7] x RY — R is locally Lipschitz
continuous in x and 0F(z,x) denotes the Clarke subdifferential of F for x.

The system (1) has been studied in the past decades and many excellent
results appeared, for example, the work of D. Pasca [10]. Systems driven by
the vector p-Laplacian or p-Laplacian-like operators were studied by E. H.
Papageorgiou and N. S. Papageorgiou [9], S. Aizicovici and N. S. Papageorgiou
[1], D. Pasca [11] and the reference therein. We only focus on the semilinear
case (i.e., p=2) in the present paper, and our approach is based on the
nonsmooth least action principle by [4] and a nonsmooth local linking theorem
by [6]. It should be noted that our results are different from that of those
mentioned above even letting p =2 in their theorems. Examples are given to
show the difference.
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When F(¢, x) is continuously differentiable in x, the problem (1) becomes the
second order Hamiltonian systems
2) i(t) = VF(t,u(t)) ae. tel0,T],
u(0) —u(T) =a(0) —a(T) =0.

There have been a lot of contributions on problem (2), and we can refer to
Mawhin-Willem [7], Tang [12], Tang-Wu [13], Aizmahin-An [2] and so on. In
these works, the following assumption is necessary:

(4) F(t,x) is measurable in ¢ for every x e R" and continuously differ-
entiable in x for a.e. 1€ [0, 7], and there exist «e C(R",RT), be L'(0, T;R™)
such that

[F(1,x)| < a([x)b(2),  [VF(z,x)| < a(|x])b(z)

for all xeR"Y and ae. re0, 7], where R" is the set of all nonnegative real
number.

Throughout this paper, we always suppose that F = F; + F, with Fy, F;
satisfying the following assumption (A4’):

* Fy, F, are integrable in ¢ over [0, 7] for each x e R";

+ F} is strictly differentiable and F, is locally Lipschitz continuous in x for

each 1€ [0, 7).
Let H} be the usual Sobolev space with norm

Jul = (j (o) de + J (o) dr)l/z.

The corresponding functional ¢ : H}. — R is given by

71 T ) 5 T y
o(u) *2J0 li(1)| dt+L F(t,u(t)) dt.

The main results of this paper are as follows:

THEOREM 1.1. Assume that F = F| + F>, where Fy, F, satisfy assumption
(A") above and the following conditions:
(iy) There exists k € L*(0, T;R) such that for all x1,x, e RY and all t € [0, T)

(3) |Fi(2,x1) = Fi(t, x2)| < k(2)|x1 — xa].
(iy) There exist f,ge L* (0, T;R") and o € [0,1) such that for all x € RY and
a.e. tel0,T],
) Seob(,x) = &< (X" +g(1).

(i3) There exists he L'(0,T) such that for ae. te0,T] and all xeRY
(5) Fl(t7x) Zh(t)a



NONAUTONOMOUS SECOND ORDER SYSTEMS 523

and

T
(6) Mmjﬂﬁmmﬁ+maﬂﬂﬁw
0
Then problem (1) possesses at least one solution which minimizes the functional
@ on H}.

Remark 1.1. The function F(¢,x) is globally Lipschitz continuous in x on
H} provided the condition (3) holds. If F(¢,x) is measurable in ¢ for every
x e R" and continuously differentiable in x for a.e. ¢ € [0, 7], the inequality (4)
becomes

IVE:(t, %) < f(0)Ix]" + ¢(2).
Then our Theorem 1.1 generalizes Theorem 1 in [12].
Remark 1.2. There are functions F satisfying our Theorem 1.1 but not

satisfying the results in [1, 2, 7, 9-13]. For example, let F(z,x) = Fi(t,x) + F>(¢, x)
with

0
e OIS <1,

Fi(t,x) =5 [sin x|, Fa(t,x) = ﬂj R
L] - 2 - X >1

o+ 1 2 o+ 1

for all (z,x)€[0,7] x RY, where a€[0,1), 0,f e L*(0, T;R").
THEOREM 1.2. Assume that F = F) + F, with IOT F(t,0)dt=0 and F,, F,
satisfy assumptions of Theorem 1.1.  Suppose that there exist 6 > 0 and an integer

k >0 such that

(7) —%(kJr 1)2w2|x|2 < F(t,x) —F(Z,O) < —%k%ﬂmz

2
for all |x| <6 and a.e. tel0,T), where @ = % Then problem (1) has at least
three distinct solutions in H}.

Remark 1.3. Theorem 1.2 generalizes Theorem 2 in [13] and Thorem 4 in
[12]. Suppose that F = F, + F, and

1 5, 2 7
2 —5o°|x]" =5 |x|, x| <1,
t 2 2
Fl(tax) :E‘XL Fz(l,X) = 12 1 12 12
a+1 2
— % . 1
P Lt S R

2 . .
for all (¢,x) € [0, T] x RY, where « € [0,1), 0 = 771 Then the function F satisfies
Theorem 1.2 but not satisfies Theorem 2 in [13] and Thorem 4 in [12].
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THEOREM 1.3. Assume that F = Fy + Fy with [ F(1,0)dt=0 and F, F
satisfy assumptions of Theorem 1.1. Suppose that

.. F(t,x) 2n?
® fim inf M

for ae. te[0,T), and there exist 6 >0 such that for all |x| <6
T
) J Flt,x) d < 0.
0
Then problem (1) has at least three distinct solutions in H}.
Remark 1.4. Theorem 1.3 is new even in the case that F e C! for system

(2). There are functions F satisfying Theorem 1.3 but not satisfying the results
in [1, 2, 7, 9-13]. For example, let F = F; + F, and

272

_sz’ x| <1,
Fl(I,X)EO, Fz(l,X):

213 2n 28

" - -, x> 1

o+1 T2 oa+1’

for all (¢,x)€[0,T] x RY, where a€[0,1).

2. Basic definitions and preliminary results

Let (X,] - ||) be a real Banach space. We denote by X* the dual space of
X, while <-,-) stands for the duality pairing between X and X*. A functional
h:X — R is called locally Lipschitz continuous if for every u € X there exist a
neighborhood ¥, of u and a constant L, > 0 such that

|h(z) — h(w)| < Ly||z = wl||, Vz,weV,.
If u,ve X, we write h°(u;v) for the generalized directional derivative of /1 at the
point u along the direction v, i.e.,
. h ) — h(v
h°(u;v) := limsup M

w—u, t—0+

It is well known that /° is upper semicontinuous on X x X [5, Proposition 2.1.1].
For locally Lipschitz continuous functionals /4,4, : X — R, we have

(h +h2)°(x;2) < hi(x;2) + h5(x;2), Vx,ze X.

The generalized gradient of the function 4 in u, denoted by dh(u), is the set
defined by

Oh(u) :={u" e X*: u",v) < h°(u;v),Yv e X}.
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Proposition 2.1.2 of [5] ensures that 0/(u) turns out nonempty, convex, weak*

compact, thus the function A(x) = min,cay)|wlly. exists and is lower semi-
continuous.

We call 7: X — R is strictly differentiable in « if there exist an element

& e X* such that for each v,

lim h(w + tv) — h(w)

w—u, t—0+

= <& ),

and provided the convergence is uniform for v in compact sets (This last condi-
tion is automatic if & is Lipschitz near u, see [5], P30).
If f,g: X — X be locally Lipschitz continuous, then

(10) oS +9)(x) = of (x) + dg(x)

for all xe X. Further, if at least one of the functional f, g is strictly differenti-
able at x then equality holds, and of(x) = {f’(x)} when f e C'(X).
A point u € X is said to be a critical point of / if

h°(u;v) >0, VYvelX,

which clearly means 6 € dh(u).

We say the locally Lipschitz functional / satisfies the nonsmooth Cerami
condition if any sequence {x,} in X such that {A(x,)} is bounded and
(1 + ||xal|)A(xn) — O possesses a strongly convergent subsequence.

For convenience to quote we state some well known results, for more details,
we can refer to [3, §].

Lemma 2.1 ([5], Theorem 2.3.7). Let x and y be points in X, and suppose
that f is Lipschitz on open set containing the line segment [x, y|. Then there exists
a point u in (x,y) such that

F(y) = f(x) e<of (), y — x.
Lemma 2.2 ([6], Theorem 8). If X is a reflexive Banach space, X =Y @V
with dim Y < +o00, ¢ : X — R is a locally Lipschitz function which is bounded from

below, satisfies the nonsmooth Cerami condition, ¢(0) =0, infy ¢ <0 and there
exists r > 0 such that

#(x) <0, for xeVY,|x||<r,
#(x) =0, for xeV, |x|<r

Then ¢ has at least two nontrivial critical points.

3. Proof of Theorems

1 .
For every ue H, let it = TJ"OT u(t) dt, u(t) = u(t) —it. Then the following
inequalities hold:
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T T
i) < —J |li(1)|* dt, (Sobolev’s inequality)
0

T T2 T
J la(1))* dr < o 2J liu(2)|* dr.  (Wirtinger’s inequality)
0

(11) [ull o, < Cllaf],

where C >0 is a constant and ||ul|,, = max;c, 71|u(?)|.
Define two functionals ¢, ¢, : H; — R as follows:

T T
o) = [ 10 ot = | PG

It is easy to verify that ¢, is continuously differentiable and weakly lower semi-
continuous (w.l.s.c.), and ¢, is locally Lipschitz continuous on H}. Since H} is
embedded compactly and densely in L2(0 T;RY), let ¢, : L*(0, T; TRV ) — R such
that ¢, = (p2|H} then for every ue H}, fe 09, (u),

09y (1) € 0py(u) = (L*(0, T;R™))" = L*(0, T;RY)

and &(¢) € 0F (t,u(t)) a.e. on [0,7]. Moreover,
T

Lpi(u),v)y = J (u(1),0(¢)) dt, Yu,ve H}.

0

LemmA 3.1. Let F:[0,T] x RY — R such that F = F, + F», where F|, F>
satisfy assumption (A'), (3) and (4). Then the critical point of ¢ corresponds to
the solutions of problem (1).

Proof. From the condition (3), Obviously F satisfies the Hypothesis 4 of
Theorem 2.7.5 in [5]. Since f,ge L*(0,T;R™"), there exists a constant ¢y > 0
such that

nedb(t,x) = gl < f(o)lx]"+g() < co(|lx| +1), VxeRY 1€[0,T],
i.e., F, satisfies the Hypothesis B of Theorem 2.7.5 in [5]. Thus

T T T T
a(J Fi(t.u) d;) c J OF (1,u0) dr, a(J Ex(t,u) dt) - J OF (1,10 di.

0 0 0 0

Corollary 1 of Proposition 2.3.3 from [5] and (10) imply that, if at least one of
the functions Fj, F, is strictly differentiable in x for all 7€ [0, 7] then for all

ue H},
2 (u) < (JOT Filt,u) dt) +a (JOT Fa(t,u) dt)

T T T
CJ OF (t,u) dt—|—J OF,(t,u) dt:J OF(t,u) dt.
0 0 0
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Therefore, from (10) one has
Op(u) = 0py (u) + 093 (u)

T
< 0, (1) +J OF (t,u) dt
0

T T

OF (t,u) dt + J OF,(t,u) dt,
0

— g+ |

0
ie., for every & e dp(u), there exist mappings ¢ — ¢(¢f) and ¢+ ¢;(z) (i=1,2)
from [0, 7] to (H})" with ¢(¢) € OF(t,u(t)) and ¢;(t) € 0F;(t,u(t)) a.e. te[0,T)]
such that for every ve Hy,

T T

(&) = L (), o(0)) di + L (q(0), o(0)) d
T T T
:j <a<r>,e<r>>dz+j (61(), 0(0)) dz+j (g2(),0(0)) dt.
0 0 0

If ue H} is a critical point of ¢, then there exists go(¢) € 0F (t,u) such that for all
ve H},
T

T
0=<0,vy= L (t,0) dt +J (qo(2),v(2)) dt.

0

It follows easily that go(7) =ii(f) a.e. t€[0,T], thus
ii(t) e OF (t,u(t)) a.e. on [0,T],

which means that the critical point of ¢ corresponds to the solutions of problem
(1), which completes the proof. O

Proof of Theorem 1.1. 1t follows from conditions (3), Holder inequality and
Wirtinger’s inequality that

T

JT Fy(¢, u(f)) di — J Fi(, ) dt

0 0

< JT |Fi(t,u(t)) — Fi(t,a)| dt < JTk(t)|ﬁ(t)| dt
0 0

< (JOT k(1)) dt)l/z (JOT la(1)|* dt)

T T 1/2
. 2
< gl (] tator o)

1/2
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for all ue H}. From Lemma 2.1 it follows that for each te [0, 7], there exist
s€[0,1] and & € 0F,(t, @ + sit) such that F>(t,u(t)) — Fo(t,u1) = (&(¢),4(t))gy. By
conditions (4) and Sobolev’s inequality one has

J Fz(l,u(l))dt—J Fy(t,a) dt
0 0
T T
sﬁﬂnmwm—amwszuamwmw
T T
sLﬁawmwﬁsﬁﬁﬂnw+mV+mmwonm

T

T
smmﬂ;ﬂmmmw+ﬂw&“L

2+ S ([ o a)

T
f@w+megmm

2

T T
+mw@ﬂ;ﬂom+wukg@w

IA

1, . , ]
1 |2 + Crllallz= + Cali] 2 + Cslal ™

for all u EH71~ and some positive constants C;, C; and Cj.
Hence from (5) we have

o(u) = %JOT a(0)2 de + (LT Fi(t, ult)) di — JOT Fi(t, @) dt) n JOT Fi(t, @) di
+ (JTFz(t, u(r)) dt — JTFz(t, i) dz) + JTFZ(Z, ) dt
0 0 0
1/2

2 [ it a- Dyws ([ o a)) [ o L
_2()” 27[ Lzou 0 4uL2

T
—aw@%fwmrcwW+Lammw

Y

1 2 Lol T .
ZHuIILz — Cillallfs — (Cz +§|Ik||Lz) 2] .-
T
+J Fy(t,) di — C3la)*™ — C4
0

1,., R T .
= gl = Gl = (€2 5 el )il = G

T
+ |a|2“(|a|2“J F(t,a) di — C3)
0
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for all ue H}. and some positive constant Cs, which implies that
p(u) — +oo as |ul| —

by (6) because o € [0,1) and the norm || - || given by [Jul| = (|a]* + ||l'4|\iz)l/2 is an
equivalent norm on Hj.

Next we show that the functional ¢ is w.lLs.c. on H}. Since ¢, is w.ls.c.,
we only have to prove that ¢, is w.l.s.c. on H}. Suppose there are a sequence
{u,} < H} and ue H} such that u, — u in H}. Since the embedding H} —
L*([0, T],RY) is compact, one has u, — u in L*([0,T],R").

On account of (3), one has

T T
J F(t,uy,) dz—J F(t,u) dt
0 0

T T
SJ \Fy(t, ) — Fy(4,0)| di < J ()|t — u] dt
0 0

12

T 12 /.1
s(J |k(t)2dt) (J un—uzdt) 0,
0 0
Since « € [0, 1), there exists Cs € R such that
Ix|? > |x|** + Cs, VxeRV.

Due to (4) and Lemma 2.1, there exist # € 0F>(¢, su, + (1 — s)u) and positive
constants Cg, C; such that

T T
J Fz([, I/ln) dt — J FQ([, Ll) dt
0 0

T T

< | [B(tu) - B(nu)] dt = J |(n(2), un (1) — u(2))] dt
Jo 0

T T
< |l —ular < J (FOlsttn + (1 = S)ul” + g(2))tn — u]

0
T

. QF (D)l + Tul™) + 9(0)) |t — u] dt

< <2||f|x <(JOT | dt>l/2 + <LT Jul** dt>1/2> + \/‘flglx>
y <LT 4y — uf? dt)l/z

< (Co(llunll 2 + Nleell £2) + Co) |t — w2 — O,

IA

which implies ¢, (u,) — ¢,(u) in H}:. Thus ¢, is sequentially weakly continuous;
therefore, ¢ is w.l.s.c. on H}:. Thanks to Theorem 1.1 and Corollary 1.1 in [7], ¢
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has a minimum uy on H}. Proposition 2.3.2 in [5] implies that u is a critical
point of ¢. Consequently, by Lemma 3.1, uy is a solution of problem (1), which
completes the proof. O

Proof of Theorem 1.2. Let us first note that ¢ satisfies the nonsmooth
Cerami condition. Pick a sequence {u,} = H} such that {¢p(u,)} is bounded and
(I + [Jun]])A(tty) — 0 as n — co. By the weak* compactness of dp(u,) and the
weak lower semicontinuity of the norm, one can find u € dp(u,) such that
Auy) = |lui]l = o(1), then there exists an integer ny such that for each n > ny, we
have

[<uy, 03| < [loll,  Vve Hy.

Slnce F|, F, satistfy the conditions of Theorem 2.7.5 in [5], one has dp,(u)
fo OF (t,u) dt and dp(u) = dp,(u +J"O OF (t,u) dt. Thus to every u} e dp(uy,),
there corresponds a mapping ¢+ ¢,(¢) from [0,7] to (H})" with g,(t)e
OF (t,u,(¢)) such that

T

T
v = j (i 1), <>>dz+j (gu(0),0(0)) dt, Vv e HY.

From the proof of Theorem 1.1 we know that ¢ is coercive, which implies that
the sequence {un} turns out bounded. Thus there exists an u e HT such that
u, — u in H} and u, — u in C([0, T],R"), where a subsequence is considered
when necessary.

Since H}- is reflexive while dp(u) is weak® compact, and the set-valued
mapping u — 0p(u) is upper semicontinuous, we can find an u* € dp(u) such that

uy —u uy —uy — 0, as n— oo.

Moreover
T

=y — u> = JO i (1) — i dt + JO (gn(8) — q(2), un(t) — u(6)) d,

where ¢,(t) € 0F (t,u,(¢)) and ¢(t) € (’)F(t u(?)). Similarly, by the upper semi-
continuity of the set- valued mappmg u— 0F(u), one has ¢,(t) — ¢(¢) in
w* topology and fo qn(t) — q(t),u,(t) —u(t)) dt — 0 as n — +oc0. Thus
j0T|u,1 u| dt -0 and u, — u 1n H}. Therefore ¢ satisfies the nonsmooth
Cerami condition.

Now let Y be a finite-dimensional subspace of X = H} given by

k
Y= {Z(a_/ cos jot + b sin jor)|a;,b; e R, j=0, ... ,k},
=0

and let V = Y*. Then from (7) we have

T T
(12) o) < 5| P dr -3k [ o ar<o,
0 0
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for all ue Y with |ul| < C~16, and
1 T 1 T
o(u) > —J la(0)|* dt — = (k + l)2w2J |u(2)|* dr > 0,
2)o 2 0
for all ue V with |lu| < C~'6, where C is the positive constant given by (11).
Clearly ¢(0) = 0 because J"OT F(t,0) dt =0, and ¢ is bounded from below for it is
coercive.
In the case infy ¢ < 0, Theorem 1.2 follows from Lemma 2.2.
In the case infy ¢ > 0, according to (12) one has

o(u) = 1r)}f p=0

for all ue Y with |jul| < C~'6, which implies that all u e Y with |jul| < C~'6 are
minimum points of ¢. Hence by Lemma 3.1, all ue Y with |ul| < C~'5 are
solutions of problem (1). Therefore Theorem 1.2 is proved.

Proof of Theorem 1.3. Similar as in the proof of Theorem 1.2, we know ¢
is bounded from below, satisfies the nonsmooth Cerami condition, and ¢(0) = 0.

According to the condition (8), we know for every ¢ > 0 there exists d; > 0
such that

2 2
F(1,x) > —(772 + s> Ix]2
for a.e. 1€[0,7] and |x| <d,. Let 6, = min{d;,d}, then from (9) one has
2 T
<2Ti2+e) Ix|*> < F(z,x) and J F(t,x)dt <0 V|x| <, te[0,T).
0
Let H: = H} ®@RY with H} = {ue H}| [, u(r) dt = 0}.
Since for every ue Hj

u(t)]* < lu

2 TJT N T .
< — < —= .

2. o
Put 53 = min T&g,é}, then for every u € H}- with ||u|| < J3, one has |u()| < J,

for all +e0,7] and

o) = %JT (1) de + JTF(z, u(t)) dt
0
> %JOT la(1)|? dr — (2—”22+s) LT u(r)|? dr
> ;LT |i(1)|? dr — <2T”22+s> YZJT |i(1)|? dr

|
NG
B!
(3] I
—
SN
=
L
=
o
S
=
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thus
8T2 T . 2 8T2 2
o) = =5 | Wi = =l
eT? eT? ¢
=g E gt

which implies that ¢(u) >0 for all ||ju]| <d; in H} by the arbitrariness of .
On the other hand for every u e RY with |ju|| <d3, it follows from (9) that

o(u) = L F(t,u(t)) dt <0.

Therefore, ¢ satisfies the conditions of Lemma 2.2 and has at least two
nontrivial critical points. With the critical point (global minima) obtained by
Theorem 1.1 and taking Lemma 3.1 into account, problem (1) has at least three
distinct solutions in H}. The proof is completed. O
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