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EXTENSIONS OF THE EULER-SATAKE CHARACTERISTIC
DETERMINE POINT SINGULARITIES OF ORIENTABLE
3-ORBIFOLDS

RyYAN CARROLL AND CHRISTOPHER SEATON

Abstract

We compute the extensions of the Euler-Satake characteristic of a closed, effective,
orientable 3-orbifold corresponding to free and free abelian groups in terms of the
number and type of point singularities of the orbifold. Using these computations, we
show that the free Euler-Satake characteristics determine the number and type of point
singularities, and that it takes an infinite collection of free Euler-Satake characteristics to
do so. Additionally, we show that the stringy orbifold Euler characteristic determines
all of the free abelian Euler-Satake characteristics for an orbifold in this class.

1. Introduction

The Euler-Satake characteristic yps(Q) of an orbifold Q, originally intro-
duced in [13] where it is called the Euler characteristic as a V-manifold and
independently in [18] as the orbifold Euler characteristic, is the first of many
Euler characteristics defined for orbifolds. A rational number, it coincides with
x(M)/|G| in the case that Q is a global quotient orbifold, i.e. is presented as the
quotient of a manifold M by a finite group G. In general, it is defined in terms
of a simplicial decomposition analogous to the usual Euler characteristic of a
topological space. Other Euler characteristics commonly considered for orbifolds
include the usual Euler characteristic of the underlying space y(Xg), as well as the
stringy orbifold Euler characteristic y,,,(Q) defined in [4] for global quotients and
[12] for general orbifolds, see also [10].

In [3], it is demonstrated that the topological Euler characteristic of Q and
the stringy orbifold Euler characteristic of Q are the first and second elements
in a sequence of Euler characteristics in the case of global quotients. In [16, 17],
these definitions are extended to show that for global quotients, an Euler char-
acteristic can be associated to any group I', the Euler characteristics of [3]
corresponding to free abelian groups. In [9], the definition of these Euler
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characteristics is generalized to arbitrary orbifolds where they are referred to as
the T-extensions of the Euler-Satake characteristic.

This paper continues a program to understand the extent to which the exten-
sions of the Euler-Satake characteristic determine the topology of the orbifold
and its singular set. In [6], it is demonstrated that the collection of Z’-Euler-
Satake characteristics completely determine the diffeomorphism type of a closed,
effective, orientable 2-orbifold, and no finite collection of I'-Euler-Satake char-
acteristics determine this information. In [14], it is established that the collection
of Z./2Z-, Z'’-, and F,-Euler-Satake characteristics, where F, denotes the free
group with ¢ generators, determine the number and type of point singularities of
a closed, effective 2-orbifold as well as the Euler characteristic of the underlying
space, that infinitely many free and free abelian groups as well as Z/2Z are
required to do so, and that no other information can be determined from the
I'-Euler-Satake characteristics. Here, we compute the Z’- and F,-Euler-Satake
characteristics of a closed, effective, orientable 3-orbifold. It is shown in
Theorem 4.2 that the F,-Euler-Satake characteristics determine the number
and type of point singularities of the orbifold, and by Corollary 2.2, no further
information is determined by any I'-Euler-Satake characteristics. In Proposition
4.3, we demonstrate that infinitely many F,-Euler-Satake characteristics are
required determine this information. 1In this case, the Z’-Euler-Satake character-
istics contain comparatively little information, and in fact are determined by the
stringy orbifold Euler characteristic, see Corollary 4.1.

In Section 2, we recall the structure of the singular set of a closed, effective,
orientable 3-orbifold and describe the I'-extensions of the Euler-Satake charac-
teristic in this case. In Section 3, we detail computations of x#°(Q) and y+¥(Q)
for the orbifolds under consideration. In Section 4, we use these results to deter-
mine the degree to which the free and free abelain Euler-Satake characteristics
determine the structure of the singular set of an orbifold in this class.
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2. TI'-sectors of effective, orientable 3-orbifolds

Let Q be a closed, effective, orientable 3-orbifold. Given a proper, étale Lie
groupoid ¥ presenting Q, each point x in the space of objects Gy of ¥ is con-
tained in a neighborhood ¥V such that the restricted groupoid %, is isomorphic
to G < R® where G is a finite subgroup of SO(3). Note that G < R*® denotes the
translation groupoid of the G-space R®. The identification of G < R? with Gy
induces a map 7 : R*/G — |%| where |%| denotes the orbit space of %, and then
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the triple {R3, G, n} is an orbifold chart or local uniformizing system in the sense
of [13, 18, 2].

The underlying space Xp of Q is a closed, orientable 3-manifold, and the
singular locus of Q consists of the disjoint union of a finite trivalent graph and a
finite collection of circles; see [2, 5]. Each point on a circle or edge of the graph
is covered by a chart of the form Z/kZ < R® where Z/kZ acts as rotations about
an axis; we refer to k as the order of the edge. The vertices of the graph are
covered by charts of the form G < R® where G is the tetrahedral group 7 of
order 12, the octahedral group O of order 24, the icosahedral group I of order
60, or the dihedral group D, of order 2n. Up to conjugation in SO(3), the
representation Ry of the tetrahedral group

T =<ab|a*=b>=(ab)’ = 1)
on R? can be taken to be that induced by setting

-1 0 0 0 -1 0
Rr(a)=|1 0 -1 0| and Ry(b)=|0 0 -1
0 0 1 1 0 0
The representation Ry of the octahedral group
0= {(rs|r=s"= (rs)3 =1
is given by
01 0 1 0 0
Ro(r)=|1 0 0 and Ro(s)=[0 0 1],
0 0 -1 0 -1 0
and that of the icosahedral group
I=<pq|p’=¢"=(pg)’ = 1)
is induced by
1 0 0 /2 /2 1)2
Ri(p)=10 -1 0 and Ri(q)=| ¢/2 1/2 —¢/2|,
0 0 -1 —1/2 ¢/2  ¢/2

where ¢ = (v/5+1)/2 and ¢ = (v/5—1)/2. The representation of the dihedral
group
Dy =, Bla" = B2 =1,0f = fou" ')
is given by
cos2n/n  —sin2xn/n 0 1 0 0

Rp, (¢)=|sin2zx/n  cos2n/n 0| and Rp,(f)=|0 -1 O
0 0 1 0 0 -1
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We refer to the vertices of the trivalent graph as point singularities and let
% denote the collection such points. Each point singularity corresponds to the
fixed point of a tetrahedral, octahedral, icosahedral, or dihedral group, the type
of the point singularity. By a dihedral point of order n, we mean a dihedral point
with isotropy group Dy,. ~

For a finitely generated discrete group I', the orbifold of T-sectors Qr of Q is
most succinctly defined in terms of a proper, étale Lie groupoid % presenting Q.
Given such a presentation, the space HOM(I', %) of groupoid homomorphisms
inherits the structure of a smooth manifold with a left %-action, and the orbifold
Or is presented by the groupoid ¥ X HOM(I',%4). Note that Qr is not con-
nected unless Q is a manifold, and the connected components need not have
the same dimension. An orbifold chart of the form G X R® with G finite
induces charts for Qp parameterized by G-conjugacy classes of homomorphisms
Y :T — G. The chart associated to a homomorphism 1 is of the form
Co() < (RHY” where (R*)Y” denotes the fixed-point set of the image of
and Cg(¥) denotes the centralizer of y in G. The T'-Euler-Satake characteristic
7E5(Q) of Q is then given by applying the Euler-Satake characteristic to the
orbifold of TI'-sectors,

2E5(0) = xs(Or).

See [1, 11] for background on groupoid presentations of orbifolds, [7] for details
on the construction of the orbifold of I'-sectors, [8] for relationships with other
constructions and presentations of orbifolds, and [9] for details on the I'-Euler-
Satake characteristics and their relationship to other orbifold Euler character-
istics. Note that yZ5(Q) coincides with the stringy orbifold Euler characteristic

Xorb(Q) of [47 12]

ProposITION 2.1.  Let Q be a closed, effective, orientable 3-orbifold and let
I be a finitely generated discrete group. Let & denote the collection of point
singularities of Q, G, the isotropy group of a point p € Q, and HOM(T', Gp)d the
set of homomorphisms y € HOM(I', G,) whose image has a fixed-point set of
dimension d. Then

[HOM(T', G,)°|

1) #(0 =Y e

pPEP

Proof. As Q is effective and orientable, it follows that the sectors of Q
consist of the nontwisted sector corresponding to the trivial homomorphisms and
diffeomorphic to Q as well as 0- and 1-dimensional sectors. By [13, Theorem 4],
xes(Q) =0, and all closed 1-dimensional orbifolds have zero Euler-Satake
characteristic as well. As the Euler-Satake characteristic of a zero-dimensional
orbifold G X, {point} (where X,; denotes a trivial group action) is simply
1/|G|, and as zero-dimensional sectors clearly correspond only to homomor-
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phisms into the isotropy group of a point singularity, we have

; 1
XFS(Q) = Z Z m7

PEZ () eHOM(T, G,)°/G,

where () denotes the G,-conjugacy class of y e HOM(T, Gp)o. Applying the
fact that for each y e HOM(T', G,), |G,| = |(¥)||Cq, ()| completes the proof.
O

The following is an immediate consequence.

COROLLARY 2.2. Suppose Q and Q' are closed, -effective, orientable
3-orbifolds that have the same number and type of point singularities. Then
1E5(Q) = xE5(Q') for every finitely generated discrete group T.

Note that y£5(Q) coincides with x(Xp), the Euler characteristic of the
underlying space of Q; see [15]. As Xy is in this case a closed 3-manifold, we
have that x£5(Q) = 0.

3. Free and free abelian Euler-Satake characteristics of effective,
orientable 3-orbifolds

In this section, we present the following computation of extensions of the
Euler-Satake characteristics associated to free and free abelian groups.

THEOREM 3.1. Let Q be a closed, effective, orientable, 3-orbifold with t
tetrahedral points, o octahedral points, i icosahedral points, d,q; dihedral points
of odd orders n; for j=1,...dosa, and d., dihedral points of even orders n; for
j:dodd+17--~;dodd+dev-

I. For each ¢ >0, the Z’-Euler-Satake characteristic of Q is given by

(3.1) Xf?(Q):%(4/—3-2/+2)(1+20+i+3dev).

II. For each ¢ >0, the F,-Euler-Satake characteristic of Q is given by

(3.2) 182(0) = é(z. 12071 2.3/ oty
+§<2 24074t 3 a4
+%(2 ) G T B Vos B Von B
2 1 dogd ey -
PR

J=1
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Proof. To prove 1., note that every nontrivial element of SO(3) acts on
R® as a rotation about a line. Recalhng that HOM(T', G ) denotes the homo-
morphisms tﬁeHOM(F G,) whose image has a fixed-point set of dimension
d, lp e HOM(T', G,) is an element of HOM(I', G ) if and only if the image of
zp is isomorphic to Z/nZ for some n. Hence, HOM(Z/ G )0 consists of those
Y € HOM(Z/, G,) whose image is not cyclic. Note that the image of Y e
HOM(Z’, G,) must be abelian, and the only abelian subgroups of SO(3) are
cyclic or isomorphic to D4. Therefore, if r denotes the number of distinct sub-
groups of G, isomorphic to D,, we have

(3.3) IHOM(Z/, G,)"| = rlHOM(Z/, D,)°|.

Note that e HOM(Z’,D,) fixes a point if and only if  is surjective, so
that

(34)  [HOM(Z',Dy)"| = [(4" — 1) =3(2" — )] =4 =32/ +2.

By inspection, the only subgroup of T' 1som0rph10 to D4 is <a, (ab) b> The
four subgroups of O isomorphic to Dy are {r, (rs> ) S (82, rs?ry; (8%, rs?rs); and
(rs’r,rs’rs*y; while the five subgroups of I 1somorphlc to D4 are the five
conjugates of Cr(p) = <{p, pq¢*pq’pq*>. If n is odd, there are no subgroups of
D»,, isomorphic to D4, while if #n is even, the subgroups isomorphic to D4 are the
n/2 conjugates of Cp, () = <{a"/? B>. Combining these observations and Equa-
tions 3.3 and 3.4 with Proposition 2.1 yields Equation 3.1, the formula for for
172 (Q).

z We now consider the proof of II. Let @, denote the number of distinct lines
in R with G,-isotropy group 1somorph1c to Z/nZ, and then |HOM(F/, p)l| =
S 2an|HOM(F/,Z/nZ) |. It is easy to see by considering the image of a fixed
set of generators of F, that |HOM(F;,Z/nZ) =n’. All of the nontr1v1al
homomorphisms in HOM(F,,Z/nZ) fix lines so that |[HOM(F,, Z/nZ)"| =
n’ —1. As HOM(F,,G,) consists of HOM(F,,G,)’, HOM(F,,G,)", and the
trivial homomorphism, we have

(3.5) HOM(F,, G,)"| = [HOM(F,, G,)| — 1~ ay(n’ — 1)

It remains only to determine the values of a, for the possible isotropy groups G,,.

With respect to the T-action on R?, there are a3 = 4 distinct lines fixed by
a subgroup isomorphic to Z/3Z con]ugate to <b) and a, = 3 lines fixed by a
subgroup isomorphic to Z/2Z conjugate to <{a). Hence,

IHOM(F,, T)°| = 12/ =1 —4(3’ —1) = 3(2’ — 1), and hence

HOM(F,, T)"| 1 : , :
| @) |(]_,|/7 )|:§(2.12/—1_2.3/—1_2/—1+1>.

With respect to the O-action on R3, there are a4 =3 lines fixed by a
subgroup isomorphic to Z/4Z conjugate to <{s), az = 4 lines fixed by a subgroup
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isomorphic to Z/3Z conjugate to (rsy, and a, = 6 lines fixed by a subgroup
isomorphic to Z/2Z conjugate to {r). Therefore,

[HOM(F,,0)°| = 24" — 1 —3(4' —1)— 43’ —1)—6(2” — 1), and hence

[HOM(F/, 0)°| _ 1 5 surt _qrt 31 i
—_— = (22477 47 3 =) 1).

With respect to the I-action on R®, there are as = 6 lines fixed by a sub-
group isomorphic to Z/5Z conjugate to {g», az = 10 lines fixed by a subgroup
isomorphic to Z/3Z conjugate to {pgqy, and a, = 15 lines fixed by a subgroup
isomorphic to Z/2Z conjugate to {p)». Hence,

[HOM(F,,1)°| = 60" —1 —6(5 —1) —10(3’ — 1) — 15(2’ — 1), and hence

HOM(F,, 1)°] 1
| ( ‘5 ) |:_(2.60/71_5/71_3/71_2/71_’_1).
1] 2
Finally, with respect to the D,,-action on R?, there is a, = 1 line fixed by
oy = Z./nZ and a, = n lines fixed by a subgroup isomorphic to Z/2Z conjugate
to {f>, so that

[HOM(F,, D1,)°| = (2n)" =1 — (n’ = 1) —n(2’ — 1), and hence
1

[HOM(F,, D>,)°| (2 = 1)(n’~' — 1)
|D2n‘ 2 )

Combining these computations yields Equation 3.2, the formula for ){E/S(Q).

4. Consequences of Theorem 3.1

Our first observation is that the higher free abelian extensions of the Euler-
Satake characteristic all contain exactly the same information as the stringy
orbifold Euler characteristic y,,(Q) = x5 (Q).

- CoroLLARY 4.1.  Let Q be a closed, effective, orientable 3-orbifold. Every
7 -Euler-Satake characteristic of Q is determined by ){‘ZE§ (0).
Proof. In fact, for /> 2, Equation 3.1 implies that
1

155(0) = (47 =32 +2)£5(0)

Note that yz5(Q) =0, and z55(Q) = x(Xp) = 0. 0

The F,-Euler-Satake characteristics, on the other hand, determine the point
singularities of Q by the following.
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THEOREM 4.2. Let Q and Q' be closed, effective, orientable 3-orbifolds such
that for some infinite collection & of positive integers £, we have }(ﬁs(Q) =
){ﬁs(Q') V/eP. Then Q and Q' have the same number of point singularities of
each type.

Proof. Let Q and Q' be closed, effective, orientable 3-orbifolds, and let ¥
be an infinite set of nonnegative integers. Let ¢, 0, i and d denote the number of
tetrahedral, octahedral, icosahedral, and dihedral points of Q, respectively, and
let d, denote the number of dihedral points of order r for each » > 2. Similarly,
let ¢/, o', i', d’, and d] denote the number of point singularities of Q' of each
type. Lett"=t—1t,0"=0-0,i"=i—i,d"=d—-d’, and d’' =d, —d/ for
each r.

For each integer r > 1 let f, denote the sequence ('~ '),_, considered as
an element of the linear space R of sequences of real numbers. Similarly, let

1= (X}%S(Q))/ey and y' = (XES(Q/))/eyH

also considered as elements of R®. Then by Equation 3.2, we can express y and

x' as linear combinations

/-1

o0

o)
1= Zcrﬁ’ and X/ = ZC,/ y
r=1

r=1

each with finitely many nonzero coefficients. In particular, setting ¢! = ¢, — ¢/
for each r, we have

¢ = (1" +o" + 1" +d"))2, o = —(i" +dl)/2,
= (" o' +i" 1 dy)2—d", ey ="+ d —d}y/2,
& =" +i" +d})/2 1", ¢y = 0" +dly — dy /2,
¢ = —(o" +dj)/2+ dj, cly = i+ diy — diy /2.
d; d!

If r¢{1,2,3,4,5,12,24,60}, then ¢ =d/), —7’ when r is even and ¢/ = — 3

when r is odd. We have by hypotheses that > ¢/ f, =y — ' =0, so that, as
the f; are linearly independent, ¢/ =0 for each r.

As Q and Q' are closed and hence have a finite number of point
singularities, the d, and d/ are zero for sufficiently large r. Hence, it is easy
to see that d, = d/ for r #2,3,6,12,30. Then as ¢ =0, it follows that ;" =0
and hence as ¢, = 0 that djj, = 0. The resulting equations ¢/ =0 for r =1,2,3,
4,6,12,24 along with

&' = df +dl +d +

yield a system of eight equations in the unknowns t”, 0", d”, d}/, dy, d{, and d,.
By a simple computation, the solutions of this system all satisfy o” = —d/}.
Hence, the only nonnegative solution is the trivial solution, completing the proof.

O
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PROPOSITION 4.3.  Let L be a positive integer. Then there are distinct closed,
effective, orientable 3-orbifolds Q and Q' such that for each ¢ < L,

162(0) = 15 (Q).

Proof. The proof of [6, Lemma 3.11] constructs for each L > 2 collections
of integers 2 <n; <--- <m and 2 <m; < --- < my, which can all be taken to be
odd, such that for each / < L,

/-1 __ /-1
P —Z’”j ’

J=1 J=1

and such that n; # m; for each i, j. Let Q be the orbifold with underlying space
S3 and singular set given by the connected trivalent graph with dihedral vertices
v1,02,...,V0y of orders my,ni,no,na,... 0, ng, one edge of order n; connecting
vpj—1 and vy for 1 < j <k, and two edges of order 2 connecting v; and vy;1; for
each 1 < j <k as well as vy and v;. Similarly, let Q' be the orbifold with
underlying space S3 and singular set the connected trivalent graph with dihedral
vertices wi, wa, ..., wy of orders my,my,my, my, ..., mg,my, one edge of order m;
connecting wy;_; and wy; for 1 < j <k, and two edges of order 2 connecting each
wy; and wo;y g for 1 < j <k as well as wy; and wy. Then by Equation 3.2, for
each / < L we have

k

2 (0)=(2"-1)

(" = 1)
1

~
=

= =D (=1 =552, O

—

~,

In particular Proposition 4.3 implies that Theorem 4.2 cannot be improved
upon by considering the Euler-Satake characteristics associated to any finite
collection of free groups.
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