MEAN GROWTH OF THE DERIVATIVE OF A BLASCHKE PRODUCT

David Protas

Abstract

If B is a Blaschke product with zeros $\left\{a_{n}\right\}$ and if $\sum_{n}\left(1-\left|a_{n}\right|\right)^{\alpha}$ is finite for some $\alpha \in(1 / 2,1]$, then limits are found on the rate of growth of $\int_{0}^{2 \pi}\left|B^{\prime}\left(r e^{i t}\right)\right|^{p} d t$ in agreement with a known result for $\alpha \in(0,1 / 2)$. Also, a converse is established in the case of an interpolating Blaschke product, whenever $0<\alpha<1$.

1. Preliminaries

If $\left\{a_{n}\right\}$ is a sequence of complex numbers such that $0<\left|a_{n}\right|<1$ for all $n=1,2, \ldots$ and $\sum_{n}\left(1-\left|a_{n}\right|\right)<\infty$, the Blaschke product

$$
B(z)=\prod_{n} \frac{\bar{a}_{n}}{\left|a_{n}\right|} \frac{a_{n}-z}{1-\bar{a}_{n} z}
$$

is an analytic function in the open unit disc U with zeros $\left\{a_{n}\right\}$. For each p with $0<p<\infty$, the Hardy space H^{p} is the set of all functions analytic in U for which

$$
\|f\|_{H^{p}}^{p}=\sup _{0<r<1} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i t}\right)\right|^{p} d t
$$

is finite. In [8], it is shown that if B is a Blaschke product with zeros $\left\{a_{n}\right\}$ such that

$$
\begin{equation*}
\sum_{n}\left(1-\left|a_{n}\right|\right)^{\alpha}<\infty \tag{1}
\end{equation*}
$$

for some $\alpha \in(0,1 / 2)$, then $B^{\prime} \in H^{1-\alpha}$. In [7], M. Kutbi extended this result to the following Theorem.

Theorem A. Let B be a Blaschke product with zeros $\left\{a_{n}\right\}$ such that condition (1) holds for some $\alpha \in(0,1 / 2)$. Then for each $p>1-\alpha$,

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|B^{\prime}\left(r e^{i t}\right)\right|^{p} d t=o\left(\frac{1}{(1-r)^{p+\alpha-1}}\right) \tag{2}
\end{equation*}
$$

Kutbi also showed by means of examples that the exponent $p+\alpha-1$ is sharp.

If $1 / 2<\alpha<1$, the convergence of $\sum_{n}\left(1-\left|a_{n}\right|\right)^{\alpha}$ does not imply that $B^{\prime} \in H^{1-\alpha}$; in fact, by a theorem of Frostman [3], there are Blaschke products B such that (1) holds for all $\alpha>1 / 2$ and yet B^{\prime} is not in the Nevanlinna class N. Nevertheless, we will show that Kutbi's theorem has an analogue in the case of $1 / 2<\alpha<1$. We will then restrict our attention to interpolating Blaschke products and investigate to what extent the condition (1) is necessary as well as sufficient for a condition like (2).

We say $g(r)=o\left(1 /(1-r)^{q}\right) \quad$ if $\quad \lim _{r \rightarrow 1^{-}} g(r)(1-r)^{q}=0, \quad$ and $\quad g(r)=$ $O\left(1 /(1-r)^{q}\right)$ if $g(r)(1-r)^{q}$ is bounded for $r \in(0,1)$. Also, we will write $a_{n} \gtrsim b_{n}$ if there is a constant C such that $a_{n} \geq C b_{n}$ for all n. Finally, $a_{n} \asymp b_{n}$ if $a_{n} \gtrsim b_{n}$ and $b_{n} \gtrsim a_{n}$.

2. An analogue of Kutbi's theorem

To get our analogue of Theorem A , we will go through three steps.

Lemma 1. Let B be a Blaschke product with zeros $\left\{a_{n}\right\}$ such that condition (1) holds for some $\alpha \in(1 / 2,1]$. Then

$$
\sum_{n=1}^{\infty} \frac{\left(1-r_{n}\right)^{\alpha}}{\left(1-r_{n} r\right)^{2 \alpha-1}}=o\left(\frac{1}{(1-r)^{2 \alpha-1}}\right)
$$

where $r_{n}=\left|a_{n}\right|$ for all n.
Proof. Following Kutbi, we note that

$$
\begin{equation*}
\frac{\left(1-r_{n}\right)^{\alpha}}{\left(1-r_{n} r\right)^{2 \alpha-1}}<\frac{\left(1-r_{n}\right)^{\alpha}}{(1-r)^{2 \alpha-1}} \quad \text { and } \quad \frac{\left(1-r_{n}\right)^{\alpha}}{\left(1-r_{n} r\right)^{2 \alpha-1}}<\left(1-r_{n}\right)^{1-\alpha} \tag{3}
\end{equation*}
$$

since $0<r<1,0<r_{n}<1$, and $\alpha>1 / 2$. Let $\varepsilon>0$. There exists an integer N such that $\sum_{n=N+1}^{\infty}\left(1-r_{n}\right)^{\alpha}<\varepsilon / 2$. Then it follows from (3) that

$$
\sum_{n=1}^{\infty} \frac{\left(1-r_{n}\right)^{\alpha}}{\left(1-r_{n} r\right)^{2 \alpha-1}}<\sum_{n=1}^{N}\left(1-r_{n}\right)^{1-\alpha}+\frac{\varepsilon}{2(1-r)^{2 \alpha-1}}
$$

Choose R such that

$$
\sum_{n=1}^{N}\left(1-r_{n}\right)^{1-\alpha}<\frac{\varepsilon}{2(1-r)^{2 \alpha-1}}
$$

for all r with $R<r<1$. Then $R<r<1$ implies that

$$
(1-r)^{2 \alpha-1} \sum_{n=1}^{\infty} \frac{\left(1-r_{n}\right)^{\alpha}}{\left(1-r_{n} r\right)^{2 \alpha-1}}<\varepsilon
$$

Lemma 2. Let B be a Blaschke product with zeros $\left\{a_{n}\right\}$. Suppose $1 / 2<$ $\alpha \leq 1$. If (1) holds, then

$$
\int_{0}^{2 \pi}\left|B^{\prime}\left(r e^{i t}\right)\right|^{\alpha} d t=o\left(\frac{1}{(1-r)^{2 \alpha-1}}\right)
$$

Proof. Since $\alpha \leq 1$,

$$
\left|B^{\prime}(z)\right|^{\alpha}<\sum_{n=1}^{\infty}\left|\frac{1-\left|a_{n}\right|^{2}}{\left(1-\bar{a}_{n} z\right)^{2}}\right|^{\alpha}<2^{\alpha} \sum_{n=1}^{\infty} \frac{\left(1-r_{n}\right)^{\alpha}}{\left|1-\bar{a}_{n} z\right|^{2 \alpha}}
$$

Then since $2 \alpha>1$,

$$
\begin{aligned}
\int_{0}^{2 \pi}\left|B^{\prime}\left(r e^{i t}\right)\right|^{\alpha} d t & <2^{\alpha} \sum_{n=1}^{\infty}\left(1-r_{n}\right)^{\alpha} \int_{0}^{2 \pi} \frac{1}{\left|1-\bar{a}_{n} r e^{i t}\right|^{2 \alpha}} d t \\
& \leq C \sum_{n=1}^{\infty} \frac{\left(1-r_{n}\right)^{\alpha}}{\left(1-r_{n} r\right)^{2 \alpha-1}}
\end{aligned}
$$

for some constant C independent of r. For the last inequality, one can see, for example, [2], pp. 65-66. Now the result follows from Lemma 1.

Theorem 1. Let B be a Blaschke product with zeros $\left\{a_{n}\right\}$. Suppose $1 / 2<$ $\alpha \leq 1$ and $p \geq \alpha$. If (1) holds, then

$$
\int_{0}^{2 \pi}\left|B^{\prime}\left(r e^{i t}\right)\right|^{p} d t=o\left(\frac{1}{(1-r)^{p+\alpha-1}}\right)
$$

Proof. Since $\left|B^{\prime}(z)\right| \leq 1 /(1-|z|)$,

$$
\begin{aligned}
\int_{0}^{2 \pi}\left|B^{\prime}\left(r e^{i t}\right)\right|^{p} d t & =\int_{0}^{2 \pi}\left|B^{\prime}\left(r e^{i t}\right)\right|^{p-\alpha}\left|B^{\prime}\left(r e^{i t}\right)\right|^{\alpha} d t \\
& \leq\left(\frac{1}{1-r}\right)^{p-\alpha} \int_{0}^{2 \pi}\left|B^{\prime}\left(r e^{i t}\right)\right|^{\alpha} d t
\end{aligned}
$$

Now apply Lemma 2.
If $\alpha=1 / 2$, a result similar to Lemma 1 holds. We state without proof
Theorem 2. Let B be a Blaschke product with zeros $\left\{a_{n}\right\}$. If $\sum_{n}\left(1-\left|a_{n}\right|\right)^{1 / 2}<\infty$, then

$$
\int_{0}^{2 \pi}\left|B^{\prime}\left(r e^{i t}\right)\right|^{1 / 2} d t=o\left(\log \frac{1}{1-r}\right)
$$

3. Interpolating Blaschke products

A sequence $\left\{a_{n}\right\}$ of points in U is said to be uniformly separated if there is a constant $\delta>0$ such that

$$
\begin{equation*}
\inf _{n} \prod_{m \neq n} \rho\left(a_{m}, a_{n}\right) \geq \delta>0 \tag{4}
\end{equation*}
$$

where ρ is the pseudohyperbolic metric in U and is given by

$$
\rho(z, w)=\left|\frac{z-w}{1-\bar{w} z}\right|, \quad z, w \in U
$$

A Blaschke product whose zeros are uniformly separated is called an interpolating Blaschke product. In [1], W. Cohn proves that if B is an interpolating Blaschke product with zeros $\left\{a_{n}\right\}$ and $0<\alpha<1 / 2$, then (1) holds if and only if $B^{\prime} \in H^{1-\alpha}$. It is natural then to investigate whether Theorem A and Theorem 1 have converses in the case of interpolating Blaschke products.

We will be using a lemma of Girela, Peláez and Vukotić that appears in [4]. It involves pseudohyperbolic discs $\Delta(a ; r)=\{z \in U: \rho(z, a)<r\}$. Note that $\Delta(a ; r)$ is a Euclidean disc with Euclidean center c and Euclidean radius R given by

$$
c=\frac{1-r^{2}}{1-r^{2}|a|^{2}} a \quad \text { and } \quad R=\frac{1-|a|^{2}}{1-r^{2}|a|^{2}} r .
$$

The lemma of Girela, Peláez and Vukotić says
Lemma A. Let B be an interpolating Blaschke product with zeros $\left\{a_{n}\right\}$ and with constant δ as in (4). Then there exist two positive constants r_{0} and $\gamma d e$ pending only on δ such that the pseudohyperbolic discs $\left\{\Delta\left(a_{n} ; r_{0}\right)\right\}_{n=1}^{\infty}$ are pairwise disjoint, and

$$
\left|B^{\prime}(z)\right| \geq \gamma /\left(1-\left|a_{n}\right|\right)
$$

for all $z \in \Delta\left(a_{n} ; r_{0}\right), n=1,2, \ldots$.
For any $p>0$ and $\alpha>-1, A_{\alpha}^{p}$ is the space of all functions f analytic in U for which

$$
\iint_{U}\left|f\left(r e^{i t}\right)\right|^{p}(1-r)^{\alpha} d A<\infty
$$

In [4], Girela, Peláez and Vukotić give a proof that if B is an interpolating Blaschke product with zeros $\left\{a_{n}\right\}$ and $1<p<2$, then B^{\prime} is in the Bergman space
A_{0}^{p} if and only if $\sum_{n}\left(1-\left|a_{n}\right|\right)^{2-p}<\infty$. We will extend their proof to arbitrary $\alpha>-1$.

Theorem 3. Let B be an interpolating Blaschke product with zeros $\left\{a_{n}\right\}$. Then for $\alpha>-1$ and $\alpha+1<p<\alpha+2, B^{\prime} \in A_{\alpha}^{p}$ if and only if

$$
\sum_{n}\left(1-\left|a_{n}\right|\right)^{2-p+\alpha}<\infty
$$

Proof. If $\sum_{n}\left(1-\left|a_{n}\right|\right)^{2-p+\alpha}<\infty$, then $B^{\prime} \in A_{\alpha}^{p}$ by a theorem of H. O. Kim [6]. For the converse, assume that $B^{\prime} \in A_{\alpha}^{p}$. By Lemma A, there exist positive constants r_{0} and γ such that the discs $\left\{\Delta\left(a_{n} ; r_{0}\right)\right\}_{n=1}^{\infty}$ are pairwise disjoint and $\left|B^{\prime}(z)\right| \geq \gamma /\left(1-\left|a_{n}\right|\right)$ for all $z \in \Delta\left(a_{n} ; r_{0}\right), n=1,2, \ldots$. Let $\Delta_{n}=\Delta\left(a_{n} ; r_{0}\right)$. If c_{n} and R_{n} denote the Euclidean center and Euclidean radius of Δ_{n} for $n=1,2, \ldots$, then simple computations show that $R_{n} \asymp 1-\left|a_{n}\right|$ and that $1-|z| \geq 1-\left|c_{n}\right|-$ $\left|R_{n}\right| \gtrsim 1-\left|a_{n}\right|$ for all $z \in \Delta_{n}$. Thus,

$$
\begin{aligned}
\iint_{U}\left|B^{\prime}\left(r e^{i t}\right)\right|^{p}(1-r)^{\alpha} d A & \geq \sum_{n=1}^{\infty} \iint_{\Delta_{n}}\left|B^{\prime}\left(r e^{i t}\right)\right|^{p}(1-r)^{\alpha} d A \\
& \gtrsim \sum_{n=1}^{\infty} \frac{1}{\left(1-\left|a_{n}\right|\right)^{p}}\left(1-\left|a_{n}\right|\right)^{\alpha}\left(1-\left|a_{n}\right|\right)^{2} \\
& =\sum_{n=1}^{\infty}\left(1-\left|a_{n}\right|\right)^{2-p+\alpha}
\end{aligned}
$$

Theorem 3 was proved for $p \geq 1$ by A. Gluchoff in [5]. We are now ready to give a partial converse to Theorem 1 and Theorem A, which will also show that the exponent $p+\alpha-1$ in Theorem 1 (and Theorem A) is sharp.

Theorem 4. Let B be an interpolating Blaschke product and suppose $0<$ $\alpha<1$. Suppose there exists a positive number p such that

$$
\int_{0}^{2 \pi}\left|B^{\prime}\left(r e^{i t}\right)\right|^{p} d t=O\left(\frac{1}{(1-r)^{p+\alpha-1}}\right)
$$

where $p>1-\alpha$ if $0<\alpha \leq 1 / 2$ and $p \geq \alpha$ if $1 / 2<\alpha<1$. Then, $\sum_{n}\left(1-\left|a_{n}\right|\right)^{\alpha^{\prime}}<\infty$ for all $\alpha^{\prime}>\alpha$.

Proof. For all $q<1$,

$$
\int_{0}^{2 \pi}\left|B^{\prime}\left(r e^{i t}\right)\right|^{p}(1-r)^{p+\alpha-1-q} d t=O\left((1-r)^{-q}\right)
$$

Then,

$$
\iint_{U}\left|B^{\prime}\left(r e^{i t}\right)\right|^{p}(1-r)^{p+\alpha-1-q} d A<\infty
$$

and so, $B^{\prime} \in A_{p+\alpha-1-q}^{p}$. Note that if we restrict q so that $\alpha<q<1$, then $p+\alpha-1-q>-1$ and $(p+\alpha-1-q)+1<p<(p+\alpha-1-q)+2$. So by Theorem 3,

$$
\sum_{n}\left(1-\left|a_{n}\right|\right)^{2-p+(p+\alpha-1-q)}<\infty .
$$

In other words, $\sum_{n}\left(1-\left|a_{n}\right|\right)^{\alpha+1-q}<\infty$, which is what was required.

References

[1] William S. Cohn, On the H^{p} classes of derivatives of functions orthogonal to invariant subspaces, Michigan Math. J. 30 (1983), 221-229.
[2] Peter L. Duren, Theory of H^{p} Spaces, Academic Press, New York 1970.
[3] Otto Frostman, Sur les produits de Blaschke, Kungl. Fysiogr. Sällsk i Lund Förh. 12 (1942), 518-528.
[4] Daniel Girela, José Ángel Peláez and Dragan Vukotić, Integrability of the derivative of a Blaschke product, submitted.
[5] Alan Gluchoff, On inner functions with derivatives in Bergman spaces, Illinois J. Math. 31 (1987), 518-528.
[6] Hong Oh Kim, Derivatives of Blaschke products, Pacific J. Math. 114 (1984), 175-190.
[7] Mirwan Amin Kutbi, Integral means for the first derivative of Blaschke products, Kodai Math. J. 24 (2001), 86-97.
[8] David Protas, Blaschke products with derivative in H^{p} and B^{p}, Michigan Math J. 20 (1973), 393-396.

Department of Mathematics

California State University
Northridge, California 91330, USA
E-mail address: david.protas@csun.edu

