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MIRROR SYMMETRY, KOBAYASHI’S DUALITY,

AND SAITO’S DUALITY

Wolfgang Ebeling*

Abstract

M. Kobayashi introduced a notion of duality of weight systems. We tone this

notion slightly down to a notion called coupling. We show that coupling induces a

relation between the reduced zeta functions of the monodromy operators of the cor-

responding singularities generalizing an observation of K. Saito concerning Arnold’s

strange duality. We show that the weight systems of the mirror symmetric pairs of M.

Reid’s list of 95 families of Gorenstein K3 surfaces in weighted projective 3-spaces are

strongly coupled. This includes Arnold’s strange duality where the corresponding

weight systems are strongly dual in Kobayashi’s original sense. We show that the same

is true for the extension of Arnold’s strange duality found by the author and C. T. C.

Wall.

Introduction

The mirror symmetry of Calabi-Yau threefolds has attracted the attention of
many physicists and mathematicians. One- and two-dimensional Calabi-Yau
varieties are elliptic curves and K3 surfaces respectively. It is well-known that
there exist 3 families of weighted projective elliptic plane curves. The cones over
these curves are the simple-elliptic singularities of type ~EE6, ~EE7, and ~EE8 (see below).
They are self-dual with respect to mirror symmetry.

M. Reid classified and listed all families of K3 weighted projective
hypersurfaces with Gorenstein singularities (unpublished). It turned out that
there are 95 such families. The cones over these surfaces are called simple K3
hypersurface singularities. These singularities were classified and thus Reid’s list
was rediscovered by T. Yonemura [Yo]. These surfaces include compactifica-
tions of the 14 exceptional unimodal hypersurface singularities of V. I. Arnold.
It is well-known that the mirror symmetry between the corresponding families of
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K3 weighted projective hypersurfaces corresponds to Arnold’s strange duality (see
e.g. [D3]). S.-M. Belcastro [Be] determined for which of the 95 families the
mirror symmetric family is again in Reid’s list.

V. V. Batyrev [Ba] showed that the mirror symmetry of Calabi-Yau
hypersurfaces in toric varieties is related to the polar duality between their
Newton polytopes. M. Kobayashi [Ko] discovered that Arnold’s strange duality
corresponds to a duality of weight systems and this is related to Batyrev’s
result. K. Saito [S1, S2] observed that Arnold’s strange duality corresponds to a
duality between the characteristic polynomials of the monodromy operators of
the corresponding dual singularities. In [Yu, Lect. 3, Problem 8.5] it is asked
whether there are any possible relations among all these dualities and mirror
symmetry. Here we give a partial answer to this question extending [E3] where
it was shown that Saito’s duality can be derived from polar duality.

We consider weight systems ða1; . . . ; an; hÞ with

0 < a0 :¼ h�
Xn

i¼0

ai; a0jh:

Let f ðx1; . . . ; xnÞ be polynomial of weighted degree h. Then the hypersurface ~XX
in the weighted projective space given by

x
h=a0
0 þ f ðx1; . . . ; xnÞ ¼ 0

is a Calabi-Yau hypersurface (if it is quasismooth). We introduce a notion of
coupling of such weight systems which tones down Kobayashi’s notion of duality.
We relate this to polar duality in the same way as in [E3]. The basic notion is
the notion of a weighted magic square C. The partner weight system corre-
sponds to the transpose of this matrix. The natural C�-action on Cn induces a
monodromy transformation on the homology of the fibre

F ¼ fðx1; . . . ; xnÞ A Cn j f ðx1; . . . ; xnÞ ¼ 1g:
We consider the reduced zeta function ~zzCðtÞ of this monodromy operator. We
indicate how this rational function can be computed from the matrix C. We
show that the function ~zzC tðtÞ associated to the transpose matrix Ct is in a sense
dual to ~zzCðtÞ which generalizes Saito’s duality and coincides with it in the case
when n ¼ 3 and a0 ¼ b0 ¼ 1.

Then we investigate the coupling of weight systems for the weight systems of
Belcastro’s list of mirror symmetric pairs inside Yonemura’s list of 95 weight
systems. It turns out that for any mirror symmetric pair the corresponding
weight systems are (strongly) coupled. The cases of Arnold’s strange duality are
exactly those with a0 ¼ b0 ¼ 1 where the Saito duality holds in its strong form.
Here the corresponding weight systems are strongly dual in Kobayashi’s original
sense. The 31 cases with a0 ¼ 1 and f ðx1; x2; x3Þ ¼ 0 having an isolated sin-
gularity at the origin are compactifications of the 31 Fuchsian singularities
classified by I. Dolgachev [D1], I. G. Sherbak [Sh], and Ph. Wagreich [Wag].
Many, but not all, of them have mirror symmetric partners inside Yonemura’s
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list. In [E4] we asked whether the mirror symmetric families to the Fuchsian
singularities not involved in Arnold’s strange duality and its extension by the
author and C. T. C. Wall are realized by singularities. Here we find for 7 of
these Fuchsian singularities singularities which are related to these singularities in
a way explained in Section 3.

Finally we consider the extension of Arnold’s strange duality found by the
author and C. T. C. Wall. This again corresponds to mirror symmetry. Here
also weighted complete intersections in weighted projective 4-spaces are involved.
We associate weight systems to these varieties and we show that the mirror
symmetric pairs have (strongly) dual weight systems.

The author is grateful to N. Yui for drawing his attention to Belcastro’s
paper. He would like to thank Ch. Okonek for useful discussions and the referee
for helpful suggestions.

1. Duality of weight systems

An ðnþ 1Þ-tuple of positive integers Wa ¼ ða1; . . . ; an; hÞ is called a weight
system. The integers ai are called the weights of Wa and h is called the degree of
Wa.

Two weight systems W ¼ ða1; . . . ; an; hÞ and W 0 ¼ ða 0
1; . . . ; a

0
n; h

0Þ are
equivalent if there exists a permutation s A Sn and a rational number l such that
lasðiÞ ¼ a 0

i for i ¼ 1; . . . ; n and lh ¼ h 0. The weight system is called reduced if

gcdða1; . . . ; anÞ ¼ 1:

Each equivalence class contains a unique reduced weight system satisfying

a1 a � � �a an:

Let

a0 :¼ h�
Xn

i¼1

ai:

In the sequel we shall assume that our weight system is reduced, satisfies
a1 a � � �a an, and that a0 0 0.

If a0 > 0 and a0jh then we shall call the weight system a Calabi-Yau weight
system. The reason for this is the following: Let Pða0; aÞ ¼ Pða0; . . . ; anÞ be
the weighted complex projective space of weight ða0; . . . ; anÞ, i.e. the projective
variety Proj C½x0; . . . ; xn� where the degree of xi is ai. Denote by ðx0 : � � � : xnÞ
the natural homogeneous coordinates of Pða0; aÞ. Let f ðx1; . . . ; xnÞ be an
equation of weighted degree h and define

~ff ðx0; x1; . . . ; xnÞ :¼ x
h=a0
0 þ f ðx1; . . . ; xnÞ:

Consider the hypersurface ~XX :¼ ~ff �1ð0Þ in Pða0; aÞ. Let Cnþ1 be the a‰ne
ðnþ 1Þ-space with coordinates ðx0; . . . ; xnÞ. Assume that the hypersurface ~XX is
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quasismooth, i.e. the cone C ~XX ¼ f ~ff ¼ 0g over ~XX in Cnþ1 is smooth outside of the
origin. By [D2, Theorem 3.3.4] the dualizing sheaf o ~XX satisfies o ~XX ¼ O ~XX .
Therefore ~XX is a (possibly singular) Calabi-Yau variety.

We recall some definitions of [Ko]. Let Wa ¼ ða1; . . . ; an; hÞ and
Wb ¼ ðb1; . . . ; bn; kÞ be two weight systems.

Definition. Let C be an n� n matrix with entries in the non-negative
integers. The matrix C is called a weighted magic square of weight ðWa;WbÞ if

Cða1; . . . ; anÞ t ¼ ðh; . . . ; hÞ t and

ðb1; . . . ; bnÞC ¼ ðk; . . . ; kÞ:

Let C ¼ ðcijÞ be a weighted magic square of weight ðWa;WbÞ. Let B be the
n� n matrix ðcij � 1Þ. Let A be the inverse matrix of B. By [Ko, Lemma
2.3.5(1)], ðdet CÞ=h ¼ ðdet BÞ=a0 and ðdet CÞ=k ¼ ðdet BÞ=b0 and both numbers
are integers.

Lemma 1. We have

Að1; . . . ; 1Þ t ¼ a1

a0
; . . . ;

an

a0

� �t

;

ð1; . . . ; 1ÞA ¼ b1

b0
; . . . ;

bn

b0

� �
:

Proof. By definition, BAð1; . . . ; 1Þ t ¼ ð1; . . . ; 1Þ t. We have

B

a1

..

.

an

0
BB@

1
CCA¼

c11 � 1 � � � c1n � 1

..

. . .
. ..

.

cn1 � 1 � � � cnn � 1

0
BB@

1
CCA

a1

..

.

an

0
BB@

1
CCA

¼
h�

Pn
i¼1 ai

..

.

h�
Pn

i¼1 ai

0
BB@

1
CCA¼

a0

..

.

a0

0
B@

1
CA:

This implies the first claim. The second claim follows in the same way. r

It follows from Lemma 1 that the weight systems Wa and Wb can be
retrieved from the matrix C.

Definition. A weighted magic square C of weight ðWa;WbÞ is called
primitive if jdet Cj ¼ h ¼ k.

The weight systems Wa and Wb are called dual if there exists a primitive
weighted magic square of weight ðWa;WbÞ.
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Two dual weight systems are called strongly dual if any row and any column
of C contains at least one zero.

If two weight systems Wa and Wb are dual, then it follows that k ¼ h and
b0 ¼ a0. We tone down this definition to include the case when a0 0 b0.

Definition. A weighted magic square C of weight ðWa;WbÞ is called
almost primitive if jdet Cj ¼ hb0 ¼ ka0.

The weight systems Wa and Wb are called coupled if there exists an almost
primitive weighted magic square of weight ðWa;WbÞ.

Two coupled weight systems are called strongly coupled if any row and any
column of C contains at least one zero.

Let C ¼ ðcijÞ be a weighted magic square of weight ðWa;WbÞ. We now
assume that a0 > 0. We show that the coupling of weight systems is related to
the polar duality of associated Newton polytopes (cf. [Ko, E3]).

Definition. The ðn� 1Þ-simplex GðaÞ which is the convex hull of the row
vectors of the matrix C in Rn is called a Newton diagram of the weight system
Wa.

The ðn� 1Þ-simplex DðaÞ which is the convex hull of the vectors
ðh=a1; 0; . . . ; 0Þ; . . . ; ð0; . . . ; 0; h=anÞ in Rn is called the full Newton diagram of the
weight system Wa.

Let DðaÞ be the n-simplex which is obtained from DðaÞ by taking the
convex hull with the origin in Rn and translating it by the vector ð�1; . . . ;�1Þ,
i.e. DðaÞ is the convex hull of the vectors ð�1þ h=a1;�1; . . . ;�1Þ; . . . ;
ð�1; . . . ;�1;�1þ h=anÞ; ð�1; . . . ;�1Þ.

Definition. Let MHRn. Let h ; i denote the Euclidean scalar product of
Rn. The polar dual of M is the following subset of Rn:

M � :¼ fy A Rn j hx; yib�1 for all x A Mg:

Lemma 2. The polar dual DðaÞ� is the n-simplex with vertices
v1 :¼ ð1; 0; . . . ; 0Þ; . . . ; vn :¼ ð0; . . . ; 0; 1Þ, v0 :¼ ð�a1=a0; . . . ;�an=a0Þ.

Proof [Ko, Lemma 3.2]. r

Proposition 1. Let ‘ be the convex hull of the vectors v1 � v0; . . . ; vn � v0 in
Rn. Then, in the coordinate system given by taking the rows of A as basis vectors,
‘ is the convex hull of the columns of C, hence a Newton diagram of the partner
weight system Wb.

Proof. By Lemma 2, the claim is equivalent to the following statement:
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AC ¼

1þ a1

a0

a1

a0
� � � a1

a0

a2

a0
1þ a2

a0
� � � a2

a0

..

. ..
. . .

. ..
.

an

a0

an

a0
� � � 1þ an

a0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:

If E denotes the n� n identity matrix and 1 the matrix with all entries equal to 1,
then we have

AC ¼ AðBþ 1Þ ¼ ABþ A1 ¼ E þ A1:

Hence the claim follows from Lemma 1. r

2. Saito’s duality

Let C ¼ ðcijÞ be a weighted magic square of weight ðWa;WbÞ. We shall
associate a rational function ~zzCðtÞ to the matrix C.

We consider the hypersurface X in Cn defined by the equation
f ðx1; . . . ; xnÞ ¼ 0, where

f ðx1; . . . ; xnÞ ¼ xc11
1 xc12

2 � � � xc1n
n þ xc21

1 xc22
2 � � � xc2n

n þ � � � þ xcn1
1 xcn2

2 � � � xcnn
n :

Let

F :¼ fðx1; . . . ; xnÞ A Cn j f ðx1; . . . ; xnÞ ¼ 1g
be the Milnor fibre of f : ðCn; 0Þ ! ðC; 0Þ.

If Wa is a Calabi-Yau weight system, then there is the following relation
with the hypersurface ~XX in Pða0; aÞ defined by the equation

x
h=a0
0 þ f ðx1; . . . ; xnÞ ¼ 0:

Let V be the hypersurface in PðaÞ :¼ Pða1; . . . ; anÞ given by the equation
f ðx1; . . . ; xnÞ ¼ 0. The mapping

pa0 : ~XX ! PðaÞ; ðx0; x1; . . . ; xnÞ 7! ðx1; . . . ; xnÞ;
is a covering of degree h=a0 which is branched along the hypersurface V and

possibly along the singularities of PðaÞ. Let ~XX0 :¼ ~XXnp�1
a0
ðVÞ. Let ~YY be the

hypersurface in Pð1; aÞ given by the equation xh
0 þ f ðx1; . . . ; xnÞ ¼ 0. Then the

mapping p1 : ~YY ! PðaÞ is a covering of degree h branched along the hypersurface
V and possibly along the singularities of PðaÞ. Then ~YY0 :¼ ~YYnp�1

1 ðVÞ can be
identified with the Milnor fibre F (cf. [DD]). Therefore the induced mapping
F ¼ ~YY0 ! ~XX0 is a (possibly branched) covering of degree a0.

We have a C�-action on Cn defined by

l � ðx1; . . . ; xnÞ ¼ ðla1x1; . . . ; l
anxnÞ; l A C�:
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Then the C�-action induces a monodromy transformation y : F ! F defined by

x 7! e2pi=h � x ðx A FÞ:
Let y� : ~HH�ðFÞ ! ~HH�ðFÞ be the induced operator on the reduced homology of
F . It is the classical monodromy operator of the singularity f ðx1; . . . ; xnÞ ¼ 0.
Let

~zzCðtÞ :¼
Y
pb0

fdetðid� t � y�j ~HHpðFÞÞg
ð�1Þ p

be the reduced zeta function of y. If X has an isolated singularity at the origin,
the reduced zeta function is related to the characteristic polynomial fCðtÞ of the
monodromy as follows:

fCðtÞ ¼ ð~zzCðtÞÞð�1Þ n�1

:

The reduced zeta function ~zzCðtÞ can be computed as follows (cf. [EG2]).
For JH I0 ¼ f1; . . . ; ng we denote by jJj the number of elements of J. For

J0j, let TJ :¼ fx A Cn j xi ¼ 0 for i B J; xi 0 0 for i A Jg be the (‘‘coordinate’’)
complex torus of dimension jJj, and let aJ :¼ gcdðaj; j A JÞ. The integer aJ is the
order of the isotropy group of the C�-action on the torus TJ . Let XJ :¼ X VTJ ,
FJ :¼ F VTJ . The operator y maps FJ to itself; let yJ be the restriction of y to
FJ . We have

~zzCðtÞ ¼ ð1� tÞ�1
Y

J:jJjb1

~zzC;JðtÞ;

where ~zzC;JðtÞ is the reduced zeta function of yJ .
Let ZJ :¼ TJ=C

�, YJ :¼ XJ=C
�. Note that if aJ does not divide h then

ZJnYJ is empty. In this case, ~zzC;JðtÞ ¼ 1. Suppose aJ jh. If we restrict the
natural projection TJnXJ ! ZJnYJ to FJ then we get an ðh=aJÞ-fold covering
FJ ! ZJnYJ . The transformation yJ is a covering transformation of it and acts
as a cyclic permutation of the h=aJ points of a fibre. Therefore

~zzC;JðtÞ ¼ ð1� th=aJ ÞwðZJnYJ Þ

where wðVÞ denotes the Euler characteristic of the topological space V .
The Euler characteristic wðZJnYJÞ can be computed as follows. A subset

JH I0 is called special if there exists a subset I H I0 with jI j ¼ jJj such that
cij ¼ 0 for i A I and j B J. Note that in particular J ¼ j and J ¼ I0 are special.
For a special subset J0j denote by CIJ the matrix ðcijÞ i A Ij A J . Define Cj :¼ ð1Þ.

First assume that jJj ¼ 1. Then ZJ ¼ pt. The set YJ is empty if and only
if J is special. In this case,

~zzC;JðtÞ ¼ ð1� th=aJ Þ:
Now suppose that jJjb 2. Then wðZJÞ ¼ 0 and wðZJnYJÞ ¼ �wðYJÞ.

Then YJ 0j if and only if J is special or J ¼ I0. In this case, by [BKKh, Kou]
(see also [Va, (7.1) Theorem]) we have
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wðYJÞ ¼ ð�1ÞjJj aJ jdet CIJ j
h

:

In particular, if J ¼ I0, then J is special, aJ ¼ 1 (since Wa is reduced), CIJ ¼ C,
and

wðYJÞ ¼ ð�1Þn jdet Cj
h

:

For a subset JH I0 denote by J 0 the complementary set J 0 :¼ I0nJ. Note
that if J is special for C then J 0 is special for Ct. For J0j let bJ :¼
gcdðbj; j A JÞ. Define aj :¼ h and bj :¼ k.

Summarizing we have proved the following theorem.

Theorem 1. The reduced zeta functions ~zzCðtÞ and ~zzC tðtÞ can be computed
from the matrix C as follows:

~zzCðtÞ ¼
Y

J special

ð1� th=aJ Þð�1ÞjJjþ1
aJ jdetCIJ j=h;

~zzC tðtÞ ¼
Y

J special

ð1� tk=bJ 0 Þð�1ÞjJ
0 jþ1bJ 0 jdetCI 0J 0 j=k:

Remark 1. Let X have an isolated singularity at the origin. Then its
Milnor number m ¼ rank Hn�1ðFÞ is equal to

m ¼ ð�1Þn�1
X

J special

ð�1ÞjJjþ1jdetCIJ j:

The dimension m0 of the radical of Hn�1ðF Þ is equal to

m0 ¼ ð�1Þn�1
X

J special

ð�1ÞjJjþ1 aJ jdetCIJ j
h

:

In addition, let n ¼ 3 and let ða1; a2; a3; hÞ be a Calabi-Yau weight system. By
[D2, Theorem 3.3.4] the hypersurface ~XX in Pða0; aÞ is a simply-connected
projective surface with dualizing sheaf o ~XX ¼ O ~XX . Resolving its singularities
(which are rational double points) we get a non-singular K3 surface with Picard
number

r ¼ 22� ðm� m0Þ:
If m0 ¼ 0, then by [E2, Proposition 1] the discriminant of the Picard lattice, i.e.
the determinant of a matrix of the intersection form on the Picard group, is equal
to

d ¼ ð�1Þr�1~zzCð1Þ ¼ ð�1Þr�1
Y

J special

h

aJ

� �ð�1ÞjJjþ1aJ jdetCIJ j=h
:
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Following K. Saito [S1, S2], for a rational function

cðtÞ ¼
Y
ljh

ð1� tlÞal ; al A Z;

we define the Saito dual (rational) function c�ðtÞ by

c�ðtÞ ¼
Y
mjh

ð1� tmÞ�aðh=mÞ :

In particular, if
P

ljh al ¼ 0, then one has

c�ð1Þ ¼
Y
ljh

h

l

� ��al

¼ hT al
Y
ljh

lal ¼ cð1Þ:

Corollary 1. Let C be primitive, a0 ¼ b0 ¼ 1, and n ¼ 3. Then

~zzC tðtÞ ¼ ~zz�CðtÞ:

Proof. By the assumptions, we have h ¼ k, a0 ¼ b0 ¼ 1, and I0 ¼ f1; 2; 3g.
We show that for any special subset JH I0 we have

aJ ¼ h

jdet CIJ j
:

This is clear if jJj ¼ 1, J ¼ j or J ¼ I0.
Therefore let jJj ¼ 2. For simplicity we assume that J ¼ f1; 2g. By

Cramer’s rule we have

a1 ¼ ðc22 � c12Þ
h

det CIJ

; a2 ¼ ðc11 � c21Þ
h

det CIJ

:

This shows that h=jdet CIJ j divides a1 and a2 and hence aJ . Let

aJ ¼ e
h

jdet CIJ j
for some integer eb 1. Then e divides c22 � c12 and c11 � c21. If we subtract
the second row of the matrix B from the first row then we obtain the matrix

c11 � c21 c12 � c22 0

c21 � 1 c22 � 1 �1

c31 � 1 c32 � 1 c33 � 1

0
B@

1
CA:

Expanding the determinant of this matrix with respect to the first row we see that
e divides the determinant of this matrix which is equal to det B ¼ 1. This
implies that e ¼ 1 and hence the claim.

Analogously, one can show that for J special

bJ 0 ¼ k

jdet CI 0J 0 j :
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Hence it follows that for any special subset JH I0

k

bJ 0
¼ jdet CI 0J 0 j ¼ h

jdet CIJ j
¼ aJ :

Moreover,

ð�1ÞjJ
0jþ1 bJ 0 jdet CI 0J 0 j

k
¼ ð�1ÞjJ

0 jþ1 ¼ �ð�1ÞjJjþ1 aJ jdet CIJ j
h

:

Hence the claim follows from Theorem 1. r

3. Simple K3 hypersurface singularities

First consider the case n ¼ 2. Then the (Calabi-Yau) weight systems
corresponding to quasismooth plane curves are indicated in Table 1. They are
self-dual. The corresponding weighted magic squares are given in that table.
They are indicated as follows:

xc11yc12 ; xc21yc22 :

The corresponding functions f ðx; yÞ ¼ xc11yc12 þ xc21yc22 have isolated singu-
larities at the origin. The characteristic polynomial fCðtÞ of the monodromy
operator satisfies f�

CðtÞ ¼ ðfCðtÞÞ
�1 (cf. [EG1]).

Now consider the case n ¼ 3. Then the (Calabi-Yau) weight systems
corresponding to quasismooth surfaces have been classified by Reid (unpublished)
and Yonemura [Yo]. The cones over these surfaces are called simple K3
hypersurface singularities. Belcastro [Be] determined the mirror symmetric pairs
inside that list.

Theorem 2. Let Wa and Wb be the weight systems of a mirror symmetric
pair of simple K3 hypersurface singularities. Then Wa and Wb are strongly
coupled weight systems.

For the proof of Theorem 2 we indicate in each case an almost primitive
weighted magic square C such that each row and each column of C contains at
least one zero. This is done in Table 2 for the weight systems with ai ¼ bj ¼ 1
for some i; j A f0; 1g and in Table 3 for the remaining cases. We use the
indexing of [Yo] for the weight systems. We list all the weight systems such that

Table 1. Weighted elliptic plane curves

Name a0; a1; a2; h C Dual

~EE8 1; 2; 3; 6 x3; y2 ~EE8

~EE7 1; 1; 2; 4 y2; x2y ~EE7

~EE6 1; 1; 1; 3 x2y; xy2 ~EE6
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the mirror family is again in Yonemura’s list. In the first column we indicate the
index of the weight system. Let

f ðx; y; zÞ ¼ xc11yc12zc13 þ xc21yc22zc23 þ xc31yc32zc33 :

If f ðx; y; zÞ ¼ 0 defines an isolated hypersurface singularity in Arnold’s [Ar] or
Wall’s [Wal] list of singularities, we give the name of the singularity in the second
column. In the case when a0 ¼ 1, f ðx; y; zÞ ¼ 0 defines a Fuchsian singularity
(for the definition see [E4]). In the cases where there is a name missing we
indicate the signature fg; a1; . . . ; arg of these singularities (here ‘nh’ means that
the central curve is non-hyperelliptic). In the third column we list the weight
system. In the 4th column we indicate the weighted magic square C in the
following way:

xc11yc12zc13 ; xc21yc22zc23 ; xc31yc32zc33 :

In the last column we indicate the index of the partner weight system.
There are examples of strongly dual weight systems where the corresponding

families of K3 surfaces are not mirror symmetric, e.g. (cf. [Ko])

8 1; 2; 3; 6; 12 y2z; x3y2; z2 24
24 1; 2; 4; 5; 12 y3; x2y2; xz2 8

The weight systems correspond to the singularities W1;0 and Q2;0 respectively, but
the equations f ðx; y; zÞ ¼ 0 are not equations of these singularities, they even
have non-isolated singularities at the origin.

By inspection of the Tables 2 and 3, we see that the cases a0 ¼ b0 ¼ 1 are
exactly the cases of Arnold’s strange duality. In these cases the matrices C are
primitive and hence the corresponding weight systems are strongly dual. In all
other cases the weight systems are not strongly dual but only strongly coupled.

The remaining singularities with a0 ¼ 1 are Fuchsian singularities of sig-
nature fg; a1; . . . ; arg with g > 0. They are coupled to weight systems which
again correspond to isolated singularities. We list these singularities together
with their partners in Table 4. Here r denotes the Picard number of the K3
surface corresponding to the weight system on the left-hand side as it can be
found in the table of [Be] and d denotes the discriminant of the Picard lattice.
The numbers m�, m�

0, and d � are the Milnor number, the dimension of the radical,
and the discriminant of the Milnor lattice respectively of the singularity on the
right-hand side. For the definition of n� see below. The singularities Q17 and
S17 are bimodal singularities belonging to the list of Arnold [Ar] of the 14
bimodal exceptional singularities. The weight system of the singularity VaNC 1

18
appears in the list of [S1, Appendix 1] of regular weight systems with m ¼ 24 (see
also [E4, Table 3]). The singularity VNC1

13 is a (minimally) elliptic hypersurface
singularity and appears in [E1, Table 2] (there we used the name VaNCð1Þ). The
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singularities Z25 and W25 also appear in the lists of Arnold [Ar]. They have
modality 4. The singularities V 0

29 and N33 do not occur in the lists of [Ar] and
[Wal]. Here we use as names the name of the series (according to [Ar]) to which
they belong indexed by the Milnor number.

Table 2. Coupled weight systems with ai ¼ bi ¼ 1 for i ¼ 0

or i ¼ 1

No. Name a0; a1; a2; a3; h C Partner

14 E12 1; 6; 14; 21; 42 x7; y3; z2 14

6; 1; 14; 21; 42 x21z; y3; z2 28

6; 1; 14; 21; 42 x28y; y3; z2 45

14; 1; 6; 21; 42 x36y; y7; z2 51

28 3; 1; 7; 10; 21 x21; y3; xz2 14

3; 1; 7; 10; 21 x11z; y3; xz2 28

3; 1; 7; 10; 21 x14y; y3; xz2 45

7; 1; 3; 10; 21 x18y; y7; xz2 51

45 4; 1; 9; 14; 28 x28; xy3; z2 14

4; 1; 9; 14; 28 x14z; xy3; z2 28

4; 1; 9; 14; 28 x19y; xy3; z2 45

14; 1; 4; 9; 28 x24y; y7; xz3 51

51 12; 1; 5; 18; 36 x36; xy7; z2 14

12; 1; 5; 18; 36 x18z; xy7; z2 28

18; 1; 5; 12; 36 x24z; xy7; z3 45

12; 1; 5; 18; 36 x31y; xy7; z2 51

50 E13 1; 4; 10; 15; 30 x5y; y3; z2 38

15; 1; 4; 10; 30 x26y; y5z; z3 77

38 Z11 1; 6; 8; 15; 30 x5; xy3; z2 50

15; 1; 6; 8; 30 x22z; y5; yz3 82

77 13; 1; 5; 7; 26 x26; xy5; yz3 50

13; 1; 5; 7; 26 x19z; xy5; yz3 82

82 11; 1; 3; 7; 22 x22; y5z; xz3 38

11; 1; 3; 7; 22 x19y; y5z; xz3 77

13 E14 1; 3; 8; 12; 24 x4z; y3; z2 20

8; 1; 3; 12; 24 x21y; y4z; z2 59

20 Q10 1; 6; 8; 9; 24 x4; y3; xz2 13

8; 1; 6; 9; 24 x15z; y4; yz2 72

59 7; 1; 5; 8; 21 x21; xy4; yz2 13

7; 1; 5; 8; 21 x13z; xy4; yz2 72

72 5; 1; 2; 7; 15 x15; y4z; xz2 20

5; 1; 2; 7; 15 x13y; y4z; xz2 59

78 Z12 1; 4; 6; 11; 22 x4y; xy3; z2 78

39 Z13 1; 3; 5; 9; 18 x3z; xy3; z2 60

60 Q11 1; 4; 6; 7; 18 x3y; y3; xz2 39

22 Q12 1; 3; 5; 6; 15 x3z; y3; xz2 22
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Table 2. (continued)

No. Name a0; a1; a2; a3; h C Partner

9 W12 1; 4; 5; 10; 20 x5; z2; y2z 9

4; 1; 5; 10; 20 x15y; z2; y2z 71

71 3; 1; 4; 7; 15 x15; xz2; y2z 9

3; 1; 4; 7; 15 x11y; xz2; y2z 71

37 W13 1; 3; 4; 8; 16 x4y; z2; y2z 58

58 S11 1; 4; 5; 6; 16 x4; xz2; y2z 37

87 S12 1; 3; 4; 5; 13 x3y; xz2; y2z 87

4 U12 1; 3; 4; 4; 12 x4; y3; z3 4

Table 3. Coupled weight systems: remaining cases

No. Name a0; a1; a2; a3; h C Partner

12 6; 1; 2; 9; 18 x9z; x2y8; z2 27

6; 1; 2; 9; 18 x16y; x2y8; z2 49

27 8; 2; 3; 11; 24 x9y2; y8; xz2 12

49 14; 2; 5; 21; 42 x16y2; xy8; z2 12

40 7; 1; 2; 4; 14 x10z; x2y6; yz3 81

81 13; 2; 3; 8; 26 x10y2; y6z; xz3 40

24 4; 1; 2; 5; 12 x12; x2y5; yz2 11

11 10; 2; 3; 15; 30 x12y2; y5z; z2 24

6 2; 1; 2; 5; 10 x5z; x2y4; z2 26

2; 1; 2; 5; 10 x8y; x2y4; z2 34

5; 1; 2; 2; 10 x8z; x2y4; yz4 76

26 4; 2; 5; 9; 20 x5y2; y4; xz2 6

34 6; 2; 7; 15; 30 x8y2; xy4; z2 6

76 13; 2; 5; 6; 26 x8y2; y4z; xz4 6

10 4; 1; 1; 6; 12 x11y; y6z; z2 65

6; 1; 1; 4; 12 x11y; y8z; z3 80

4; 1; 1; 6; 12 x12; xy11; z2 46

65 11; 3; 5; 14; 33 x11; xy6; yz2 10

80 22; 4; 5; 13; 44 x11; xy8; yz3 10

46 22; 5; 6; 33; 66 x12y; y11; z2 10

42 Z2; 0 1; 1; 3; 5; 10 x5z; xy3; z2 68

5; 1; 1; 3; 10 x9y; y7z; xz3 92

5; 1; 1; 3; 10 x9y; y10; xz3 83

68 Q17 3; 4; 10; 13; 30 x5y; y3; xz2 42

92 19; 3; 5; 11; 38 x9z; xy7; yz3 42
83 27; 4; 5; 18; 54 x9z; xy10; z3 42
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There is the following relation between these singularities. The K3 surfaces
corresponding to the weight systems on the left-hand side are compactifications of
the corresponding Fuchsian singularities. Let gðx; y; zÞ ¼ 0 be the equation of a
singularity on the right-hand side. Let Wb ¼ ðb1; b2; b3; kÞ be the weight system
of this singularity. Let ~XX � be the hypersurface in Pðb0; b1; b2; b3Þ given by the

Table 3. (continued)

No. Name a0; a1; a2; a3; h C Partner

25 Q3; 0 1; 1; 3; 4; 9 x6y; y3; xz2 43

3; 1; 1; 4; 9 x8y; y5z; xz2 88

3; 1; 1; 4; 9 x8y; y9; xz2 48

43 Z25 4; 3; 11; 18; 36 x6z; xy3; z2 25

88 9; 2; 5; 11; 27 x8z; xy5; yz2 25

48 16; 3; 5; 24; 48 x8z; xy9; z2 25

7 X2; 0 1; 1; 2; 4; 8 x6y; y2z; z2 64

64 S17 3; 4; 7; 10; 24 x6; y2z; xz2 7

66 S �
2; 0 1; 1; 2; 3; 7 x7; xz2; y2z 35

35 W25 4; 3; 7; 14; 28 x7y; z2; y2z 66

21 2; 2 1; 1; 1; 2; 5 x4y; y3z; xz2 86

1; 1; 1; 2; 5 x4y; y5; xz2 30

86 VaNC 1
18 5; 4; 7; 9; 25 x4z; xy3; yz2 21

30 N33 8; 5; 7; 20; 40 x4z; xy5; z2 21

5 2; 1; 1; 1; 3; 6 x5y; y3z; z2 56

3; 1; 1; 1; 6 x6; xy5; yz5 73

56 VNC 1
13 5; 6; 8; 11; 30 x5; xy3; yz2 5

73 25; 7; 8; 10; 50 x6y; y5z; z5 5

1 3; (nh) 1; 1; 1; 1; 4 x4; xy3; yz3 52

52 V 0
29 9; 7; 8; 12; 36 x4y; y3z; z3 1

32 2; 2; 3; 7; 14 xy4; x4y2; z2 32

Table 4. Fuchsian singularities with g > 0 and their partners

No. Name m m0 r d b0 d � m�
0 m� n� Name No.

42 Z2; 0 21 2 3 2 3 �6 0 17 0 Q17 68

7 X2; 0 21 2 3 4 3 �12 0 17 0 S17 64

21 2; 2 24 4 2 �5 5 25 0 24 0 VaNC 1
18 86

8 �10 0 33 6 N33 30

5 2; 25 4 1 2 5 �10 0 19 0 VNC 1
13 56

25 Q3; 0 20 2 4 �3 4 �6 0 25 2 Z25 43

66 S �
2; 0 20 2 4 �7 4 �14 0 25 2 W25 35

1 3; (nh) 27 6 1 4 9 �12 0 29 6 V 0
29 52

332 wolfgang ebeling



equation wk=b0 þ gðx; y; zÞ ¼ 0. As in Section 2 we consider the natural mapping
pb0 : ~XX � ! Pðb1; b2; b3Þ. Let ~XX �

0 :¼ ~XX �np�1
b0
ðV �Þ where V � is the hypersurface

in Pðb1; b2; b3Þ defined by gðx; y; zÞ ¼ 0 and let F � be the Milnor fibre of
g : ðC3; 0Þ ! ðC; 0Þ. Then we have a mapping F � ! ~XX �

0 which is a (possibly
branched) covering of degree b0. Denote by n� the total branching order of this
covering. One can easily see that this covering is either unbranched or branched
along the singularity ð0 : 0 : 1Þ B V � of Pðb1; b2; b3Þ of branching order n�. Then
we obtain from the Riemann-Hurwitz formula in all cases

m� þ n� þ 1 ¼ b0ðrþ 3Þ:

4. Extension of Arnold’s strange duality

The author and C. T. C. Wall [EW] have found an extension of Arnold’s
strange duality embracing also isolated complete intersection singularities. Such
a singularity is defined by the germ of an analytic mapping ðg; f Þ : ðC4; 0Þ !
ðC2; 0Þ. It is weighted homogeneous of weights q1, q2, q3, q4 and degrees d1, d2
where we assume d1 a d2 and where we have 1þ q1 þ q2 þ q3 þ q4 ¼ d1 þ d2.
We consider the compactification of such a singularity in the weighted projective
space Pð1; q1; q2; q3; q4Þ with coordinates w, x, y, z, t given by the equations

gðx; y; z; tÞ ¼ 0;

f ðx; y; z; tÞ þ wd2 ¼ 0:

More precisely, this correspondence embraces the following singularities. We use
the notation of [E3].

(a) Arnold’s 14 exceptional unimodal hypersurface singularities.
(b) The six bimodal hypersurface singularities J3;0 (12), Z1;0 (40), Q2;0 (24),

W1;0 (8), S1;0 (63), U1;0 (18). The compactifications of these singu-
larities occur in Yonemura’s list. The index is indicated in brackets.
The first three of these singularities already occurred in Table 3.

The remaining singularities are ICIS defined by the germ of an analytic mapping
ðg; f Þ : ðC4; 0Þ ! ðC2; 0Þ as above. Here we distinguish between three types:

(c) The singularities J 0
9, J 0

10, J11, K 0
10, K 0

11, J 0
2;0, K 0

1;0 where gðx; y; z; tÞ ¼
xt� y2, f ðx; y; z; tÞ ¼ f 0ðx; y; tÞ þ z2 for some f 0 : ðC3; 0Þ ! ðC; 0Þ.

(d) The singularities L10, L11, M11, L1;0, M1;0 where gðx; y; z; tÞ ¼ xt� yz.
(e) The ICIS I1;0 given by

gðx; y; z; tÞ ¼ x3 � yt;

f ðx; y; z; tÞ ¼ ðaþ 1Þx3 þ yzþ z2 þ zt; a0 0; 1:

The correspondence between these singularities is indicated in Table 5. The
compactifications of all these singularities are K3 surfaces and the dual families
are mirror symmetric.

We also relate this correspondence to a duality of weight systems. For this
purpose, we associate a Calabi-Yau weight system to an ICIS as follows. In the

333mirror symmetry, kobayashi’s duality, and saito’s duality



cases (c) and (d) we associate the weight system ðq1; q2 � q1; q3; d2Þ to the
singularity ðX ; 0Þ. Since d1 ¼ q1 þ q4, this is a Calabi-Yau weight system.

In case (e) we associate the weight system ðq1; q2; q3 � q2; d2Þ to the
singularity I1;0. Since d1 ¼ q2 þ q4, we have 1þ q1 þ q2 þ q3 � q2 ¼ d2.
However, a3 :¼ q3 � q2 ¼ 0.

Then we have the following extension of Theorem 2:

Theorem 3. Let Wa and Wb be the weight systems of a mirror symmetric
pair of the above singularities. Then Wa and Wb are strongly dual.

In each case, a primitive weighted magic square C is indicated in Table 5.
For a singularity of type (b), the matrix C corresponds to some points of the
Newton diagram. The corresponding function f ðx; y; zÞ has a non-isolated
singularity at the origin and does not define the given one. These points di¤er
from the points given in [E3]. The points there correspond to non-primitive (and
even not almost primitive) matrices C.

For the ICIS of types (c) or (d), one obtains some points of a Newton
diagram of the Laurent polynomial associated to the singularity in [E3] by
subtracting the second column of C from the first one. In case (e), one has to
subtract the third column from the second one.

In all cases, the reduced zeta function ~zzCðtÞ di¤ers from the characteristic
polynomial DðtÞ of the monodromy of the corresponding singularity only in the
exponents: If

DðtÞ ¼
Y
mjh

ð1� tmÞwm

Table 5. Extension of Arnold’s strange duality

No. Name a0; a1; a2; a3; h C Dual

12 J3; 0 1; 2; 6; 9; 18 x3y2; y3; z2 J 0
9

40 Z1; 0 1; 2; 4; 7; 14 x3y2; xy3; z2 J 0
10

24 Q2; 0 1; 2; 4; 5; 12 x2y2; y3; xz2 J 0
11

8 W1; 0 1; 2; 3; 6; 12 x3z; z2; y2z K 0
10;L10

63 S1; 0 1; 2; 3; 4; 10 x3z; xz2; y2z K 0
11;L11

18 U1; 0 1; 2; 3; 3; 9 x3y; y2z; yz2 M11

J 0
9 1; 6; 2; 9; 18 x3; x2y3; z2 12

J 0
10 1; 4; 2; 7; 14 x3y; x2y3; z2 40

J 0
11 1; 3; 2; 6; 12 x2z; x2y3; z2 24

K 0
10;L10 1; 4; 1; 6; 12 x3; z2; xy2z 8

K 0
11;L11 1; 3; 1; 5; 10 x3y; z2; xy2z 63

M11 1; 3; 1; 4; 9 x3; xy2z; yz2 18

J 0
2; 0 1; 2; 2; 5; 10 x3y2; x2y3; z2 J 0

2; 0

L1; 0;K
0
1; 0 1; 2; 1; 4; 8 x2z; z2; xy2z L1; 0;K

0
1; 0

M1; 0 1; 2; 1; 3; 7 x3y; xy2z; yz2 M1; 0

I1; 0 1; 2; 3; 0; 6 x3; y2z2; y2z I1; 0
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then

~zzCðtÞ ¼
Y
mjh

ð1� tmÞem

where em ¼ �1; 0; 1 if wm < 0, wm ¼ 0, wm > 0 respectively. From Corollary 1 we
get Saito’s duality of the characteristic polynomials of the monodromy up to the
absolute value of the exponents.

For a generalization of the construction of the polar dual in §1 for this
extension of Arnold’s strange duality which precisely yields Saito’s duality we
refer to [E3].

By inspection of Table 5 we observe the strange fact that the weight systems
associated to the ICIS with the exception of I1;0 again occur in Yonemura’s
list. However, comparing [Be, Table 3] and [E2, Table 6], we see that the Picard
lattices of the corresponding K3 surfaces are di¤erent. If we omit the zero in the
weight system of I1;0, we obtain the weight system of ~EE8.
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[Yu] N. Yui, Arithmetic of certain Calabi-Yau varieties and mirror symmetry, IAS/Park City

mathematics series 9, AMS, Providence, 2001, 509–569.

Wolfgang Ebeling

Leibniz Universität Hannover

Institut für Algebraische Geometrie

Postfach 6009, D-30060 Hannover

Germany

E-mail: ebeling@math.uni-hannover.de

336 wolfgang ebeling


