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EXTENSIONS OF THE EULER-SATAKE CHARACTERISTIC

DETERMINE POINT SINGULARITIES OF ORIENTABLE

3-ORBIFOLDS

Ryan Carroll and Christopher Seaton

Abstract

We compute the extensions of the Euler-Satake characteristic of a closed, e¤ective,

orientable 3-orbifold corresponding to free and free abelian groups in terms of the

number and type of point singularities of the orbifold. Using these computations, we

show that the free Euler-Satake characteristics determine the number and type of point

singularities, and that it takes an infinite collection of free Euler-Satake characteristics to

do so. Additionally, we show that the stringy orbifold Euler characteristic determines

all of the free abelian Euler-Satake characteristics for an orbifold in this class.

1. Introduction

The Euler-Satake characteristic wESðQÞ of an orbifold Q, originally intro-
duced in [13] where it is called the Euler characteristic as a V-manifold and
independently in [18] as the orbifold Euler characteristic, is the first of many
Euler characteristics defined for orbifolds. A rational number, it coincides with
wðMÞ=jGj in the case that Q is a global quotient orbifold, i.e. is presented as the
quotient of a manifold M by a finite group G. In general, it is defined in terms
of a simplicial decomposition analogous to the usual Euler characteristic of a
topological space. Other Euler characteristics commonly considered for orbifolds
include the usual Euler characteristic of the underlying space wðXQÞ, as well as the
stringy orbifold Euler characteristic worbðQÞ defined in [4] for global quotients and
[12] for general orbifolds, see also [10].

In [3], it is demonstrated that the topological Euler characteristic of Q and
the stringy orbifold Euler characteristic of Q are the first and second elements
in a sequence of Euler characteristics in the case of global quotients. In [16, 17],
these definitions are extended to show that for global quotients, an Euler char-
acteristic can be associated to any group G, the Euler characteristics of [3]
corresponding to free abelian groups. In [9], the definition of these Euler
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characteristics is generalized to arbitrary orbifolds where they are referred to as
the G-extensions of the Euler-Satake characteristic.

This paper continues a program to understand the extent to which the exten-
sions of the Euler-Satake characteristic determine the topology of the orbifold
and its singular set. In [6], it is demonstrated that the collection of Zl-Euler-
Satake characteristics completely determine the di¤eomorphism type of a closed,
e¤ective, orientable 2-orbifold, and no finite collection of G-Euler-Satake char-
acteristics determine this information. In [14], it is established that the collection
of Z=2Z-, Zl-, and Fl-Euler-Satake characteristics, where Fl denotes the free
group with l generators, determine the number and type of point singularities of
a closed, e¤ective 2-orbifold as well as the Euler characteristic of the underlying
space, that infinitely many free and free abelian groups as well as Z=2Z are
required to do so, and that no other information can be determined from the
G-Euler-Satake characteristics. Here, we compute the Zl- and Fl-Euler-Satake
characteristics of a closed, e¤ective, orientable 3-orbifold. It is shown in
Theorem 4.2 that the Fl-Euler-Satake characteristics determine the number
and type of point singularities of the orbifold, and by Corollary 2.2, no further
information is determined by any G-Euler-Satake characteristics. In Proposition
4.3, we demonstrate that infinitely many Fl-Euler-Satake characteristics are
required determine this information. In this case, the Zl-Euler-Satake character-
istics contain comparatively little information, and in fact are determined by the
stringy orbifold Euler characteristic, see Corollary 4.1.

In Section 2, we recall the structure of the singular set of a closed, e¤ective,
orientable 3-orbifold and describe the G-extensions of the Euler-Satake charac-
teristic in this case. In Section 3, we detail computations of wES

Fl
ðQÞ and wES

Z l ðQÞ
for the orbifolds under consideration. In Section 4, we use these results to deter-
mine the degree to which the free and free abelain Euler-Satake characteristics
determine the structure of the singular set of an orbifold in this class.
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2. G-sectors of e¤ective, orientable 3-orbifolds

Let Q be a closed, e¤ective, orientable 3-orbifold. Given a proper, étale Lie
groupoid G presenting Q, each point x in the space of objects G0 of G is con-
tained in a neighborhood V such that the restricted groupoid GjV is isomorphic
to GyR3 where G is a finite subgroup of SOð3Þ. Note that GyR3 denotes the
translation groupoid of the G-space R3. The identification of GyR3 with GjV
induces a map p : R3=G ! jGj where jGj denotes the orbit space of G, and then
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the triple fR3;G; pg is an orbifold chart or local uniformizing system in the sense
of [13, 18, 2].

The underlying space XQ of Q is a closed, orientable 3-manifold, and the
singular locus of Q consists of the disjoint union of a finite trivalent graph and a
finite collection of circles; see [2, 5]. Each point on a circle or edge of the graph
is covered by a chart of the form Z=kZyR3 where Z=kZ acts as rotations about
an axis; we refer to k as the order of the edge. The vertices of the graph are
covered by charts of the form GyR3 where G is the tetrahedral group T of
order 12, the octahedral group O of order 24, the icosahedral group I of order
60, or the dihedral group D2n of order 2n. Up to conjugation in SOð3Þ, the
representation RT of the tetrahedral group

T ¼ ha; b j a2 ¼ b3 ¼ ðabÞ3 ¼ 1i

on R3 can be taken to be that induced by setting

RT ðaÞ ¼
�1 0 0

0 �1 0

0 0 1

2
64

3
75 and RTðbÞ ¼

0 �1 0

0 0 �1

1 0 0

2
64

3
75:

The representation RO of the octahedral group

O ¼ hr; s j r2 ¼ s4 ¼ ðrsÞ3 ¼ 1i

is given by

ROðrÞ ¼
0 1 0

1 0 0

0 0 �1

2
64

3
75 and ROðsÞ ¼

1 0 0

0 0 1

0 �1 0

2
64

3
75;

and that of the icosahedral group

I ¼ hp; q j p2 ¼ q5 ¼ ðpqÞ3 ¼ 1i

is induced by

RI ðpÞ ¼
1 0 0

0 �1 0

0 0 �1

2
64

3
75 and RI ðqÞ ¼

f=2 f=2 1=2

f=2 1=2 �f=2

�1=2 f=2 f=2

2
64

3
75;

where f ¼ ð
ffiffiffi
5

p
þ 1Þ=2 and f ¼ ð

ffiffiffi
5

p
� 1Þ=2. The representation of the dihedral

group

D2n ¼ ha; b j an ¼ b2 ¼ 1; ab ¼ ban�1i

is given by

RD2n
ðaÞ ¼

cos 2p=n �sin 2p=n 0

sin 2p=n cos 2p=n 0

0 0 1

2
64

3
75 and RD2n

ðbÞ ¼
1 0 0

0 �1 0

0 0 �1

2
64

3
75:
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We refer to the vertices of the trivalent graph as point singularities and let
P denote the collection such points. Each point singularity corresponds to the
fixed point of a tetrahedral, octahedral, icosahedral, or dihedral group, the type
of the point singularity. By a dihedral point of order n, we mean a dihedral point
with isotropy group D2n.

For a finitely generated discrete group G, the orbifold of G-sectors ~QQG of Q is
most succinctly defined in terms of a proper, étale Lie groupoid G presenting Q.
Given such a presentation, the space HOMðG;GÞ of groupoid homomorphisms
inherits the structure of a smooth manifold with a left G-action, and the orbifold
~QQG is presented by the groupoid GyHOMðG;GÞ. Note that ~QQG is not con-
nected unless Q is a manifold, and the connected components need not have
the same dimension. An orbifold chart of the form GyR3 with G finite
induces charts for ~QQG parameterized by G-conjugacy classes of homomorphisms
c : G ! G. The chart associated to a homomorphism c is of the form
CGðcÞy ðR3Þhci where ðR3Þhci denotes the fixed-point set of the image of c
and CGðcÞ denotes the centralizer of c in G. The G-Euler-Satake characteristic
wES
G ðQÞ of Q is then given by applying the Euler-Satake characteristic to the

orbifold of G-sectors,

wES
G ðQÞ ¼ wESð ~QQGÞ:

See [1, 11] for background on groupoid presentations of orbifolds, [7] for details
on the construction of the orbifold of G-sectors, [8] for relationships with other
constructions and presentations of orbifolds, and [9] for details on the G-Euler-
Satake characteristics and their relationship to other orbifold Euler character-
istics. Note that wES

Z2 ðQÞ coincides with the stringy orbifold Euler characteristic
worbðQÞ of [4, 12].

Proposition 2.1. Let Q be a closed, e¤ective, orientable 3-orbifold and let
G be a finitely generated discrete group. Let P denote the collection of point
singularities of Q, Gp the isotropy group of a point p A Q, and HOMðG;GpÞd the
set of homomorphisms c A HOMðG;GpÞ whose image has a fixed-point set of
dimension d. Then

wES
G ðQÞ ¼

X
p AP

jHOMðG;GpÞ0j
jGpj

:ð2:1Þ

Proof. As Q is e¤ective and orientable, it follows that the sectors of Q
consist of the nontwisted sector corresponding to the trivial homomorphisms and
di¤eomorphic to Q as well as 0- and 1-dimensional sectors. By [13, Theorem 4],
wESðQÞ ¼ 0, and all closed 1-dimensional orbifolds have zero Euler-Satake
characteristic as well. As the Euler-Satake characteristic of a zero-dimensional
orbifold Gytriv fpointg (where ytriv denotes a trivial group action) is simply
1=jGj, and as zero-dimensional sectors clearly correspond only to homomor-
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phisms into the isotropy group of a point singularity, we have

wES
G ðQÞ ¼

X
p AP

X
ðcÞ AHOMðG;GpÞ0=Gp

1

jCGp
ðcÞj ;

where ðcÞ denotes the Gp-conjugacy class of c A HOMðG;GpÞ0. Applying the
fact that for each c A HOMðG;GpÞ, jGpj ¼ jðcÞj jCGp

ðcÞj completes the proof.
r

The following is an immediate consequence.

Corollary 2.2. Suppose Q and Q 0 are closed, e¤ective, orientable
3-orbifolds that have the same number and type of point singularities. Then
wES
G ðQÞ ¼ wES

G ðQ 0Þ for every finitely generated discrete group G.

Note that wES
Z ðQÞ coincides with wðXQÞ, the Euler characteristic of the

underlying space of Q; see [15]. As XQ is in this case a closed 3-manifold, we
have that wES

Z ðQÞ ¼ 0.

3. Free and free abelian Euler-Satake characteristics of e¤ective,
orientable 3-orbifolds

In this section, we present the following computation of extensions of the
Euler-Satake characteristics associated to free and free abelian groups.

Theorem 3.1. Let Q be a closed, e¤ective, orientable, 3-orbifold with t
tetrahedral points, o octahedral points, i icosahedral points, dodd dihedral points
of odd orders nj for j ¼ 1; . . . dodd , and dev dihedral points of even orders nj for
j ¼ dodd þ 1; . . . ; dodd þ dev.

I. For each lb 0, the Zl-Euler-Satake characteristic of Q is given by

wES
Zl ðQÞ ¼ 1

12
ð4l � 3 � 2l þ 2Þðtþ 2oþ i þ 3devÞ:ð3:1Þ

II. For each lb 0, the Fl-Euler-Satake characteristic of Q is given by

wES
Fl

ðQÞ ¼ t

2
ð2 � 12l�1 � 2 � 3l�1 � 2l�1 þ 1Þð3:2Þ

þ o

2
ð2 � 24l�1 � 4l�1 � 3l�1 � 2l�1 þ 1Þ

þ i

2
ð2 � 60l�1 � 5l�1 � 3l�1 � 2l�1 þ 1Þ

þ 2l � 1

2

Xdoddþdev

j¼1

ðnl�1
j � 1Þ:
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Proof. To prove I., note that every nontrivial element of SOð3Þ acts on
R3 as a rotation about a line. Recalling that HOMðG;GpÞd denotes the homo-
morphisms c A HOMðG;GpÞ whose image has a fixed-point set of dimension
d;c A HOMðG;GpÞ is an element of HOMðG;GpÞ1 if and only if the image of
c is isomorphic to Z=nZ for some n. Hence, HOMðZl;GpÞ0 consists of those
c A HOMðZl;GpÞ whose image is not cyclic. Note that the image of c A
HOMðZl;GpÞ must be abelian, and the only abelian subgroups of SOð3Þ are
cyclic or isomorphic to D4. Therefore, if r denotes the number of distinct sub-
groups of Gp isomorphic to D4, we have

jHOMðZl;GpÞ0j ¼ rjHOMðZl;D4Þ0j:ð3:3Þ
Note that c A HOMðZl;D4Þ fixes a point if and only if c is surjective, so
that

jHOMðZl;D4Þ0j ¼ ½ð4l � 1Þ � 3ð2l � 1Þ� ¼ 4l � 3 � 2l þ 2:ð3:4Þ
By inspection, the only subgroup of T isomorphic to D4 is ha; ðabÞ2bi. The

four subgroups of O isomorphic to D4 are hr; ðrs2Þ2i; hs2; rs2ri; hs2; rs2rsi; and
hrs2r; rs3rs2i; while the five subgroups of I isomorphic to D4 are the five
conjugates of CI ðpÞ ¼ hp; pq2pq3pq2i. If n is odd, there are no subgroups of
D2n isomorphic to D4, while if n is even, the subgroups isomorphic to D4 are the
n=2 conjugates of CD2n

ðbÞ ¼ han=2; bi. Combining these observations and Equa-
tions 3.3 and 3.4 with Proposition 2.1 yields Equation 3.1, the formula for for
wES
Zl ðQÞ.

We now consider the proof of II. Let an denote the number of distinct lines
in R3 with Gp-isotropy group isomorphic to Z=nZ, and then jHOMðFl;GpÞ1j ¼Py

n¼2 anjHOMðFl;Z=nZÞ1j. It is easy to see by considering the image of a fixed
set of generators of Fl that jHOMðFl;Z=nZÞj ¼ nl. All of the nontrivial
homomorphisms in HOMðFl;Z=nZÞ fix lines so that jHOMðFl;Z=nZÞ1j ¼
nl � 1. As HOMðFl;GpÞ consists of HOMðFl;GpÞ0, HOMðFl;GpÞ1, and the
trivial homomorphism, we have

jHOMðFl;GpÞ0j ¼ jHOMðFl;GpÞj � 1�
Xy
n¼2

anðnl � 1Þ:ð3:5Þ

It remains only to determine the values of an for the possible isotropy groups Gp.
With respect to the T-action on R3, there are a3 ¼ 4 distinct lines fixed by

a subgroup isomorphic to Z=3Z conjugate to hbi and a2 ¼ 3 lines fixed by a
subgroup isomorphic to Z=2Z conjugate to hai. Hence,

jHOMðFl;TÞ0j ¼ 12l � 1� 4ð3l � 1Þ � 3ð2l � 1Þ; and hence

jHOMðFl;TÞ0j
jT j ¼ 1

2
ð2 � 12l�1 � 2 � 3l�1 � 2l�1 þ 1Þ:

With respect to the O-action on R3, there are a4 ¼ 3 lines fixed by a
subgroup isomorphic to Z=4Z conjugate to hsi, a3 ¼ 4 lines fixed by a subgroup
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isomorphic to Z=3Z conjugate to hrsi, and a2 ¼ 6 lines fixed by a subgroup
isomorphic to Z=2Z conjugate to hri. Therefore,

jHOMðFl;OÞ0j ¼ 24l � 1� 3ð4l � 1Þ � 4ð3l � 1Þ � 6ð2l � 1Þ; and hence

jHOMðFl;OÞ0j
jOj ¼ 1

2
ð2 � 24l�1 � 4l�1 � 3l�1 � 2l�1 þ 1Þ:

With respect to the I -action on R3, there are a5 ¼ 6 lines fixed by a sub-
group isomorphic to Z=5Z conjugate to hqi, a3 ¼ 10 lines fixed by a subgroup
isomorphic to Z=3Z conjugate to hpqi, and a2 ¼ 15 lines fixed by a subgroup
isomorphic to Z=2Z conjugate to hpi. Hence,

jHOMðFl; IÞ0j ¼ 60l � 1� 6ð5l � 1Þ � 10ð3l � 1Þ � 15ð2l � 1Þ; and hence

jHOMðFl; IÞ0j
jI j ¼ 1

2
ð2 � 60l�1 � 5l�1 � 3l�1 � 2l�1 þ 1Þ:

Finally, with respect to the D2n-action on R3, there is an ¼ 1 line fixed by
haiGZ=nZ and a2 ¼ n lines fixed by a subgroup isomorphic to Z=2Z conjugate
to hbi, so that

jHOMðFl;D2nÞ0j ¼ ð2nÞl � 1� ðnl � 1Þ � nð2l � 1Þ; and hence

jHOMðFl;D2nÞ0j
jD2nj

¼ ð2l � 1Þðnl�1 � 1Þ
2

:

Combining these computations yields Equation 3.2, the formula for wES
Fl

ðQÞ.
r

4. Consequences of Theorem 3.1

Our first observation is that the higher free abelian extensions of the Euler-
Satake characteristic all contain exactly the same information as the stringy
orbifold Euler characteristic worbðQÞ ¼ wES

Z2 ðQÞ.

Corollary 4.1. Let Q be a closed, e¤ective, orientable 3-orbifold. Every
Zl-Euler-Satake characteristic of Q is determined by wES

Z 2 ðQÞ.

Proof. In fact, for lb 2, Equation 3.1 implies that

wES
Z l ðQÞ ¼ 1

6
ð4l � 3 � 2l þ 2ÞwES

Z2 ðQÞ:

Note that wESðQÞ ¼ 0, and wES
Z ðQÞ ¼ wðXQÞ ¼ 0. r

The Fl-Euler-Satake characteristics, on the other hand, determine the point
singularities of Q by the following.
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Theorem 4.2. Let Q and Q 0 be closed, e¤ective, orientable 3-orbifolds such
that for some infinite collection L of positive integers l, we have wES

Fl
ðQÞ ¼

wES
Fl

ðQ 0Þ El A L. Then Q and Q 0 have the same number of point singularities of
each type.

Proof. Let Q and Q 0 be closed, e¤ective, orientable 3-orbifolds, and let L
be an infinite set of nonnegative integers. Let t, o, i and d denote the number of
tetrahedral, octahedral, icosahedral, and dihedral points of Q, respectively, and
let dr denote the number of dihedral points of order r for each rb 2. Similarly,
let t 0, o 0, i 0, d 0, and d 0

r denote the number of point singularities of Q 0 of each
type. Let t 00 ¼ t� t 0, o 00 ¼ o� o 0, i 00 ¼ i � i 0, d 00 ¼ d � d 0, and d 00

r ¼ dr � d 0
r for

each r.
For each integer rb 1 let fr denote the sequence ðrl�1Þl AL, considered as

an element of the linear space Ry of sequences of real numbers. Similarly, let

w ¼ ðwES
Fl

ðQÞÞl AL and w 0 ¼ ðwES
Fl

ðQ 0ÞÞl AL;

also considered as elements of Ry. Then by Equation 3.2, we can express w and
w 0 as linear combinations

w ¼
Xy

r¼1

cr fr and w 0 ¼
Xy

r¼1

c 0r fr;

each with finitely many nonzero coe‰cients. In particular, setting c 00r ¼ cr � c 0r
for each r, we have

c 001 ¼ ðt 00 þ o 00 þ i 00 þ d 00Þ=2; c 005 ¼ �ði 00 þ d 00
5 Þ=2;

c 002 ¼ �ðt 00 þ o 00 þ i 00 þ d 00
2 Þ=2� d 00; c 0012 ¼ t 00 þ d 00

6 � d 00
12=2;

c 003 ¼ �ðo 00 þ i 00 þ d 00
3 Þ=2� t 00; c 0024 ¼ o 00 þ d 00

12 � d 00
24=2;

c 004 ¼ �ðo 00 þ d 00
4 Þ=2þ d 00

2 ; c 0060 ¼ i 00 þ d 00
30 � d 00

60=2:

If r B f1; 2; 3; 4; 5; 12; 24; 60g, then c 00r ¼ d 00
r=2 �

d 00
r

2
when r is even and c 00r ¼ � d 00

r

2
when r is odd. We have by hypotheses that

Py
r¼1 c

00
r fr ¼ w� w 0 ¼ 0, so that, as

the fr are linearly independent, c 00r ¼ 0 for each r.
As Q and Q 0 are closed and hence have a finite number of point

singularities, the dr and d 0
r are zero for su‰ciently large r. Hence, it is easy

to see that dr ¼ d 0
r for r0 2; 3; 6; 12; 30. Then as c 005 ¼ 0, it follows that i 00 ¼ 0

and hence as c 0060 ¼ 0 that d 00
30 ¼ 0. The resulting equations c 00r ¼ 0 for r ¼ 1; 2; 3;

4; 6; 12; 24 along with

d 00 ¼ d 00
2 þ d 00

3 þ d 00
6 þ d 00

12

yield a system of eight equations in the unknowns t 00, o 00, d 00, d 00
2 , d

00
3 , d

00
6 , and d 00

12.
By a simple computation, the solutions of this system all satisfy o 00 ¼ �d 00

12.
Hence, the only nonnegative solution is the trivial solution, completing the proof.

r
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Proposition 4.3. Let L be a positive integer. Then there are distinct closed,
e¤ective, orientable 3-orbifolds Q and Q 0 such that for each laL,

wES
Fl

ðQÞ ¼ wES
Fl

ðQ 0Þ:

Proof. The proof of [6, Lemma 3.11] constructs for each Lb 2 collections
of integers 2a n1 a � � �a nk and 2am1 a � � �amk, which can all be taken to be
odd, such that for each laL,

Xk

j¼1

nl�1
j ¼

Xk

j¼1

ml�1
j ;

and such that ni 0mj for each i, j. Let Q be the orbifold with underlying space
S3 and singular set given by the connected trivalent graph with dihedral vertices
v1; v2; . . . ; v2k of orders n1; n1; n2; n2; . . . ; nk; nk, one edge of order nj connecting
v2j�1 and v2j for 1a ja k, and two edges of order 2 connecting v2j and v2jþ1 for
each 1a j < k as well as v2k and v1. Similarly, let Q 0 be the orbifold with
underlying space S3 and singular set the connected trivalent graph with dihedral
vertices w1;w2; . . . ;w2k of orders m1;m1;m2;m2; . . . ;mk;mk, one edge of order mj

connecting w2j�1 and w2j for 1a ja k, and two edges of order 2 connecting each
w2j and w2jþ1 for 1a j < k as well as w2k and w1. Then by Equation 3.2, for
each laL we have

wES
Fl

ðQÞ ¼ ð2l � 1Þ
Xk

j¼1

ðnl�1
j � 1Þ

¼ ð2l � 1Þ
Xk

j¼1

ðml�1
j � 1Þ ¼ wES

Fl
ðQ 0Þ; r

In particular Proposition 4.3 implies that Theorem 4.2 cannot be improved
upon by considering the Euler-Satake characteristics associated to any finite
collection of free groups.
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