MEAN GROWTH OF THE DERIVATIVE OF A BLASCHKE PRODUCT

DAVID PROTAS

Abstract

If *B* is a Blaschke product with zeros $\{a_n\}$ and if $\sum_n (1 - |a_n|)^{\alpha}$ is finite for some $\alpha \in (1/2, 1]$, then limits are found on the rate of growth of $\int_0^{2\pi} |B'(re^{it})|^p dt$ in agreement with a known result for $\alpha \in (0, 1/2)$. Also, a converse is established in the case of an interpolating Blaschke product, whenever $0 < \alpha < 1$.

1. Preliminaries

If $\{a_n\}$ is a sequence of complex numbers such that $0 < |a_n| < 1$ for all n = 1, 2, ... and $\sum_n (1 - |a_n|) < \infty$, the Blaschke product

$$B(z) = \prod_{n} \frac{\overline{a}_{n}}{|a_{n}|} \frac{a_{n} - z}{1 - \overline{a}_{n} z}$$

is an analytic function in the open unit disc U with zeros $\{a_n\}$. For each p with $0 , the Hardy space <math>H^p$ is the set of all functions analytic in U for which

$$||f||_{H^p}^p = \sup_{0 < r < 1} \frac{1}{2\pi} \int_0^{2\pi} |f(re^{it})|^p dt$$

is finite. In [8], it is shown that if B is a Blaschke product with zeros $\{a_n\}$ such that

(1)
$$\sum_{n} (1 - |a_n|)^{\alpha} < \infty$$

for some $\alpha \in (0, 1/2)$, then $B' \in H^{1-\alpha}$. In [7], M. Kutbi extended this result to the following Theorem.

THEOREM A. Let B be a Blaschke product with zeros $\{a_n\}$ such that condition (1) holds for some $\alpha \in (0, 1/2)$. Then for each $p > 1 - \alpha$,

¹⁹⁹¹ Mathematics Subject Classification. Primary: 30D50; Secondary: 30D55.

Key words and phrases. Blaschke product, interpolating sequence, Hardy space, Bergman space. Received March 9, 2004.

(2)
$$\int_0^{2\pi} |B'(re^{it})|^p dt = o\left(\frac{1}{(1-r)^{p+\alpha-1}}\right).$$

Kutbi also showed by means of examples that the exponent $p + \alpha - 1$ is sharp.

If $1/2 < \alpha < 1$, the convergence of $\sum_n (1 - |a_n|)^{\alpha}$ does not imply that $B' \in H^{1-\alpha}$; in fact, by a theorem of Frostman [3], there are Blaschke products B such that (1) holds for all $\alpha > 1/2$ and yet B' is not in the Nevanlinna class N. Nevertheless, we will show that Kutbi's theorem has an analogue in the case of $1/2 < \alpha < 1$. We will then restrict our attention to interpolating Blaschke products and investigate to what extent the condition (1) is necessary as well as sufficient for a condition like (2).

We say $g(r) = o(1/(1-r)^q)$ if $\lim_{r\to 1^-} g(r)(1-r)^q = 0$, and $g(r) = O(1/(1-r)^q)$ if $g(r)(1-r)^q$ is bounded for $r \in (0,1)$. Also, we will write $a_n \ge b_n$ if there is a constant *C* such that $a_n \ge Cb_n$ for all *n*. Finally, $a_n \asymp b_n$ if $a_n \ge b_n$ and $b_n \ge a_n$.

2. An analogue of Kutbi's theorem

To get our analogue of Theorem A, we will go through three steps.

LEMMA 1. Let B be a Blaschke product with zeros $\{a_n\}$ such that condition (1) holds for some $\alpha \in (1/2, 1]$. Then

$$\sum_{n=1}^{\infty} \frac{(1-r_n)^{\alpha}}{(1-r_n r)^{2\alpha-1}} = o\left(\frac{1}{(1-r)^{2\alpha-1}}\right),$$

where $r_n = |a_n|$ for all n.

Proof. Following Kutbi, we note that

(3)
$$\frac{(1-r_n)^{\alpha}}{(1-r_n)^{2\alpha-1}} < \frac{(1-r_n)^{\alpha}}{(1-r)^{2\alpha-1}}$$
 and $\frac{(1-r_n)^{\alpha}}{(1-r_n)^{2\alpha-1}} < (1-r_n)^{1-\alpha}$

since 0 < r < 1, $0 < r_n < 1$, and $\alpha > 1/2$. Let $\varepsilon > 0$. There exists an integer N such that $\sum_{n=N+1}^{\infty} (1-r_n)^{\alpha} < \varepsilon/2$. Then it follows from (3) that

$$\sum_{n=1}^{\infty} \frac{(1-r_n)^{\alpha}}{(1-r_n)^{2\alpha-1}} < \sum_{n=1}^{N} (1-r_n)^{1-\alpha} + \frac{\varepsilon}{2(1-r)^{2\alpha-1}}.$$

Choose R such that

$$\sum_{n=1}^{N} (1-r_n)^{1-\alpha} < \frac{\varepsilon}{2(1-r)^{2\alpha-1}}$$

for all r with R < r < 1. Then R < r < 1 implies that

$$(1-r)^{2\alpha-1}\sum_{n=1}^{\infty}\frac{(1-r_n)^{\alpha}}{(1-r_nr)^{2\alpha-1}} < \varepsilon.$$

LEMMA 2. Let B be a Blaschke product with zeros $\{a_n\}$. Suppose $1/2 < \alpha \le 1$. If (1) holds, then

$$\int_0^{2\pi} |B'(re^{it})|^{\alpha} dt = o\left(\frac{1}{(1-r)^{2\alpha-1}}\right).$$

Proof. Since $\alpha \leq 1$,

$$|B'(z)|^{\alpha} < \sum_{n=1}^{\infty} \left| \frac{1 - |a_n|^2}{(1 - \bar{a}_n z)^2} \right|^{\alpha} < 2^{\alpha} \sum_{n=1}^{\infty} \frac{(1 - r_n)^{\alpha}}{|1 - \bar{a}_n z|^{2\alpha}}.$$

Then since $2\alpha > 1$,

$$\int_{0}^{2\pi} |B'(re^{it})|^{\alpha} dt < 2^{\alpha} \sum_{n=1}^{\infty} (1-r_n)^{\alpha} \int_{0}^{2\pi} \frac{1}{|1-\bar{a}_n re^{it}|^{2\alpha}} dt$$
$$\leq C \sum_{n=1}^{\infty} \frac{(1-r_n)^{\alpha}}{(1-r_n r)^{2\alpha-1}}$$

for some constant C independent of r. For the last inequality, one can see, for example, [2], pp. 65–66. Now the result follows from Lemma 1. \Box

THEOREM 1. Let B be a Blaschke product with zeros $\{a_n\}$. Suppose $1/2 < \alpha \le 1$ and $p \ge \alpha$. If (1) holds, then

$$\int_0^{2\pi} |B'(re^{it})|^p dt = o\left(\frac{1}{(1-r)^{p+\alpha-1}}\right).$$

Proof. Since $|B'(z)| \le 1/(1-|z|)$, $\int_{0}^{2\pi} |B'(re^{it})|^{p} dt = \int_{0}^{2\pi} |B'(re^{it})|^{p-\alpha} |B'(re^{it})|^{\alpha} dt$ $\le \left(\frac{1}{1-r}\right)^{p-\alpha} \int_{0}^{2\pi} |B'(re^{it})|^{\alpha} dt.$

Now apply Lemma 2.

If $\alpha = 1/2$, a result similar to Lemma 1 holds. We state without proof

THEOREM 2. Let *B* be a Blaschke product with zeros $\{a_n\}$. If $\sum_n (1 - |a_n|)^{1/2} < \infty$, then

$$\int_0^{2\pi} |B'(re^{it})|^{1/2} dt = o\left(\log\frac{1}{1-r}\right).$$

3. Interpolating Blaschke products

A sequence $\{a_n\}$ of points in U is said to be uniformly separated if there is a constant $\delta > 0$ such that

(4)
$$\inf_{n} \prod_{m \neq n} \rho(a_m, a_n) \ge \delta > 0,$$

where ρ is the pseudohyperbolic metric in U and is given by

$$\rho(z,w) = \left| \frac{z-w}{1-\overline{w}z} \right|, \quad z,w \in U.$$

A Blaschke product whose zeros are uniformly separated is called an interpolating Blaschke product. In [1], W. Cohn proves that if *B* is an interpolating Blaschke product with zeros $\{a_n\}$ and $0 < \alpha < 1/2$, then (1) holds if and only if $B' \in H^{1-\alpha}$. It is natural then to investigate whether Theorem A and Theorem 1 have converses in the case of interpolating Blaschke products.

We will be using a lemma of Girela, Peláez and Vukotić that appears in [4]. It involves pseudohyperbolic discs $\Delta(a; r) = \{z \in U : \rho(z, a) < r\}$. Note that $\Delta(a; r)$ is a Euclidean disc with Euclidean center c and Euclidean radius R given by

$$c = \frac{1 - r^2}{1 - r^2 |a|^2} a$$
 and $R = \frac{1 - |a|^2}{1 - r^2 |a|^2} r$.

The lemma of Girela, Peláez and Vukotić says

LEMMA A. Let B be an interpolating Blaschke product with zeros $\{a_n\}$ and with constant δ as in (4). Then there exist two positive constants r_0 and γ depending only on δ such that the pseudohyperbolic discs $\{\Delta(a_n; r_0)\}_{n=1}^{\infty}$ are pairwise disjoint, and

$$|B'(z)| \ge \gamma/(1 - |a_n|)$$

for all $z \in \Delta(a_n; r_0), n = 1, 2, ...$

For any p > 0 and $\alpha > -1$, A^p_{α} is the space of all functions f analytic in U for which

$$\iint_U |f(re^{it})|^p (1-r)^\alpha \, dA < \infty.$$

In [4], Girela, Peláez and Vukotić give a proof that if B is an interpolating Blaschke product with zeros $\{a_n\}$ and 1 , then <math>B' is in the Bergman space

357

DAVID PROTAS

 A_0^p if and only if $\sum_n (1 - |a_n|)^{2-p} < \infty$. We will extend their proof to arbitrary $\alpha > -1$.

THEOREM 3. Let B be an interpolating Blaschke product with zeros $\{a_n\}$. Then for $\alpha > -1$ and $\alpha + 1 , <math>B' \in A^p_{\alpha}$ if and only if

$$\sum_{n} (1-|a_n|)^{2-p+\alpha} < \infty.$$

Proof. If $\sum_{n}(1-|a_n|)^{2-p+\alpha} < \infty$, then $B' \in A^p_{\alpha}$ by a theorem of H. O. Kim [6]. For the converse, assume that $B' \in A^p_{\alpha}$. By Lemma A, there exist positive constants r_0 and γ such that the discs $\{\Delta(a_n;r_0)\}_{n=1}^{\infty}$ are pairwise disjoint and $|B'(z)| \geq \gamma/(1-|a_n|)$ for all $z \in \Delta(a_n;r_0)$, $n = 1, 2, \ldots$. Let $\Delta_n = \Delta(a_n;r_0)$. If c_n and R_n denote the Euclidean center and Euclidean radius of Δ_n for $n = 1, 2, \ldots$, then simple computations show that $R_n \approx 1 - |a_n|$ and that $1 - |z| \geq 1 - |c_n| - |R_n| \gtrsim 1 - |a_n|$ for all $z \in \Delta_n$. Thus,

$$\begin{split} \iint_{U} |B'(re^{it})|^{p} (1-r)^{\alpha} \, dA &\geq \sum_{n=1}^{\infty} \iint_{\Delta_{n}} |B'(re^{it})|^{p} (1-r)^{\alpha} \, dA \\ &\gtrsim \sum_{n=1}^{\infty} \frac{1}{(1-|a_{n}|)^{p}} (1-|a_{n}|)^{\alpha} (1-|a_{n}|)^{2} \\ &= \sum_{n=1}^{\infty} (1-|a_{n}|)^{2-p+\alpha}. \end{split}$$

Theorem 3 was proved for $p \ge 1$ by A. Gluchoff in [5]. We are now ready to give a partial converse to Theorem 1 and Theorem A, which will also show that the exponent $p + \alpha - 1$ in Theorem 1 (and Theorem A) is sharp.

THEOREM 4. Let B be an interpolating Blaschke product and suppose $0 < \alpha < 1$. Suppose there exists a positive number p such that

$$\int_{0}^{2\pi} |B'(re^{it})|^p dt = O\left(\frac{1}{(1-r)^{p+\alpha-1}}\right),$$

where $p > 1 - \alpha$ if $0 < \alpha \le 1/2$ and $p \ge \alpha$ if $1/2 < \alpha < 1$. Then, $\sum_{n}(1 - |a_n|)^{\alpha'} < \infty$ for all $\alpha' > \alpha$.

Proof. For all q < 1,

$$\int_{0}^{2\pi} |B'(re^{it})|^{p} (1-r)^{p+\alpha-1-q} dt = O((1-r)^{-q}).$$

Then,

$$\iint_U |B'(re^{it})|^p (1-r)^{p+\alpha-1-q} \, dA < \infty.$$

358

and so, $B' \in A_{p+\alpha-1-q}^p$. Note that if we restrict q so that $\alpha < q < 1$, then $p + \alpha - 1 - q > -1$ and $(p + \alpha - 1 - q) + 1 . So by Theorem 3,$

$$\sum_{n} (1-|a_n|)^{2-p+(p+\alpha-1-q)} < \infty.$$

In other words, $\sum_{n} (1 - |a_n|)^{\alpha + 1 - q} < \infty$, which is what was required.

References

- [1] WILLIAM S. COHN, On the H^p classes of derivatives of functions orthogonal to invariant subspaces, Michigan Math. J. **30** (1983), 221–229.
- [2] PETER L. DUREN, Theory of H^p Spaces, Academic Press, New York 1970.
- [3] OTTO FROSTMAN, Sur les produits de Blaschke, Kungl. Fysiogr. Sällsk i Lund Förh. 12 (1942), 518–528.
- [4] DANIEL GIRELA, JOSÉ ÁNGEL PELÁEZ AND DRAGAN VUKOTIĆ, Integrability of the derivative of a Blaschke product, submitted.
- [5] ALAN GLUCHOFF, On inner functions with derivatives in Bergman spaces, Illinois J. Math. 31 (1987), 518–528.
- [6] HONG OH KIM, Derivatives of Blaschke products, Pacific J. Math. 114 (1984), 175-190.
- [7] MIRWAN AMIN KUTBI, Integral means for the first derivative of Blaschke products, Kodai Math. J. 24 (2001), 86–97.
- [8] DAVID PROTAS, Blaschke products with derivative in H^p and B^p , Michigan Math J. 20 (1973), 393–396.

DEPARTMENT OF MATHEMATICS CALIFORNIA STATE UNIVERSITY NORTHRIDGE, CALIFORNIA 91330, USA E-mail address: david.protas@csun.edu 359