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§ 1. Introduction: L e t  B be a commutative ring (with identity) of
characteristic p>0, d :B —*B  a  derivation satisfying a  nonzero p -
polynomial and A = k er d. Let n  be an in te g e r > 1 . In  this paper,

we study the set pn (BIA) of isomorphism classes of finitely generated

projective A-modules of rank n, which, when tensored with B, become

free. To do this, we define an action of G L (B ) on M n (B) and prove,

(see theorem 3.5) that under suitable conditions on B, pn (BIA) is in a

bijective correspondence with the set 1-11 (M n (B )) of orbits (under this
action) of elements on which the so called Jacobson-Cartier operator
vanishes. For n = 1 , we have Pi(B/A)=ker (Pic A—)-Pic B ) and this
case has already been considered by Shuen  Yuan [4 , Theorem 2.6].

W e regard M n (B ) as a  subgroup of M + 1 ( B )  by treating any

element cE M n (B ) as the element 
( c  0 )

E M n + i(B ) and write M (B )=0 0 )
U  M (B ) .  W e use our theorem on the classification of pn (B/A) to
n>1
get a bijection between the set K°(.81A) (= ker (K°(A )--›-K°(B ))) and
the set 1/ 1-(M (B ))  which is the direct lim it of HI(A in ( B ) ) .  (Here
K°(A ) and K°(B) denote respectively the Grothendieck groups of A
and B.)

The operation of direct sum of matrices induces a group structure
on  1/ 1 (M (B ) )  a n d  T r: M(B)--».B gives rise to a  homomorphism
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H 1 (M (B)).-›-H 1 ( B ) .  W e show in Proposition 5 .8  that this map cor-

responds under our identification to the homomorphism det: K° (B I A)
- *1-11(B I A)

In the last section, we make two remarks on logarithmic derivatives

which are relevant to the material treated in the earlier sections. Further

applications of these ideas such as the computation of Grothendieck

groups a n d  o th er qu estion s  re la ted  to  th ese  w ill b e  trea ted

elsewhere.

For all standard results on projective modules, we refer to Bass

[1]. Throughout all tensor product signs without subscripts will

denote tensor product over A.

We have great pleasure in thanking A m it Roy for his keen interest
in this work and for very many helpful discussions that we have had

with him during the preparation o f this paper.

§ 2. An action of G L ( B )  on M n(B ) and the trace map.

Let B  be a commutative ring with identity and let d be a deriva-

tion o f B  into B. F o r  any integer n > 1 ,  we define a derivation (also

denoted by d ) of M n (B ), by setting for (cij) E  M n (B), d (c)=(d(c1.1)) •
Let A = k e r  d, and d ( ) :  B n--›-B n be the map defined by

d (n)(bi, ,b n) =(d (bi), • • • d(b n)). T h en  it  is  c le a r  th a t d(") is an

A-linear map which satisfies d (n) oc—cod (n) = d (c) for every cE M ,(B ).
We remark that th e  map n n : G L n (B) X M n (B)----)M  n ( B )  defined for

a GL n (B ), cE  Ilin (B )  by

(a ,c) ---+ aca - 1 + ad (a - 1 )

g ives an  action  o f G L n (B )  o n  M n ( B ) .  In  fa c t, clearly 77,1(1, c)=c
and for a, G L n (B ) , 7/n (4 c)=0,[303 - 1 a - 1 + 4 d ( 0 - 1  a- 1 ) - 4 4 - 1  a ---1

+ agd(g - 1 )a - 1 -1-ad(a - 1 )=17n (a, c ) ) .  In  particu lar, if n = 1 ,  we

h ave  an  action  o f th e  grou p  U  (B ) of units o f B  on B. L e t  T r :

M ,, (B )-* B  denote the trace map. We shall show that this induces a

map of the set of orbits of M n (B ) on the set of orbits of B. T o  do this,

we need some preliminary results, which will be used often.
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Let M  be a B -m o d u le . We shall be interested in A -endomorphisms
f  o f M  which satisfy

f (b b f (m)+ d (b)m (*)

for all m E M , b E B .
For example, i f  M = Bn , then d(n) : Bn—>-Bn defined earlier sat-

isfies (*). Also, if N  is any A-module, then the map d O l N : BON--->
B O N  also satisfies (*). If f: M—>-M satisfies (*) and O is any B-auto-
m orphism  of M , then clearly 80/00 - 1  also satisfies (*). If f i ,  i= 1 , 2
are additive endom orphism s o f  M  which satisfy ( * ) ,  then clearly

f t - 1 2  is B-linear.

2.1. Proposition : Let A = k er d, N an A -m odule such that w e have
a B -isom o rp h ism  ç : B ® N 2 B n .  Let c= 0 .( d O 1 N ) .0 - 1 — d (n ) .  Then
c  i s  B - l in e a r  so  that it can  be  regarded  as an e lem en t o f  M n (B )  by
choosing the canonical base for B .  F u r t h e r ,

Tr(c) (d Ol'AN):(A 0) - 1 —  d

(here w e have identif ied A ( B O N )  w ith  B O  A N ) .

Proof . T h e  fact that e is a B-linear map is immediate from the remarks
preceding the proposition. To prove the formula for the trace of
c ,  let el, ..., en  denote the canonical base for B .  Then we obviously
have

T r (c)(el.A...Aen) Eei A  A C ( e i ) A  A e n

= E (d  01 ). 0 - 1 (ei) A .. A en .

Let 0 - 4 ( 4 ) =  bii ® x ii, for 1 < i< n .  Note that

(O. (d 0 1 )0 0 - 1 -(ei) = E  d ( b i1 ) 0 ( 1 0 x i i ) .  Now
22

(Ac 0 ( d 0 1 )°(Ack) .-1 —  d)(e3.A... Aen)

=(A56 ° ( d 0 1 ))((E bijO x ii)A .- A (E  bn5O xn.1 ))

( A  (d  01 )) ( E ni „Oxii , A ... A x ni „)
5 1 ,  •  •  •  ,

=  AO( E AX ni /1)
i i »  • rt
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— A (  E  ( E  hi IA... A d (b ij i ) • • • b 5  n)O xif in • • • A-x/0 n)
.ii. • •,/,, i

—  E  (E b iji0 (10xii1 ) A ... A E d (b ij i )0 (1 0 x ii i) A — A E bn i.0 (10xn i n)i i i 5 1 .1.
---- E  (et A .. • AO° (610 1 ). 0 - 1 (el) A... An)i
=Tr(c)(e1A— A en)•

2.2. P rop os ition : F o r  any  a GL n (B),

T r(ad (a - 1 )) --=(det a)d((det 6 ) -1) .

P ro o f .  Let /3 : B  A n= > B n  be the canonical B-isom orphism  given by

fl(b0(at, • • • , an) ) =-- (bat, ..., b an ) .  Applying the proposition 2.1

to a./3: B OA n----->B n , we have

Tr( (a° /3 )°(d 0 1 ). (a°P) - 1 —  d (n ) )=  A (a. , ) 0 (d  0 1 ) .(  A (a .g )) -1- -  d •
Note that go (d01). [3 - 1 = d (n ) ;  therefore,

(a. /3). (d 01)0(a. /3) - 1  — d (go (d 01). 13 - 1 ) . — d(n)
=a0d(n)0 d(n)

= a d ( a - 1 ),

since d(a - 1 ) ,=-- d (n).a - 1 d ( n ) .  S i m i l a l y ,  w e  have that
71 n n

A (a 0 /9). (d 0 1 ) .(A (a. /3))-1 d =(A a)d ((  A a) - 1 ) =- (deta)d((deta) - 1 ).

This proves the proposition.

2 . 3 .  C o ro lla ry . The m ap  Tr: M ( B ) - - B  in d u c e s  a  m ap  of the

set of orbits o f M n (B ) (under the action of GL n (B )  described earlier)

into the set of orbits of B  (under the action of U(B ) described earlier).

P ro o f .  Let c' = a c a - l ± a d - 1 (a - 1 )  for c,c 'EM , i (B ), a  G L ,( B ) .  Then
by Proposition 2.2,

T rc '=  Tr (aca - 1 ) + T r (a d (a - 1 ))-= Trc+ (det a)d( (det a) - 1 ).

This proves the corollary.
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§ 3. A  c la s s ific a t io n  o f isom orphism  classes o f pro jective

modules and the Jacobson-Cartier operator.

Let B  be a commutative ring of prime characteristic p > 0 .  Let

d : B  be a  derivation and A =ker  d. L e t  f  (d )= 0  , where f  (X )=

a o X  a i X P  . . .  a r zli). Pr E ALAI be a  nonzero polynomial. Let P  be

a finitely generated projective A-module such that B P 2 .-->'B n .  Let

0 :B O P  -c---->B n be a B-isomorphism. We define c0 = 1 ).(d 0 1 ) .0 - 1 —d (n) ,

where Po is defined as in §2. Then by definition the following diag-
ram is commutative:

BOP

dOl

 

co+d(n)

   

B O P

  

B y Proposition 2 .1 , it follows that co E M n ( B ) .  Also note that

f (co + d(n))=Ack. (d 01)00- 1) -=_ 00 Ad 0 1 ) .0 - 1  =0.

We wish to prove that for any eE  M n (B ) ,  f  ( c  d  (n )) is B-linear and
therefore can be considered as an element of M n ( B ) .  In order to do
this, we need some preliminaries.

Let P  be a ring with identity, not necessarily commutative and

let d: r-->r be a derivation. We denote by r {X , d } the ring generated
by r and an indeterminate X which satisfies the relation X y— yX = d(y)
for every y E r .  We call rlx,d} the Ore-extension o f r with respect
to d .  We need the following

3 .1 .  L e m m a . L e t  r  be a  (not n e c e s a r i l y  commutative) ring with

identity and  d : r—>r a  derivation. L e t r {x,d} denote the O re -
extension o f  r with respect to d. Then fo r  any y E  P and any integer
i > 0 , we have

( y + X ) i=  cZ 4 i ( r
i )a r (y )X 1 - r,
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w h e r e  a r (y )= a r E .P  w ith  a o = 1  a n d  f o r  r > 1 ,  a r = y a r - i+ d ( a r - i ) .

P ro o f. W e  p ro v e  the proposition b y  induction on i. I f  i= 0 ,  the

assertion is  clear. A s s u m e  that the result has already been proved

for i - 1 .  W e have

(y+ X) 1= (y + X )10 1 +

= (y+ X )  E  (  
r

i  — 1
)

0<r<i-1
ar(y)Xi-1-r

=  E  ( i — 1 )ya r (y )X 1-1-- r +  E r i ) X a r ( y ) X " - r.
0<r<i-10< r< i-1  \ r

Substituting Xa r = a r X + d (a r) in the second term on the right hand

side, we get

( i  —1)Xa r (y)Xi - i - r
0< r4 i-1  \  r

=  E  (  i  
—

1 ) a r X i - r +

( i  — 1 )

d(a r)X i - r- 1  so that
0< r< i-1  \ r 0< r< i-1  \ r

( y  X ) i  =  E  ( i  1  )(ya r ± d (a r ) )X i - r- 1 +  E  ( i  1 ) a r X 1 - r
0<r<1-1 r 0<r<i-1 r

i —1.\
=  E (r  —1) a rX i - r +  E  (

i  1 )a r 217 1 - r
0<r<i-1 r

=  E  
( ( i  — 1 )

1 1

+ ( i  —
r 

1 ) )
a r X i - r

Osr‹i \ \ r \

=  E  ( i )arX i - r,
Osr‹i

and this proves the lemma.

3 .2 .  C o ro lla r y .  L et P  b e  a  r i n g  o f  p r im e  c h a r a c t e r i s t i c  p > 0 .

T h en  f o r  y E r ,  w e  have

(y+  X ) P r =  X '  + a p r (y ),  a p r (y )

This is immediate from the above lemma, since ( P  ) = 0  fo r all s  with

0 < s< p r .
Taking r to be a commutative ring o f prime characteristic p > 0 ,

we have
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3.3. Corollary. L et I'==B be a com m u ta tiv e ring  o f prim e cha ra cter-

estic p > 0 .  T h en  fo r  a n y  bEB,

ap i(b) =( a p i-i(b))P+(dP i - r i ( a p i-i(b)), for i > 1 .

P ro o f.  By Corollary 3.2,

ap i(b) =(b+d)v  —  dP'

=( (d  + d ) 13 ' ) P — dPi

=( a p i-i(b) + d P " ) P — dP'

---(api-i(b))P+(dP' - ') P -1 (api-i(b)), by [2, p. 201].

We apply Corollary 3.2  to the particular case where F= M n (B)

an d  d : M (B ) —. M ( B )  i s  th e  derivation (bij)f-->-(d(bij) ). We get

that, for any x  which satisfies x c— cx =d(c ), for c E M n ( B ) ,  and r > 0

(c+x)P r =xP r +a p r(c)

with ap r(c )E M n (B ) .  Since d (n )  satisfies (* ) , we can specialise x  to

d(n ) and obtain

(c+ d (n)) 1 3 r = (d(n))P r  + a pr (c) ,

so that

f  (c+ d(n))= o E  r ati(d(n))V  + a p i(c)}

=  E  a i ap i(c)
0< i‹r

since f ( d ( n) ) =ao d ( " ) + ...+ a r (d(n))Pr = - 0 .  Thus f  (c +d ( 4 ))
 

is a  B-

linear map and hence can be considered as an element of M n ( B ) .  The

map cJ— >f(cd--d(n))=. E  a ja p i(c ) of M ( B )  in to  itse lf is  ca lled  the
0< i‹r

jacobson-C artier o p era to r , and is denoted b y  n Note that Sn (c0)=

sf  (co+ d(n)) =O.

Thus, given any finitely generated projective A-module P  with

BOP 2-->Bn, we have an element co E M n (B )  which satisfies 8n (c95)= 0 .

Let B OP by any other B-isomorphism and co, M n (B ) the cor-
responding elem ent. In  view  o f the commutativity of the following

diagram,
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cw+d (n )

w e  have co, d(n) = 0 0 (c  d (n ))„ where 0=0'00 - 1 :  B n--›-B n i s  a
B-isomorphism and hence belongs to M n (B) by choosing the canonical
base for B n .  W e now have

± d(n) = O. co. 0- 1  +  d ( 4 )00- 1 -
=O . c 0 - 1  + On) +0d (0 - 1 )

so that

= 0. co. 0- 1 + Od(0 - 1 )

and co, co ,  define the same orbit for the action of G Ln (B ) on M n (B)
described in §2. Thus, to each finitely generated projective A-module

P with B OP=>13n, w e have associated an orbit of M (B ) , which we
denote by c ( P ) .  W e show that if P P', th e n  c (P)= c (P') . Let f :

0'
P 2 --> P ' be an A-isomorphism. Set 0'=-51.0(10/- 1 ). Then B O P --- ->Bn
and hence c(P') is  the orbit o f co, . N o w

co, =  o ( d 4/ -1— d(n)
=40(1® f  - 1 ).(d 01). (1® f). 4-1_ d(n)
= 4. (d 01).4-1—  d(n)

-= Co.

Thus c(P')= c(P).
Let( B / A )  be the set of isomorphism classes [P] of all finitely

generated projective A-modules P  such that P ®  B B .. The above
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considerations show that we have a  m ap of( B / A )  in to the set

(111,(B)) of orbits o f elements c  of .1I n (B ) such that 8 n (c)=0.

3.4. D efinition. Let B , A  be as before. We say that the ring ex-

tension B IA  is of Galois t y p e  i f  B  is  a  finitely generated projective

A-module and HomA (B , B )=B [d].

If B IA  is of Galois type then d  satisfies a p-polynomial f ( X ) =
E  aiX P' , ai E A  and ar  i s  a non-zero idempotent such that

o<i‹r
the canonical map B { X ,cl} lf (X )->Hom A  (B ,B )  is an  isomorphism

[4, Theorem 2.4].

We prove the following

3.5. T h eo rem : T h e  m a p  e n :  Pn(BIA)->11 3-(M n (B ))  g i v e n  b y
[P]-3-c(P) i s  injective. I t  i s  a bijection, i f  B IA  i s  of  G alo is ty pe .

P ro o f. W e first check that the map in question is injective. L e t
P ,P ' be finitely generated projective A-modules such that c(P)--=c(P').

0 0'
I f  B B O P'=->B n, there exists by definition a n  element

a E  G L (B )  such that

co,a 0 c 95.a- L-Had(a - 1 ).

Or, equivalently,

(c0,-Fd(n)).a=ao(c0+d(n))
i.e. (0'.(d01).0'-1-).a=a0(00(d 01)0 0-1)

or (d01)(0'-lectock)=(0'-loa056)(dO1),
i.e. the diagram

dO 1
BOP  -> BOP

cy — lo a .0

dO 1
BOP' ->  B O P'
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is  commutative, with the vertical maps being B-isomorphisms. We

therefore have a n  induced A-isomorphism ker(dOlp)=› ker(dOlp).

Since P  is A-projective, ker (dO lp) --=›A O P.-L-4 P  a n d  similarly,

ker (dO1p)=->/3 '. We thus have an A-isomorphism P P ' i . e .  [P ]=

[P ]  which proves the injectivity of the map.

L e t  u s  now assume that BI A is of Galois type and prove the

surjectivity o f  t h e  m a p .  L e t  E H l (M n (B) ) with cE M ,,(B ) as a

representative. Define

P  { x  B n  (c+d(n))(x)-=-0}.

We will show that [P ]E p n (B/ A) and that [P ] maps onto 2. We note

that since c is B-linear and d(n) satisfies (*) of §2, it follows that c±d(n)
satisfises (*). W e  have therefore an A-algebra homomorphism

B {X ,d} End A (Bn)

such that p.(X )= c+ d (n ) and 11,1B-= identity. Since f (c+d ( n ) ) --=-8n(C)=
0 (OEI-11-(M n (B) ), we have an induced homomorphism

B {X , f  (X ) EndA(Bn).

Since BI A is of Galois type, we have an isomorphism

$: B{X, f (X )--).E n d A (B),

o f A-algebras, so that, we have an A-algebra homomorphism

EndA (B) —).End A (Bn).

In  otherwords, B n  becomes an  EndA (B)-module with the action of

dEEnd A  (B )  on B n given by

d* x=p(X )x=(c+d(n ))(x ), x  B n

By Morita-equivalence [1, p. 691 applied to the pair (A , End A  B ), we

have a B-isomorphism,
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B O H omEnd A (B)(B, B 11)=->Bu

induced by (b, g)I—>- b g(1) We assert that under this isomorphism

H OM End A (B ) (B, Hu) gets mapped onto P. F o r  if gE  H om EndA(B ) (B, Bu),

we have (c±d (n ))(g (1 ))= ,a (X ). g(1) = g (d (1 ))= g (0 ) =  0  and conversely,

i f  x E B n  with (c + d (n ) ) (x )= 0 , th e  element g  E HomEnd A (B) (B , Bu)

defined by g ( 1 ) = x  gets mapped onto x .  Thus P  is isomorphic to

Hom End A (B ) (B , Bu). Hence P  is  A-projective. Further B O P -=>

B®HomEnd A(B) (1 3 , Bu):=->Bu . Let ck: BOP—)-B 1  be the B-isomorphism

induced by the inclusion m ap Pc - .Bu. Since f o r  x E P , b E B ,

00(d  01)(b  x )= ç6(d(b)Ox)= d (b). x and (c+d(n))0(bOx)= (c+d(n))(b.x)

=b(c+ d(n)(X ))- d (b)x= d(b)x , it follows that c=950(d01).0 - 1 _d (n )

and hence P  maps onto c. Thus the map in  question is surjective.

This proves the theorem.

With th e  same notation and hypothesis o f  th e  theorem, let

Pic (BI A ) (=W ill A )) denote the set of isomorphism classes of rank 1

projective A-modules such that B O P=>B . We then have the following
A

corollary which was proved by S huen  Yuan  [4 , Theorem 2.6].

3 . 6 .  C o ro lla ry . T h e  m a p  0 1 :  Pic (BIA )—>-.111 (B ) g i v e n  b y  [P ]-4 .

c(P) i s  a bijection.

§ 4. T he Kernel o f  K°(A)--->K°(B).

L e t  B  be any commutative ring with identity, d:B --)-B  be a
derivation an d  n > 1  any integer. Consider the map j : M n (B)-÷

c 1
Mn-a(B) given by0

0
)——cC)0 where 0  denotes the 1 x 1 matrix

with 0  as its entries. C learly j  is a monomorphism of additive groups.
W e regard M n (B )  as a  subgroup of M +1 (B ) through j  and denote
M (B )=- U M n (B ) and G L n (B) as a subgroup of G L n±i(B) by the mono-

a  0)morphism i: a I---)- 0  ) = a i  a n d  denote G  L (B )=  U  G L n ( B ) .  We
n n

remark that the diagram
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l i n

GL n (B )x  M n (B )   —> Mn (B)

X i

1)n-1-1
GLn+I(B) X M +1(B ) --> Mn+i(B)

is commutative, where 12n is defined as in §2. In fact,

X j)(a ,c ) = 72n-q((aC)1) ,  (c 0))
=-(aC)1)(cC)0)(a - 1 C)1)+(aC)1)d(a - 1 C)1)
= (aca - 1 C)0)+ (ad (a 1) 0)
=(aca - 1 -1--ad(a- 1 ))C)0
=j(aca - 1 + ad (a -1))

=  j  n (a,c).

We thus have a map 71: GL(B)X M (B)—)-M (B) which defines an action

o f G L(B ) on M (B).

L et now B  be a ring of prim e characteristic p > 0  and let d

satisfy a polynomial f (X )=a 0 X  a iX  P+  . +a r  XP'  E A [ X ] .  Let 8,i :

M n  (B)—)-Mn (B )  denote the Jacobson-Cartier operator defined in  §3.

4.1. Lem m a. T he diagram

8n
M n (B )    --> M n (B)

   

8 n+1
M n +i(B )

 

is  co m m u tativ e . In other w ords, 8 n  induces a m ap 8: M (B)—>M (B).

Proof: For c E M n (B), we have 8n+10  j(c) =8 n +i(cC)0) f ((c(30)+ d(n+1))

= f  ( ( c + d ( n ) ) e d ) = f  (c±d ( n ) )(1) f (d )=8 n (c )e 0 =j8 n (c ) .
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4 .2 .  Corollary. T h e  m a p  j:  M (B )-+111 + i ( B )  induces a  map
111 (j): H l(M  n (B))—>111 (M n ± i(B )).

L e t 1),(B I A )  denote the set of isomorphism classes of finitely

generated projective A-modules such that BOP—>B .  L e t  k:
pn (BI A)—>Pn+i(B / A ) denote the map [13 ]—>[PC A].

4 .3 .  Proposition. T h e  diagram

en
Pn(B/A) ---> H 1-(M (B ))

H i(j )

e n +1

 

Pn+i(B/A)

 

---> 111 (M n + I(B))

is commutative.

 

P roo f. Let [P ]  P n (BIA  ) and let 0: B O P --4 B n  be a B-isomorphism.

Let c 0= 00 (d01)0 d  ( n )  so that c(P) is represented by co. Now
1-11-(j)(c(P)) is represented by c0C)0. We need therefore to show that

end-1([PGAD is represented by coC)0. We have the B-isomorphism

A v5C)1
B O (P 0 A ) (BOP) 0 B

Let el, ..., en , en ± i be the canonical base of Bn+1 such that el, ..., en

is the canonical base of B .  F o r  i < n ,  we have

c(01)02(ei) = ((gD1) 0 A. (d 01).A -1. (0 - 1 (:)1)— d (n+1))(e•)
=(0. (d 01). 0 - 1 -)(ei)
=(4). (d 01)00 - 1 — d(n))(ei)

= 95(e f).

Also

c(be1)02(en+1)=((K )1 ) . A .  01).A - 1 0(0- 1 -C)1)— cl( n+i ) )(en+1)
(d 01)0A - 1 (0, en+i)
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= (0C )1).A .(d01)(10(0,e n +1))
0)

=0

so that c(01)„,1-=c0C)0. Since c(01) 02  represents On .fiaPC)AD, the

proposition follows.

Let H i(M (B ))  denote the set of orbits e of elements c o f M (B )
(under the action o f G L (B )) which satisfy 8 (c )= 0 . We remark that

for every n> 1 the inclusion M (B )C =M (B ) induces a map HI-(M n (B))—*
TP(M (B ) )  and in fact H l(M (B ) )=1im H l(M n (B) ).

Let now A  -=ker d. W e have a homomorphism K °(A )—>K ° (B),
where K° ( A )  (respectively K ° (B )) denotes the Grothendieck group

o f  A  (respectively B ) .  L e t  K °(B IA )=k er (K °(A ) —>K ° ( B ) ) .  Let

P  be a projective A-module such that P — A n E K° (BI A ) .  By definition

B O P — B = 0  in  K °(B ) so that there exists an integer m >0 such that

B O (P C )A m ) (B O P )B 1 B m + n

Thus, [PC)Am]E4) m ± n (B IA ) and we have the element e m + ,([PCIAm])
E.1-11 (M m ± .(B )  )  and this defines in  view o f th e  map Hl(M(B)) —)-
H i(M (B )) an element o f H I(M (B )) .  We assert that this assignment

gives rise to a  m ap  K ° ( B ) ) .  L e t  P — A n =P ' — A n' E

K ° (B IA ) . L et m ,m '> 0 be integers such that [PC)Am], [P'(:)Aml
are respectively in pm + n (B IA ), P m

,
± n

, ( B I A ) .  The equation P —A n =

P ' —A '  implies that there exists an integer k  (which we assume without

loss o f  generality to be greater than both m  and  m ')  such that

PC)An'i()Alc2 -47C)A nC)Ak. Thus by results o f  §3, it follows that

e n + 7 ,/+ k  (p00A  n '+ k ])—  o n i+ u + k  ( [ P ' e A  n ± k ] ) .  Note that for any k >m ,

in view of Proposition 4.3, e m ±n ([PC)Am]) and e n i + k + n ( [ P C M 1 )  define

the same element o f  H 1-(M (B ) ) and  similarly fo r  P '  so  th a t the

elements of 1--P(M(B) )  corresponding to P — A n  and P' — A n ' are the

same and we have a well defined map 111 : K °(B IA )—>-Ill(M (B )) given

by W(P — A n) =class o f e m + n ([PC)Am]) where [PC)Am]EP i n ± n (B/A).

4.4 . Theorem. T h e  m a p  W : K°(BIA)— >11 1(M ( B ) )  i s  injective.

I f  B IA  i s  o f  G alo is ty pe , then i s  a  bijection.
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Proof. W e first prove that W is injective. L e t  P— A n, P' —  A n'E
K°(B1 A )  be such  that ¶ (P  2 4 10=W (P' —  A n'). Let(P C)A m )®B — >
Bn+m, (7 C ) A n O B - ) - B n '± m '.  This means by definition that there

exist integers k, 0 which we can assume to be greater respectively

than n '  and n  such that c(PC)Am)(DOk=c(P'C)Am')C)Ok ,  w h ere  Ok

(respectively Ok, ) denote the matrix of order k (respectively k ') all whose

entries are zero. T h i s  implies that c(PC)A na+k)=c(P'C)A m ' 1 4 ').
S ince by theorem  3 .5 , em +n+k : 4:19n+ni-k (B /A )— J-1 1 (11/n-l-m +k (B )) is

injective, it follows that [PeAm +k]= [P'C)A m 'Ev ] which implies that

P  eA n,GA m +k -n1:-.÷-p f e A n c )A m ,d -r-n . Since m d-n-Pk =m ' ,
we have that P — An =P' —  A n ' in K° (BI A ) which shows W is injective.

W e now  assume that B IA  is of Galois type and show that W

is  surjective. Let eE M n ( B )  represent some element o f H l(M (B ) ).
By theorem  3.5, there exists an element [P] Pn (BI A )  such that

On ([P ])=orb it o f  c  in  M n ( B ) .  Then, clearly P — An EK° (B1 A )  and

W (P-A n) is the given element of H l(M (B ) ). This proves the therorem.

§ 5. T h e  map Tr : 1-11 (M(B))--->IP(B).

In  this section, we continue with our previous notation . In  §2

we have seen that Tr: M n (B)—  B maps an orbit in M n (B ) to an orbit

in B .  Here we shall prove that Tr maps 1-11-(M (B ) )  into H 1 (B ) and

that this map is a  homomorphism fo r  a  natural group structure on

IP(M (B ) )  which we shall define.

To do this we need a few lemmas. The first lemma and its corollary

are most probably well-known, but we include it fo r lack o f proper

reference.

5.1. Lemma. L et B  be a commutative ring  (w ith 1) of  prime char-

acteristic p > 0 .  L e t  f : M ( B ) - - B  b e  an additiv e hom om orphism
w hich satisfies 1 )  f  (4 ) - - f (1 3 a) , ii)  f (b a)=6 P  f (a)  f o r  a l l  bE B ,
a, f 3E M n (B). Then there exists a A B  such that f(a)=A(Tr (a))P.

Proof. Let eii denote the n x n  matrix which has 1 as its i, jth  entry
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and zero elsewhere. We remark that f  ( e i i ) =0  fo r  i  /  j. In  fact

f  (eij)=f  (eii e ii)=1  e i i ) = f  ( 0 ) = 0 .  Next, note that for any i,j, f  (eii)=--

.f ( e j i ) ; in  fact f  (eii)=f  (eij eii)=1(eii eii)=-1(eii).  Let f ( e ) = A .  We
have a= E a i l E  f  (aij e ij)= E  f E ari =A(Tr a)P.

i i 1,5 1,5

5 . 2 .  Corollary: F o r  an y  eE M n (B ) , w e have Tr(cP)=-(Tr C)P.

P roo f. Let f :  M (B ) -+B be defined by (c )= T r(c P ) . By Jacobson

formula [3, P. 189], we have for c, c' E M n ( B )  (c+c')P.----cP-Fc'P-Fsum
o f (p -1 )-fo ld  Lie-brackets, so that f(c ± c ')= T r(  (c ± c ')P )= T r(c P ±
c'P)=Tr(cP)+Tr(c'P)=/(c)--1--f(c'). Also it is easily seen that f  (ce ')=

f (c' c) for c, c' E / / n ( B ) .  It is clear that f (b c) = bP f (e) so that f  satisfies

all the conditions of the lemma so that there exists A E B  such that f (c)=.
A(Tr(c))P fo r a ll cE M n (B ). Take now c=cii. W e have f ( e n ) =

T r(eA )= T r(en )= 1 ; thus A = 1  and the corollary is proved.

Let c E M . ( B ) .  W e regard c  and d ( )  as elements of End A (Bn).
W e have by Jacobson's formula [3 , P. 1891

(c  d (n ))P  cP +  (d (n ))P E  s i(c ,d (n )) ,
l<5425-1

where j  s i(c , d ( ) )  is the co-efficient of x 5 - 1  in [... [c, d (n) +ex ], d(n )±

ex ], where x  is a  commuting indeterminate.

5.3. Lem m a: L e t B  be a commutative ring of characteristic p>0.
T h e n  Tr(s i(c , d (n )))=  c19 - 1 (T r  c )  and  Tr(sj(c, d ( ) )  ) = O  f o r  j > 1 .

Proof. L e t  j= 1 , w e  have 3-1(c , d (n ))= [.  .  [c, d (n)] , . . . , d (n)] =

fi — 1 times

(d(n))P - I-(c) so that Tr(si(c, ci 0 1 )))=Tr((d(n))P - 3 -(c) )---dP - 1 (T r  c ) . Let

1> 1 ;  we note that in  any ( p -1 )-fo ld  L ie  bracket occuring in the

co-efficient o f x5 - 1 ,  c  occurs at least twice, so that the Lie bracket

is  o f th e  form (d(n))i [c, e l  fo r  some c' 1 I n ( B )  and i > 0 .  Thus

Tr(si(c, O n))) is the sum of the terms which are of the form c/i(Tr [c, c 11)

so that for j> 1 , T r ( s j( c , d (n )))=0  .
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5.4. Lem m a. F o r  any  integer n > 1 ,  the diagram

8
n

M n (B )

Tr

    

is com m utative.

P ro o f .  W e have to show that for any c E M n (B),

Tr(f (c + d (n )))=f (T r(c )+d ) .

We know by results of §3 that f (c- - d(n))-= E  aiap i(C ), where f  ( X ) =0r

a0 X -FaiX P±  ...+a r X P r E A [X ],  so that it is enough to show that Tr

(ap i(c) ) =.-api(Tr c), for 0 < i < r .  We prove this by induction on i.

For i-= 0 , this is obvious. Assume that i > 1  and the result holds

for i - 1 .  W e  have

Tr(a p i(c)) = T r((c+  d ( n ) )P i — (d(n))P i )

=T r(((c+d(n ))P i - i )P— (d(n)) 13 )̀

=T r( (a p i-i(c))P E  s ia(p i -1(c ), (d(n))pi))
1<jsp-1

= (T r(a p i--.(c)))P+ ( d P ' i ) 1 (Tr(a p i-i(c))

by using (5.2) and (5.3).

= (a p i-.(Tr c))P+(dP' - ') ' ( a p i-i(Tr c))

= a p i(Tr c)

by Corollary (3.3). This completes the proof of the lemma.

5 .5 .  Corollary. T h e  m a p  Tr: M ( B ) - > B  induces a  m ap  Tr:

/-1'(M (B ) )— >H 3-(B )  as also  a  m ap H l(M (B ))— >JP(B ).

Proof. T h is  first assertion is clear from Corollary 2 .3  and lemma

5.4. The second assertion is obvious.
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5.6. Proposition . F o r any  in teger n > l ,  the diagram

e n

pn (BIA ) ----> H l(M  n (B))

n
A

Pic(B/A)

  

Tr

 

--> Hl(B)

 

is com m utative.

P ro o f .  Let [P]EN(B/ A) and let 0: B O P=>B n be a B-isomorphism.
If c o= 0. (d 01). 0- 1 — d(n) , we know that e n ([P ])= c(P )= orb it o f  co.
Now

Tr(e n aPp) = Tr(c(P))
=orbit o f Tr(co)

=orbit of (A 0 . (d017 ,p .A 0 - 1 - - d )  (by Proposition 2.1)

This proves the proposition.

We know that we have a bijection 1-11 (M(B))—>-K°(BIA).
Since K °(B IA ) is an additive group (under the operation induced by
direct sum), we can define an abelian group structure on H 1(31(B) )
by setting fo r  orbits Z., E  Hl(M (B)) with c , c ' as representative,
e +0 ' = ( Y 1 - 1 (e)+ 1'- V ) ) .

5.7. P rop os ition : For e, e'EHl(M (B )) w ith c, c' as representatives,
w e  have 7--1-0' =cC)c'

P ro o f .  Let c, c' be representatives of 0, 0'. Let P e , P e , be projective
modules corresponding to c ,  c '  respectively and 0 : BC)P, 2  Bm,

: B  P  c
, =->" Bn be B-isomorphisms such that c=00(d01)00-i_d(n),

c' = 0 '.(d 0 1 )0 0 ' - l — d(n). W e have isomorphisms

2 000'
BO(PcePe) ( B O P ) C ( B O P e )  Brn+n
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To prove the proposition, it is enough to show that i f  we choose the

canonical base for Brn+n , the matrix of the B-linear map

T—(56 G 0 ')°A °(d 0 1 )°A - 1 ° (.0' 0 0 ' - 1) — d ( m + n )

is c c'. L e t ..., en  b e  the canonical base for Bni±n

such that em is the canonical base for Bm and em + 1,...,e m + n  the

canonical base for Bn . But it is clear that for 1 < i < m ,  T(ei)=c(ei)

for m +1 <i<m +n , T (e i) - - -c i (ei). This proves the proposition.

The above proposition shows that IP-(M (B )) becomes an additive

group under an  operation induced by the operation of d irect sum

of m atrices. On the other hand, it is easy to see that I-11 (B )  is an

abelian group under the operation induced by the usual addition in

B .  It is clear that T r :  1-11 (M(B) )— >H 1(B ) is a  homomorphism.

5.8. P rop os ition . The d iag ram

IJ
K ° (B IA )  --> HI-(M(B))

det

   

Tr

Pic(B/A)

 

--> Hl(B)

 

is com m utativ e.

P r o o f .  Follows from Proposition 5.6.

§ 6. Som e rem arks on  logarithmic derivatives.

A s  usual B  denotes a commutative ring of prime characteristic

p>0, d :  B—>-B a  derivation and A  --= k e r  d.
6.1. I f  c .111 v ,(B )  is a logarithmic derivative, i.e.  c =ad (a 1) for some
a EG L n (B ), then clearly cC)Ok is a logarithmic derivative fo r  any k , in
fact cC)Ok=i3d(i3- 1 )  where [3= a  -elk. However, if eE 11/n (B ) (n > 1 )  is
such that cC)Ok is a logarithmic derivative for some k , then c may not be

a logarithmic derivative. We remark that this is however true if n = 1 .
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Let b E B  such that b3Ok=ad(a - 1 ) for some a E G L k - a ( B ) .  Let a- 1 =

(tii)14i,i‹k+1. T h e  above relation gives t i i b = d ( t i i )  for a ll i  with
1 < i< k + 1 , d (ti1 )= -0  for 1> 2 .  Multiplying these equations by the
corresponding cofactors and adding up we get (det a- 1 ). b=d(det a- 1 )
which implies that b  is a  logarithmic derivative.
6 .2 .  Let f ( X ) = X P  be a polynomial satisfied by d  and let there be
an element x E  B  such that d (x )  is a unit in A .  Then any cE M .(A )
such that 8 5 (c)= 0 is a  logarithmic derivative.
P ro o f .  Since c E l l f n ( A ) ,  we have by Corollary 3.2, 0=8,(c)=cP.
If  d ( x ) = u  U ( A ), let

, ux2
c

2  
, , u x 2 3 -1 cP - 1

a - 1 = U + U X C I—  ...

It is easily seen that c=ad(a - 1 ).

C E N TR E  O F  A D V A N C E D  S T U D Y  I N  M ATHEM ATICS,

U N IV E R S ITY  O F  B O M B A Y

AND

T A T A  IN S T IT U T E  O F  F U N D A M E N T A L  RESEARCH
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