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HARMONIC MAPS FROM THE RIEMANN SPHERE INTO THE
COMPLEX PROJECTIVE SPACE AND THE HARMONIC
SEQUENCES

Hiroko KAWABE

Abstract

When harmonic maps from the Riemann sphere into the complex projective
space are energy bounded, it contains a subsequence converging to a bubble tree
map f!:T!— CP". We show that their o-transforms and O-transforms are also
energy bounded. Hence their subsequences converge to harmonic bubble tree maps
fll' :Th — CP" and f _1{' : T1-1 — CP" respectively. In this paper, we show relations
between 7, f" and [

1. Introduction

In [12], Sacks & Uhlenbeck have shown that any harmonic maps defined on
a closed surface with bounded energy contains a subsequence weakly converging
to a set of harmonic maps and that a bubbling phenomenon may occur in the
convergence. Gromov ([6]) also noticed a bubbling phenomenon in the study of
pseudo holomorphic maps.

In this paper, we concentrate on harmonic maps from the Riemann sphere
S?, go into the complex projective space CP", g. Here we identify S2, go with
CP!, g and consider it as the complex manifold. Combining the resuls by Eells &
Wood in [4, §6] with Wolfson in [14], for each full harmonic map f : S — CP",
we get a harmonic sequence

seq(fir) 10 & fy o it S5 S 50

Let #arm(CP") be the set of harmonic maps in a Banach manifold
wlr(S2 CP") for p > 2. Refining the “Sacks-Uhlenbeck” limit, Parker & Wolf-
son ([11]) give a definition of ‘“‘converging to a harmonic bubble tree map”.
Though their definition in [11] is for pseudo-holomorphic maps, as mentioned in
it, the definition is applicable for harmonic maps. In [I1] and [10], they have
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shown that, in this sense, harmonic maps with bounded energy contain a sequence
converging to a harmonic bubble tree map satisfying appropriate conditions.
Our main result is the following. As for details of notations or terminologies, we
will define in the following sections.

MAIN THEOREM. Let S?, gy be the Riemann sphere and CP", g be the com-
plex projective space. Take a sequence {f*}, in Harm(CP") which are energy
bounded. Then both {0f*}, and {0f*}, are also energy bounded. Passing
through subsequences, {f*},, {0f*}, and {3f*}, converge to either trivial maps
or harmonic bubble tree maps

ff=\ 91" —cp
tel

flll _ \/ fl(/’) .Th _, cpr
{”GI]

=V f,(flw : T — CP"
/”EI,]

respectively satisfying the followings: 5 ;
‘) is non-trivial, it is equivalent to or some ('€ I; =
(1)15(/) vial. it i val 1({) /el 1(/)
of o o'/{/’/ satisfying U’(B_f}“’)) < By, .,
hen is not equivalent to any of'\"), £’ is a holomorphic map o
@) When f"" i ival of 9, £ is a holomorphi
the _length no greater than n—r— 1. ,
Q) If ofY) is non-trivial, it is equivalent to ff{ ) for some (/"ely;
1Y =30 05, with 6/(B,n) = Byo.
en [’ is not equiva ent to any 0 ), 7(/ ) is an anti-holomorphic ma
4) When [} quival y | 14 p
of the length no greater than r — 1.
Here r+ 1 is the O-order of f.

Here and throughout this paper, to simplify notation, we adopt the con-
vention of immediately renaming subsequences and so a subsequence of {f*} is
still denoted by the same way.

Contents are as follows. In §2, we begin to introduce harmonic maps
defined on S?, gy into CP", g. Associated to each harmonic map, we consider
its harmonic sequence. We refer related results. In §3, we define a harmonic
bubble tree map introduced by Parker & Wolfson in [11]. Then we show Main
Theorem. In §4, we consider when harmonic maps into either CP' or CP? are
gluable. Lastly, in §5, we consider examples of gluable or non-gluable harmonic
bubble tree maps and their harmonic sequences.

2. A harmonic map and a harmonic sequence

Let C"™' be the complex (n+ 1)-dimensional space equipped with the
standard Hermitian inner product defined by

XY= Z'x/}_}j Where X = (xj)Ogjgna Y = (yj)OSan € Cn+1.
J
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Put |X|=+vX -X. We equip the Fubini-Study metric ¢ on CP" of constant
holomorphic sectional curvature 4. As for the geometry of CP”, refer [7, IX.
6. Example 6.3]. When n =1, we get an isomorphism S? ~ CP! through a
stereographic projection

§? {0} - C~Uy={[z0:21)] € CP' |z #0} = CP' — {[0: 1]}

which takes the north pole to the origin, the south pole oo to infinity, and the
equator to the unit circle. Here [z : z;] is the homogeneous coordinate system
of CP'. Let S?, go be the sphere with the Reimann metirc g, induced from
CP'. As mentioned in §1, we also equip the complex structure on S? induced
from CP!. On a coordinate neighbourhood Uj, the metric gy is customary

represented by dsj = pp = (1j|d\2) for z :‘;—; € C ~ Uy. Here ¢ is determined up

to a complex factor of absolute value 1.

Throughout this paper, take and fix a real p > 2. As 1> %, we can get a
Banach manifold W!?(S% CP") consisting of maps f : S> — CP" whose deriv-
atives of order <1 are L, integrable. A map f e W!?(S? CP") is harmonic
if it is a critical point of the energy functional E: W'7(S? CP") — R defined
by

B = [t ons

where |df |2 is the Hilbert-Schmidt norm <{go, f*¢9>ys. Thus we consider the
set #arm(CP") of harmonic maps as a subspace of W!7(S? CP"). Because
of the regularity and the Sobolev embedding theorem C° > W2, #arm(CP")
is contained in the set C*(S?, CP") of all C* maps for any s > 0. Since f is
defined between Kéhler manifolds, any holomorphic or anti-holomorphic map
is harmonic. Refer [9] and also [3, (8.15) Corollary]. Denote by #0/(CP") the
subspace of #arm(CP") consisting of holomorphic maps.

Now we introduce a 0 transform and a 0 transform in [1] which is the
same correspondence given in [4, §3]. For a smooth map f:S% — CP", let
ny: V(f) — S? be the tautological complex line bundle whose fiber at z e S?
is f(z). For a C-line X in C""' denote by X the orthogonal complement
of X in C"!. Define a smooth map f*:85% — G(n,n+1) by f+(z) = f(2)*.
Here G(n,n+ 1) is the complex Grassmann manifold consisting of n-dimensional
subspaces in C"*!.  We equip the standard Riemann metric g, and the complex
structure on it. Refer [7, IX, Example 6.4]. f* also defines the tautological
bundle 2V( /) — 8% By|[l, §2], both V(f) and V(f*) are holomorphic bundles
over S-.

Take a unitary frame Zo,Zi,...,Z, of C"*! so that Z, defines f. Then
put

dZy = woZy + Z wZy, f*wr = a9+ b

rx=1
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and define maps
V()= V(T () = (é“Zarz,) ® ¢,

V()= V(T 3(&°Z) = (éOZbrz,) ® .

Here 709 (resp. T(®1) is the cotangent bundle on S? of type (1,0) (resp.
(0,1)). We get the followings.

_ Turorem 1 ([1], §2). If f € #arm(CP"), 0 is a holomorphic bundle map and
0 is an anti-holomorphic bundle map.

Denote by [V (f)] the projectivization of V' (f). Though ¢ is determined
only up to a complex factor of absolute value 1, we get the fundamental
colliniation of f

VN2 /@] = [ @] e V()]

if 0f(z) #0. As mentioned in [1, §2], when f is harmonic, by Theorem 1, we
can get a well-defined non-trivial map df : S> — CP" as far as f is not anti-
holomorphic. We call it the 0 transform of f. When f is anti-holomorphic, we
define the 0 transform of f as a zero map. Similarly we also get the funda-
mental colliniation

VN2 f @] = [0 @) e V()]

if f(z) #0. If f is not holomorphic, this defines a non-trivial map df : $? —
CP" which we call the 0 transform of f. When f is holomorphic, the 0 trans-
form of f is defined as a zero map.

THEOREM 2 ([1], Theorem 2.2). Take f € #arm(CP"). Then we get the
Jfollowings.

(1) f+:8*— G(n,n+1) is harmonic.

(2) Both the 0 transform of f and its 0 transform are harmonic.

(3) If of is non-trivial, 00f = f.

(4) If of is non-trivial, 00f = f.

We say that f € #arm(CP") is full if its image lies in no proper projective
subspace of CP". Associated to a full map f € #ol(CP"), take a lift Z: S>>
U — C""' — {0} over a chart U. Classically we get the Frenet frame {Z,},., of
f which is obtained by the Gram-Schmidt’s orthogonalization of {<.Z} except
at finite point of S2. Since the zeros of i

an
Z/\EZ/\-n/\

Z
0z oz"
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are finite and are removable, this frame can be uniquely extended over S2.
Refer [15, §4]. We get

dz, = _drfl(ﬁzrfl +wZ, + ar(erJrl

for 0 <r<nwhere a_y =a,=0. For0<r<n,let f,:S> — CP" be the non-
trivial map defined by Z,. By definition, f.;; is the ¢ transform of f. and f,_
is the 0 transform of f,. Hence, by Theorem 2, f, is harmonic for any r. We
call the sequence of harmonic maps

Ont F)

seq(f,0):0 < fo=f 0 O g e B
a harmonic sequence of f with the length n.

When f e #ol(CP") is not full, we can choose an isometry 74 : CP" — CP"
induced from a unitary transformation 4 : C""' — C"*! so that

A A
f=T4010f4. 52 cpm & cpr I cp

by a full 4 € #ol(CP™) and the inclusion . We define a harmonic sequence of
f of the length ng

5 P 5 . O, O — 13l
seq(f,0):0 e fo=f -2 i S g S e 0

by compositions f, = T4 o010 f4;

0 0 0 Oy 0, Oppy— On,
seq(fAvo):Oé_ﬁ)A:fA_oﬂ_}flA_l_)“.g_l)ﬁA_r_}”._n_l) n;l-i)()-

Here seq(f,0) is defined independently on the choice of a unitary matrix 4.
Following to [4, Definition 5.1], we define the d-order of f € #arm(CP") by

max max dim span{0“*Zy(z) |0 < o}
ze

and also the d-order of f by

max max dim span{d*Zy(z) 10 < B}.
zZE

Here Zy: 82> U — C" is a lift of f over a chart U and span{v*}, is the
subspace of C"*! spanned by vectors {v*},. These orders are determined inde-
pendently on the choice of a lift Zy. By [14, Theorem 3.1 & Theorem 3.4], we
get the following.

THEOREM 3. For any non-trivial f € #arm(CP"), we get fy € #ol(CP") so
that the harmonic sequence of fy contains f;

- 0
01 Ongy

seq(f,r):OLfO&flLm%fr:fiw--ﬂfno—m

where 1 <ng <n, r+1 is the 0-order of f and ny—r—+1 is its 0-order.

We also call seq(f,r) the harmonic sequence of f with the length ny.
Obviously f € #arm(CP") is full exactly when the length of seq(f,r) is n. Let
Harm*(CP") be the subspace of H#arm(CP") consisting of full maps. Corre-
spondingly #ol*(CP") is denoted for the space of all full maps in #ol/(CP").
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Essentially, by [4, Theorem 6.9], we get the following. Theorem 3 gives the
correspondence of the following theorem.

THEOREM 4. There is a bijective correspondence between f € Harm*(CP")
and pairs (fo,r) where fy € #Hol*(CP") and r is an integer with 0 <r < n.

For a smooth map f e W!2(S? CP"), we denote by c;(f) the first Chern
number of the tautological bundle V(f) — S>. By [14], we get the followings.

Lemma 2.1 [14, §2 & §3].  For f € AHol*(CP"), choose the Frenet frame {Z,},
of [ and put

dz, = _C_lrfl(ﬁzrfl +wZ + ar(er+1
for 0 <r<n where a1 =a,=0. Then each f, defined by Z, holds

£ = [P+ 1) Y5 0 n

R (P MELEN

Denote by R;(f) the ramification index of 0 : V' (f) — V(0f) ® T which
is the number of zeros of & counted according to multiplicity. ~Similarly R;(f)
is the ramification index of 0: V' (f) — V(df) ® T®V. As for the following
lemma, we refer [5] and also [14, §3].

Lemma 2.2. For f e #arm(CP"), if Of is non trivial, we get
c1(0f) = a(f) + Ra(f) + 2.
When Of is non-trivial, we also get ¢1(3f) = c1(f) — Rs(f) — 2.

o

By Lemma 2.1 and 2.2, we get the following inequalities.

LemMa 2.3 [14, Theorem 3.1]. For f € #ol*(CP"), choose the Frenet frame
{Z,}, as in Lemma 2.1. Then we get the followings for any r.

(1) ZrJrlgqgn Zrﬁsgqfl Ra(f;) < %E(fr) + (I’l + 1) : |Cl (ﬁ)|
(2) ZOSqufl qusgrfl R(Q(f;) < %E(fr) + (I’I + 1) : |Cl (ﬁ)|

3. Harmonic bubble tree maps

It is well-known that #arm(CP") may be non-compact with respect to W!2-
topology. To consider this bubbling phenomenon, we refer Parker & Wolfson
([11]) and Parker ([10]).

Let TS? — S? be the complex tangent bundle over the complex manifold S?,
go. Compactifying each vertical fiber, we get a bundle X(S?) — S? with fibers
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S. = S? where we identify z of S. with the south pole oo of S? and equip the
complex structure on X(S?). By the induction on k > 1, we define a bundle

BH(5?) = 2(EE(87) — TH1(S?).

A bubble domain at level k is a fiber S¥ = §? of £¥(5?) — £*71(5?) and a bubble
domain tower is a union 77 = \//51S ) of the base space S of X(5?) — S?
and finite number of bubble domains S) (/e I,/ > 1) with

n 28V 5 80 = Szk,’ = (z) > zs € 23
We denote by oo, the south pole of S(). Motivated by Parker [10], if a map
1=\ 1017 =\/ s — cp"

tel rel
consisits of non-trivial maps f) satisfying f()(c0,) = f)(z;) when 7;'(z/) =
SO, we call f1 a bubble tree map, £ a base map, f“) a bubble map for
/el —{0} and z, € SY) a bubble point of /). Denote by By the set of
bubble points of f(*)

We call 1 a harmonic bubble tree map if f) is a harmonic map for each
lel. Similarly we call /! a holomorphic (resp. an anti-holomorphic) bubble
tree map if £ is holomorphic (resp anti-holomorphic) for any /e I.

We say that a sequence {/*},., in #arm(CP") converges to a harmonic
bubble tree map f!:T! — CP" if each f* defines a bubble tree map %! =
\,o; f%":T" — CP" by the iterated renormalization procedure and if {f kA }
converges to f! uniformly in C°N W2 and uniformly in C” (r>1) on any
compact set of T/ — (], ({o0/}UBs). Here %/ = f o, by a fractional
linear transformation oy, of S) = §? fixing the south pole on a compact set
of S¥) — {0/} UBy for k large enough. For details, refer [11, §4]. By [10,
Theorem 2.2 & Corollary 2.3], we get the following.

THEOREM 5. Let {f*}, be a sequence in #arm(CP") with sup;, E(f*) < co.
Then a subsequence converges to a harmonic bubble tree map f' = \// £
CP" satisfying

hmEf’C ZE and oc_hm alff = ch

For CP", g, we get a constant By so that any f € #arm(CP") with E(f) <
2By is trivial (refer [12]). We choose By as a scaling constant. Put H™ =
{z]]z] = 1} =« C. By the choice of the translation and the rescaling in the
renormalization, if a sequence of harmonic maps converges to a harmonic bubble
tree map f/ =\/, f): T' — CP", each bubble map f*) is parametrized satisfy-

ing
(BC) J |arf</>|2v dzdz—Bo
H{

and By is contained in the northern hemisphere of () when ¢/ # 0.
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In the case of CP”", the map
(G ﬂz(CPn) ~ Hz(CPn;Z) — 7

defined by ¢ ([f]) = ¢1(f) is an isomorphism. Let #arm,(CP") be the subspace
of #Harm(CP") consisting of f with ¢|(f) =a. For each « € Z, #arm,(CP") is
non-empty. By Theorem 5, if {f*}, in #arm(CP") converges to a harmonic
bubble tree map, f* e #arm,(CP") for any k large enough.

LemMmA 3.1.  Let {f*}, be a sequence in #Harm,(CP") with E(f*) < E for
any k. Then we get

E(f*) + E(0f*) <4E +2n{2+ (n+3) - |o|}
for any k.

Proof. By Lemma 2.2, ¢;(9f*) = ¢;(f*) + Ro(f*) + 2 and, by Lemma 2.3,

Ro(/%) < LE(4) + (Dl (7).
Hence
Q@) < la (79l +2) + 242

As c¢i(f*¥) = o, by Lemma 2.1, we get
E@f*) = E(f*) = mei (f*) = me1 (o *) < 2E +7{2+ (n+3)[a]}.
As for E(9f*), we can show similarly. O
We say that fy is equivalent to f; in W1HP(S2,CP") if fi = fy oo by some
linear fractional transformation o : S — S? fixing the south pole. We also say

~1 = / . ad . . _ p . .
th(?/})t f= v{elf< ). T(I/)—> CP" is equivalent to f/=\/,_, f©):T! — CP" if
Y is equivalent to f\);

o/

FO = £0 66, §0 = §) 2, g0 = g

zr zr

(¢

ep
with o/(Z,) =z, for each /el. Here T = V/el‘g(/) and oy is necessary the
identity.

Now we begin to show Main Theorem. As E(fX) <E for any k, a
subsequence of {f*}, converges and so we can assume that f* e #arm,(CP")
for any k. Hence, by Lemma 3.1, we get E(9f*) < E; for any k. Therefore,
passing through subsequences, both {f*}, and {df*}, converge to f!=

\,o fO: T - CP" and fI'= AV fl(/l) : Th — CP" respectively. More
precisely, consider the renormalization f*! =\/, f&* . T1 =\/, S} — CP" of

/¥ converging to f1=\/, /). Put f¥=0f* and consider again its renorm-
alization

f‘]k[] _ \/ }(‘]k,/ . TII — \/ S([’) N CPn
(el l'el
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L _ ("
whose subsequence converges to f;"' = \//,E I fo If
K=o f oo =gyt 0y

on a geodesic disc D' in SY) - B ) U{oo,} for any k large enough, {fl }
converges to fl which is either equal to non-trivial of © or equlvalent to non-
trivial 9f ) for some £ €l — {0} On the other hand, if 9/") is non-trivial, we

can get f1 equivalent to df () g As the convergence of {f%’ } 1s with respect
to C*-norm for any s> 0, if f1 =0foq,, we get
J/(Bfl// ) (e Bf

Now suppose that { flk’//}k converges to f1 which is not equivalent to any df (")
for /el. As ¢“’":8? — §? is a holomorphic map given by

Z—of/(w)—oc1 w—i—ﬂ )

0,z 1S a non-zero constant rxl'f’. Hence
6f ((8fk)001 ):(éaf")oal _fkoo'l

on D’ for any k large enough where the constant oc1 %" yanishes because of the
homogenecous coordinate. A subsequence of {(3]’l }« converges to zero on D'.
By the uniqueness continuatlon theorem ([13]), this means the holomorphicity of
]’IU). The length of f is obvious.

By replacing 0 transform with ¢ transform, we can show the corresponding
assertion. This completes the proof of Main Theorem.

4. AHarm,(CP') and Harm,(CP?)

We say that a harmonic bubble tree map f/: 77 — CP" is gluable if a
sequence of harmonic maps converges to a harmonic bubble tree map f7: 7' —
CP" equivalent to f/:T! — CP". Firstly we consider the case when n = 1.
Note that any map in #arm(CP') is either holomorphic or anti-holomorphic.

Lemma 4.1, Let f1 = \/ f(> T! — CP! be a holomorphic bubble tree
map. Then of = v 6f is a well-defined anti-holomorphic bubble tree map

defined on T'. If f! is gluable, so is of".

Proof. Let f = [po: p1] € #ol(CP') be non-trivial where py and p; have
no common zero. Then, by calculations,

of = [(p1py — P1po) Py = —(P1Py — P1P0)Po)-

If pipy — pjpo =0 on a domain, py = K - p; and so we deduce a contradiction.



376 HIROKO KAWABE

Now take a holomorphic bubble tree map f/ =\/,_, /) : T! — CP'. As
shown above, when f)(c0) = f)(z,), of)(o0) = df“)(z,). This shows the
first assertion.

When a sequence {f*}, in #ol(CP') converges to f!, by calculations,

{0f*}, converges to 9f'. O

Now we consider the case when n = 2. We start to refer results of existence
theorems. Denote by #ol, ,(CP?) the subspace of #0l(CP?) consisting of f
with ¢(f)=o and Ry(f)=r. We also put #ol (CP?) = #ol,,(CP*)N
Hol*(CP?). Obviously #ol? (CP?) = Hol, ,(CP?) if Jutr+2<0.

We also consider the subspace #arm, p(CP?) of #arm,(CP?) consisting of
f with E(f)==E. Note that any map in #arm, p(CP?) is full when E # 0,
|o|. We get the followings.

THEOREM 6 ([2], Lemma 1.3 & Theorem 1.4). For 0<r<—o—2,
Hol, .(CP?) is a smooth connected complex submanifold of #ol(CP?) of complex
dimension 2 — 30— r. Moreover there is a homeomorphism

eyfozac,r(CPz) El f - 5f € ’}(farmaJrZJrz (3o+r+2) (CP )

Remark 4.1. By [8, Proposition 2.7], #ol, ,(CP?) is non-empty exactly when
0<r< —%oc - 3.

As for the gluing, we get the following.

PROPOSITION 4.2. Let 1= \/felf(f) : T — CP? be a harmonic bubble tree
map with f\") e #arm,, g,(CP?) and E; # |us| for any el If f1 is gluable,
both of! = \/ ﬁf ). 17! — CP?* and of' = \//el of') . T — CP?* are well-
defined gluable bubble tree maps.

Proof. If necessary, replace f!/ by an equivalent harmonic bubble tree
map (which we denote by the same way) and take a sequence {f*}, in
Harm(CP?) converging to f!. Without loss of generality, we can assume
that f* e #arm, p(CP?) with E # |oc| for any k. We get a harmonic sequence

seq(f*,1):0 & ok 5 Lok Lo,

Passing through a subsequence, {df*}, converges to f" =\, i f1/ ,Tll —
CP?. When f1 ) is not equivalent to any df), by Main Theorem, fl(/) is a
holomorphic map whose 0 transform is trivial. Then fl(/ becomes tirival and
we deduce a contradiction. By the assumption, df) is non-trivial. Hence
I = I and each fl(/) is equivalent to 9f”). This implies that o/ =\/,_, o)

a well-defined anti-holomorphic bubble tree map. Moreover, by Main Theorem
again, 0f! is defined on T/. Similarly we can show the corresponding result for

. O



HARMONIC MAPS FROM THE RIEMANN SPHERE 377

ProposITION 4.3.  For O<r<—oc—2, let {f*}, be a sequence in
Hol,,,(CP?) converging to f1=\/,_, f): T" — CP> with f) e #ol; , (CP?)
for any /. Suppose that {6f kY. converges to a harmonic bubble tree map
f :Th — CP?. Then fl is equivalent to a well-defined harmonic bubble
tree map of ! \//51 of') . T! — CP? exactly when

STR(f) = r—2x (1] - 1),
l/

Here |I| is denoted for the number of elements of I.

Proof. Since E(f*) = (-3¢ —2—r)n >0, by Main Theorem, a subse-
quence of {df*}, converges to fl1 :Th — CP2.

Firstly we note that gf ") is non-trivial. As E(f¥) =3, E(f")), by Lemma
2.1 and Lemma 2.2, we get

E(of%) — ZEaf —n{ZRg(f(/))—Rg(fk)—i-Z-|I|—2}20.
2

Here this is equal to zero exacly when {df*}, converges to a bubble tree map
equivalent to a well-defined bubble tree map Jf’. O

5. Example

In this section, we show examples to consider relations between a harmonic
bubble tree map f/ and its 0 transform. We consider the case when n = 2.

For any f € #ol(CP?), put f = [po: p1 : p2] where [po : p1 : p»] are homo-
geneous coordinates of CP2. Put hy = lho : hy = hy] where

(ho,h1,hy) = (pip2 — P1P3, —PoP2 + PoP3, PoP1 — PoPy)-

When py, pi, p» have no common zeros, Ry(f) is the number of common zeros
of three holomorphic maps hg, s, hy as far as 2. max; deg p; — 2 = max; deg A;.
For details, refer [2, §2].

From now on, we denote by 77/ =S v S0 the bubble domain tower
defined by the base space S() = S? and a bubble domain SV = z7!(0) = =S5O,
Denote by

Hol_ o(CP?) x Hol 5 o(CP?)
the set of holomorphic bubble tree maps f/ = fOv 1. T/ - CP?> with

S e Aol _5,0(CP?) for £/ =0,1. Since #ol*, (CP?) = Wol_z 0(CP?), by The-
orem 6, #ol 5o(CP?) is a complex manifold of the complex dimension 8.

Example 5.1. Take f1 e #ol_» o(CP?) * #Hol_»o(CP?). By Proposition 4.3,
if a sequence of fi € #ol_4,(CP?) converges to f!, a subsequence of {dfi},
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converges to a harmonic bubble tree map equivalent to of/ := of @ v of® . 71 —
CP2.

In this case, we also get E(d%f;) =4n and E(8*f)) =2n for /=0,1.
Hence, by Main Theorem, passing throught a subsequence, {62fk}k converges to
a harmonic bubble tree map equivalent to 8*f7 := 8>, v a*f() . 71 — CP2.

Example 52. Let f1= fOvy ). 7! - CP? be the holomorphic bubble
tree map defined by
O =:z:22, fO@)=2:z:1]

As Ry(f) =0 for / =0,1, 1 e Hol 5,(CP?) x #Hol 5 (CP?).
A sequence of harmonic maps

: 1, 1
fr(z) = {1 ZZ—I—EZZ +R222]

converges to a holomorphic bubble tree map equivalent to f/: 7/ — CP>. By
calculations, we also get Ry(fz) =2. Hence, by Proposition 4.3, {dfgr}r con-
verges to a harmonic bubble tree map equivalent to a well-defined harmonic
bubble tree map df’ : T/ — CP>. Moreover

1 4 2
+—Z—2Z——:1:|

2 52
) = |7 g

converge to an anti-holomorphic bubble tree map equivalent to a well-defined
*f1:T! — CP". In fact, by using “Mathematica Ver.6.0”, we can calculate

of O (z) = [~z — 2222 : | — 2222 : 2z + 2%3],
fW(z) =Rz +2%2:1—2%22: -z — 2227
and
PO =2 =2z:1], V) =[1:-2z:25%.
Hence both df7 = of @ vaof® : 77 — CP? and 0*f1 = *f O v >V . 77 — CP2

are well-defined.

Example 5.3. We consider a bubble tree map f/ = fOv ). 7/ - CP?
defined by
O =1:2%:2, fOC@) =[2:2:1]
which is contained in #ol 5 o(CP?) x #ol_»((CP?). For R>1 large enough,
we define holomorphic maps fz € W'7(5%, CP?) by

1 1
_ .52 .
fR(Z)— 1:z +E-Z+R222
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which converge to a holomorphic bubble tree map equivalent to f/: T/ — CP?
if R— o. Here Ry(fr) =0 and so {dfr}r does not converge to a harmonic
map equivalent to df’. In fact, we calculate of(") to get

() = [~z - 2222 : 224+ 2%2: 1 — 7277,
of ()

2z + 2zl —2%22 -5 — 2222]

where
0 =100:0:1], fV(0)=[0:1:0].

Hence these cannot define a bubble tree map on 7/. In fact, when R — +o0,
Jfg converge to a harmonic bubble tree map

= Ov v AV Th = 5Oy 5Oy s cp?

where fl(l) is equivalent to df (") and the map fl(m) : §OU — CP? is equivalent to
f’l(OI).
(01
fl<O )(z) =[0:1:-22.
Since the center of mass of fl(m) is the north pole, we can define T/ by
SO =5 c x50, sO =5 gD
and choose fl(m) with fl(m)(O) :]71(01)(0). We have
E(fz) = E(@f) + E(f V) + E(f™)) = 10z.
When R — +c0, 8*fz given by
?*fr(z) = [l —2R*2® + 4RZ> + R32%: 2Rz + R%z*: R?22 — 2R*%Y)
4 2 1 2 1
— |53 .5 . 52
—[Z TR TR TR R E +RJ
[N S U SR SR
R R3z3 R?z3 R4z Rz2 R3z°° Rz Rz

also converges to an anti-holomorphic bubble tree map
=20y [0y (0 Th - cp?
where £, and £,°" are equivalent to 0%/ and 3f,"" respectively;
3Oz =21 1: =24,
R =10:22:1),
PfW(z)=[1:-2z:2%.
These satisfy E(0%fz) = E(0* ) + E(@f"") + E(0*f V) = 6.
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Example 5.4. Let f1=fOv fW e ol 0(CP?) x Hol 50(CP?) be de-
fined by

fOC) =[po:pr:p)=[1:22:1+z and
Y@ =g :qi:q)=[":1:242%.
We can get fr € #ol*,(CP?) defined by
1 1
fR(Z) = 1 :@+22 : l+Z+E

converging to a harmonic bubble tree map equivalent to f/ when R — +o0.
Since Ry(fz) =2, by Proposition 4.3, both {dfz}p and {0%fx}p converge to
harmonic bubble tree maps equivalent to well-defined bubble tree maps Jf”’ :
7! — CP? and 0*f1: T7 — CP? respectively.

For p(z)=ap+aiz+az> and q(z) =by+biz+byz?, put |p—gq|=
Zk |ak - bk|

Lemma 5.1. Let f1=fOv M. T — CP? be a holomorphic bubble tree
map in Example 5.4 with

SO =1po:piipl, Y =lq0:q:ql.

Then, for any &> 0 small enough, we can choose a holomorphic bubble tree map
fr=fOu 0. 1T CP? in Hol 5 (CP?) * Hol 5 o(CP?) with

f(o) = [ﬁ0¢ﬁ1 if’z], f<l> = [%351 3‘?2}

so that Y ,(|p, — pe| + 4, — q/|) < & and that of =of OvofV. Tl — CP? is
well-defined but non-gluable.

Proof. When the degrees of polynomials p and ¢ are no greater than 2,

we can choose & >0 so that p and ¢ have no common zeros as far as

|p — pol + g — qo| < e. Here po(z) =1 and ¢o(z) = z>. Hence we can choose

e>0 so that /) e #ol_»o(CP?) for /=01 if

(B —pl+1g—ql) <&

0<j<2
Put
P(2) = o0 +anz+anz,  G,(z) =B+ Bz + Bnz’

with ago = 1 and By, = 1. Since ogo = fp, = 1, f(0) = fV(c0) exactly when
an = f,, for £ =0,1,2. Moreover the complex conjugates Qf hj;(/) is equal to
*fV. Since £ is full, 6*f) is non-trivial with (0 f({)) =2. Moreover
*f9(0) = 0’fV(+0) exactly when oy and f,, additionally satisfy

Pri(ao1000 — 021) = By (01010 — a11) — PBor (o021 — oti1020).
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o an o1 o 21 -

Denote by U, the set of all ( f ) f (1)) whose polynomlals have coeﬁiments
ks B satisfying above conditions. By definition, both f7/ f f and
f f v o f are well-defined bubble tree maps deﬁned on TI More-
over, in such a case, we can calculate to show that of ' = af @ v af !V are well-
defined harmonic bubble tree map defined on 7'/
As the complex dimension of U is equal to 13 and that of #ol 4,(CP?)
is 12 by Theorem 6, there is f e U, so that of! is well-defined but not
gluable. O

Example 5.5. We consider a holomorphic bubble tree map which contains a
non-full map. Let f/ = f©@v ). TT — CP? be the holomorphic bubble tree
map defined by

O =[1:2:0, fOE@)=[z:1:1].
Then fx € #ol_»(CP?) defined by

11
fR(Z)Z[l TR RZJ

converge to f! when R — 4+o00. We get E(fz) = E(f©)+ E(fV) =2z By
calculations, we get

afR<z)=[—z-—i+ 2 o4 b2 102 _z]

R2z ' R4z2z  R2z2 R2z2  R4zz R2z2  R4zz R2z
Z 1 2 Z 1 1 2 1 2 2z
:{‘E‘E+m+wﬁ‘mzﬁmza‘R4zz‘Rszz‘E]

which converge to
flr=orOv Oy g0 Th = 5Oy 5O, g0, cp?

if R— +o0. Here T is the same bubble domaln tower in Example 5.3 and,
5 U and f1 are equivalent to f ) and of D respectively;

f V() =]-z:1:0],
fl(ow(z) =[0:1-2%:1],
Vi) =2:-z2:-2.

In fact, making calculations, we can show that the center of mass of fI(OI) is the
north pole. We also get

E(ofr) = E(6f<0)) +E(6f(1>) +E(f1(01)) =n+n+ 2.
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Moreover

L2 b
R’z R?22°  R?2?

*fr(z) =

converges to f,> = 6fl(OI) - Th =500 _, cp?,

M) =[0:1:—1+22.

In this case, 6ﬂ<01) is the base map and E(0*fz) = E(&fl(m)) = 2n7.
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