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ISOTROPIC IMMERSIONS OF THE CAYLEY PROJECTIVE

PLANE AND CAYLEY FRENET CURVES

Hiromasa Tanabe

Abstract

We investigate parallel isotropic immersions of an open submanifold of either the

Cayley projective plane CayP2ðaÞ or its noncompact dual into a real space form ~MMnð~ccÞ,
and give a characterization of the first standard embedding of CayP2ðaÞ into ~MMnð~ccÞ in

terms of a particular class of Frenet curves of order 2.

1. Introduction

Let f : M ! ~MM be an isometric immersion of a Riemannian manifold M
into an ambient Riemannian manifold ~MM. In order to study the properties of
the immersion f it is one of natural ways to examine the extrinsic shape of curves
in the submanifold M.

A smooth curve g in M parametrized by its arc-length is called a Frenet
curve of proper order 2 of curvature k if there exist a smooth unit vector field V
along g and a positive smooth function k satisfying the following system of
ordinary di¤erential equations

‘ _gg _gg ¼ kV and ‘ _ggV ¼ �k _gg:ð1:1Þ
We call a Frenet curve of proper order 2 with positive constant curvature k a
circle of curvature k. We regard a geodesic as a circle of null curvature. K.
Nomizu and K. Yano proved that a submanifold M is an extrinsic sphere of ~MM
(that is, a totally umbilical submanifold with parallel mean curvature vector)
if and only if every circle of curvature k in M is also a circle in ~MM for some
positive constant k ([9]). Motivated by their result, in [13] we gave character-
izations of an extrinsic sphere and every totally geodesic submanifold in a
Riemannian manifold in terms of a Frenet curve of proper order 2. In [8], S.
Maeda and the author characterized all totally geodesic Kähler immersions of
Kähler manifolds into an ambient Kähler manifold and all parallel isometric
immersions of a complex space form into a real space form by using a particular
class of Frenet curves.
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Along this context, in the preceding paper [14] the author established a
theorem which provides a characterization of the first standard minimal immer-
sion of the Cayley projective plane CayP2ðcÞ into a real space form by observing
the extrinsic shape of some Frenet curves of order 2 in CayP2ðcÞ. However,
there was a gap in the proof of the theorem. He stated that the parallelism of the
second fundamental form implies the rigidity of the parallel isotropic immersion
and it is possible to use the classification theorem of complete parallel submani-
folds in a real space form as a local theorem (see page 15 in [14]). His comment
is true, but he did not give a full detail of the proof. Additionally, there was a
slight deficiency of the precision in his theorem, because he did not describe one
of examples which he should have done (see page 13 in [14] and our Theorem 2).

We have two aims of the present paper. One of those is to bring the above
local rigidity theorem to completion. That is, we shall prove the following.

Theorem 1. Let M be a connected open submanifold of either the Cayley
projective plane CayP2ðaÞ of maximal sectional curvature að> 0Þ or Cayley
hyperbolic plane CayH 2ðaÞ of minimal sectional curvature að< 0Þ. Let f be a

full parallel isotropic immersion of M into a real space form ~MM 16þpð~ccÞ of constant
sectional curvature ~cc. Then the immersion f is constant isotropic and we have
a > 0, p ¼ 9 or 10. Moreover, f is locally congruent to either

(1) the first standard minimal immersion f1 : CayP
2ðaÞ ! S25ð3a=4Þ or

(2) a parallel immersion defined by f2 � f1 : CayP
2ðaÞ !f1 S25ð3a=4Þ !f2 ~MM 26ð~ccÞ,

where f1 is given above, f2 is a totally umbilical immersion and 3a=4b ~cc.

To prove Theorem 1, we take a di¤erent way from that mentioned in [14]
and utilize the result of Y. Agaoka and E. Kaneda [3]. The proof of Theorem 1
will be given in §4. Preparatorily, in §3 we study the properties of isotropic
immersions of the Cayley plane into a real space form by examining the structure
of the first normal space.

Using the above theorem, we can deal with not only CayP2ðaÞ but also
CayH 2ðaÞ. The other aim of this paper is to establish the following new
theorem which fills up the deficiency in [14] and is an improvement of that:

Theorem 2. Let M be a connected open submanifold of CayP2ðaÞ ða > 0Þ
or CayH 2ðaÞ ða < 0Þ and f an isometric immersion of M into a real space form
~MM 16þpð~ccÞ. Assume that there exists a positive smooth function kðsÞ satisfying that
f maps every Cayley Frenet curve g ¼ gðsÞ of curvature kðsÞ in M to a plane curve

in ~MM 16þpð~ccÞ. Then the open submanifold M must be in CayP2ðaÞ ða > 0Þ and the
immersion f is locally congruent to one of the following examples:

(1) the first standard minimal immersion f1 : CayP
2ðaÞ ! S25ð3a=4Þ,

(2) a parallel immersion defined by f2 � f1 : CayP
2ðaÞ !f1 S25ð3a=4Þ !f2

~MM 16þpð~ccÞ, where f1 is as above, f2 is a totally umbilical immersion and
3a=4b ~cc.

In addition, the Cayley Frenet curve g is a Cayley circle.
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For the notions of Cayley Frenet curves and Cayley circles in the Cayley
plane, we refer to §5. The proof of Theorem 2 will be given in §6.

The author wishes to express his appreciation to Professor S. Maeda for his
constant encouragement and help in developing this paper. He also greatly
appreciates the referee’s valuable suggestions.

2. Preliminaries

In this section we review a few fundamental equations in submanifold theory
and prepare some lemmas. Let M and ~MM be Riemannian manifolds and
f : M ! ~MM an isometric immersion. We identify a vector X of M with a
vector f�ðXÞ of ~MM throughout this paper. The Riemannian metrics on M, ~MM
are denoted by the same notation h ; i. The pull back f �1T ~MM of the tangent
bundle T ~MM of ~MM is orthogonally decomposed into the sum of tangent bundle
TM of M and normal bundle NM: f �1T ~MM ¼ TMlNM. We denote by ‘
and ~‘‘ the covariant di¤erentiations of M and ~MM, respectively. Then the
formulae of Gauss and Weingarten are

~‘‘XY ¼ ‘XY þ sf ðX ;YÞ; ~‘‘Xx ¼ �AxX þ ‘?
Xx

for vector fields X , Y of M and a normal vector field x, where ‘? denotes the
covariant di¤erentiation in the normal bundle NM. The tensors s ¼ sf and Ax

are called the second fundamental form of f and the shape operator in the
direction of x, respectively. We define the covariant di¤erentiation ‘ 0 of the
second fundamental form s of f with respect to the connection in TMlNM
by

ð‘ 0
XsÞðY ;ZÞ ¼ ‘?

X ðsðY ;ZÞÞ � sð‘XY ;ZÞ � sðY ;‘XZÞ

for vector fields X , Y , Z of M. An isometric immersion f is said to be parallel
if its second fundamental form satisfies ‘ 0s ¼ 0.

Let fe1; . . . ; eng be a local field of orthonormal frames on M, where
n ¼ dim M. Then the mean curvature vector field h ¼ hf of f is defined by
h ¼ ð1=nÞ

Pn
i¼1 sðei; eiÞ. If h ¼ 0, the immersion f is said to be minimal. We

say the mean curvature vector field h of f is parallel if ‘?h ¼ 0. It is said to be
totally umbilical if sðX ;YÞ ¼ hX ;Yih for all vector fields X , Y on M. If there
exists a function m on the submanifold M such that hsðX ;YÞ; hi ¼ mhX ;Yi for
any vector fields X , Y on M, then the immersion f is said to be pseudo
umbilical. It is clear that every minimal isometric immersion is pseudo umbilical
and that for a pseudo umbilical immersion we have m ¼ khk2.

A real space form ~MMmð~ccÞ is an m-dimensional Riemannian manifold of
constant sectional curvature ~cc, which is locally congruent to either a Euclidean
space Rm, a standard sphere Smð~ccÞ or a real hyperbolic space Hmð~ccÞ according as
the curvature ~cc is zero, positive or negative. In case that the ambient manifold

is a real space form ~MMmð~ccÞ, the equation of Gauss for an isometric immersion

f : M ! ~MMmð~ccÞ can be written as
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hRðX ;YÞZ;Wi ¼ ~ccðhX ;WihY ;Zi� hX ;ZihY ;WiÞð2:1Þ
þ hsðX ;WÞ; sðY ;ZÞi� hsðX ;ZÞ; sðY ;WÞi;

for vector fields X , Y , Z, W of M, where R represents the curvature tensors
for ‘.

Next, we recall the notion of isotropic immersions in the sense of B. O’Neill.
An isometric immersion f : M ! ~MM is said to be (lx-)isotropic at x A M if
there exists a nonnegative constant lx such that ksðX ;XÞk ¼ lx for every unit
tangent vector X A TxM. If there exists a nonnegative constant l satisfying that
ksðX ;X Þk ¼ l for every point x A M and for every unit tangent vector X A TxM,
then f is called a constant isotropic immersion whose isotropy constant is l.
Note that a totally umbilical immersion is isotropic, but not vice versa. We have
the following lemma (see [12]).

Lemma 1. Let M, M 0 be Riemannian manifolds and ~MM a pseudo Riemannian
manifold. Let f 0 : M ! M 0 be an isometric immersion, f 00 : M 0 ! ~MM a totally
umbilical immersion whose mean curvature vector hf 00 is parallel and let f ¼ f 00 � f 0

be the composition of f 0 and f 00. Then:
(1) The mean curvature vector hf of f is parallel if and only if hf 0 of f 0 is

parallel.
(2) f is constant l-isotropic if and only if f 0 is constant l 0-isotropic, where

l2 ¼ l 02 þ khf 00 k2.
(3) f is parallel if and only if f 0 is parallel.

The first normal space at the point x of M is defined as the subspace N 1
x ðMÞ

of NxM spanned by the image of the second fundamental form at x, that is,

N 1
x ðMÞ ¼ SpanRfsðX ;YÞ;X ;Y A TxMgHNxM;

where SpanRf�g denotes the real vector space spanned by f�g. The discriminant
Dx at x A M is given as

Dx ¼ KðX ;Y Þ � ~KKðX ;Y Þ;

where KðX ;YÞ (resp. ~KKðX ;YÞ) represents the sectional curvature of the plane
spanned by orthonormal vectors X ;Y A TxM for M (resp. for ~MM).

The following two lemmas are due to B. O’Neill ([10]):

Lemma 2. For an isometric immersion f : M ! ~MM the following conditions
are mutually equivalent:

(1) f is lx-isotropic at x A M for some lxðb 0Þ.
(2) hsðX ;XÞ; sðX ;YÞi ¼ 0 for an arbitrary orthogonal pair X ;Y A TxM.

(3) hsðX ;YÞ; sðZ;WÞiþ hsðX ;ZÞ; sðW ;YÞiþ hsðX ;WÞ; sðY ;ZÞi
¼ l2xðhX ;YihZ;Wiþ hX ;ZihW ;Yiþ hX ;WihY ;ZiÞ
for some lxðb 0Þ and for any vectors X ;Y ;Z;W A TxM.
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Lemma 3. Let x be an arbitrary fixed point of M, V an r-dimensional
subspace of TxM and fe1; . . . ; erg an orthonormal basis of V , where 1 < ra
dim M. Let NðVÞ be a subspace of N 1

x ðMÞ given by NðVÞ ¼
SpanRfsðX ;Y Þ;X ;Y A Vg. Suppose that f is lxð> 0Þ-isotropic at the point
x A M and the restriction DxjV of the discriminant Dx to V is constant on V.
Then we have

� rþ 2

2ðr� 1Þ l
2
x aDxjV a l2x:

Moreover,
(1) DxjV ¼ l2x , dim NðVÞ ¼ 1,
(2) DxjV ¼ �fðrþ 2Þ=2ðr� 1Þgl2x ,

Xr

i¼1

sðei; eiÞ ¼ 0 , dim NðVÞ

¼ frðrþ 1Þ=2g � 1;

(3) �fðrþ 2Þ=2ðr� 1Þgl2x < DxjV < l2x , dim NðVÞ ¼ rðrþ 1Þ=2.

3. Isotropic immersions of the Cayley plane

Let Cay denote the set of Cayley numbers, which is an 8-dimensional non-
associative division algebra over the real numbers ([6]). It has multiplicative
identity 1 and a positive definite symmetric bilinear form h ; i. Let fu0 ¼ 1;
u1; . . . ; u7g be an orthonormal basis of Cay with respect to the form h ; i. The
multiplication of Cayley numbers is completely determined by the multiplication
table given below:

u0 u1 u2 u3 u4 u5 u6 u7

u0 u0 u1 u2 u3 u4 u5 u6 u7
u1 u1 �u0 u3 �u2 u5 �u4 u7 �u6
u2 u2 �u3 �u0 u1 �u6 u7 u4 �u5
u3 u3 u2 �u1 �u0 u7 u6 �u5 �u4
u4 u4 �u5 u6 �u7 �u0 u1 �u2 u3
u5 u5 u4 �u7 �u6 �u1 �u0 u3 u2
u6 u6 �u7 �u4 u5 u2 �u3 �u0 u1
u7 u7 u6 u5 u4 �u3 �u2 �u1 �u0

To express the above multiplication simply, we define eij ðeij ¼G1Þ and
kij ðkij ¼ 0; 1; . . . ; 7Þ by

uiuj ¼ eijukijð3:1Þ

for i; j ¼ 0; 1; . . . ; 7.
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Let M be a connected open submanifold of CayP2ðaÞ or CayH 2ðaÞ. The
tangent space of M can be identified with the set of ordered pair of Cayley
numbers CaylCay. The vector space CaylCay has a positive definite sym-
metric bilinear form h ; i given by hða; cÞ; ðb; dÞi ¼ ha; biþ hc; di. We put ei ¼
ðui; 0Þ, ei � ¼ ð0; uiÞ for 0a ia 7. Then the vectors e0; . . . ; e7, e0� ; . . . ; e7 � form
an orthonormal basis of the tangent space of M.

The curvature tensor R of M is given by

hRðða; bÞ; ðc; dÞÞðe; f Þ; ðg; hÞið3:2Þ
¼ aðhc; eiha; gi� ha; eihc; giþ hd; f ihb; hi� hb; f ihd; hiÞ

þ a

4
ðhed; gbi� heb; gdiþ hcf ; ahi� haf ; chiþ had � cb; gf � ehiÞ

(for detail, see [4]).

Remark 1. From (3.2), we see the scalar curvature r of M is given by
r ¼ 144a.

Now, we consider a lxð> 0Þ-isotropic immersion f of M into a real space
form ~MM 16þpð~ccÞ of constant sectional curvature ~cc. Using the equation of Gauss
(2.1) and Lemma 2(3), we have

3hsðX ;YÞ; sðZ;WÞið3:3Þ

¼ hRðZ;XÞY ;Wiþ hRðZ;Y ÞX ;Wiþ ðl2x � 2~ccÞhX ;YihZ;Wi

þ ðl2x þ ~ccÞfhX ;ZihW ;Yiþ hX ;WihY ;Zig

for all vectors X ;Y ;Z;W A TxM. For an orthonormal basis fe0; . . . ; e7;
e0� ; . . . ; e7 �g of the tangent space TxM, we employ the simple notation sij ,
sij � and si �j � instead of sðei; ejÞ, sðei; ej � Þ and sðei � ; ej � Þ, respectively. Then, the
equation (3.3), combined with (3.2), yields the following orthogonal relations:

hsij; skli ¼ hsi �j � ; sk �l �ið3:4Þ

¼ 1

3
fl2x þ 2ða� ~ccÞgdij dkl þ

1

3
fl2x � ða� ~ccÞgðdik djl þ djk dilÞ;

hsij; sk �l �i ¼ 1

3
l2x þ

a

2
� 2~cc

� �
dij dkl ;ð3:5Þ

hsij � ; skl �i ¼ a

4
eijekl dkijkkl þ

1

3
fl2x � ða� ~ccÞgdik djl ;ð3:6Þ

hsij ; skl �i ¼ hsij � ; sk �l �i ¼ 0;ð3:7Þ

where eij and kij are defined by (3.1).
A straightforward calculation shows the following lemmas.

306 hiromasa tanabe



Lemma 4. For a lxð> 0Þ-isotropic immersion f : M ! ~MM 16þpð~ccÞ, we have

khk2 ¼ 1

23
ð3l2x þ 3a� 5~ccÞ;ð3:8Þ

where h is the mean curvature vector of f .

Lemma 5. A lxð> 0Þ-isotropic immersion f : M ! ~MM 16þpð~ccÞ is pseudo um-
bilical.

Consider the vector subspaces S, T , T �, Um ðm ¼ 0; . . . ; 7Þ of the first
normal space N 1

x ðMÞ given by

S ¼ SpanRfs00; . . . ; s77; s0�0 � ; . . . ; s7 �7 �g;
T ¼ SpanRfsij ; 0a i < ja 7g;

T � ¼ SpanRfsi �j � ; 0a i < ja 7g;
Um ¼ SpanRfsij � ; kij ¼ m; 0a ia 7; 0a ja 7g:

Then, the relations ð3:4Þ; . . . ; ð3:7Þ tell us that the vector space N 1
x ðMÞ is decom-

posed into a direct sum of subspaces which are mutually orthogonal:

N 1
x ðMÞ ¼ SlT lT � lU0 l � � �lU7:

Evaluating the dimension of each subspace, we obtain the following lemma
which gives a necessary condition for an isometric immersion f to be isotropic.

Lemma 6. Let f be a lxð> 0Þ-isotropic immersion of M into a real space
form ~MM 16þpð~ccÞ. Then the dimension of the first normal space N 1

x ðMÞ at the point
x of M is equal to either 9, 10, 126, 127, 135 or 136. Moreover, we have

(1) dim N 1
x ðMÞ ¼ 9 , a > 0, ~cc ¼ 3

4 a and l2x ¼ 1
4 a,

(2) dim N 1
x ðMÞ ¼ 10 , a > 0, ~cc < 3

4 a and l2x ¼ a� ~cc,
(3) dim N 1

x ðMÞ ¼ 126 , a < 0, ~cc ¼ � 3
2 a and l2x ¼ � 7

2 a,

(4) dim N 1
x ðMÞ ¼ 127 , a < 0, ~cc < � 3

2 a and l2x þ 5aþ ~cc ¼ 0,

(5) dim N 1
x ðMÞ ¼ 135 , � 2

3
~cc < a < 4

3
~cc and 3l2x þ 3a� 5~cc ¼ 0,

(6) dim N 1
x ðMÞ ¼ 136 , l2x þ 5aþ ~cc > 0, 3l2x þ 3a� 5~cc > 0 and � 5

7 l
2
x <

a� ~cc < l2x.

Proof. Denote by KðX ;YÞ the sectional curvature of the plane spanned by
vectors X ;Y A TxM ¼ CaylCay. Then we see from (3.2) that

Kðða; 0Þ; ðb; 0ÞÞ ¼ hRðða; 0Þ; ðb; 0ÞÞðb; 0Þ; ða; 0Þi=kða; 0Þ5ðb; 0Þk2 ¼ a

for ða; 0Þ; ðb; 0Þ A TxM with ða; 0Þ5ðb; 0Þ0 0. So the restriction DxjCaylf0g of
the discriminant to Cayl f0g is constantly equal to a� ~cc on the linear sub-
space Cayl f0g of TxM, and hence we can apply Lemma 3 to the subspace
Cayl f0g. Our discussion is divided into the following three cases: (A)

a� ~cc ¼ l2x, (B) a� ~cc ¼ �5l2x=7, (C) �5l2x=7 < a� ~cc < l2x.
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First, we investigate the case (A). The relation (3.4) reduces to

hsij; skli ¼ hsi �j � ; sk �l �i ¼ l2xdij dkl

so that we have s00 ¼ s11 ¼ � � � ¼ s77; s0 �0� ¼ s1�1 � ¼ � � � ¼ s7 �7 � and sij ¼
si �j � ¼ 0 for i < j; that is, dim S ¼ 1; 2 and dim T ¼ dim T � ¼ 0: The rela-
tion (3.5) becomes

hsij ; sk �l �i ¼ l2x �
a

2

� �
dij dkl :

We here recall the Gram determinant Gðv1; . . . ; vnÞð¼ Gðfvigi¼1;...;nÞÞ of a set
of vectors v1; . . . ; vn in a real metric vector space given by

Gðv1; . . . ; vnÞ ¼ det

hv1; v1i hv1; v2i � � � hv1; vni

hv2; v1i hv2; v2i � � � hv2; vni

..

. ..
. ..

.

hvn; v1i hvn; v2i � � � hvn; vni

0
BBBB@

1
CCCCA:

It is well known that Gðv1; . . . ; vnÞb 0 and that the vectors v1; . . . ; vn are linearly
independent if and only if the Gram determinant Gðv1; . . . ; vnÞ is nonzero. For
our vectors s00; s0 �0 � A S; we have

Gðs00; s0 �0 � Þ ¼ det
l2x l2x �

a

2

l2x �
a

2
l2x

0
BB@

1
CCA¼ a l2x �

a

4

� �
:

This means that 0 < a=4a l2x and the dimension of the subspace S equals 1
(resp. 2) if and only if ~cc ¼ 3a=4 (resp. ~cc < 3a=4), because a� ~cc ¼ l2x:

We see from (3.6) that

ksij �k2 ¼
a

4
and hsij � ; skl �i ¼ a

4
eijekl for sij � ; skl � A Um:

Hence we have dim Um ¼ 1 ðm ¼ 0; . . . ; 7Þ so dim N 1
x ðMÞ ¼ 9 or 10 according as

~cc ¼ 3a=4 or ~cc < 3a=4. This proves the assertion (1), (2).
Next, we study the case (B). Lemma 3 says that

P7
i¼0 sii ¼ 0 and

dim SpanRfsij; 0a ia 7; 0a ja 7g ¼ 35; so we have dim SpanRfs00; . . . ; s66g ¼ 7
and dim T ¼ 28. On the other hand, for vectors ð0; aÞ; ð0; bÞ A TxM with ð0; aÞ5
ð0; bÞ0 0 we have Kðð0; aÞ; ð0; bÞÞ ¼ a. Hence we can apply Lemma 3 to the
linear subspace f0glCay of TxM. Since Dxjf0glCay ¼ a� ~cc ¼ �5l2x=7, we seeP7

i¼0 si �i � ¼ 0 and dim SpanRfs0 �0 � ; . . . ; s6 �6�g ¼ 7, dim T � ¼ 28 as well. Thus,
we find that our immersion f is minimal:

P7
i¼0 sii þ

P7
i¼0 si �i � ¼ 0. Thanks to

Lemma 4, we have 3l2x þ 3a� 5~cc ¼ 0: This, combined with the equality a� ~cc ¼
�5l2x=7, gives ~cc ¼ �3a=2 and l2x ¼ �7a=2. Then, from the relation (3.5) we
get

hsii; sk �k �i ¼ 0;
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which implies that vectors s00; . . . ; s66, s0 �0� ; . . . ; s6 �6 � form an independent
system and dim S ¼ 14.

We evaluate the dimension of U0 ¼ SpanRfs00� ; . . . ; s77�g. The relation
(3.6) becomes

hsii � ; skk �i ¼ a

4
eiiekk � 2adik;

so

Gðs00 � ; . . . ; sii � Þ ¼ det

� 7
4 a � 1

4 a � � � � 1
4 a

� 1
4 a � 7

4 a
1
4 a

..

. . .
.

� 1
4 a

1
4 a � 7

4 a

0
BBBBBB@

1
CCCCCCA

for 1a ia 7. We see Gðs00� ; . . . ; s77� Þ ¼ 0, Gðs00� ; . . . ; s66� Þ > 0 and we con-
clude dim U0 ¼ 7.

For the other subspace Um, we can also see dim Um ¼ 7. Consequently, we
get the assertion (3).

Lastly, we consider the case (C). In this case,

dim SpanRfsij ; 0a ia 7; 0a ja 7g ¼ dim SpanRfsi �j � ; 0a ia 7; 0a ja 7g ¼ 36

so that dim SpanRfs00; . . . ; s77g ¼ dim SpanRfs0�0 � ; . . . ; s7 �7 �g ¼ 8 and dim T ¼
dim T � ¼ 28. A computation gives

Gðs00; . . . ; s77; s0 �0 � ; . . . ; s7 �7 � Þ ¼ 216

315
ða� ~cc� l2xÞ

14ð5aþ ~ccþ l2xÞð3a� 5~ccþ 3l2xÞ:

Suppose that 5aþ ~ccþ l2x ¼ 0. Since �5l2x=7 < a� ~cc < l2x, we have �2l2x=7 <
a < 0. Then

Gðs00; . . . ; s77; s0 �0 � ; . . . ; s6�6 � Þ ¼ 214 � 713
313

a14ð7aþ 2l2xÞ > 0;

Gðs00� ; . . . ; s77� Þ ¼ 0; Gðs00� ; . . . ; s66� Þ ¼ �24a7 > 0;

hence dim S ¼ 15 and dim U0 ¼ 7. We see dim Um ¼ 7ðm ¼ 1; . . . ; 7Þ as well as
U0. It follows that dim N 1

x ðMÞ ¼ 127.
If 3a� 5~ccþ 3l2x ¼ 0, we have �2l2x=7 < a < 4l2x; from which

Gðs00; . . . ; s77; s0�0 � ; . . . ; s6 �6 � Þ ¼ 215

315 � 53 ða� 4l2xÞ
2ð7aþ 2l2xÞ > 0;

Gðs00 � ; . . . ; s77� Þ ¼ Gðfsij �gkij¼mÞ ¼ � 29

38 � 58 ða� 4l2xÞ
7ð7aþ 2l2xÞ > 0;

and therefore dim N 1
x ðMÞ ¼ 135.
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Suppose ð5aþ ~ccþ l2xÞð3a� 5~ccþ 3l2xÞ > 0. Then

Gðs00� ; . . . ; s77 � Þ ¼ Gðfsij �gkij¼mÞ ¼
1

38
ðl2x � aþ ~ccÞ7ðl2x þ 5aþ ~ccÞ

does not vanish because l2x > a� ~cc. Hence we have l2x þ 5aþ ~cc > 0, 3a� 5~ccþ
3l2x > 0 and dim S ¼ 16, dim Um ¼ 8 ðm ¼ 0; . . . ; 7Þ so that dim N 1

x ðMÞ ¼ 136.
This completes the proof. r

Remark 2. By Lemma 4 and Lemma 6 we find that if the immersion f is
minimal then ~cc > 0 and dim N 1

x ðMÞ must be 9, 126 or 135.

4. The proof of Theorem 1

Our immersion f is a full parallel isotropic immersion of M into a real space
form ~MM 16þpð~ccÞ of constant sectional curvature ~cc. Hence, the mean curvature
vector hf of f is parallel. Therefore, as an immediate consequence of Lemma 4
(3.8), we find that the immersion f is constant isotropic. Moreover, we know
from Lemma 5 that f is pseudo umbilical. So, by using a similar method in
[11] it can be shown that either M is minimal in ~MM 16þpð~ccÞ or M is minimally
immersed into a totally umbilical hypersurface M 16þqðcÞ ðq ¼ p� 1Þ of ~MM 16þpð~ccÞ
which is orthogonal to the mean curvature vector hf . Here note that our sub-
manifold M is not necessarily complete. The above fact holds without the
hypothesis of completeness.

First, we consider the case that M is minimal in ~MM 16þpð~ccÞ. From Remark 2
we have ~cc > 0, so that we can regard M as a minimal submanifold of S16þpð~ccÞ
through a constant isotropic immersion f whose isotropy constant is l. Let i
be the natural embedding of S16þpð~ccÞ into a Euclidean space R17þp. Then, we
can see that the immersion i is a constant

ffiffiffi
~cc

p
-isotropic and khik ¼

ffiffiffi
~cc

p
. Thus,

from Lemma 1, the composition i � f : M ! R17þp is a parallel constant iso-

tropic immersion and its isotropy constant is
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ ~cc

p
. We denote by D and ‘?

the covariant di¤erentiation of R17þp and that in the normal bundle of M in
R17þp, respectively. Let g ¼ gðsÞ be an arbitrary geodesic in M parametrized by

its arclength s. We have
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ ~cc

p
¼ ksi� f ð _gg; _ggÞk. Set V ¼ ð1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ ~cc

p
Þsi� f ð _gg; _ggÞ.

By the formula of Gauss we have

D _gg _gg ¼ si� f ð _gg; _ggÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ ~cc

p
V :

Moreover, by the formula of Weingarten

D _ggV ¼ ð1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ ~cc

p
Þf�Asi� f ð _gg; _ggÞ _ggþ ‘?

_gg ðsi� f ð _gg; _ggÞÞg:

Since i � f is isotropic, it follows that Asi� f ð _gg; _ggÞ _gg ¼ ðl2 þ ~ccÞ _gg. In fact, we take a

local field of orthonormal frames fe 01; e 02; . . . ; e 016g around gðsÞ A M in such a way
that e 01 ¼ _ggðsÞ. Then, owing to Lemma 2 (2), we see

hAsi� f ð _gg; _ggÞ _gg; e
0
ii ¼ hsi� f ð _gg; _ggÞ; si� f ð _gg; e 0i Þi ¼ ksi� f ð _gg; _ggÞk2d1i;
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which shows the equality. By the fact that i � f is parallel, we have
‘?

_gg ðsi� f ð _gg; _ggÞÞ ¼ 0: Hence we obtain

D _ggV ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ ~cc

p
_gg:

Thus we see that every geodesic in M is a circle in R17þp. In general, an
isometric immersion of M into ~MM is called a planar geodesic immersion if every
geodesic in M is mapped locally into a 2-dimensional totally geodesic submani-
folds of ~MM. Our immersion i � f is planar geodesic.

Now, we have the following lemma due to S. L. Hong ([7]):

Lemma 7. Let M be an n-dimensional ðnb 2Þ connected Riemannian man-
ifold, f : M ! Rnþp a planar geodesic immersion. Then f is a constant isotropic
immersion. Denote by l its isotropic constant. If l > 0, the maximal (resp.
minimal) sectional curvature of M is equal to l2 (resp. l2=4), that is,

1

4
l2 aKðX ;YÞa l2

for any orthonormal vectors X ;Y A TxM.

Applying this to our case, we can see that a > 0 and a ¼ l2 þ ~cc. Therefore,
by Lemma 6 and Remark 2, we conclude that p ¼ 9.

Next, we investigate the case that M is minimally immersed into a to-
tally umbilical hypersurface M 16þqðcÞ. Since the totally umbilical immersion of

M 16þqðcÞ into ~MM 16þpð~ccÞ is
ffiffiffiffiffiffiffiffiffiffiffi
c� ~cc

p
-isotropic and its mean curvature vector is

parallel, by virture of Lemma 1, the minimal immersion f 0 : M ! M 16þqðcÞ is a

parallel constant isotropic immersion with its isotropy constant

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � ðc� ~ccÞ

q
.

So, by Remark 2, we have c > 0. Along the same argument as above, we
consider the composition of i 0 � f 0 of a minimal immersion f 0 : M ! S16þqðcÞ
and the natural embedding i 0 : S16þqðcÞ ! R17þq. Since, from Lemma 1 again,
the immersion i 0 � f 0 is a parallel constant isotropic immersion whose isotropy

constant is equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fl2 � ðc� ~ccÞg þ c

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ ~cc

p
; it follows that a > 0 and

q ¼ 9.
Y. Agaoka and E. Kaneda proved the following rigidity theorem ([3]):

Theorem 3. Let f0 be the canonical isometric embedding of CayP2ðaÞ into

the Euclidean space R26. Then, for any isometric immersion f defined on a con-
nected open set of CayP2ðaÞ into R26, there exists a Euclidean transformation A
of R26 satisfying f ¼ A � f0.

Thanks to their result, we find that our immersion f is locally congruent
to either the first standard minimal immersion CayP2ðaÞ ! S25ð3a=4Þ or the
composition of the first standard minimal immersion and a totally umbilical
immersion CayP2ðaÞ ! S25ð3a=4Þ ! ~MM 26ð~ccÞ ð3a=4b ~ccÞ.

311immersions of the cayley projective plane



5. Cayley Frenet curves

We consider a Frenet curve g of proper order 2 in CayP2ðaÞ ða > 0Þ or
CayH 2ðaÞ ða < 0Þ: We can see from (1.1) that the sectional curvature Kð _gg;VÞ
given by the osculating plane spanned by _gg and V is constant along g. Indeed,
since ‘R1 0 we have

‘ _gghRð _gg;VÞV ; _ggi

¼ hRð‘ _gg _gg;VÞV þ Rð _gg;‘ _ggVÞV þ Rð _gg;VÞ‘ _ggV ; _ggiþ hRð _gg;VÞV ;‘ _gg _ggi

¼ khRðV ;VÞV ; _ggi� khRð _gg; _ggÞV ; _ggi� khRð _gg;VÞ _gg; _ggiþ khRð _gg;VÞV ;Vi

¼ 0:

A Frenet curve g of proper order 2 which satisfies Kð _gg;VÞ ¼ a is called a Cayley
Frenet curve. If the curvature k of a Cayley Frenet curve g is constant, namely
if g is a circle, we call g a Cayley circle. We regard a geodesic as a Cayley circle
of null curvature.

A curve g in a Riemannian manifold M is called a plane curve if the curve g
is locally contained in some 2-dimensional totally geodesic submanifold of M.
As a matter of course, every plane curve with positive curvature function is a
Frenet curve of proper order 2. But in general, the converse does not hold. In
the case that the space M is a real space form ~MMmð~ccÞ of constant curvature ~cc,
it is easy to see that a curve g is a Frenet curve of proper order 2 if and only if
the curve g is a plane curve with positive curvature.

Suppose that a connected open submanifold M of CayP2ðaÞ or CayH 2ðaÞ is
isometrically immersed into a real space form ~MM 16þpð~ccÞ through an immersion f .
It is needless to say that the extrinsic shape f � g of a Frenet curve g of proper
order 2 in M is not always a plane curve in the ambient space ~MM 16þpð~ccÞ. How-
ever, we have the following ([2]):

Proposition 1. The immersions (1), (2) given in Theorem 2 map every
Cayley circle in CayP2ðaÞ to a circle in the ambient space.

6. The proof of Theorem 2

The proof is similar to that in [14]. But for readers we explain it in detail.
Let x be an arbitrary point of M and X A TxM an arbitrary unit vector. Let
g ¼ gðsÞ be a Cayley Frenet curve in M satisfying the equations (1.1) and the
initial condition gð0Þ ¼ x, _ggð0Þ ¼ X and KðX ;Vð0ÞÞ ¼ a. Since the curve f � g is

a plane curve in ~MM 16þpð~ccÞ by assumption, there exist a (nonnegative) function
~kk ¼ ~kkðsÞ and a field of unit vectors ~VV ¼ ~VVðsÞ along f � g in ~MM 16þpð~ccÞ which
satisfy that

~‘‘ _gg _gg ¼ ~kk ~VV ; ~‘‘ _gg
~VV ¼ �~kk _gg:ð6:1Þ

Then by the formula of Gauss, we have

~kk ~VV ¼ kV þ sð _gg; _ggÞ;ð6:2Þ
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hence

~kk2 ¼ k2 þ ksð _gg; _ggÞk2:ð6:3Þ

The function ~kk is positive because k > 0.
For the left-hand side of (6.2), by using (6.1) and (6.2) again, we get

~kk~‘‘ _ggð~kk ~VVÞ ¼ ~kk _~kk~kk ~VV � ~kk3 _gg ¼ _~kk~kkfkV þ sð _gg; _ggÞg � ~kk3 _gg:ð6:4Þ
And for the right-hand side of (6.2), by the formulae of Gauss and Weingarten
we have

~kk~‘‘ _ggfkV þ sð _gg; _ggÞgð6:5Þ

¼ ~kkf _kkV þ k~‘‘ _ggV � Asð _gg; _ggÞ _ggþ ‘?
_gg ðsð _gg; _ggÞÞg

¼ ~kkf _kkV þ kð‘ _ggV þ sð _gg;VÞÞ � Asð _gg; _ggÞ _ggþ ð‘ 0
_ggsÞð _gg; _ggÞ þ 2sð‘ _gg _gg; _ggÞg

¼ ~kkf _kkV � k2 _ggþ 3ksð _gg;VÞ � Asð _gg; _ggÞ _ggþ ð‘ 0
_ggsÞð _gg; _ggÞg:

We compare the tangential components and the normal components for the
submanifold M in (6.4) and (6.5), respectively. Then we obtain the following
equations:

_~kk~kkkV � ~kk3 _gg ¼ ~kkf _kkV � k2 _gg� Asð _gg; _ggÞ _ggg;ð6:6Þ
_~kk~kksð _gg; _ggÞ ¼ ~kkf3ksð _gg;VÞ þ ð‘ 0

_ggsÞð _gg; _ggÞg:ð6:7Þ

Di¤erentiating the both sides of (6.3), we have

~kk _~kk~kk ¼ k _kkþ hð‘ 0
_ggsÞð _gg; _ggÞ; sð _gg; _ggÞiþ 2khsðV ; _ggÞ; sð _gg; _ggÞi:ð6:8Þ

On the other hand, the equation (6.7) yields

~kk _~kk~kksð _gg; _ggÞ ¼ ~kk2f3ksð _gg;VÞ þ ð‘ 0
_ggsÞð _gg; _ggÞg:ð6:9Þ

Substitute (6.3) and (6.8) into (6.9) and set s ¼ 0. Then we have

fkð0Þ _kkð0Þ þ hð‘ 0
XsÞðX ;X Þ; sðX ;X Þið6:10Þ

þ 2kð0ÞhsðX ;XÞ; sðX ;Vð0ÞÞigsðX ;XÞ

¼ fkð0Þ2 þ ksðX ;XÞk2gf3kð0ÞsðX ;Vð0ÞÞ þ ð‘ 0
XsÞðX ;XÞg:

We note that there exists another Cayley Frenet curve g1 ¼ g1ðsÞ with the same
curvature k in M satisfying ‘ _gg1 _gg1 ¼ kV1 and ‘ _gg1V1 ¼ �k _gg1 with the initial con-
dition g1ð0Þ ¼ x, _gg1ð0Þ ¼ X and V1ð0Þ ¼ �Vð0Þ. Then the equality (6.10) for g1
turns to

fkð0Þ _kkð0Þ þ hð‘ 0
XsÞðX ;X Þ; sðX ;X Þið6:11Þ

� 2kð0ÞhsðX ;XÞ; sðX ;Vð0ÞÞigsðX ;XÞ

¼ fkð0Þ2 þ ksðX ;XÞk2gf�3kð0ÞsðX ;Vð0ÞÞ þ ð‘ 0
XsÞðX ;XÞg:
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Therefore, from (6.10) and (6.11) we obtain

2hsðX ;X Þ; sðX ;Vð0ÞÞisðX ;X Þ ¼ 3fkð0Þ2 þ ksðX ;XÞk2gsðX ;Vð0ÞÞ:ð6:12Þ

Taking the inner product of both sides of (6.12) with sðX ;X Þ, we get

2hsðX ;XÞ; sðX ;Vð0ÞÞiksðX ;XÞk2

¼ 3fkð0Þ2 þ ksðX ;X Þk2ghsðX ;XÞ; sðX ;Vð0ÞÞi

and hence

f3kð0Þ2 þ ksðX ;X Þk2ghsðX ;XÞ; sðX ;Vð0ÞÞi ¼ 0:

Since 3kð0Þ2 þ ksðX ;XÞk2 > 0, we have hsðX ;XÞ; sðX ;Vð0ÞÞi ¼ 0. Thus, again
from (6.12), we see that sðX ;Vð0ÞÞ ¼ 0 holds for any X A TxM and any
Vð0Þ A TxM satisfying KðX ;Vð0ÞÞ ¼ a at an arbitrary point x A M. It follows
that

sð _gg;VÞ ¼ 0 along g:ð6:13Þ

Taking the inner product of both sides of (6.6) with V , we have

_~kk~kkk ¼ ~kk _kk� ~kkhAsð _gg; _ggÞ _gg;Vi

¼ ~kk _kk� ~kkhsð _gg; _ggÞ; sð _gg;VÞi:

Owing to (6.13), the above equation becomes

_~kk~kkk ¼ ~kk _kk:ð6:14Þ
Then the equation (6.7), together with (6.13) and (6.14), yields

ð‘ 0
_ggsÞð _gg; _ggÞ ¼

_~kk~kk

~kk
sð _gg; _ggÞ ¼ _kk

k
sð _gg; _ggÞ;

and

ð‘ 0
XsÞðX ;X Þ ¼ _kkð0Þ

kð0Þ sðX ;XÞ:

Changing X into �X , we get ð‘ 0
XsÞðX ;XÞ ¼ 0. Thanks to Codazzi’s equation

in a space of constant curvature ð‘ 0
XsÞðY ;ZÞ ¼ ð‘ 0

YsÞðX ;ZÞ, the immersion f is
parallel.

Next, by (6.14) we see that the equation (6.6) reduces to Asð _gg; _ggÞ _gg ¼ ð~kk2 � k2Þ _gg.
Therefore

hsðX ;X Þ; sðX ;YÞi ¼ hAsðX ;XÞX ;Yi ¼ 0

for any orthonormal pair of vectors X ;Y A TxM at each point x A M. Thus, by
virtue of Lemma 2, the immersion f is isotropic at each point x A M. Hence, as
mentioned in the proof of Theorem 1, f is constant isotropic.
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Now, since our immersion is parallel, we can see that the first normal space
N 1ðMÞ ¼ 6N 1

x ðMÞ is invariant under parallel translations with respect to the
connection in the normal bundle and the dimension of N 1

x ðMÞ is constant on
M. If the immersion f is not full, thanks to a theorem of J. Erbacher [5],
there exists a totally geodesic submanifold M 16þqð~ccÞ of ~MM 16þpð~ccÞ of dimension
16þ q such that f ðMÞHM 16þqð~ccÞ, where q ¼ dim N 1ðMÞ. Then the immersion
f : M ! M 16þqð~ccÞ is a full parallel isotropic immersion. Hence, by Theorem 1,
our immersion f is locally congruent to one of the examples (1), (2) in Theorem
2.

Finally, we shall show that the curve g satisfying the hypothesis of Theorem
2 is a Cayley circle. Assume that the curvature k is not constant. Then there
exists some s0 with _kkðs0Þ0 0. Since k; ~kk > 0, we find _~kk~kkðs0Þ0 0 from (6.14).
From the fact that ‘ 0s ¼ 0 and (6.13) we can see that the equation (6.7)
yields sð _ggðs0Þ; _ggðs0ÞÞ ¼ 0. As we know that f is constant isotropic, we conclude
sðX ;X Þ ¼ 0 for an arbitrary unit vector X A TxM at each point x A M. Hence
the immersion f : M ! ~MM 16þpð~ccÞ is totally geodesic. But it is known that the
manifold M cannot be immersed into a real space form as a totally geodesic
submanifold. Thus we have a contradiction, so that the curve g is a Cayley
circle. This completes the proof.

Remark 3. Recently, T. Adachi and T. Sugiyama characterized some
isometric immersions from the view point of curvature logarithmic derivatives
of curves. See for example [1].
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