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HARMONIC MAPS FROM THE RIEMANN SPHERE INTO THE

COMPLEX PROJECTIVE SPACE AND THE HARMONIC

SEQUENCES

Hiroko Kawabe

Abstract

When harmonic maps from the Riemann sphere into the complex projective

space are energy bounded, it contains a subsequence converging to a bubble tree

map f I : T I ! CPn. We show that their q-transforms and q-transforms are also

energy bounded. Hence their subsequences converge to harmonic bubble tree maps

f I1
1 : T I1 ! CPn and f I�1

�1 : T I�1 ! CPn respectively. In this paper, we show relations

between f I , f I1
1 and f I�1

�1 .

1. Introduction

In [12], Sacks & Uhlenbeck have shown that any harmonic maps defined on
a closed surface with bounded energy contains a subsequence weakly converging
to a set of harmonic maps and that a bubbling phenomenon may occur in the
convergence. Gromov ([6]) also noticed a bubbling phenomenon in the study of
pseudo holomorphic maps.

In this paper, we concentrate on harmonic maps from the Riemann sphere
S2, g0 into the complex projective space CPn, g. Here we identify S2, g0 with
CP1, g and consider it as the complex manifold. Combining the resuls by Eells &
Wood in [4, §6] with Wolfson in [14], for each full harmonic map f : S2 ! CPn;
we get a harmonic sequence

seqð f ; rÞ : 0 q f0 !
q

f1 !
q � � � !q fr !

q � � � !q fn !
q
0

with fr ¼ f .
Let HarmðCPnÞ be the set of harmonic maps in a Banach manifold

W 1;pðS2;CPnÞ for p > 2. Refining the ‘‘Sacks-Uhlenbeck’’ limit, Parker & Wolf-
son ([11]) give a definition of ‘‘converging to a harmonic bubble tree map’’.
Though their definition in [11] is for pseudo-holomorphic maps, as mentioned in
it, the definition is applicable for harmonic maps. In [11] and [10], they have
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shown that, in this sense, harmonic maps with bounded energy contain a sequence
converging to a harmonic bubble tree map satisfying appropriate conditions.
Our main result is the following. As for details of notations or terminologies, we
will define in the following sections.

Main Theorem. Let S2, g0 be the Riemann sphere and CPn, g be the com-
plex projective space. Take a sequence f f kgk in HarmðCPnÞ which are energy
bounded. Then both fqf kgk and fqf kgk are also energy bounded. Passing
through subsequences, f f kgk, fqf kgk and fqf kgk converge to either trivial maps
or harmonic bubble tree maps

f I ¼ 4
l A I

f ðlÞ : T I ! CPn

f I1
1 ¼ 4

l 0 A I1

f
ðl 0Þ
1 : T I1 ! CPn

f I�1
�1 ¼ 4

l 00 A I�1

f
ðl 00Þ
�1 : T I�1 ! CPn

respectively satisfying the followings:

(1) If qf ðlÞ is non-trivial, it is equivalent to f
ðl 0Þ
1 for some l 0 A I1; f

ðl 0Þ
1 ¼

qf ðlÞ � sl satisfying slðBf
ðl 0 Þ
1

ÞHBf ðlÞ .

(2) When f
ðl 0Þ
1 is not equivalent to any qf ðlÞ, f

ðl 0Þ
1 is a holomorphic map of

the length no greater than n� r� 1.

(3) If qf ðlÞ is non-trivial, it is equivalent to f
ðl 00Þ
�1 for some l 00 A I�1;

f
ðl 00Þ
�1 ¼ qf ðlÞ � sl with slðBf

ðl 00Þ
�1
ÞHBf ðlÞ .

(4) When f
ðl 00Þ
�1 is not equivalent to any qf ðlÞ, f

ðl 00Þ
�1 is an anti-holomorphic map

of the length no greater than r� 1.
Here rþ 1 is the q-order of f .

Here and throughout this paper, to simplify notation, we adopt the con-
vention of immediately renaming subsequences and so a subsequence of f f kg is
still denoted by the same way.

Contents are as follows. In §2, we begin to introduce harmonic maps
defined on S2, g0 into CPn, g. Associated to each harmonic map, we consider
its harmonic sequence. We refer related results. In §3, we define a harmonic
bubble tree map introduced by Parker & Wolfson in [11]. Then we show Main
Theorem. In §4, we consider when harmonic maps into either CP1 or CP2 are
gluable. Lastly, in §5, we consider examples of gluable or non-gluable harmonic
bubble tree maps and their harmonic sequences.

2. A harmonic map and a harmonic sequence

Let Cnþ1 be the complex ðnþ 1Þ-dimensional space equipped with the
standard Hermitian inner product defined by

X � Y ¼
X
j

xj yj where X ¼ ðxjÞ0ajan; Y ¼ ðyjÞ0ajan A Cnþ1:
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Put jX j ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
X � X
p

. We equip the Fubini-Study metric g on CPn of constant
holomorphic sectional curvature 4. As for the geometry of CPn, refer [7, IX.
6. Example 6.3]. When n ¼ 1, we get an isomorphism S2 FCP1 through a
stereographic projection

S2 � fyg ! CFU0 ¼ f½z0 : z1� A CP1 j z0 0 0g ¼ CP1 � f½0 : 1�g

which takes the north pole to the origin, the south pole y to infinity, and the
equator to the unit circle. Here ½z0 : z1� is the homogeneous coordinate system
of CP1. Let S2, g0 be the sphere with the Reimann metirc g0 induced from
CP1. As mentioned in §1, we also equip the complex structure on S2 induced
from CP1. On a coordinate neighbourhood U0, the metric g0 is customary
represented by ds20 ¼ jj ¼ dzdz

ð1þjzj2Þ2
for z ¼ z1

z0
A CFU0. Here j is determined up

to a complex factor of absolute value 1.
Throughout this paper, take and fix a real p > 2. As 1 > 2

p
, we can get a

Banach manifold W 1;pðS2;CPnÞ consisting of maps f : S2 ! CPn whose deriv-
atives of ordera 1 are Lp integrable. A map f A W 1;pðS2;CPnÞ is harmonic
if it is a critical point of the energy functional E : W 1;pðS2;CPnÞ ! R defined
by

Eð f Þ ¼
ð
S 2

jdf j2
ffiffiffiffiffiffiffi
�1
p

2
j5j

where jdf j2 is the Hilbert-Schmidt norm hg0; f �giHS . Thus we consider the
set HarmðCPnÞ of harmonic maps as a subspace of W 1;pðS2;CPnÞ. Because
of the regularity and the Sobolev embedding theorem C0 IW 1;p, HarmðCPnÞ
is contained in the set CsðS2;CPnÞ of all Cs maps for any sb 0. Since f is
defined between Kähler manifolds, any holomorphic or anti-holomorphic map
is harmonic. Refer [9] and also [3, (8.15) Corollary]. Denote by HolðCPnÞ the
subspace of HarmðCPnÞ consisting of holomorphic maps.

Now we introduce a q transform and a q transform in [1] which is the
same correspondence given in [4, §3]. For a smooth map f : S2 ! CPn, let
pf : Vð f Þ ! S2 be the tautological complex line bundle whose fiber at z A S2

is f ðzÞ. For a C-line X in Cnþ1, denote by X? the orthogonal complement
of X in Cnþ1. Define a smooth map f ? : S2 ! Gðn; nþ 1Þ by f ?ðzÞ ¼ f ðzÞ?.
Here Gðn; nþ 1Þ is the complex Grassmann manifold consisting of n-dimensional
subspaces in Cnþ1. We equip the standard Riemann metric gn and the complex
structure on it. Refer [7, IX, Example 6.4]. f ? also defines the tautological
bundle Vð f ?Þ ! S2. By [1, §2], both Vð f Þ and Vð f ?Þ are holomorphic bundles
over S2.

Take a unitary frame Z0;Z1; . . . ;Zn of Cnþ1 so that Z0 defines f . Then
put

dZ0 ¼ o0Z0 þ
X
rb1

orZr; f �or ¼ arjþ brj
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and define maps

q : Vð f Þ ! Vð f ?ÞnT ð1;0Þ; qðx0Z0Þ ¼ x0
X
r

arZr

 !
n j;

q : Vð f Þ ! Vð f ?ÞnT ð0;1Þ; qðx0Z0Þ ¼ x0
X
r

brZr

 !
n j:

Here T ð1;0Þ (resp. T ð0;1Þ) is the cotangent bundle on S2 of type ð1; 0Þ (resp.
ð0; 1Þ). We get the followings.

Theorem 1 ([1], §2). If f A HarmðCPnÞ, q is a holomorphic bundle map and
q is an anti-holomorphic bundle map.

Denote by ½Vð f Þ� the projectivization of Vð f Þ. Though j is determined
only up to a complex factor of absolute value 1, we get the fundamental
colliniation of f

½Vð f Þ� C ½ f ðzÞ� ! ½qf ðzÞ� A ½Vð f ?Þ�

if qf ðzÞ0 0. As mentioned in [1, §2], when f is harmonic, by Theorem 1, we
can get a well-defined non-trivial map qf : S2 ! CPn as far as f is not anti-
holomorphic. We call it the q transform of f . When f is anti-holomorphic, we
define the q transform of f as a zero map. Similarly we also get the funda-
mental colliniation

½Vð f Þ� C ½ f ðzÞ� ! ½qf ðzÞ� A ½Vð f ?Þ�

if qf ðzÞ0 0. If f is not holomorphic, this defines a non-trivial map qf : S2 !
CPn which we call the q transform of f . When f is holomorphic, the q trans-
form of f is defined as a zero map.

Theorem 2 ([1], Theorem 2.2). Take f A HarmðCPnÞ. Then we get the
followings.

(1) f ? : S2 ! Gðn; nþ 1Þ is harmonic.
(2) Both the q transform of f and its q transform are harmonic.
(3) If qf is non-trivial, qqf ¼ f .
(4) If qf is non-trivial, qqf ¼ f .

We say that f A HarmðCPnÞ is full if its image lies in no proper projective
subspace of CPn. Associated to a full map f A HolðCPnÞ, take a lift Z : S2 I
U ! Cnþ1 � f0g over a chart U . Classically we get the Frenet frame fZrgrb0 of
f which is obtained by the Gram-Schmidt’s orthogonalization of

�
q r

qz r
Z
�
r
except

at finite point of S2. Since the zeros of

Z5
q

qz
Z5� � �5 qn

qzn
Z
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are finite and are removable, this frame can be uniquely extended over S2.
Refer [15, §4]. We get

dZr ¼ �ar�1jZr�1 þ orZr þ arjZrþ1

for 0a ra n where a�1 ¼ an ¼ 0. For 0a ra n, let fr : S
2 ! CPn be the non-

trivial map defined by Zr. By definition, frþ1 is the q transform of fr and fr�1
is the q transform of fr. Hence, by Theorem 2, fr is harmonic for any r. We
call the sequence of harmonic maps

seqð f ; 0Þ : 0 �q f0 ¼ f �!q0 f1 �!
q1 � � � �!qr�1 fr �!

qr � � � �!qn�1 fn �!
qn

0

a harmonic sequence of f with the length n.
When f A HolðCPnÞ is not full, we can choose an isometry TA : CPn ! CPn

induced from a unitary transformation A : Cnþ1 ! Cnþ1 so that

f ¼ TA � i � f A : S2 !f
A

CPn0 H
i
CPn !T

A

CPn

by a full f A A HolðCPn0Þ and the inclusion i. We define a harmonic sequence of
f of the length n0

seqð f ; 0Þ : 0 ��q f0 ¼ f ��!q0 f1 ��!q1 � � � ��!qr�1 fr ��!qr � � � ��!qn0�1 fn0 ��!qn0 0

by compositions fr ¼ TA � i � f A
r ;

seqð f A; 0Þ : 0 ��q f A
0 ¼ f A ��!q0 f A

1 ��!q1 � � � ��!qr�1 f A
r ��!qr � � � ��!qn0�1 f A

n0
��!qn0 0:

Here seqð f ; 0Þ is defined independently on the choice of a unitary matrix A.
Following to [4, Definition 5.1], we define the q-order of f A HarmðCPnÞ by

max
U

max
z AU

dim spanfqaZUðzÞ j 0a ag

and also the q-order of f by

max
U

max
z AU

dim spanfqbZUðzÞ j 0a bg:

Here ZU : S2 IU ! Cnþ1 is a lift of f over a chart U and spanfvaga is the
subspace of Cnþ1 spanned by vectors fvaga. These orders are determined inde-
pendently on the choice of a lift ZU . By [14, Theorem 3.1 & Theorem 3.4], we
get the following.

Theorem 3. For any non-trivial f A HarmðCPnÞ, we get f0 A HolðCPnÞ so
that the harmonic sequence of f0 contains f ;

seqð f ; rÞ : 0 �q f0 �!
q0

f1 �!
q1 � � � �!qr�1 fr ¼ f �!qr � � � �!qr fn0 �!

qn0
0

where 1a n0 a n, rþ 1 is the q-order of f and n0 � rþ 1 is its q-order.

We also call seqð f ; rÞ the harmonic sequence of f with the length n0.
Obviously f A HarmðCPnÞ is full exactly when the length of seqð f ; rÞ is n. Let
Harm�ðCPnÞ be the subspace of HarmðCPnÞ consisting of full maps. Corre-
spondingly Hol �ðCPnÞ is denoted for the space of all full maps in HolðCPnÞ.
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Essentially, by [4, Theorem 6.9], we get the following. Theorem 3 gives the
correspondence of the following theorem.

Theorem 4. There is a bijective correspondence between f A Harm�ðCPnÞ
and pairs ð f0; rÞ where f0 A Hol �ðCPnÞ and r is an integer with 0a ra n.

For a smooth map f A W 1;pðS2;CPnÞ, we denote by c1ð f Þ the first Chern
number of the tautological bundle Vð f Þ ! S2. By [14], we get the followings.

Lemma 2.1 [14, §2 & §3]. For f A Hol �ðCPnÞ, choose the Frenet frame fZrgr
of f and put

dZr ¼ �ar�1jZr�1 þ orZr þ arjZrþ1

for 0a ra n where a�1 ¼ an ¼ 0. Then each fr defined by Zr holds

Eð frÞ ¼
ð
ðjar�1j2 þ jarj2Þ

ffiffiffiffiffiffiffi
�1
p

2
j5j;

c1ð frÞ ¼
1

p
�
ð
ðjar�1j2 � jarj2Þ

ffiffiffiffiffiffiffi
�1
p

2
j5j:

Denote by Rqð f Þ the ramification index of q : Vð f Þ ! Vðq f ÞnT ð1;0Þ which
is the number of zeros of q counted according to multiplicity. Similarly R

q
ð f Þ

is the ramification index of q : Vð f Þ ! Vðqf ÞnT ð0;1Þ. As for the following
lemma, we refer [5] and also [14, §3].

Lemma 2.2. For f A HarmðCPnÞ, if qf is non trivial, we get

c1ðq f Þ ¼ c1ð f Þ þ Rqð f Þ þ 2:

When qf is non-trivial, we also get c1ðqf Þ ¼ c1ð f Þ � R
q
ð f Þ � 2.

By Lemma 2.1 and 2.2, we get the following inequalities.

Lemma 2.3 [14, Theorem 3.1]. For f A Hol �ðCPnÞ, choose the Frenet frame
fZrgr as in Lemma 2.1. Then we get the followings for any r.

(1)
P

rþ1aqan

P
rasaq�1 Rqð fsÞ < 1

p
Eð frÞ þ ðnþ 1Þ � jc1ð frÞj.

(2)
P

0aqar�1
P

qasar�1 Rqð fsÞ < 1
p
Eð frÞ þ ðnþ 1Þ � jc1ð frÞj.

3. Harmonic bubble tree maps

It is well-known that HarmðCPnÞ may be non-compact with respect to W 1;2-
topology. To consider this bubbling phenomenon, we refer Parker & Wolfson
([11]) and Parker ([10]).

Let TS2 ! S2 be the complex tangent bundle over the complex manifold S2,
g0. Compactifying each vertical fiber, we get a bundle SðS2Þ ! S2 with fibers
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Sz ¼ S2 where we identify z of Sz with the south pole y of S2 and equip the
complex structure on SðS2Þ. By the induction on kb 1, we define a bundle

SkðS2Þ :¼ SðSk�1ðS2ÞÞ ! Sk�1ðS2Þ:
A bubble domain at level k is a fiber Sk

z ¼ S2 of SkðS2Þ ! Sk�1ðS2Þ and a bubble

domain tower is a union T I ¼4
l A I S

ðlÞ of the base space S ð0Þ of SðS2Þ ! S2

and finite number of bubble domains S ðlÞ ðl A I ; lb 1Þ with

pl : SS
ðl 0ÞIS ðlÞ ¼ Skl

zl
¼ p�1l ðzlÞ ! zl A S ðl

0Þ:

We denote by yl the south pole of S ðlÞ. Motivated by Parker [10], if a map

f I ¼ 4
l A I

f ðlÞ : T I ¼ 4
l A I

S ðlÞ ! CPn

consisits of non-trivial maps f ðlÞ satisfying f ðlÞðylÞ ¼ f ðl
0ÞðzlÞ when p�1l ðzlÞ ¼

S ðlÞ, we call f I a bubble tree map, f ð0Þ a base map, f ðlÞ a bubble map for
l A I � f0g and zl A S ðl

0Þ a bubble point of f ðl
0Þ. Denote by Bf ðlÞ the set of

bubble points of f ðlÞ.
We call f I a harmonic bubble tree map if f ðlÞ is a harmonic map for each

l A I . Similarly we call f I a holomorphic (resp. an anti-holomorphic) bubble
tree map if f ðlÞ is holomorphic (resp. anti-holomorphic) for any l A I .

We say that a sequence f f kgkb1 in HarmðCPnÞ converges to a harmonic
bubble tree map f I : T I ! CPn if each f k defines a bubble tree map f k; I ¼
4

l A I f
k;l : T I ! CPn by the iterated renormalization procedure and if f f k; Igk

converges to f I uniformly in C 0 VW 1;2 and uniformly in Cr (rb 1) on any
compact set of T I �6

l
ðfylgUBf ðlÞ Þ. Here f k;l ¼ f k � sk;l by a fractional

linear transformation sk;l of S ðlÞ ¼ S2 fixing the south pole on a compact set
of S ðlÞ � fylgUBf ðlÞ for k large enough. For details, refer [11, §4]. By [10,
Theorem 2.2 & Corollary 2.3], we get the following.

Theorem 5. Let f f kgk be a sequence in HarmðCPnÞ with supk Eð f kÞ < y.

Then a subsequence converges to a harmonic bubble tree map f I ¼4
l
f ðlÞ : T I !

CPn satisfying

lim
k

Eð f kÞ ¼
X
l

Eð f ðlÞÞ and a ¼ lim
k

c1ð f kÞ ¼
X
l

c1ð f ðlÞÞ:

For CPn, g, we get a constant B0 so that any f A HarmðCPnÞ with Eð f Þ <
2B0 is trivial (refer [12]). We choose B0 as a scaling constant. Put Hþ ¼
fz j jzjb 1gHC. By the choice of the translation and the rescaling in the
renormalization, if a sequence of harmonic maps converges to a harmonic bubble
tree map f I ¼4

l
f ðlÞ : T I ! CPn, each bubble map f ðlÞ is parametrized satisfy-

ing

ðBCÞ
ð
Hþ
jdf ðlÞj2

ffiffiffiffiffiffiffi
�1
p

2
dzdz ¼ B0

and Bf ðlÞ is contained in the northern hemisphere of f ðlÞ when l0 0.
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In the case of CPn, the map

c1 : p2ðCPnÞFH2ðCPn;ZÞ ! Z

defined by c1ð½ f �Þ ¼ c1ð f Þ is an isomorphism. Let HarmaðCPnÞ be the subspace
of HarmðCPnÞ consisting of f with c1ð f Þ ¼ a. For each a A Z, HarmaðCPnÞ is
non-empty. By Theorem 5, if f f kgk in HarmðCPnÞ converges to a harmonic
bubble tree map, f k A HarmaðCPnÞ for any k large enough.

Lemma 3.1. Let f f kgk be a sequence in HarmaðCPnÞ with Eð f kÞaE for
any k. Then we get

Eðqf kÞ þ Eðqf kÞa 4E þ 2pf2þ ðnþ 3Þ � jajg
for any k.

Proof. By Lemma 2.2, c1ðqf kÞ ¼ c1ð f kÞ þ Rqð f kÞ þ 2 and, by Lemma 2.3,

Rqð f kÞ < 1

p
Eð f kÞ þ ðnþ 1Þjc1ð f kÞj:

Hence

jc1ðqf kÞja jc1ð f kÞjðnþ 2Þ þ 2þ E

p
:

As c1ð f kÞ ¼ a, by Lemma 2.1, we get

Eðqf kÞ ¼ Eð f kÞ � pc1ð f kÞ � pc1ðqf kÞa 2E þ pf2þ ðnþ 3Þjajg:
As for Eðqf kÞ, we can show similarly. r

We say that f0 is equivalent to f1 in W 1;pðS2;CPnÞ if f1 ¼ f0 � s by some
linear fractional transformation s : S2 ! S2 fixing the south pole. We also say

that ~ff I ¼4
l A I

~ff ðlÞ : ~TT I ! CPn is equivalent to f I ¼4
l A I f

ðlÞ : T I ! CPn if
~ff ðlÞ is equivalent to f ðlÞ;

~ff ðlÞ ¼ f ðlÞ � sl : ~SS ðlÞ ¼ ~SS
ðl 0Þ
~zzl
�!sl S ðlÞ ¼ S ðl

0Þ
zl
�!f
ðlÞ

CPn

with slð~zzlÞ ¼ zl for each l A I . Here ~TT I ¼4
l A I

~SS ðlÞ and s0 is necessary the
identity.

Now we begin to show Main Theorem. As Eð f kÞaE for any k, a
subsequence of f f kgk converges and so we can assume that f k A HarmaðCPnÞ
for any k. Hence, by Lemma 3.1, we get Eðqf kÞaE1 for any k. Therefore,
passing through subsequences, both f f kgk and fqf kgk converge to f I ¼
4

l A I f
ðlÞ : T I ! CPn and f I1

1 ¼4
l 0 A I1

f
ðl 0Þ
1 : T I1 ! CPn respectively. More

precisely, consider the renormalization f k; I ¼4
l
f k;l : T I ¼4

l A I S
ðlÞ ! CPn of

f k converging to f I ¼4
l
f ðlÞ. Put f k

1 ¼ qf k and consider again its renorm-
alization

f
k; I1
1 ¼ 4

l 0 A I1

f
k;l
1 : T I1 ¼ 4

l 0 A I1

S ðl
0Þ ! CPn
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whose subsequence converges to f I1
1 ¼4

l 0 A I1
f
ðl 0Þ
1 . If

f
k;l 0

1 ¼ qf k � sk;l 0

1 ¼ qf k;l � ~ssk;l 0

1

on a geodesic disc D 0 in S ðl
0Þ � B

f
ðl 0 Þ
1

U fylg for any k large enough, f f k;l 0

1 gk
converges to f

ðl 0Þ
1 which is either equal to non-trivial qf ð0Þ or equivalent to non-

trivial qf ðlÞ for some l A I � f0g. On the other hand, if qf ðlÞ is non-trivial, we

can get f
ðl 0Þ
1 equivalent to qf ðlÞ. As the convergence of f f k;lgk is with respect

to Cs-norm for any sb 0, if f
ðl 0Þ
1 ¼ qf ðlÞ � sl, we get

slðBf
ðl 0Þ
1

ÞHBf ðlÞ :

Now suppose that f f k;l 0

1 gk converges to f
ðl 0Þ
1 which is not equivalent to any qf ðlÞ

for l A I . As sk;l 0

1 : S2 ! S2 is a holomorphic map given by

z ¼ sk;l 0

1 ðwÞ ¼ ak;l 0

1 wþ bk;l 0

1 ;

qwz is a non-zero constant ak;l 0

1 . Hence

qf k;l 0

1 ¼ qððqf kÞ � sk;l 0

1 Þ ¼ ðqqf kÞ � sk;l 0

1 ¼ f k � sk;l 0

1

on D 0 for any k large enough where the constant ak;l 0

1 vanishes because of the

homogeneous coordinate. A subsequence of fqf k;l 0

1 gk converges to zero on D 0.
By the uniqueness continuation theorem ([13]), this means the holomorphicity of

f
ðl 0Þ
1 . The length of f

ðl 0Þ
1 is obvious.

By replacing q transform with q transform, we can show the corresponding
assertion. This completes the proof of Main Theorem.

4. HarmaðCP1Þ and HarmaðCP2Þ

We say that a harmonic bubble tree map f I : T I ! CPn is gluable if a
sequence of harmonic maps converges to a harmonic bubble tree map ~ff I : ~TT I !
CPn equivalent to f I : T I ! CPn. Firstly we consider the case when n ¼ 1.
Note that any map in HarmðCP1Þ is either holomorphic or anti-holomorphic.

Lemma 4.1. Let f I ¼4
l A I f

ðlÞ : T I ! CP1 be a holomorphic bubble tree
map. Then qf I ¼4

l A I qf
ðlÞ is a well-defined anti-holomorphic bubble tree map

defined on T I . If f I is gluable, so is qf I .

Proof. Let f ¼ ½ p0 : p1� A HolðCP1Þ be non-trivial where p0 and p1 have
no common zero. Then, by calculations,

qf ¼ ½ðp1 p 00 � p 01 p0Þp1 : �ðp1 p 00 � p 01p0Þp0�:

If p1 p
0
0 � p 01 p0 ¼ 0 on a domain, p0 1K � p1 and so we deduce a contradiction.

Hence qf ¼ ½p1 : �p0�.
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Now take a holomorphic bubble tree map f I ¼4
l A I f

ðlÞ : T I ! CP1. As

shown above, when f ðlÞðyÞ ¼ f ðl
0ÞðzlÞ, qf ðlÞðyÞ ¼ qf ðl

0ÞðzlÞ. This shows the
first assertion.

When a sequence f f kgk in HolðCP1Þ converges to f I , by calculations,

fqf kgk converges to qf I . r

Now we consider the case when n ¼ 2. We start to refer results of existence
theorems. Denote by Hola; rðCP2Þ the subspace of HolðCP2Þ consisting of f
with c1ð f Þ ¼ a and Rqð f Þ ¼ r. We also put Hol �a; rðCP2Þ ¼Hola; rðCP2ÞV
Hol �ðCP2Þ. Obviously Hol �a; rðCP2Þ ¼Hola; rðCP2Þ if 2aþ rþ 2 < 0.

We also consider the subspace Harma;EðCP2Þ of HarmaðCP2Þ consisting of
f with Eð f Þ ¼ pE. Note that any map in Harma;EðCP2Þ is full when E0 0,
jaj. We get the followings.

Theorem 6 ([2], Lemma 1.3 & Theorem 1.4). For 0a ra�a� 2,
Hola; rðCP2Þ is a smooth connected complex submanifold of HolðCP2Þ of complex
dimension 2� 3a� r. Moreover there is a homeomorphism

Hola; rðCP2Þ C f ! qf A Harmaþ2þr;�ð3aþrþ2ÞðCP2Þ:

Remark 4.1. By [8, Proposition 2.7], Hola; rðCP2Þ is non-empty exactly when
0a ra� 3

2 a� 3.

As for the gluing, we get the following.

Proposition 4.2. Let f I ¼4
l A I f

ðlÞ : T I ! CP2 be a harmonic bubble tree

map with f ðlÞ A Harmal;El
ðCP2Þ and El 0 jalj for any l A I . If f I is gluable,

both qf I ¼4
l A I qf

ðlÞ : T I ! CP2 and qf I ¼4
l A I qf

ðlÞ : T I ! CP2 are well-

defined gluable bubble tree maps.

Proof. If necessary, replace f I by an equivalent harmonic bubble tree
map (which we denote by the same way) and take a sequence f f kgk in
HarmðCP2Þ converging to f I . Without loss of generality, we can assume

that f k A Harma;EðCP2Þ with E0 jaj for any k. We get a harmonic sequence

seqð f k; 1Þ : 0 q qf k !q f k !q qf k !q 0:

Passing through a subsequence, fqf kgk converges to f I1
1 ¼4

l A I1
f
ðlÞ
1 : T I1 !

CP2. When f
ðl 0Þ
1 is not equivalent to any qf ðlÞ, by Main Theorem, f

ðl 0Þ
1 is a

holomorphic map whose q transform is trivial. Then f
ðl 0Þ
1 becomes tirival and

we deduce a contradiction. By the assumption, qf ðlÞ is non-trivial. Hence
I1 ¼ I and each f

ðlÞ
1 is equivalent to qf ðlÞ. This implies that qf I ¼4

l A I qf
ðlÞ is

a well-defined anti-holomorphic bubble tree map. Moreover, by Main Theorem
again, qf I is defined on T I . Similarly we can show the corresponding result for
qf I . r
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Proposition 4.3. For 0a ra�a� 2, let f f kgk be a sequence in
Hola; rðCP2Þ converging to f I ¼4

l A I f
ðlÞ : T I ! CP2 with f ðlÞ A Hol �al; rlðCP

2Þ
for any l. Suppose that fqf kgk converges to a harmonic bubble tree map
f I1
1 : T I1 ! CP2. Then f I1

1 is equivalent to a well-defined harmonic bubble

tree map qf I ¼4
l A I qf

ðlÞ : T I ! CP2 exactly whenX
l

Rqð f ðlÞÞ ¼ r� 2� ðjI j � 1Þ:

Here jI j is denoted for the number of elements of I .

Proof. Since Eðqf kÞ ¼ ð�3a� 2� rÞp > 0, by Main Theorem, a subse-
quence of fqf kgk converges to f I1

1 : T I1 ! CP2.
Firstly we note that qf ðlÞ is non-trivial. As Eð f kÞ ¼

P
l Eð f ðlÞÞ, by Lemma

2.1 and Lemma 2.2, we get

Eðqf kÞ �
X
l

Eðqf ðlÞÞ ¼ p
X
l

Rqð f ðlÞÞ � Rqð f kÞ þ 2 � jI j � 2

( )
b 0:

Here this is equal to zero exacly when fqf kgk converges to a bubble tree map
equivalent to a well-defined bubble tree map qf I . r

5. Example

In this section, we show examples to consider relations between a harmonic
bubble tree map f I and its q transform. We consider the case when n ¼ 2.

For any f A HolðCP2Þ, put f ¼ ½ p0 : p1 : p2� where ½ p0 : p1 : p2� are homo-
geneous coordinates of CP2. Put hf ¼ ½h0 : h1 : h2� where

ðh0; h1; h2Þ ¼ ðp 01 p2 � p1 p
0
2;�p 00 p2 þ p0 p

0
2; p

0
0 p1 � p0 p

0
1Þ:

When p0, p1, p2 have no common zeros, Rqð f Þ is the number of common zeros
of three holomorphic maps h0, h1, h2 as far as 2 � maxj deg pj � 2 ¼ maxj deg hj.
For details, refer [2, §2].

From now on, we denote by T I ¼ S ð0Þ4S ð1Þ the bubble domain tower
defined by the base space S ð0Þ ¼ S2 and a bubble domain S ð1Þ ¼ p�11 ð0ÞHSS ð0Þ.
Denote by

Hol�2;0ðCP2Þ �Hol�2;0ðCP2Þ

the set of holomorphic bubble tree maps f I ¼ f ð0Þ4 f ð1Þ : T I ! CP2 with
f ðlÞ A Hol�2;0ðCP2Þ for l ¼ 0; 1. Since Hol ��2;0ðCP2Þ ¼Hol�2;0ðCP2Þ, by The-
orem 6, Hol�2;0ðCP2Þ is a complex manifold of the complex dimension 8.

Example 5.1. Take f I A Hol�2;0ðCP2Þ �Hol�2;0ðCP2Þ. By Proposition 4.3,
if a sequence of fk A Hol�4;2ðCP2Þ converges to f I , a subsequence of fqfkgk
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converges to a harmonic bubble tree map equivalent to qf I :¼ qf ð0Þ4qf ð1Þ : T I !
CP2.

In this case, we also get Eðq2fkÞ ¼ 4p and Eðq2f ðlÞÞ ¼ 2p for l ¼ 0; 1.
Hence, by Main Theorem, passing throught a subsequence, fq2fkgk converges to

a harmonic bubble tree map equivalent to q2f I :¼ q2f ð0Þ4q2f ð1Þ : T I ! CP2.

Example 5.2. Let f I ¼ f ð0Þ4 f ð1Þ : T I ! CP2 be the holomorphic bubble
tree map defined by

f ð0ÞðzÞ ¼ ½1 : z : z2�; f ð1ÞðzÞ ¼ ½z2 : z : 1�:

As Rqð f ðlÞÞ ¼ 0 for l ¼ 0; 1, f I A Hol�2;0ðCP2Þ �Hol�2;0ðCP2Þ.
A sequence of harmonic maps

fRðzÞ ¼ 1 : zþ 1

Rz
: z2 þ 1

R2z2

� �
converges to a holomorphic bubble tree map equivalent to f I : T I ! CP2. By
calculations, we also get Rqð fRÞ ¼ 2. Hence, by Proposition 4.3, fqfRgR con-
verges to a harmonic bubble tree map equivalent to a well-defined harmonic
bubble tree map qf I : T I ! CP2. Moreover

q2fRðzÞ ¼ z2 þ 1

R2z2
þ 4

R
: �2z� 2

Rz
: 1

� �
converge to an anti-holomorphic bubble tree map equivalent to a well-defined
q2f I : T I ! CPn. In fact, by using ‘‘Mathematica Ver.6.0’’, we can calculate

qf ð0ÞðzÞ ¼ ½�z� 2zz2 : 1� z2z2 : 2zþ z2z�;

qf ð1ÞðzÞ ¼ ½2zþ z2z : 1� z2z2 : �z� 2zz2�

and

q2f ð0ÞðzÞ ¼ ½z2 : �2z : 1�; q2f ð1ÞðzÞ ¼ ½1 : �2z : z2�:

Hence both qf I ¼ qf ð0Þ4qf ð1Þ : T I ! CP2 and q2f I ¼ q2f ð0Þ4q2f ð1Þ : T I ! CP2

are well-defined.

Example 5.3. We consider a bubble tree map f I ¼ f ð0Þ4 f ð1Þ : T I ! CP2

defined by

f ð0ÞðzÞ ¼ ½1 : z2 : z�; f ð1ÞðzÞ ¼ ½z2 : z : 1�

which is contained in Hol�2;0ðCP2Þ �Hol�2;0ðCP2Þ. For R > 1 large enough,

we define holomorphic maps fR A W 1;pðS2;CP2Þ by

fRðzÞ ¼ 1 : z2 þ 1

Rz
: zþ 1

R2z2

� �
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which converge to a holomorphic bubble tree map equivalent to f I : T I ! CP2

if R!y. Here Rqð fRÞ ¼ 0 and so fqfRgR does not converge to a harmonic
map equivalent to qf I . In fact, we calculate qf ðlÞ to get

qf ð0ÞðzÞ ¼ ½�z� 2zz2 : 2zþ z2z : 1� z2z2�;

qf ð1ÞðzÞ ¼ ½2zþ z2z : 1� z2z2 : �z� 2zz2�

where

qf ð0Þð0Þ ¼ ½0 : 0 : 1�; qf ð1ÞðyÞ ¼ ½0 : 1 : 0�:

Hence these cannot define a bubble tree map on T I . In fact, when R! þy,
qfR converge to a harmonic bubble tree map

f I1
1 ¼ qf ð0Þ4 f

ð01Þ
1 4 f

ð1Þ
1 : T I1 ¼ S ð0Þ4S ð01Þ4S ð1Þ ! CP2

where f
ð1Þ
1 is equivalent to qf ð1Þ and the map f

ð01Þ
1 : S ð01Þ ! CP2 is equivalent to

~ff
ð01Þ
1 ;

~ff
ð01Þ
1 ðzÞ ¼ ½0 : 1 : �z2�:

Since the center of mass of f
ð01Þ
1 is the north pole, we can define T I1 by

S ð01Þ ¼ S
ð0Þ
0 HSS ð0Þ; S ð1Þ ¼ S

ð01Þ
0 HSS ð01Þ

and choose f
ð01Þ
1 with f

ð01Þ
1 ð0Þ ¼ ~ff

ð01Þ
1 ð0Þ. We have

EðqfRÞ ¼ Eðqf ð0ÞÞ þ Eðqf ð1ÞÞ þ Eð f ð01Þ1 Þ ¼ 10p:

When R! þy, q2fR given by

q2fRðzÞ ¼ ½1� 2R2z3 þ 4Rz3 þ R3z6 : �2Rzþ R3z4 : R2z2 � 2R3z5�

¼ z3 þ 4

R2
� 2

R
þ 1

R3z3
: z� 2

R2z2
: �2z2 þ 1

Rz

� �

¼ 1

R
þ 4

R3z3
� 2

R2z3
þ 1

R4z6
:

1

Rz2
� 2

R3z5
: � 2

Rz
þ 1

R2z4

� �
also converges to an anti-holomorphic bubble tree map

f I1
2 ¼ q2f ð0Þ4 f

ð01Þ
2 4 f

ð1Þ
2 : T I1 ! CP2

where f
ð1Þ
2 and f

ð01Þ
2 are equivalent to q2f ð1Þ and q~ff

ð01Þ
1 respectively;

q2f ð0ÞðzÞ ¼ ½z2 : 1 : �2z�;

q~ff
ð01Þ
1 ðzÞ ¼ ½0 : z2 : 1�;

q2f ð1ÞðzÞ ¼ ½1 : �2z : z2�:

These satisfy Eðq2fRÞ ¼ Eðq2f ð0ÞÞ þ Eðqf ð01Þ1 Þ þ Eðq2f ð1ÞÞ ¼ 6p.
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Example 5.4. Let f I ¼ f ð0Þ4 f ð1Þ A Hol�2;0ðCP2Þ �Hol�2;0ðCP2Þ be de-
fined by

f ð0ÞðzÞ ¼ ½ p0 : p1 : p2� ¼ ½1 : z2 : 1þ z� and

f ð1ÞðzÞ ¼ ½q0 : q1 : q2� ¼ ½z2 : 1 : zþ z2�:

We can get fR A Hol ��4ðCP2Þ defined by

fRðzÞ ¼ 1 :
1

R2z2
þ z2 : 1þ zþ 1

Rz

� �
converging to a harmonic bubble tree map equivalent to f I when R! þy.
Since Rqð fRÞ ¼ 2, by Proposition 4.3, both fqfRgR and fq2fRgR converge to
harmonic bubble tree maps equivalent to well-defined bubble tree maps qf I :
T I ! CP2 and q2f I : T I ! CP2 respectively.

For pðzÞ ¼ a0 þ a1zþ a2z
2 and qðzÞ ¼ b0 þ b1zþ b2z

2, put jp� qj ¼P
k jak � bkj.

Lemma 5.1. Let f I ¼ f ð0Þ4 f ð1Þ : T I ! CP2 be a holomorphic bubble tree
map in Example 5.4 with

f ð0Þ ¼ ½ p0 : p1 : p2�; f ð1Þ ¼ ½q0 : q1 : q2�:
Then, for any e > 0 small enough, we can choose a holomorphic bubble tree map
~ff I ¼ ~ff ð0Þ4 ~ff ð1Þ : T I ! CP2 in Hol�2;0ðCP2Þ �Hol�2;0ðCP2Þ with

~ff ð0Þ ¼ ½~pp0 : ~pp1 : ~pp2�; ~ff ð1Þ ¼ ½~qq0 : ~qq1 : ~qq2�
so that

P
lðj~ppl � plj þ j~qql � qljÞ < e and that q~ff I ¼ q~ff ð0Þ4q~ff ð1Þ : T I ! CP2 is

well-defined but non-gluable.

Proof. When the degrees of polynomials p and q are no greater than 2,
we can choose e0 > 0 so that p and q have no common zeros as far as
jp� p0j þ jq� q0j < e0. Here p0ðzÞ ¼ 1 and q0ðzÞ ¼ z2. Hence we can choose

e > 0 so that ~ff ðlÞ A Hol�2;0ðCP2Þ for l ¼ 0; 1 ifX
0aja2

ðj~ppj � pjj þ j~qqj � qjjÞ < e:

Put

~pplðzÞ ¼ al0 þ al1zþ al2z
2; ~qqlðzÞ ¼ bl0 þ bl1zþ bl2z

2

with a00 ¼ 1 and b02 ¼ 1. Since a00 ¼ b02 ¼ 1, ~ff ð0Þð0Þ ¼ ~ff ð1ÞðyÞ exactly when
al0 ¼ bl2 for l ¼ 0; 1; 2. Moreover the complex conjugates of h~ff ðlÞ is equal to

q2 ~ff ðlÞ. Since ~ff ðlÞ is full, q2 ~ff ðlÞ is non-trivial with c1ðq2 ~ff ðlÞÞ ¼ 2. Moreover

q2 ~ff ð0Þð0Þ ¼ q2 ~ff ð1ÞðþyÞ exactly when alk and blk additionally satisfy

b11ða01a20 � a21Þ ¼ b21ða01a10 � a11Þ � b01ða10a21 � a11a20Þ:
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If necessary, we rechoose e > 0 so small that

a20 >
1

2
and � 1

2
> a01a20 � a21:

Denote by ~UUe the set of all ð ~ff ð0Þ; ~ff ð1ÞÞ whose polynomials have coe‰cients
alk, blk satisfying above conditions. By definition, both ~ff I ¼ ~ff ð0Þ4 ~ff ð1Þ and

q2 ~ff I ¼ q2 ~ff ð0Þ4q2 ~ff ð1Þ are well-defined bubble tree maps defined on T I . More-
over, in such a case, we can calculate to show that q~ff I ¼ q~ff ð0Þ4q~ff ð1Þ are well-
defined harmonic bubble tree map defined on T I .

As the complex dimension of ~UUe is equal to 13 and that of Hol�4;2ðCP2Þ
is 12 by Theorem 6, there is ~ff I A ~UUe so that q~ff I is well-defined but not
gluable. r

Example 5.5. We consider a holomorphic bubble tree map which contains a
non-full map. Let f I ¼ f ð0Þ4 f ð1Þ : T I ! CP2 be the holomorphic bubble tree
map defined by

f ð0ÞðzÞ ¼ ½1 : z : 0�; f ð1ÞðzÞ ¼ ½z : 1 : 1�:

Then fR A Hol�2;0ðCP2Þ defined by

fRðzÞ ¼ 1 : zþ 1

R2z
:

1

R2z

� �
converge to f I when R! þy. We get Eð fRÞ ¼ Eð f ð0ÞÞ þ Eð f ð1ÞÞ ¼ 2p. By
calculations, we get

qfRðzÞ ¼ �z�
1

R2z
þ 2

R4z2z
þ z

R2z2
: 1� 1

R2z2
þ 2

R4zz
: � 1

R2z2
� 2

R4zz
� 2z

R2z

� �

¼ � z

R2
� 1

R4z
þ 2

R6z2z
þ z

R4z2
:
1

R2
� 1

R4z2
þ 2

R6zz
: � 1

R4z2
� 2

R6zz
� 2z

R4z

� �
which converge to

f I1
1 ¼ qf ð0Þ4 f

ð01Þ
1 4 f

ð1Þ
1 : T I1 ¼ S ð0Þ4S ð01Þ4S ð1Þ ! CP2

if R! þy. Here T I1 is the same bubble domain tower in Example 5.3 and,
f
ð01Þ
1 and f

ð1Þ
1 are equivalent to ~ff

ð01Þ
1 and qf ð1Þ respectively;

qf ð0ÞðzÞ ¼ ½�z : 1 : 0�;
~ff
ð01Þ
1 ðzÞ ¼ ½0 : 1� z2 : 1�;

qf ð1ÞðzÞ ¼ ½2 : �z : �z�:

In fact, making calculations, we can show that the center of mass of ~ff
ð01Þ
1 is the

north pole. We also get

EðqfRÞ ¼ Eðqf ð0ÞÞ þ Eðqf ð1ÞÞ þ Eð f ð01Þ1 Þ ¼ pþ pþ 2p:
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Moreover

q2fRðzÞ ¼ �
2

R2z
:

1

R2z2
: 1� 1

R2z2

� �
converges to f I2

2 ¼ q~ff
ð01Þ
1 : T I2 ¼ S ð01Þ ! CP2;

q~ff
ð01Þ
1 ðzÞ ¼ ½0 : 1 : �1þ z2�:

In this case, q~ff
ð01Þ
1 is the base map and Eðq2fRÞ ¼ Eðq~ff ð01Þ1 Þ ¼ 2p.

References

[ 1 ] S. S. Chern and J. G. Wolfson, Harmonic maps of the two-sphere into a complex Grassmann

manifold II, Annals of Math. 125 (1987), 301–335.

[ 2 ] T. A. Crawford, The space of Harmonic maps from the 2-sphere to the complex projective

plane, Canad. Math. Bull 40 (1997), 285–295.

[ 3 ] J. Eells and L. Lemaire, Selected topics in harmonic maps, CBMS Regional conference

series in math. 50, 1983.

[ 4 ] J. Eells and J. C. Wood, Harmonic maps from surfaces to complex projective spaces,

Advances in Math. (1983), 217–263.

[ 5 ] P. Griffiths and J. Harris, Principles of algebraic geometry, J. Wiley and Sons, New York,

1978.

[ 6 ] M. Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. math. 82 (1985),

307–347.

[ 7 ] S. Kobayashi and K. Nomizu, Foundations of di¤erential geometry, I, II, A Wiley-Inter

science publication, 1996.

[ 8 ] L. Lemaire and J. C. Wood, On the space of harmonic 2-spheres in CP2, Internat. J. Math.

7 (1996), 211–225.

[ 9 ] A. Lichnerowicz, Applications harmoniques et variétés Kählériennes, Symp. Math. III
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