HARMONIC MAPS FROM THE RIEMANN SPHERE INTO THE COMPLEX PROJECTIVE SPACE AND THE HARMONIC SEQUENCES

HIROKO KAWABE

Abstract

When harmonic maps from the Riemann sphere into the complex projective space are energy bounded, it contains a subsequence converging to a bubble tree map $f^I:T^I\to \mathbf{C}P^n$. We show that their ∂ -transforms and $\bar{\partial}$ -transforms are also energy bounded. Hence their subsequences converge to harmonic bubble tree maps $f_1^{I_1}:T^{I_1}\to \mathbf{C}P^n$ and $f_{-1}^{I_1}:T^{I_{-1}}\to \mathbf{C}P^n$ respectively. In this paper, we show relations between $f^I, f_1^{I_1}$ and $f_{-1}^{I_{-1}}$.

1. Introduction

In [12], Sacks & Uhlenbeck have shown that any harmonic maps defined on a closed surface with bounded energy contains a subsequence weakly converging to a set of harmonic maps and that a bubbling phenomenon may occur in the convergence. Gromov ([6]) also noticed a bubbling phenomenon in the study of pseudo holomorphic maps.

In this paper, we concentrate on harmonic maps from the Riemann sphere S^2 , g_0 into the complex projective space $\mathbb{C}P^n$, g. Here we identify S^2 , g_0 with $\mathbb{C}P^1$, g and consider it as the complex manifold. Combining the resuls by Eells & Wood in [4, §6] with Wolfson in [14], for each full harmonic map $f: S^2 \to \mathbb{C}P^n$, we get a harmonic sequence

$$seg(f,r): 0 \stackrel{\bar{\partial}}{\leftarrow} f_0 \stackrel{\partial}{\rightarrow} f_1 \stackrel{\partial}{\rightarrow} \cdots \stackrel{\partial}{\rightarrow} f_r \stackrel{\partial}{\rightarrow} \cdots \stackrel{\partial}{\rightarrow} f_n \stackrel{\partial}{\rightarrow} 0$$

with $f_r = f$.

Let $\mathcal{H}arm(\mathbb{C}P^n)$ be the set of harmonic maps in a Banach manifold $W^{1,p}(S^2,\mathbb{C}P^n)$ for p>2. Refining the "Sacks-Uhlenbeck" limit, Parker & Wolfson ([11]) give a definition of "converging to a harmonic bubble tree map". Though their definition in [11] is for pseudo-holomorphic maps, as mentioned in it, the definition is applicable for harmonic maps. In [11] and [10], they have

¹⁹⁹¹ Mathematics Subject Classification. 2000MSC Primary 58E20; Secondary 53C43. Key words and phrases. harmonic maps, bubbling, gluing. Received November 24, 2009; revised December 18, 2009.

shown that, in this sense, harmonic maps with bounded energy contain a sequence converging to a harmonic bubble tree map satisfying appropriate conditions. Our main result is the following. As for details of notations or terminologies, we will define in the following sections.

MAIN THEOREM. Let S^2 , g_0 be the Riemann sphere and $\mathbb{C}P^n$, g be the complex projective space. Take a sequence $\{f^k\}_k$ in $\mathcal{H}arm(\mathbb{C}P^n)$ which are energy bounded. Then both $\{\partial f^k\}_k$ and $\{\bar{\partial} f^k\}_k$ are also energy bounded. Passing through subsequences, $\{f^k\}_k$, $\{\partial f^k\}_k$ and $\{\bar{\partial} f^k\}_k$ converge to either trivial maps or harmonic bubble tree maps

$$f^{I} = \bigvee_{\ell \in I} f^{(\ell)} : T^{I} \to \mathbb{C}P^{n}$$

$$f_{1}^{I_{1}} = \bigvee_{\ell' \in I_{1}} f_{1}^{(\ell')} : T^{I_{1}} \to \mathbb{C}P^{n}$$

$$f_{-1}^{I_{-1}} = \bigvee_{\ell'' \in I_{-1}} f_{-1}^{(\ell'')} : T^{I_{-1}} \to \mathbb{C}P^{n}$$

respectively satisfying the followings:

- (1) If $\partial f^{(\ell)}$ is non-trivial, it is equivalent to $f_1^{(\ell')}$ for some $\ell' \in I_1$; $f_1^{(\ell')} = I_1$
- (1) If of \$\epsilon\$ is non-trivial, it is equivalent to \$f_1\$ for some \$\epsilon \in I_1\$; \$f_1\$ = \$\partial f^{(\epsilon)} \circ \sigma_{\epsilon} \text{satisfying } \sigma_{\epsilon}(B_{f_1^{(\epsilon')}}) \sigma_{\epsilon} B_{f_1^{(\epsilon)}}\$.
 (2) When \$f_1^{(\epsilon')}\$ is not equivalent to any \$\partial f^{(\epsilon)}\$, \$f_1^{(\epsilon')}\$ is a holomorphic map of the length no greater than \$n-r-1\$.
 (3) If \$\bar{\partial} f^{(\epsilon')}\$ is non-trivial, it is equivalent to \$f_{-1}^{(\epsilon'')}\$ for some \$\epsilon'' \in I_{-1}\$; \$f_{-1}^{(\epsilon'')}\$ is non-trivial, it is equivalent to \$f_{-1}^{(\epsilon'')}\$ for some \$\epsilon'' \in I_{-1}\$; \$f_{-1}^{(\epsilon'')}\$ is not equivalent to any \$\bar{\partial} f^{(\epsilon'')}\$ is an anti-holomorphic map of the length no greater than \$r-1\$.

Here r+1 *is the* $\bar{\partial}$ -order of f.

Here and throughout this paper, to simplify notation, we adopt the convention of immediately renaming subsequences and so a subsequence of $\{f^k\}$ is still denoted by the same way.

Contents are as follows. In $\S 2$, we begin to introduce harmonic maps defined on S^2 , g_0 into $\mathbb{C}P^n$, g. Associated to each harmonic map, we consider its harmonic sequence. We refer related results. In §3, we define a harmonic bubble tree map introduced by Parker & Wolfson in [11]. Then we show Main Theorem. In §4, we consider when harmonic maps into either $\mathbb{C}P^1$ or $\mathbb{C}P^2$ are gluable. Lastly, in §5, we consider examples of gluable or non-gluable harmonic bubble tree maps and their harmonic sequences.

2. A harmonic map and a harmonic sequence

Let \mathbb{C}^{n+1} be the complex (n+1)-dimensional space equipped with the standard Hermitian inner product defined by

$$X \cdot Y = \sum_{j} x_j \overline{y}_j$$
 where $X = (x_j)_{0 \le j \le n}$, $Y = (y_j)_{0 \le j \le n} \in \mathbb{C}^{n+1}$.

Put $|X| = \sqrt{X \cdot X}$. We equip the Fubini-Study metric g on $\mathbb{C}P^n$ of constant holomorphic sectional curvature 4. As for the geometry of $\mathbb{C}P^n$, refer [7, IX. 6. Example 6.3]. When n = 1, we get an isomorphism $S^2 \simeq \mathbb{C}P^1$ through a stereographic projection

$$S^2 - \{\infty\} \to \mathbb{C} \simeq U_0 = \{[z_0 : z_1] \in \mathbb{C}P^1 \mid z_0 \neq 0\} = \mathbb{C}P^1 - \{[0 : 1]\}$$

which takes the north pole to the origin, the south pole ∞ to infinity, and the equator to the unit circle. Here $[z_0:z_1]$ is the homogeneous coordinate system of $\mathbb{C}P^1$. Let S^2 , g_0 be the sphere with the Reimann metirc g_0 induced from $\mathbb{C}P^1$. As mentioned in §1, we also equip the complex structure on S^2 induced from $\mathbb{C}P^1$. On a coordinate neighbourhood U_0 , the metric g_0 is customary represented by $ds_0^2 = \varphi \overline{\varphi} = \frac{dz d\overline{z}}{(1+|z|^2)^2}$ for $z = \frac{z_1}{z_0} \in \mathbb{C} \simeq U_0$. Here φ is determined up to a complex factor of absolute value 1.

Throughout this paper, take and fix a real p > 2. As $1 > \frac{2}{p}$, we can get a Banach manifold $W^{1,p}(S^2, \mathbb{C}P^n)$ consisting of maps $f: S^2 \to \mathbb{C}P^n$ whose derivatives of order ≤ 1 are L_p integrable. A map $f \in W^{1,p}(S^2, \mathbb{C}P^n)$ is harmonic if it is a critical point of the energy functional $E: W^{1,p}(S^2, \mathbb{C}P^n) \to \mathbb{R}$ defined by

$$E(f) = \int_{S^2} |df|^2 \frac{\sqrt{-1}}{2} \varphi \wedge \overline{\varphi}$$

where $|df|^2$ is the Hilbert-Schmidt norm $\langle g_0, f^*g \rangle_{HS}$. Thus we consider the set $\mathscr{H}arm(\mathbb{C}P^n)$ of harmonic maps as a subspace of $W^{1,p}(S^2,\mathbb{C}P^n)$. Because of the regularity and the Sobolev embedding theorem $C^0 \supset W^{1,p}$, $\mathscr{H}arm(\mathbb{C}P^n)$ is contained in the set $C^s(S^2,\mathbb{C}P^n)$ of all C^s maps for any $s \geq 0$. Since f is defined between Kähler manifolds, any holomorphic or anti-holomorphic map is harmonic. Refer [9] and also [3, (8.15) Corollary]. Denote by $\mathscr{H}ol(\mathbb{C}P^n)$ the subspace of $\mathscr{H}arm(\mathbb{C}P^n)$ consisting of holomorphic maps.

Now we introduce a ∂ transform and a $\bar{\partial}$ transform in [1] which is the same correspondence given in [4, §3]. For a smooth map $f: S^2 \to \mathbb{C}P^n$, let $\pi_f: V(f) \to S^2$ be the tautological complex line bundle whose fiber at $z \in S^2$ is f(z). For a C-line X in \mathbb{C}^{n+1} , denote by X^\perp the orthogonal complement of X in \mathbb{C}^{n+1} . Define a smooth map $f^\perp: S^2 \to G(n, n+1)$ by $f^\perp(z) = f(z)^\perp$. Here G(n, n+1) is the complex Grassmann manifold consisting of n-dimensional subspaces in \mathbb{C}^{n+1} . We equip the standard Riemann metric g_n and the complex structure on it. Refer [7, IX, Example 6.4]. f^\perp also defines the tautological bundle $V(f^\perp) \to S^2$. By [1, §2], both V(f) and $V(f^\perp)$ are holomorphic bundles over S^2 .

Take a unitary frame Z_0, Z_1, \ldots, Z_n of \mathbb{C}^{n+1} so that Z_0 defines f. Then put

$$dZ_0 = \omega_0 Z_0 + \sum_{r \ge 1} \omega_r Z_r, \quad f^* \omega_r = a_r \varphi + b_r \overline{\varphi}$$

and define maps

$$\begin{split} &\widehat{\sigma}: V(f) \to V(f^{\perp}) \otimes T^{(1,0)}, \quad \widehat{\sigma}(\xi^0 Z_0) = \left(\xi^0 \sum_r a_r Z_r\right) \otimes \varphi, \\ &\overline{\widehat{\sigma}}: V(f) \to V(f^{\perp}) \otimes T^{(0,1)}, \quad \overline{\widehat{\sigma}}(\xi^0 Z_0) = \left(\xi^0 \sum_r b_r Z_r\right) \otimes \overline{\varphi}. \end{split}$$

Here $T^{(1,0)}$ (resp. $T^{(0,1)}$) is the cotangent bundle on S^2 of type (1,0) (resp. (0,1)). We get the followings.

THEOREM 1 ([1], §2). If $f \in \mathcal{H}arm(\mathbb{C}P^n)$, ∂ is a holomorphic bundle map and $\bar{\partial}$ is an anti-holomorphic bundle map.

Denote by [V(f)] the projectivization of V(f). Though φ is determined only up to a complex factor of absolute value 1, we get the fundamental colliniation of f

$$[V(f)] \ni [f(z)] \rightarrow [\partial f(z)] \in [V(f^{\perp})]$$

if $\partial f(z) \neq 0$. As mentioned in [1, §2], when f is harmonic, by Theorem 1, we can get a well-defined non-trivial map $\partial f: S^2 \to \mathbb{C}P^n$ as far as f is not antiholomorphic. We call it the ∂ transform of f. When f is anti-holomorphic, we define the ∂ transform of f as a zero map. Similarly we also get the fundamental colliniation

$$[V(f)]\ni [f(z)]\to [\overline{\partial} f(z)]\in [V(f^\perp)]$$

if $\bar{\partial} f(z) \neq 0$. If f is not holomorphic, this defines a non-trivial map $\bar{\partial} f: S^2 \to \mathbb{C}P^n$ which we call the $\bar{\partial}$ transform of f. When f is holomorphic, the $\bar{\partial}$ transform of f. form of f is defined as a zero map.

THEOREM 2 ([1], Theorem 2.2). Take $f \in \mathcal{H}arm(\mathbb{C}P^n)$. Then we get the

- (1) $f^{\perp}: S^2 \rightarrow G(n, n+1)$ is harmonic.
- (2) Both the ∂ transform of f and its $\overline{\partial}$ transform are harmonic.
- (3) If ∂f is non-trivial, ∂∂f = f.
 (4) If ∂f is non-trivial, ∂∂f = f.

We say that $f \in \mathcal{H}arm(\mathbb{C}P^n)$ is full if its image lies in no proper projective subspace of $\mathbb{C}P^n$. Associated to a full map $f \in \mathcal{H}ol(\mathbb{C}P^n)$, take a lift $Z: S^2 \supset$ $U \to \mathbb{C}^{n+1} - \{0\}$ over a chart U. Classically we get the Frenet frame $\{Z_r\}_{r \geq 0}$ of f which is obtained by the Gram-Schmidt's orthogonalization of $\{\frac{\partial^r}{\partial z^r}Z\}_r$ except at finite point of S^2 . Since the zeros of

$$Z \wedge \frac{\partial}{\partial z} Z \wedge \cdots \wedge \frac{\partial^n}{\partial z^n} Z$$

are finite and are removable, this frame can be uniquely extended over S^2 . Refer [15, §4]. We get

$$dZ_r = -\bar{a}_{r-1}\bar{\varphi}Z_{r-1} + \omega_r Z_r + a_r \varphi Z_{r+1}$$

for $0 \le r \le n$ where $a_{-1} = a_n = 0$. For $0 \le r \le n$, let $f_r : S^2 \to \mathbb{C}P^n$ be the non-trivial map defined by Z_r . By definition, f_{r+1} is the $\hat{\partial}$ transform of f_r and f_{r-1} is the $\bar{\partial}$ transform of f_r . Hence, by Theorem 2, f_r is harmonic for any r. We call the sequence of harmonic maps

$$seq(f,0): 0 \stackrel{\bar{\partial}}{\longleftarrow} f_0 = f \stackrel{\partial_0}{\longrightarrow} f_1 \stackrel{\partial_1}{\longrightarrow} \cdots \stackrel{\partial_{r-1}}{\longrightarrow} f_r \stackrel{\partial_r}{\longrightarrow} \cdots \stackrel{\partial_{n-1}}{\longrightarrow} f_n \stackrel{\partial_n}{\longrightarrow} 0$$

a harmonic sequence of f with the length n.

When $f \in \mathscr{H}ol(\mathbb{C}P^n)$ is not full, we can choose an isometry $T^A : \mathbb{C}P^n \to \mathbb{C}P^n$ induced from a unitary transformation $A : \mathbb{C}^{n+1} \to \mathbb{C}^{n+1}$ so that

$$f = T^A \circ \iota \circ f^A : S^2 \xrightarrow{f^A} \mathbb{C}P^{n_0} \subset \mathbb{C}P^n \xrightarrow{T^A} \mathbb{C}P^n$$

by a full $f^A \in \mathcal{H}ol(\mathbb{C}P^{n_0})$ and the inclusion ι . We define a harmonic sequence of f of the length n_0

$$seq(f,0): 0 \stackrel{\overline{\partial}}{\longleftarrow} f_0 = f \stackrel{\partial_0}{\longrightarrow} f_1 \stackrel{\partial_1}{\longrightarrow} \cdots \stackrel{\partial_{r-1}}{\longrightarrow} f_r \stackrel{\partial_r}{\longrightarrow} \cdots \stackrel{\partial_{n_0-1}}{\longrightarrow} f_{n_0} \stackrel{\partial_{n_0}}{\longrightarrow} 0$$

by compositions $f_r = T^A \circ \iota \circ f_r^A$;

$$seq(f^A,0): 0 \xleftarrow{\bar{\partial}} f_0^A = f^A \xrightarrow{\bar{\partial}_0} f_1^A \xrightarrow{\bar{\partial}_1} \cdots \xrightarrow{\bar{\partial}_{r-1}} f_r^A \xrightarrow{\bar{\partial}_r} \cdots \xrightarrow{\bar{\partial}_{n_0-1}} f_{n_0}^A \xrightarrow{\bar{\partial}_{n_0}} 0.$$

Here seq(f,0) is defined independently on the choice of a unitary matrix A. Following to [4, Definition 5.1], we define the ∂ -order of $f \in \mathcal{H}arm(\mathbb{C}P^n)$ by

$$\max_{U} \max_{z \in U} \dim span\{ \hat{\sigma}^{\alpha} Z_{U}(z) \mid 0 \leq \alpha \}$$

and also the $\bar{\partial}$ -order of f by

$$\max_{U} \max_{z \in U} \dim span\{\bar{\partial}^{\beta} Z_{U}(z) \mid 0 \leq \beta\}.$$

Here $Z_U: S^2 \supset U \to \mathbb{C}^{n+1}$ is a lift of f over a chart U and $span\{\mathbf{v}^\alpha\}_\alpha$ is the subspace of \mathbb{C}^{n+1} spanned by vectors $\{\mathbf{v}^\alpha\}_\alpha$. These orders are determined independently on the choice of a lift Z_U . By [14, Theorem 3.1 & Theorem 3.4], we get the following.

THEOREM 3. For any non-trivial $f \in \mathcal{H}arm(\mathbb{C}P^n)$, we get $f_0 \in \mathcal{H}ol(\mathbb{C}P^n)$ so that the harmonic sequence of f_0 contains f;

$$seq(f,r): 0 \stackrel{\bar{\partial}}{\longleftarrow} f_0 \stackrel{\partial_0}{\longrightarrow} f_1 \stackrel{\partial_1}{\longrightarrow} \cdots \stackrel{\partial_{r-1}}{\longrightarrow} f_r = f \stackrel{\partial_r}{\longrightarrow} \cdots \stackrel{\partial_r}{\longrightarrow} f_{n_0} \stackrel{\partial_{n_0}}{\longrightarrow} 0$$

where $1 \le n_0 \le n$, r+1 is the $\bar{\partial}$ -order of f and n_0-r+1 is its ∂ -order.

We also call seq(f,r) the harmonic sequence of f with the length n_0 . Obviously $f \in \mathcal{H}arm(\mathbb{C}P^n)$ is full exactly when the length of seq(f,r) is n. Let $\mathcal{H}arm^*(\mathbb{C}P^n)$ be the subspace of $\mathcal{H}arm(\mathbb{C}P^n)$ consisting of full maps. Correspondingly $\mathcal{H}ol^*(\mathbb{C}P^n)$ is denoted for the space of all full maps in $\mathcal{H}ol(\mathbb{C}P^n)$.

Essentially, by [4, Theorem 6.9], we get the following. Theorem 3 gives the correspondence of the following theorem.

Theorem 4. There is a bijective correspondence between $f \in \mathcal{H}arm^*(\mathbb{C}P^n)$ and pairs (f_0, r) where $f_0 \in \mathcal{H}ol^*(\mathbb{C}P^n)$ and r is an integer with $0 \le r \le n$.

For a smooth map $f \in W^{1,p}(S^2, \mathbb{C}P^n)$, we denote by $c_1(f)$ the first Chern number of the tautological bundle $V(f) \to S^2$. By [14], we get the followings.

Lemma 2.1 [14, §2 & §3]. For $f \in \mathcal{H}ol^*(\mathbb{C}P^n)$, choose the Frenet frame $\{Z_r\}_r$ of f and put

$$dZ_r = -\bar{a}_{r-1}\bar{\varphi}Z_{r-1} + \omega_r Z_r + a_r \varphi Z_{r+1}$$

for $0 \le r \le n$ where $a_{-1} = a_n = 0$. Then each f_r defined by Z_r holds

$$E(f_r) = \int (|a_{r-1}|^2 + |a_r|^2) \frac{\sqrt{-1}}{2} \varphi \wedge \bar{\varphi},$$

$$c_1(f_r) = \frac{1}{\pi} \cdot \int (\left|a_{r-1}\right|^2 - \left|a_r\right|^2) \frac{\sqrt{-1}}{2} \varphi \wedge \overline{\varphi}.$$

Denote by $R_{\hat{\sigma}}(f)$ the ramification index of $\hat{\sigma}: V(f) \to V(\hat{\sigma}f) \otimes T^{(1,0)}$ which is the number of zeros of ∂ counted according to multiplicity. Similarly $R_{\bar{\partial}}(f)$ is the ramification index of $\bar{\partial}: V(f) \to V(\bar{\partial}f) \otimes T^{(0,1)}$. As for the following lemma, we refer [5] and also [14, §3].

LEMMA 2.2. For $f \in \mathcal{H}arm(\mathbb{C}P^n)$, if ∂f is non trivial, we get

$$c_1(\partial f) = c_1(f) + R_{\partial}(f) + 2.$$

When $\bar{\partial} f$ is non-trivial, we also get $c_1(\bar{\partial} f) = c_1(f) - R_{\bar{\partial}}(f) - 2$.

By Lemma 2.1 and 2.2, we get the following inequalities.

LEMMA 2.3 [14, Theorem 3.1]. For $f \in \mathcal{H}ol^*(\mathbb{C}P^n)$, choose the Frenet frame $\{Z_r\}_r$ as in Lemma 2.1. Then we get the followings for any r.

- (1) $\sum_{r+1 \le q \le n} \sum_{r \le s \le q-1} R_{\partial}(f_s) < \frac{1}{\pi} E(f_r) + (n+1) \cdot |c_1(f_r)|.$ (2) $\sum_{0 \le q \le r-1} \sum_{q \le s \le r-1} R_{\partial}(f_s) < \frac{1}{\pi} E(f_r) + (n+1) \cdot |c_1(f_r)|.$

3. Harmonic bubble tree maps

It is well-known that $\mathcal{H}arm(\mathbb{C}P^n)$ may be non-compact with respect to $W^{1,2}$ topology. To consider this bubbling phenomenon, we refer Parker & Wolfson ([11]) and Parker ([10]).

Let $TS^2 \to S^2$ be the complex tangent bundle over the complex manifold S^2 , g_0 . Compactifying each vertical fiber, we get a bundle $\Sigma(S^2) \to S^2$ with fibers $S_z = S^2$ where we identify z of S_z with the south pole ∞ of S^2 and equip the complex structure on $\Sigma(S^2)$. By the induction on $k \ge 1$, we define a bundle

$$\Sigma^k(S^2) := \Sigma(\Sigma^{k-1}(S^2)) \to \Sigma^{k-1}(S^2).$$

A bubble domain at level k is a fiber $S^k_z = S^2$ of $\Sigma^k(S^2) \to \Sigma^{k-1}(S^2)$ and a bubble domain tower is a union $T^I = \bigvee_{\ell \in I} S^{(\ell)}$ of the base space $S^{(0)}$ of $\Sigma(S^2) \to S^2$ and finite number of bubble domains $S^{(\ell)}$ $(\ell \in I, \ell \geq 1)$ with

$$\pi_{\ell}: \Sigma S^{(\ell')} \supset S^{(\ell)} = S^{k_{\ell}}_{z_{\ell}} = \pi_{\ell}^{-1}(z_{\ell}) \to z_{\ell} \in S^{(\ell')}.$$

We denote by ∞_{ℓ} the south pole of $S^{(\ell)}$. Motivated by Parker [10], if a map

$$f^I = \bigvee_{\ell \in I} f^{(\ell)} : T^I = \bigvee_{\ell \in I} S^{(\ell)} \to \mathbb{C}P^n$$

consisits of non-trivial maps $f^{(\ell)}$ satisfying $f^{(\ell)}(\infty_\ell) = f^{(\ell')}(z_\ell)$ when $\pi_\ell^{-1}(z_\ell) = S^{(\ell)}$, we call f^I a bubble tree map, $f^{(0)}$ a base map, $f^{(\ell)}$ a bubble map for $\ell \in I - \{0\}$ and $z_\ell \in S^{(\ell')}$ a bubble point of $f^{(\ell')}$. Denote by $B_{f^{(\ell)}}$ the set of bubble points of $f^{(\ell)}$.

We call f^I a harmonic bubble tree map if $f^{(\ell)}$ is a harmonic map for each $\ell \in I$. Similarly we call f^I a holomorphic (resp. an anti-holomorphic) bubble tree map if $f^{(\ell)}$ is holomorphic (resp. anti-holomorphic) for any $\ell \in I$.

We say that a sequence $\{f^k\}_{k\geq 1}$ in $\mathscr{H}arm(\mathbb{C}P^n)$ converges to a harmonic bubble tree map $f^I:T^I\to\mathbb{C}P^n$ if each f^k defines a bubble tree map $f^{k,I}=\bigvee_{\ell\in I}f^{k,\ell}:T^I\to\mathbb{C}P^n$ by the iterated renormalization procedure and if $\{f^{k,I}\}_k$ converges to f^I uniformly in $C^0\cap W^{1,2}$ and uniformly in C^r $(r\geq 1)$ on any compact set of $T^I-\bigcup_{\ell}(\{\infty_\ell\}\cup B_{f^{(\ell)}})$. Here $f^{k,\ell}=f^k\circ\sigma_{k,\ell}$ by a fractional linear transformation $\sigma_{k,\ell}$ of $S^{(\ell)}=S^2$ fixing the south pole on a compact set of $S^{(\ell)}-\{\infty_\ell\}\cup B_{f^{(\ell)}}$ for k large enough. For details, refer [11, §4]. By [10, Theorem 2.2 & Corollary 2.3], we get the following.

THEOREM 5. Let $\{f^k\}_k$ be a sequence in $\mathcal{H}arm(\mathbb{C}P^n)$ with $\sup_k E(f^k) < \infty$. Then a subsequence converges to a harmonic bubble tree map $f^I = \bigvee_\ell f^{(\ell)} : T^I \to \mathbb{C}P^n$ satisfying

$$\lim_{k} E(f^{k}) = \sum_{\ell} E(f^{(\ell)})$$
 and $\alpha = \lim_{k} c_{1}(f^{k}) = \sum_{\ell} c_{1}(f^{(\ell)}).$

For $\mathbb{C}P^n$, g, we get a constant B_0 so that any $f \in \mathscr{H}arm(\mathbb{C}P^n)$ with $E(f) < 2B_0$ is trivial (refer [12]). We choose B_0 as a scaling constant. Put $H^+ = \{z \mid |z| \geq 1\} \subset \mathbb{C}$. By the choice of the translation and the rescaling in the renormalization, if a sequence of harmonic maps converges to a harmonic bubble tree map $f^I = \bigvee_{\ell} f^{(\ell)} : T^I \to \mathbb{C}P^n$, each bubble map $f^{(\ell)}$ is parametrized satisfying

(BC)
$$\int_{H^{+}} |df^{(\ell)}|^{2} \frac{\sqrt{-1}}{2} dz d\bar{z} = B_{0}$$

and $B_{f^{(\ell)}}$ is contained in the northern hemisphere of $f^{(\ell)}$ when $\ell \neq 0$.

In the case of $\mathbb{C}P^n$, the map

$$c_1: \pi_2(\mathbb{C}P^n) \simeq H_2(\mathbb{C}P^n; \mathbb{Z}) \to \mathbb{Z}$$

defined by $c_1([f]) = c_1(f)$ is an isomorphism. Let $\mathcal{H}arm_{\alpha}(\mathbb{C}P^n)$ be the subspace of $\mathcal{H}arm(\mathbb{C}P^n)$ consisting of f with $c_1(f) = \alpha$. For each $\alpha \in \mathbb{Z}$, $\mathcal{H}arm_{\alpha}(\mathbb{C}P^n)$ is non-empty. By Theorem 5, if $\{f^k\}_k$ in $\mathcal{H}arm(\mathbb{C}P^n)$ converges to a harmonic bubble tree map, $f^k \in \mathcal{H}arm_{\alpha}(\mathbb{C}P^n)$ for any k large enough.

Lemma 3.1. Let $\{f^k\}_k$ be a sequence in $\mathcal{H}arm_{\alpha}(\mathbb{C}P^n)$ with $E(f^k) \leq E$ for any k. Then we get

$$E(\partial f^k) + E(\overline{\partial} f^k) \le 4E + 2\pi\{2 + (n+3) \cdot |\alpha|\}$$

for any k.

Proof. By Lemma 2.2, $c_1(\partial f^k) = c_1(f^k) + R_{\partial}(f^k) + 2$ and, by Lemma 2.3,

$$R_{\partial}(f^k) < \frac{1}{\pi}E(f^k) + (n+1)|c_1(f^k)|.$$

Hence

$$|c_1(\partial f^k)| \le |c_1(f^k)|(n+2) + 2 + \frac{E}{\pi}.$$

As $c_1(f^k) = \alpha$, by Lemma 2.1, we get

$$E(\partial f^k) = E(f^k) - \pi c_1(f^k) - \pi c_1(\partial f^k) \le 2E + \pi \{2 + (n+3)|\alpha|\}.$$

As for $E(\bar{\partial}f^k)$, we can show similarly.

We say that f_0 is equivalent to f_1 in $W^{1,p}(S^2, \mathbb{C}P^n)$ if $f_1 = f_0 \circ \sigma$ by some linear fractional transformation $\sigma: S^2 \to S^2$ fixing the south pole. We also say that $\tilde{f}^I = \bigvee_{\ell \in I} \tilde{f}^{(\ell)}: \tilde{T}^I \to \mathbb{C}P^n$ is equivalent to $f^I = \bigvee_{\ell \in I} f^{(\ell)}: T^I \to \mathbb{C}P^n$ if $\tilde{f}^{(\ell)}$ is equivalent to $f^{(\ell)}$;

$$ilde{f}^{(\ell)} = f^{(\ell)} \circ \sigma_\ell : ilde{S}^{(\ell)} = ilde{S}^{(\ell')}_{ ilde{z}_\ell} \stackrel{\sigma_\ell}{\longrightarrow} S^{(\ell)} = S^{(\ell')}_{z_\ell} \stackrel{f^{(\ell)}}{\longrightarrow} \mathbf{C} P^n$$

with $\sigma_{\ell}(\tilde{z}_{\ell}) = z_{\ell}$ for each $\ell \in I$. Here $\tilde{T}^I = \bigvee_{\ell \in I} \tilde{S}^{(\ell)}$ and σ_0 is necessary the identity.

Now we begin to show Main Theorem. As $E(f^k) \leq E$ for any k, a subsequence of $\{f^k\}_k$ converges and so we can assume that $f^k \in \mathcal{H}arm_{\alpha}(\mathbb{C}P^n)$ for any k. Hence, by Lemma 3.1, we get $E(\partial f^k) \leq E_1$ for any k. Therefore, passing through subsequences, both $\{f^k\}_k$ and $\{\partial f^k\}_k$ converge to $f^I = \bigvee_{\ell \in I} f^{(\ell)} : T^I \to \mathbb{C}P^n$ and $f_1^{I_1} = \bigvee_{\ell' \in I_1} f_1^{(\ell')} : T^{I_1} \to \mathbb{C}P^n$ respectively. More precisely, consider the renormalization $f^{k,I} = \bigvee_{\ell} f^{k,\ell} : T^I = \bigvee_{\ell \in I} S^{(\ell)} \to \mathbb{C}P^n$ of f^k converging to $f^I = \bigvee_{\ell} f^{(\ell)}$. Put $f_1^k = \partial f^k$ and consider again its renormalization

$$f_1^{k,I_1} = \bigvee_{\ell' \in I_1} f_1^{k,\ell} : T^{I_1} = \bigvee_{\ell' \in I_1} S^{(\ell')} \to \mathbb{C}P^n$$

whose subsequence converges to $f_1^{I_1} = \bigvee_{\ell' \in I_1} f_1^{(\ell')}$. If

$$f_1^{k,\ell'} = \partial f^k \circ \sigma_1^{k,\ell'} = \partial f^{k,\ell} \circ \tilde{\sigma}_1^{k,\ell'}$$

on a geodesic disc D' in $S^{(\ell')} - B_{f_1^{(\ell')}} \cup \{\infty_\ell\}$ for any k large enough, $\{f_1^{k,\ell'}\}_k$ converges to $f_1^{(\ell')}$ which is either equal to non-trivial $\partial f^{(0)}$ or equivalent to non-trivial $\partial f^{(\ell)}$ for some $\ell \in I - \{0\}$. On the other hand, if $\partial f^{(\ell)}$ is non-trivial, we can get $f_1^{(\ell')}$ equivalent to $\partial f^{(\ell)}$. As the convergence of $\{f^{k,\ell}\}_k$ is with respect to C^s -norm for any $s \geq 0$, if $f_1^{(\ell')} = \partial f^{(\ell)} \circ \sigma_\ell$, we get

$$\sigma_{\ell}(B_{f_1^{(\ell')}}) \subset B_{f^{(\ell)}}.$$

Now suppose that $\{f_1^{k,\ell'}\}_k$ converges to $f_1^{(\ell')}$ which is not equivalent to any $\partial f^{(\ell)}$ for $\ell \in I$. As $\sigma_1^{k,\ell'}: S^2 \to S^2$ is a holomorphic map given by

$$z = \sigma_1^{k,\ell'}(w) = \alpha_1^{k,\ell'}w + \beta_1^{k,\ell'},$$

 $\overline{\partial_w z}$ is a non-zero constant $\alpha_1^{k,\ell'}$. Hence

$$\overline{\partial} f_1^{k,\ell'} = \overline{\partial} ((\partial f^k) \circ \sigma_1^{k,\ell'}) = (\overline{\partial} \partial f^k) \circ \sigma_1^{k,\ell'} = f^k \circ \sigma_1^{k,\ell'}$$

on D' for any k large enough where the constant $\alpha_1^{k,\ell'}$ vanishes because of the homogeneous coordinate. A subsequence of $\{\bar{\partial}f_1^{k,\ell'}\}_k$ converges to zero on D'. By the uniqueness continuation theorem ([13]), this means the holomorphicity of $f_1^{(\ell')}$. The length of $f_1^{(\ell')}$ is obvious. By replacing ∂ transform with $\bar{\partial}$ transform, we can show the corresponding

assertion. This completes the proof of Main Theorem.

4. $\mathcal{H}arm_{\alpha}(\mathbb{C}P^1)$ and $\mathcal{H}arm_{\alpha}(\mathbb{C}P^2)$

We say that a harmonic bubble tree map $f^I: T^I \to \mathbb{C}P^n$ is gluable if a sequence of harmonic maps converges to a harmonic bubble tree map $\tilde{f}^I: \tilde{T}^I \to \mathbb{C}P^n$ equivalent to $f^I: T^I \to \mathbb{C}P^n$. Firstly we consider the case when n=1. Note that any map in $\mathcal{H}arm(\mathbb{C}P^1)$ is either holomorphic or anti-holomorphic.

Lemma 4.1. Let $f^I = \bigvee_{\ell \in I} f^{(\ell)} : T^I \to \mathbb{C}P^1$ be a holomorphic bubble tree map. Then $\partial f^I = \bigvee_{\ell \in I} \partial f^{(\ell)}$ is a well-defined anti-holomorphic bubble tree map defined on T^I . If f^I is gluable, so is ∂f^I .

Proof. Let $f = [p_0 : p_1] \in \mathcal{H}ol(\mathbb{C}P^1)$ be non-trivial where p_0 and p_1 have no common zero. Then, by calculations,

$$\partial f = [(p_1 p_0' - p_1' p_0) \bar{p}_1 : -(p_1 p_0' - p_1' p_0) \bar{p}_0].$$

If $p_1p_0'-p_1'p_0=0$ on a domain, $p_0\equiv K\cdot p_1$ and so we deduce a contradiction. Hence $\partial f=[\bar{p}_1:-\bar{p}_0].$

Now take a holomorphic bubble tree map $f^I = \bigvee_{\ell \in I} f^{(\ell)} : T^I \to \mathbb{C}P^1$. As shown above, when $f^{(\ell)}(\infty) = f^{(\ell')}(z_\ell)$, $\partial f^{(\ell)}(\infty) = \partial f^{(\ell')}(z_\ell)$. This shows the first assertion.

When a sequence $\{f^k\}_k$ in $\mathcal{H}ol(\mathbb{C}P^1)$ converges to f^I , by calculations, $\{\partial f^k\}_k$ converges to ∂f^I .

Now we consider the case when n=2. We start to refer results of existence theorems. Denote by $\mathscr{H}ol_{\alpha,r}(\mathbb{C}P^2)$ the subspace of $\mathscr{H}ol(\mathbb{C}P^2)$ consisting of f with $c_1(f)=\alpha$ and $R_{\partial}(f)=r$. We also put $\mathscr{H}ol_{\alpha,r}^*(\mathbb{C}P^2)=\mathscr{H}ol_{\alpha,r}(\mathbb{C}P^2)\cap \mathscr{H}ol^*(\mathbb{C}P^2)$. Obviously $\mathscr{H}ol_{\alpha,r}^*(\mathbb{C}P^2)=\mathscr{H}ol_{\alpha,r}(\mathbb{C}P^2)$ if $2\alpha+r+2<0$.

We also consider the subspace $\mathcal{H}arm_{\alpha,E}(\mathbb{C}P^2)$ of $\mathcal{H}arm_{\alpha}(\mathbb{C}P^2)$ consisting of f with $E(f)=\pi E$. Note that any map in $\mathcal{H}arm_{\alpha,E}(\mathbb{C}P^2)$ is full when $E\neq 0$, $|\alpha|$. We get the followings.

Theorem 6 ([2], Lemma 1.3 & Theorem 1.4). For $0 \le r \le -\alpha - 2$, $\mathcal{H}ol_{\alpha,r}(\mathbb{C}P^2)$ is a smooth connected complex submanifold of $\mathcal{H}ol(\mathbb{C}P^2)$ of complex dimension $2-3\alpha-r$. Moreover there is a homeomorphism

$$\mathcal{H}ol_{\alpha,r}(\mathbb{C}P^2)\ni f\to \partial f\in \mathcal{H}arm_{\alpha+2+r,-(3\alpha+r+2)}(\mathbb{C}P^2).$$

Remark 4.1. By [8, Proposition 2.7], $\mathcal{H}ol_{\alpha,r}(\mathbb{C}P^2)$ is non-empty exactly when $0 \le r \le -\frac{3}{2}\alpha - 3$.

As for the gluing, we get the following.

PROPOSITION 4.2. Let $f^I = \bigvee_{\ell \in I} f^{(\ell)} : T^I \to \mathbb{C}P^2$ be a harmonic bubble tree map with $f^{(\ell)} \in \mathcal{H}arm_{\alpha_\ell, E_\ell}(\mathbb{C}P^2)$ and $E_\ell \neq |\alpha_\ell|$ for any $\ell \in I$. If f^I is gluable, both $\partial f^I = \bigvee_{\ell \in I} \partial f^{(\ell)} : T^I \to \mathbb{C}P^2$ and $\overline{\partial} f^I = \bigvee_{\ell \in I} \overline{\partial} f^{(\ell)} : T^I \to \mathbb{C}P^2$ are well-defined gluable bubble tree maps.

Proof. If necessary, replace f^I by an equivalent harmonic bubble tree map (which we denote by the same way) and take a sequence $\{f^k\}_k$ in $\mathcal{H}arm(\mathbb{C}P^2)$ converging to f^I . Without loss of generality, we can assume that $f^k \in \mathcal{H}arm_{\alpha,E}(\mathbb{C}P^2)$ with $E \neq |\alpha|$ for any k. We get a harmonic sequence

$$seq(f^k, 1): 0 \stackrel{\bar{\partial}}{\leftarrow} \bar{\partial} f^k \stackrel{\partial}{\rightarrow} f^k \stackrel{\partial}{\rightarrow} \partial f^k \stackrel{\partial}{\rightarrow} 0.$$

Passing through a subsequence, $\{\partial f^k\}_k$ converges to $f_1^{I_1} = \bigvee_{\ell \in I_1} f_1^{(\ell)} : T^{I_1} \to \mathbf{C}P^2$. When $f_1^{(\ell')}$ is not equivalent to any $\partial f^{(\ell)}$, by Main Theorem, $f_1^{(\ell')}$ is a holomorphic map whose ∂ transform is trivial. Then $f_1^{(\ell')}$ becomes trivial and we deduce a contradiction. By the assumption, $\partial f^{(\ell)}$ is non-trivial. Hence $I_1 = I$ and each $f_1^{(\ell')}$ is equivalent to $\partial f^{(\ell)}$. This implies that $\partial f^I = \bigvee_{\ell \in I} \partial f^{(\ell)}$ is a well-defined anti-holomorphic bubble tree map. Moreover, by Main Theorem again, ∂f^I is defined on T^I . Similarly we can show the corresponding result for $\overline{\partial} f^I$.

Proposition 4.3. For $0 \le r \le -\alpha - 2$, let $\{f^k\}_k$ be a sequence in $\mathcal{H}ol_{\alpha,r}(\mathbb{C}P^2)$ converging to $f^I = \bigvee_{\ell \in I} f^{(\ell)} : T^I \to \mathbb{C}P^2$ with $f^{(\ell)} \in \mathcal{H}ol_{\alpha_\ell,r_\ell}^*(\mathbb{C}P^2)$ for any ℓ . Suppose that $\{\partial f^k\}_k$ converges to a harmonic bubble tree map $f_1^{I_1} : T^{I_1} \to \mathbb{C}P^2$. Then $f_1^{I_1}$ is equivalent to a well-defined harmonic bubble tree map $\partial f^I = \bigvee_{\ell \in I} \partial f^{(\ell)} : T^I \to \mathbb{C}P^2$ exactly when

$$\sum_{\ell} R_{\partial}(f^{(\ell)}) = r - 2 \times (|I| - 1).$$

Here |I| is denoted for the number of elements of I.

Proof. Since $E(\partial f^k) = (-3\alpha - 2 - r)\pi > 0$, by Main Theorem, a subsequence of $\{\partial f^k\}_k$ converges to $f_1^{I_1}: T^{I_1} \to \mathbb{C}P^2$. Firstly we note that $\partial f^{(\ell)}$ is non-trivial. As $E(f^k) = \sum_{\ell} E(f^{(\ell)})$, by Lemma

2.1 and Lemma 2.2, we get

$$E(\partial f^k) - \sum_\ell E(\partial f^{(\ell)}) = \pi \Biggl\{ \sum_\ell R_\partial(f^{(\ell)}) - R_\partial(f^k) + 2 \cdot |I| - 2 \Biggr\} \ge 0.$$

Here this is equal to zero exacly when $\{\partial f^k\}_k$ converges to a bubble tree map equivalent to a well-defined bubble tree map ∂f^I .

5. Example

In this section, we show examples to consider relations between a harmonic bubble tree map f^I and its ∂ transform. We consider the case when n=2.

For any $f \in \mathcal{H}ol(\mathbb{C}P^2)$, put $f = [p_0 : p_1 : p_2]$ where $[p_0 : p_1 : p_2]$ are homogeneous coordinates of $\mathbb{C}P^2$. Put $h_f = [h_0 : h_1 : h_2]$ where

$$(h_0, h_1, h_2) = (p_1'p_2 - p_1p_2', -p_0'p_2 + p_0p_2', p_0'p_1 - p_0p_1').$$

When p_0 , p_1 , p_2 have no common zeros, $R_{\partial}(f)$ is the number of common zeros of three holomorphic maps h_0 , h_1 , h_2 as far as $2 \cdot \max_i \deg p_i - 2 = \max_i \deg h_i$. For details, refer [2, §2].

From now on, we denote by $T^I = S^{(0)} \vee S^{(1)}$ the bubble domain tower defined by the base space $S^{(0)} = S^2$ and a bubble domain $S^{(1)} = \pi_1^{-1}(0) \subset \Sigma S^{(0)}$. Denote by

$$\mathscr{H}ol_{-2,0}(\mathbb{C}P^2) * \mathscr{H}ol_{-2,0}(\mathbb{C}P^2)$$

the set of holomorphic bubble tree maps $f^I=f^{(0)}\vee f^{(1)}:T^I\to \mathbb{C}P^2$ with $f^{(\ell)}\in \mathscr{H}ol_{-2,0}(\mathbb{C}P^2)$ for $\ell=0,1$. Since $\mathscr{H}ol_{-2,0}^*(\mathbb{C}P^2)=\mathscr{H}ol_{-2,0}(\mathbb{C}P^2)$, by Theorem 6, $\mathscr{H}ol_{-2,0}(\mathbb{C}P^2)$ is a complex manifold of the complex dimension 8.

Example 5.1. Take $f^I \in \mathcal{H}ol_{-2,0}(\mathbb{C}P^2) * \mathcal{H}ol_{-2,0}(\mathbb{C}P^2)$. By Proposition 4.3, if a sequence of $f_k \in \mathcal{H}ol_{-4,2}(\mathbb{C}P^2)$ converges to f^I , a subsequence of $\{\partial f_k\}_k$

converges to a harmonic bubble tree map equivalent to $\partial f^I := \partial f^{(0)} \vee \partial f^{(1)} : T^I \to \mathbb{C}P^2$.

In this case, we also get $E(\hat{\sigma}^2 f_k) = 4\pi$ and $E(\hat{\sigma}^2 f^{(\ell)}) = 2\pi$ for $\ell = 0, 1$. Hence, by Main Theorem, passing throught a subsequence, $\{\hat{\sigma}^2 f_k\}_k$ converges to a harmonic bubble tree map equivalent to $\hat{\sigma}^2 f^I := \hat{\sigma}^2 f^{(0)} \vee \hat{\sigma}^2 f^{(1)} : T^I \to \mathbb{C}P^2$.

Example 5.2. Let $f^I = f^{(0)} \vee f^{(1)} : T^I \to \mathbb{C}P^2$ be the holomorphic bubble tree map defined by

$$f^{(0)}(z) = [1:z:z^2], \quad f^{(1)}(z) = [z^2:z:1].$$

As $R_{\partial}(f^{(\ell)}) = 0$ for $\ell = 0, 1, f^I \in \mathcal{H}ol_{-2,0}(\mathbb{C}P^2) * \mathcal{H}ol_{-2,0}(\mathbb{C}P^2)$. A sequence of harmonic maps

$$f_R(z) = \left[1: z + \frac{1}{Rz}: z^2 + \frac{1}{R^2 z^2}\right]$$

converges to a holomorphic bubble tree map equivalent to $f^I: T^I \to \mathbb{C}P^2$. By calculations, we also get $R_{\partial}(f_R) = 2$. Hence, by Proposition 4.3, $\{\partial f_R\}_R$ converges to a harmonic bubble tree map equivalent to a well-defined harmonic bubble tree map $\partial f^I: T^I \to \mathbb{C}P^2$. Moreover

$$\partial^2 f_R(z) = \left[\bar{z}^2 + \frac{1}{R^2 \bar{z}^2} + \frac{4}{R} : -2\bar{z} - \frac{2}{R\bar{z}} : 1 \right]$$

converge to an anti-holomorphic bubble tree map equivalent to a well-defined $\partial^2 f^I: T^I \to \mathbb{C}P^n$. In fact, by using "Mathematica Ver.6.0", we can calculate

$$\partial f^{(0)}(z) = [-\bar{z} - 2z\bar{z}^2 : 1 - z^2\bar{z}^2 : 2z + z^2\bar{z}],$$

$$\partial f^{(1)}(z) = [2z + z^2\bar{z} : 1 - z^2\bar{z}^2 : -\bar{z} - 2z\bar{z}^2]$$

and

$$\partial^2 f^{(0)}(z) = [\bar{z}^2 : -2\bar{z} : 1], \quad \partial^2 f^{(1)}(z) = [1 : -2\bar{z} : \bar{z}^2].$$

Hence both $\partial f^I = \partial f^{(0)} \vee \partial f^{(1)} : T^I \to \mathbb{C}P^2$ and $\partial^2 f^I = \partial^2 f^{(0)} \vee \partial^2 f^{(1)} : T^I \to \mathbb{C}P^2$ are well-defined.

Example 5.3. We consider a bubble tree map $f^I = f^{(0)} \vee f^{(1)} : T^I \to \mathbb{C}P^2$ defined by

$$f^{(0)}(z) = [1:z^2:z], \quad f^{(1)}(z) = [z^2:z:1]$$

which is contained in $\mathcal{H}ol_{-2,0}(\mathbb{C}P^2) * \mathcal{H}ol_{-2,0}(\mathbb{C}P^2)$. For R > 1 large enough, we define holomorphic maps $f_R \in W^{1,p}(S^2,\mathbb{C}P^2)$ by

$$f_R(z) = \left[1: z^2 + \frac{1}{Rz}: z + \frac{1}{R^2 z^2}\right]$$

which converge to a holomorphic bubble tree map equivalent to $f^I: T^I \to \mathbb{C}P^2$ if $R \to \infty$. Here $R_{\partial}(f_R) = 0$ and so $\{\partial f_R\}_R$ does not converge to a harmonic map equivalent to ∂f^I . In fact, we calculate $\partial f^{(\ell)}$ to get

$$\partial f^{(0)}(z) = [-\bar{z} - 2z\bar{z}^2 : 2z + z^2\bar{z} : 1 - z^2\bar{z}^2],$$

$$\partial f^{(1)}(z) = [2z + z^2\bar{z} : 1 - z^2\bar{z}^2 : -\bar{z} - 2z\bar{z}^2]$$

where

$$\partial f^{(0)}(0) = [0:0:1], \quad \partial f^{(1)}(\infty) = [0:1:0].$$

Hence these cannot define a bubble tree map on T^I . In fact, when $R \to +\infty$, ∂f_R converge to a harmonic bubble tree map

$$f_1^{I_1} = \partial f^{(0)} \vee f_1^{(01)} \vee f_1^{(1)} : T^{I_1} = S^{(0)} \vee S^{(01)} \vee S^{(1)} \to \mathbb{C}P^2$$

where $f_1^{(1)}$ is equivalent to $\partial f^{(1)}$ and the map $f_1^{(01)}:S^{(01)}\to \mathbb{C}P^2$ is equivalent to $\tilde{f}_1^{(01)}$;

$$\tilde{f}_1^{(01)}(z) = [0:1:-z^2].$$

Since the center of mass of $f_1^{(01)}$ is the north pole, we can define T^{I_1} by

$$S^{(01)} = S_0^{(0)} \subset \Sigma S^{(0)}, \quad S^{(1)} = S_0^{(01)} \subset \Sigma S^{(01)}$$

and choose $f_1^{(01)}$ with $f_1^{(01)}(0) = \tilde{f}_1^{(01)}(0)$. We have

$$E(\partial f_R) = E(\partial f^{(0)}) + E(\partial f^{(1)}) + E(f_1^{(01)}) = 10\pi.$$

When $R \to +\infty$, $\partial^2 f_R$ given by

$$\begin{split} \partial^2 f_R(z) &= [1 - 2R^2 \bar{z}^3 + 4R\bar{z}^3 + R^3 \bar{z}^6 : -2R\bar{z} + R^3 \bar{z}^4 : R^2 \bar{z}^2 - 2R^3 \bar{z}^5] \\ &= \left[\bar{z}^3 + \frac{4}{R^2} - \frac{2}{R} + \frac{1}{R^3 \bar{z}^3} : \bar{z} - \frac{2}{R^2 \bar{z}^2} : -2\bar{z}^2 + \frac{1}{R\bar{z}} \right] \\ &= \left[\frac{1}{R} + \frac{4}{R^3 \bar{z}^3} - \frac{2}{R^2 \bar{z}^3} + \frac{1}{R^4 \bar{z}^6} : \frac{1}{R\bar{z}^2} - \frac{2}{R^3 \bar{z}^5} : -\frac{2}{R\bar{z}} + \frac{1}{R^2 \bar{z}^4} \right] \end{split}$$

also converges to an anti-holomorphic bubble tree map

$$f_2^{I_1} = \partial^2 f^{(0)} \vee f_2^{(01)} \vee f_2^{(1)} : T^{I_1} \to \mathbb{C}P^2$$

where $f_2^{(1)}$ and $f_2^{(01)}$ are equivalent to $\partial^2 f^{(1)}$ and $\partial \tilde{f}_1^{(01)}$ respectively;

$$\begin{split} \partial^2 f^{(0)}(z) &= [\bar{z}^2 : 1 : -2\bar{z}], \\ \partial \tilde{f}_1^{(01)}(z) &= [0 : \bar{z}^2 : 1], \\ \partial^2 f^{(1)}(z) &= [1 : -2\bar{z} : \bar{z}^2]. \end{split}$$

These satisfy $E(\partial^2 f_R) = E(\partial^2 f^{(0)}) + E(\partial f_1^{(0)}) + E(\partial^2 f^{(1)}) = 6\pi$.

Example 5.4. Let $f^I=f^{(0)}\vee f^{(1)}\in \mathscr{H}ol_{-2,0}(\mathbb{C}P^2)*\mathscr{H}ol_{-2,0}(\mathbb{C}P^2)$ be defined by

$$f^{(0)}(z) = [p_0 : p_1 : p_2] = [1 : z^2 : 1 + z]$$
 and
 $f^{(1)}(z) = [q_0 : q_1 : q_2] = [z^2 : 1 : z + z^2].$

We can get $f_R \in \mathcal{H}ol_{-4}^*(\mathbb{C}P^2)$ defined by

$$f_R(z) = \left[1 : \frac{1}{R^2 z^2} + z^2 : 1 + z + \frac{1}{Rz}\right]$$

converging to a harmonic bubble tree map equivalent to f^I when $R \to +\infty$. Since $R_{\partial}(f_R) = 2$, by Proposition 4.3, both $\{\partial f_R\}_R$ and $\{\partial^2 f_R\}_R$ converge to harmonic bubble tree maps equivalent to well-defined bubble tree maps $\partial f^I: T^I \to \mathbb{C}P^2$ and $\partial^2 f^I: T^I \to \mathbb{C}P^2$ respectively.

For $p(z) = a_0 + a_1 z + a_2 z^2$ and $q(z) = b_0 + b_1 z + b_2 z^2$, put $|p - q| = \sum_k |a_k - b_k|$.

Lemma 5.1. Let $f^I=f^{(0)}\vee f^{(1)}:T^I\to {\bf C}P^2$ be a holomorphic bubble tree map in Example 5.4 with

$$f^{(0)} = [p_0 : p_1 : p_2], \quad f^{(1)} = [q_0 : q_1 : q_2].$$

Then, for any $\varepsilon > 0$ small enough, we can choose a holomorphic bubble tree map $\tilde{f}^I = \tilde{f}^{(0)} \vee \tilde{f}^{(1)} : T^I \to \mathbb{C}P^2$ in $\mathscr{H}ol_{-2,0}(\mathbb{C}P^2) * \mathscr{H}ol_{-2,0}(\mathbb{C}P^2)$ with

$$\tilde{f}^{(0)} = [\tilde{p}_0 : \tilde{p}_1 : \tilde{p}_2], \quad \tilde{f}^{(1)} = [\tilde{q}_0 : \tilde{q}_1 : \tilde{q}_2]$$

so that $\sum_{\ell}(|\tilde{p}_{\ell}-p_{\ell}|+|\tilde{q}_{\ell}-q_{\ell}|)<\varepsilon$ and that $\partial \tilde{f}^I=\partial \tilde{f}^{(0)}\vee \partial \tilde{f}^{(1)}:T^I\to \mathbb{C}P^2$ is well-defined but non-gluable.

Proof. When the degrees of polynomials p and q are no greater than 2, we can choose $\varepsilon_0>0$ so that p and q have no common zeros as far as $|p-p_0|+|q-q_0|<\varepsilon_0$. Here $p_0(z)=1$ and $q_0(z)=z^2$. Hence we can choose $\varepsilon>0$ so that $\tilde{f}^{(\ell)}\in \mathscr{H}ol_{-2,0}(\mathbb{C}P^2)$ for $\ell=0,1$ if

$$\sum_{0 < j < 2} (|\tilde{p}_j - p_j| + |\tilde{q}_j - q_j|) < \varepsilon.$$

Put

$$\tilde{p}_{\ell}(z) = \alpha_{\ell 0} + \alpha_{\ell 1} z + \alpha_{\ell 2} z^2, \quad \tilde{q}_{\ell}(z) = \beta_{\ell 0} + \beta_{\ell 1} z + \beta_{\ell 2} z^2$$

with $\alpha_{00}=1$ and $\beta_{02}=1$. Since $\alpha_{00}=\beta_{02}=1$, $\tilde{f}^{(0)}(0)=\tilde{f}^{(1)}(\infty)$ exactly when $\alpha_{\ell 0}=\beta_{\ell 2}$ for $\ell=0,1,2$. Moreover the complex conjugates of $h_{\tilde{f}^{(\ell)}}$ is equal to $\partial^2 \tilde{f}^{(\ell)}$. Since $\tilde{f}^{(\ell)}$ is full, $\partial^2 \tilde{f}^{(\ell)}$ is non-trivial with $c_1(\partial^2 \tilde{f}^{(\ell)})=2$. Moreover $\partial^2 \tilde{f}^{(0)}(0)=\partial^2 \tilde{f}^{(1)}(+\infty)$ exactly when $\alpha_{\ell k}$ and $\beta_{\ell k}$ additionally satisfy

$$\beta_{11}(\alpha_{01}\alpha_{20} - \alpha_{21}) = \beta_{21}(\alpha_{01}\alpha_{10} - \alpha_{11}) - \beta_{01}(\alpha_{10}\alpha_{21} - \alpha_{11}\alpha_{20}).$$

If necessary, we rechoose $\varepsilon > 0$ so small that

$$\alpha_{20} > \frac{1}{2}$$
 and $-\frac{1}{2} > \alpha_{01}\alpha_{20} - \alpha_{21}$.

Denote by \tilde{U}_{ε} the set of all $(\tilde{f}^{(0)}, \tilde{f}^{(1)})$ whose polynomials have coefficients $\alpha_{\ell k}$, $\beta_{\ell k}$ satisfying above conditions. By definition, both $\tilde{f}^I = \tilde{f}^{(0)} \vee \tilde{f}^{(1)}$ and $\partial^2 \tilde{f}^I = \partial^2 \tilde{f}^{(0)} \vee \partial^2 \tilde{f}^{(1)}$ are well-defined bubble tree maps defined on T^I . Moreover, in such a case, we can calculate to show that $\partial \tilde{f}^I = \partial \tilde{f}^{(0)} \vee \partial \tilde{f}^{(1)}$ are well-defined harmonic bubble tree map defined on T^I .

As the complex dimension of \tilde{U}_{ε} is equal to 13 and that of $\mathscr{H}ol_{-4,2}(\mathbb{C}P^2)$ is 12 by Theorem 6, there is $\tilde{f}^I \in \tilde{U}_{\varepsilon}$ so that $\partial \tilde{f}^I$ is well-defined but not gluable.

Example 5.5. We consider a holomorphic bubble tree map which contains a non-full map. Let $f^I = f^{(0)} \vee f^{(1)} : T^I \to \mathbb{C}P^2$ be the holomorphic bubble tree map defined by

$$f^{(0)}(z) = [1:z:0], \quad f^{(1)}(z) = [z:1:1].$$

Then $f_R \in \mathcal{H}ol_{-2,0}(\mathbb{C}P^2)$ defined by

$$f_R(z) = \left[1 : z + \frac{1}{R^2 z} : \frac{1}{R^2 z}\right]$$

converge to f^I when $R \to +\infty$. We get $E(f_R) = E(f^{(0)}) + E(f^{(1)}) = 2\pi$. By calculations, we get

$$\partial f_R(z) = \left[-\bar{z} - \frac{1}{R^2 \bar{z}} + \frac{2}{R^4 z^2 \bar{z}} + \frac{\bar{z}}{R^2 z^2} : 1 - \frac{1}{R^2 z^2} + \frac{2}{R^4 z \bar{z}} : -\frac{1}{R^2 z^2} - \frac{2}{R^4 z \bar{z}} - \frac{2\bar{z}}{R^2 z} \right]$$

$$= \left[-\frac{\bar{z}}{R^2} - \frac{1}{R^4 z} + \frac{2}{R^6 z^2 \bar{z}} + \frac{\bar{z}}{R^4 z^2} : \frac{1}{R^2} - \frac{1}{R^4 z^2} + \frac{2}{R^6 z \bar{z}} : -\frac{1}{R^4 z^2} - \frac{2}{R^6 z \bar{z}} - \frac{2\bar{z}}{R^4 z} \right]$$

which converge to

$$f_1^{I_1} = \partial f^{(0)} \vee f_1^{(01)} \vee f_1^{(1)} : T^{I_1} = S^{(0)} \vee S^{(01)} \vee S^{(1)} \to \mathbb{C}P^2$$

if $R \to +\infty$. Here T^{I_1} is the same bubble domain tower in Example 5.3 and, $f_1^{(01)}$ and $f_1^{(1)}$ are equivalent to $\tilde{f}_1^{(01)}$ and $\partial f^{(1)}$ respectively;

$$\partial f^{(0)}(z) = [-\bar{z} : 1 : 0],$$

$$\tilde{f}_1^{(01)}(z) = [0 : 1 - z^2 : 1],$$

$$\partial f^{(1)}(z) = [2 : -\bar{z} : -\bar{z}].$$

In fact, making calculations, we can show that the center of mass of $\tilde{f}_1^{(01)}$ is the north pole. We also get

$$E(\partial f_R) = E(\partial f^{(0)}) + E(\partial f^{(1)}) + E(f_1^{(01)}) = \pi + \pi + 2\pi.$$

Moreover

$$\partial^2 f_R(z) = \left[-\frac{2}{R^2 \bar{z}} : \frac{1}{R^2 \bar{z}^2} : 1 - \frac{1}{R^2 \bar{z}^2} \right]$$

converges to $f_2^{I_2} = \hat{o}\tilde{f}_1^{(01)} : T^{I_2} = S^{(01)} \to \mathbb{C}P^2;$

$$\partial \tilde{f}_1^{(01)}(z) = [0:1:-1+\bar{z}^2].$$

In this case, $\partial \tilde{f}_1^{(01)}$ is the base map and $E(\partial^2 f_R) = E(\partial \tilde{f}_1^{(01)}) = 2\pi$.

REFERENCES

- S. S. CHERN AND J. G. WOLFSON, Harmonic maps of the two-sphere into a complex Grassmann manifold II, Annals of Math. 125 (1987), 301–335.
- [2] T. A. CRAWFORD, The space of Harmonic maps from the 2-sphere to the complex projective plane, Canad. Math. Bull 40 (1997), 285-295.
- [3] J. EELLS AND L. LEMAIRE, Selected topics in harmonic maps, CBMS Regional conference series in math. 50, 1983.
- [4] J. EELLS AND J. C. Wood, Harmonic maps from surfaces to complex projective spaces, Advances in Math. (1983), 217–263.
- [5] P. Griffiths and J. Harris, Principles of algebraic geometry, J. Wiley and Sons, New York, 1978.
- [6] M. Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. math. 82 (1985), 307–347.
- [7] S. Kobayashi and K. Nomizu, Foundations of differential geometry, I, II, A Wiley-Inter science publication, 1996.
- [8] L. LEMAIRE AND J. C. WOOD, On the space of harmonic 2-spheres in CP², Internat. J. Math. 7 (1996), 211–225.
- [9] A. LICHNEROWICZ, Applications harmoniques et variétés Kählériennes, Symp. Math. III (Bologna, 1970), 341–402.
- [10] T. H. PARKER, Bubble tree convergence for harmonic maps, J. Differential Geom. 44 (1996), 595–633.
- [11] T. H. PARKER AND J. G. WOLFSON, Pseudoholomorphic maps and bubble trees, Jour. Geom. Anal. 3 (1993), 63–98.
- [12] J. SACKS AND K. UHLENBECK, The existence of minimal immersions of two-spehers, Ann. of Math. (2) 113 (1981), 211–228.
- [13] Y.-T. Siu, The complex-analicity of harmonic maps and the strong rigidity of compact Kähler manifolds, Ann. of Math. (2) 112 (1980), 73–111.
- [14] J. G. Wolfson, Harmonic sequences and harmonic maps of surfaces into complex Grassmann manifolds, J. Differential Geom. 27 (1988), 161–178.
- [15] J. G. Wolfson, On minimal surfaces in a Kähler manifold of constant holomorphic sectional curvature, Trans. Amer. Math. Soc. 290 (1985), 627–646.

Hiroko Kawabe Toin University of Yokohama 1614, Kurogane-Cho, Aoba-Ku Yokohama-Shi 225-8502 Japan

E-mail: kawabe@cc.toin.ac.jp