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§ 1. Introduction: Let B be a commutative ring (with identity) of
characteristic >0, &:B—B a derivation satisfying a nonzero p-
polynomial and A=ker &. Let n be an integer>1. In this paper,
we study the set pn(B/A) of isomorphism classes of finitely generated
projective A-modules of rank n, which, when tensored with B, become
free. To do this, we define an action of GLy(B) on My(B) and prove,
(see theorem 3.5) that under suitable conditions on B, py(B/4) is in a
bijective correspondence with the set H1(My(B)) of orbits (under this
action) of elements on which the so called Jacobson-Cartier operator
vanishes. For n=1, we have pi(B/4)=ker (Pic A—Pic B) and this
case has already been considered by Shuen Yuan [4, Theorem 2.6].

We regard Myu(B) as a subgroup of My41(B) by treating any

element ¢ M, (B) as the element (& 0 & My41(B) and write M (B)=
L) 00
U Mu(B). We use our theorem on the classification of pp(B[/A4) to

n>1
get a bijection between the set K°(B/A) (=ker (K°(4A)—K°(B))) and
the set A1(M(B)) which is the direct limit of H1(My(B)). (Here
K°(4) and K°(B) denote respectively the Grothendieck groups of 4
and B.)

The operation of direct sum of matrices induces a group structure
on HYM(B)) and Tr: M(B)—>B gives rise to a homomorphism
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HY(M(B))—~H1(B). We show in Proposition 5.8 that this map cor-
responds under our identification to the homomorphism det: K°(B/A4)
—p1(B[A).

In the last section, we make two remarks on logarithmic derivatives
which are relevant to the material treated in the earlier sections. Further
applications of these ideas such as the computation of Grothendieck
groups and other questions related to these will be treated
elsewhere.

For all standard results on projective modules, we refer to Bass
[1]. Throughout all tensor product signs without subscripts will
denote tensor product over A4.

We have great pleasure in thanking Amit Roy for his keen interest
in this work and for very many helpful discussions that we have had

with him during the preparation of this paper.

§2. An action of GL,(B) on M,(B) and the trace map.

Let B be a commutative ring with identity and let & be a deriva-
tion of B into B. For any integer »>1, we define a derivation (also
denoted by &) of Myp(B), by setting for c=(cy5) E Mn(B), d(c)=(d(ct5)).
Let A=ker d, and d™: B®™—»B" be the map defined by
d™(by, ....b0)=(d(b1), ..., d(bn)). Then it is clear that 4™ is an
A-linear map which satisfies d ®oc—cod M =d (c) for every c&E My(B).
We remark that the map nu: GLW(B)X Muy(B)—>My(B) defined for
oEGLy(B), c€EMu(B) by

(a,c) —> aca14ad(a™)

gives an action of GLu(B) on My(B). In fact, clearly nu(l,c)=¢
and for a, BEGLW(B), nu(aP, c)=afcfla1+aBd(Bt a)=0afcflal
+aBd(BNa+ad(aV=nula, 72(B, ¢)). In particular, if =1, we
have an action of the group U(B) of units of B on B. Let Tr:
M, (B)—B denote the trace map. We shall show that this induces a
map of the set of orbits of M,(B) on the set of orbits of B. To do this,

we need some preliminary results, which will be used often.
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Let M be a B-module. We shall be interested in 4-endomorphisms
f of M which satisfy

S (m)y=bf(m)+d (6)m (*)

for all meM, b= B.

For example, if M =B" then d™: B?»—B" defined earlier sat-
isfies (*). Also, if Vis any 4-module, then the map d@1ly: BRQ~N—
BN also satisfies (x). If f: M—M satisfies () and 0 is any B-auto-
morphism of M, then clearly 8o fo0-1 also satisfies (). If f;, 7=1,2
are additive endomorphisms of A/ which satisfy (*), then clearly
fi—/fe is B-linear.

2.1. Proposition: Let A=ker d, N an A-module such that we have
a B-isomorphism ¢: BN =B". Let c=¢o(dQln)od1—d ™. Then
¢ ts B-linear so that it can be vegarded as an element of Mu(B) by

choosing the canonical base for B". Further,
n n
Tr(©)=N¢=(d Q1 n)- ()1 —2
n n
(here we have identified |\ (BRQN) with BQQ /N\N).
B

Proof. The fact that ¢ is a B-linear map is immediate from the remarks
preceding the proposition. To prove the formula for the trace of
¢, let ey, ..., en denote the canonical base for B%. Then we obviously

have

Tr(@)etp---nen)=Tesp...pcen-r-pén
=2 ein-ph(@@Dep7H e pen-

Let ¢‘1(ei)22 bi;Qxi5, for 1<G<n. Note that
(¢> (d®1)e ¢'1(€i) 2 d(bij)p(1Qxij). Now
(/\<1S (a’ ®1\°(/\¢)'1 d)(e1n-..nen)

—(/\¢ (d®1))((2 613 Qx17)A- - /\(Z b0 ®xnj))

—(/\¢ /a’®1))( 2 élfl 5n1,,®x1m-~-/\xnjn)

—/\¢( Z d(blal é"?n)®x171/\"'/\xnfn)
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n
= A"S(,.Z.:.j (; 61,7 AD(big;). . .05 )QX15 A .. p s )
=§ (;511145(1@9611 1)/\-"/\jz:d (bifi)d’(l@xih)/\-“/\jzénind’(l@x”fn)
2; (e1n... pPo(dQ@1)ed e .. ntn)

=Tr(c)(e1n. - -pen)-

2.2. Proposition: For any a=GLy(B),

Tr(ad(a~t)) =(det a)d((det a)1).

Proof. Let B: BQAM=SB™ be the canonical B-isomorphism given by
B(6Q(a, ..., an) Yy=(bay, ..., bay). Applying the proposition 2.1

to aof: BRQA®=B", we have

Tr((ao B)o(d@1)o(acB)1—d M) = A (as B)s(d @1)o( A (asf))—d.
Note that Bo(d®1)e f1=d™; therefore,

(a0 B)o(d@1)o(ao B)1—d M =00(Bo(dR1)of L)oo 1 —g ™

=aod(n)oa_l—-d('ﬂ)
—ad(a D),
since d(a)=d™oaq1—alogd™. Similaly, we have that

A(aoB)o(@@1)o( A (aoB)L—d—( A @)d(( Aoy =(deta)d (deta)1).

This proves the proposition.

23. Corollary. The map Tr: Mu(B)—>B induces a map of the
set of orbits of Mu(B) (under the action of GLy(B) described earlier)
into the set of orbits of B (under the action of U(B) described earlier).

Proof. Let (’=aca l4ada?) for ¢’ EMp(B), a=GLy(B). Then
by Proposition 2.2,

Tre'=Tr(aca )+ Tr(ad (¢ 1))=Trc+(deta)d ((deta)1).

This proves the corollary.



Jacobson-Cartier operator 541

§3. A classification of isomorphism classes of projective
modules and the Jacobson-Cartier operator.

Let B be a commutative ring of prime characteristic p>0. Let
d: B—~B be a derivation and A=ker 4. Let f(d)=0, where f(X)=
apX+a1 X P4 ... +a, X?P = A[X] be a nonzero polynomial. Let P be
a finitely generated projective 4-module such that BQRQP=B" Let
¢: BQP = B" be a B-isomorphism. We define cg=¢o(d QL)1 —d ™,
where d® is defined as in §2. Then by definition the following diag-

ram is commutative:

¢
BRP - —~ - Bv

2®1 totd™

N
BRP .~ > Bn

By Proposition 2.1, it follows that cg& Mu(B). Also note that

Fleg+d™)=F($o(d@1)ed D) =40 f(dRL)ed~1=0.
We wish to prove that for any c& My (B), f(c+d ™) is B-linear and

therefore can be considered as an element of My(B). In order to do
this, we need some preliminaries.

Let I' be a ring with identity, not necessarily commutative and
let d: I'=I" be a derivation. We denote by I'{.X, &} the ring generated
by I' and an indeterminate X which satisfies the relation Xy—yX=d(y)
for every y&I.  We call I'{X, d} the Ore-extension of I' with respect
to d. We need the following

3.1. Lemma. LZet I' be a (not necesarily commutative) ring with
identity and d: I'>I" a derivation. Let I'{X,d} denote the Ore-
extension of I' with respect to d. Then for any yEI and any integer
i >0, we have

— g i—-r
(y-l—X)i— 0<§<i (r)ar('y)X ’
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where ar(y)=o, I with av=1 and for r>1, ay=yar1+d(ar-1).

Proof. We prove the proposition by induction on z. If /=0, the

assertion is clear. Assume that the result has already been proved
for 7—1. We have

y+X)i=+ X+ X))}
=@y+X) = . (Z' _;l)a,-('y) Xi-1-r

0<r<i—

— 2 ((Themxt 2 (07 Xa e,

0<r<i-1 0<r<i-1

Substituting Xa,=arX+d(ar) in the second term on the right hand
side, we get

i—1 ;
Xi-1-r
w2 e

=B (s, 5 (5 e o
rxi=, 3 (7 e dtenxerie g (7 res
S ) " I (e W
=2 (e
=2, (FJrxer

and this proves the lemma.

3.2. Corollary. Let I' be a ring of prime characteristic p>0.
Then for yeI', we have

Y+ X7 =XP tap(y), ap(y)ET.

This is immediate from the above lemma, since (ff:)zo for all s with
0<ls<p".
Taking I' to be a commutative ring of prime characteristic p >0,

we have
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3.3. Corollary. Let I'=B be a commutative ring of prime character-
estic p>0. Then for any bEB,

ap ()= (api-(8) P +(@P ) (api(8)), for i>1.

Proof. By Corollary 3.2,
af(O)= (6P —d P
—((@-+dyy—d?
—(apini(B)+47"y —d¥
— (g (8) P4 (AP (ayin(8)), by (2, p. 201].
We apply Corollary 3.2 to the particular case where I'=My(B)
and d: Mu(B)—>Mn(B) is the derivation (64)—(d(bs)). We get
that, for any x which satisfies xc—cx=d(c), for c€ Myp(B), and »>0

(e+2)P =xP"4ap(c)

with apr(c)e Mu(B). Since d™ satisfies (*), we can specialise x to

4™ and obtain
(4 A =D 4y (0)

so that
fletdm)= & ai.{(d(ﬂ))p‘_{_api(c)}
o<is<r
= Z diapi(5> ’

o<i<r

since f(d™)=apd™ +...4a/(d™)?"=0. Thus f(c+d™) is a B-

linear map and hence can be considered as an element of M,(B). The

map cd—f(c+dM)= T ajapic) of My(B) into itself is called the
o<i<r

Jacobson-Cartier operator, and is denoted by 8,. Note that Sn(eg)=
Fles+dm)=0.

Thus, given any finitely generated projective 4-module P with
BQP=B", we have an element ¢y &€ My(B) which satisfies 8,(cg)=0.

’

4
Let BQP=B" by any other B-isomorphism and ¢y & My(B) the cor-
responding element. In view of the commutativity of the following

diagram,
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B®P dQ! B®P
¢/ o
Co +d™ .
CP" (P-I
B" g"

ot d”

we have cgr++d™=F0o(c+d™)o071, where 0=¢'c0-1: B">B" is a
B-isomorphism and hence belongs to M ,(B) by choosing the canonical
base for B®. We now have
c¢/+a’(n)=00[¢o 0"1+00d(n)00‘_1
=0ocg00-14-d™+04(60-1)
so that
cgr="00c400714-04(0-1)

and ¢y, ¢y’ define the same orbit for the action of GLy(B) on My(B)

described in §2. Thus, to each finitely generated projective A-module

4
P with BQ~P=B", we have associated an orbit of Myu(B), which we
denote by ¢(P). We show that if PSP, then «(P)=c(P"). Let f:

¢
PP be an A-isomorphism. Set ¢'=¢o(1Q f1). Then BRQ~P=B"
and hence ¢(P") is the orbit of ¢g’. Now

cpr=4'o(d@1)og 1 —d™
=¢(1Q S (@@ (1Q f)ep™! —d™
—o(@ @)1 —dm
=cg.
Thus ¢(P")=c(P).
Let pup(B/A) be the set of isomorphism classes [P] of all finitely
generated projective 4-modules P such that PQAB=E". The above
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considerations show that we have a map of pu(B/A4) into the set
H! (My(B)) of orbits of elements ¢ of Myu(B) such that 8,(c)=0.

3.4. Definition. Let B, A be as before. We say that the ring ex-

tension B[A is of Galois type if B is a finitely generated projective
A-module and Homy (B, B)=25[d].

If B/A is of Galois type then & satisfies a p-polynomial f(X)=

> @ X?, 4€A and ar is a non-zero idempotent such that
0<i<r

the canonical map B{X, d}/f(X)—>Hom, (B,B) is an isomorphism
[4, Theorem 2.4].
We prove the following

3.5. Theorem: Thke map On: pu(BJ[A)—>HI(Mu(B)) given by
[Pl—c(P) is injective. 1t is a bijection, if B|A is of Galois type.

Proof. We first check that the map in question is injective. Let
P,P’ be finitely generated projective A-modules such that ¢(P)=¢(P").

’

4 ¢
If BRP=B" BRP'=B" there exists by definition an element
oE& GLy(B) such that

cgr=aocgeal4ad(a™l).
Or, equivalently,

<[¢/ +d (n))o a=aqao ([¢ +d('n))

ie. (¢ e(d@1)ed" Doa=ao(do(d@1)o¢™)
or (@QL)(p'Teacd)=(¢'Toacd)(dQ1),
i.e. the diagram
ZRQ1
BRP -—————> BRP
¢’_loao¢ ¢’_loao¢
ARl d

BRP s BRP
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is commutative, with the vertical maps being B-isomorphisms. We
therefore have an induced A-isomorphism ker(d®1p)= ker(d®1p).
Since P is A-projective, ker (d®1p)>AQP=P and similarly,
ker (d@®1p)=P'. We thus have an A-isomorphism PP’ ie. [P]=
[P'] which proves the injectivity of the map.

Let us now assume that B/A4 is of Galois type and prove the
surjectivity of the map. Let c€ HY(Mu(B)) with ceMy(B) as a

representative. Define
P={xeB"|(c+dM)(x)=0}.

We will show that [P]Epp(B[/A) and that [P] maps onto Z. We note
that since ¢ is B-linear and 4™ satisfies (*) of §2, it follows that ¢4 ™

satisfises (*¥). We have therefore an A-algebra homomorphism
w: B{X,d} —> End4(B")

such that u(X)=c+d ™ and p/B=identity. Since f(c+d™)=08y(c)=
0 (e HY(Mu(B)), we have an induced homomorphism

w: B{X, d}|f(X)—> End (B").
Since B|A is of Galois type, we have an isomorphism
¢: B{X, d}/f(X)—> End(B),
of A-algebras, so that, we have an A4-algebra homomorphism
peé 1 Endy(B) —> End(B7).

In otherwords, B” becomes an End4(B)-module with the action of
deEnd, (B) on B" given by

d*x=p(X)x=(c+dM)(x), x&B".

By Morita-equivalence [1, p. 69] applied to the pair (4, End, B), we

have a B-isomorphism,



Jacobson-Cartier operator 547

B®HOmEndA(B)(B, B‘n);Bn

induced by (4, g)>b.g(1). We assert that under this isomorphism
Homgad iz (B, B™) gets mapped onto P. For if g& Homgaa,s (B, B™),
we have(c4+d ™) (g(1))=u(X). g1) = g(d(1))=g(0) = 0 and conversely,
if xeB" with (c+d™)(x)=0, the element g € Homgn s (B,B")
defined by g(1)=x gets mapped onto x. Thus P is isomorphic to
Homgnaum (B, B"). Hence P is A-projective. Further BRQP=S
BQRHomgnw 45 (B, BH)SB". Let ¢: BRQP—B" be the B-isomorphism
induced by the inclusion map PC-B".  Since for x&P, bEB,
$o(d QL(BR%)=$(d (B)Dx)=d(8)-x and (c+ dMP(BR)=(c+d™)(b)
=b(c+dM(X))+d (b)x=d(b)x, it follows that c=¢o(d®1)od1—d ™
and hence P maps onto ¢. Thus the map in question is surjective.
This proves the theorem.

With the same notation and hypothesis of the theorem, let
Pic (B/A) (=p1(B/A4) ) denote the set of isomorphism classes of rank 1
projective 4-modules such that B(%P =B. We then have the following

corollary which was proved by Shuen Yuan [4, Theorem 2.6].

3.6. Corollary. 7he map 6n: Pic (B|A)—>HYB) given by [Pl—
c(P) is a bijection.

§4. The Kernel of K°(A)—K°(B).

Let B be any commutative ring with identity, d:B—B be a
derivation and #>1 any integer. Consider the map j: My(B)—

Musa(B) given by ¢ i— (6 8)2:@0 where 0 denotes the 1 X1 matrix

with O as its entries. Clearly ; is a monomorphism of additive groups.

We regard My(B) as a subgroup of My41(B) through ; and denote

M(B)= Uan(B) and GLyu(B) as a subgroup of GL,41(B) by the mono-
nz

morphism : a > (8 (1)>=a@1 and denote GZ(B)= U GLn(B). We
n=1

remark that the diagram
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Tn
GLn(B)X Muy(B) —— — Mn(B)
1
iXj J
l Mn+1 l
GLp11(B)X Mp41(B) —————— Mys1(B)

is commutative, where 7, is defined as in §2. In fact,

Tut10(@ X j)(a,0)=Tn+1((aD1), (cD0))
=(@@®D(D0) (@D + (P (a1D]1)
=(aca"1@0)+ (ad (e 1)PO0)
=(aca"14ad (a"1))PO
= j(aca"14-ad (a"1))
=jolp(a,c).

We thus have a map n: GL(B) X M (B)—M (B) which defines an action
of GL(B) on M(B).

Let now B be a ring of prime characteristic p>0 and let &
satisfy a polynomial f(X)=ac X+ a1 X?P+.. . +a, XP = A[X]. Let 8p:
My (B)—>Mun(B) denote the Jacobson-Cartier operator defined in §3.

4.1. Lemma. 7ke diagram

Sn
My(B) ——————— Mu(B)
J 7
8rH—l
Mur(B) ——— = Mnua(B)

is commutative. In other words, 8y induces a map 6: M(B)—M(B).

Proof: For c& My(B), we have 8410 j(€)=08,+1(cD0)=f((cPDO0) 4 ("+1)
=f((c+dMDd)=f(c+d M)D f(d)=0n()DO=78u(c).
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4.2. Corollary. 7he map j: My(B)y>Mnp(B) induces a map
HY(7): H(Mu(B) )>H Mns1(B)).

Let pu(B/A) denote the set of isomorphism classes of finitely
generated projective 4-modules such that BRP—B". Let £:

Pu(B]A)—>pu1(B]A) denote the map [P]>[PDA].

4.3. Proposition. 7The diagram

On
pu(BlA) —————— HY(Mn(B))
% l HY(7)
l @n+l l
pu+i(B]A) ———————— HYMnni(B))

is commutative.

Proof. Let [P]Epu(B/A4) and let ¢: BRQP = B"™ be a B-isomorphism.
Let cg=¢o(d@1)od1—d ™ so that c«(P)is represented by cg. Now
H(7)(e(P)) is represented by c4@0. We need therefore to show that
On+1([PDA]) is represented by c4@0. We have the B-isomorphism
2 #H1
BRPOA) = (BRYP)D B— B
Let e, ..., en, en+1 be the canonical base of B?*1 such that ey, ..., ¢y

is the canonical base of B®. For /<%, we have

cgonoa() =(($D1)oAo(dQ1)eA T ($71D 1) —d " HD)(ey)
=(¢o(d@1)o¢p71)(es)
=($e(d@L) o™ —d™)(er)
=C¢(€1).

Also

¢gonor(en+1)=(($D1) oA (d @)A1 (¢71D1)— 2™ V) (en+1)
=(¢D1)A2(@®1)°A10, ent1)
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=($®D1)°A=(d@1ARO.en+1)

=(¢@D1)=A0, 0)

=0
so that ¢ge1oa=cg@0. Since c¢gol),n represents Opn([PDA]), the
proposition follows.

Let HY(M(B)) denote the set of orbits ¢ of elements ¢ of M (B)
(under the action of GZ(B)) which satisfy 6(c)=0. We remark that
for every #>1 the inclusion Mp(B)C—M (B) induces a map H Y My(B))—
HYM(B)) and in fact HYM(B))=Ilim HY(My(B)).

Let now A=ker 4. We have a E:)momorphism K°(A)—~K°(B),
where K°(A4) (respectively K°(B)) denotes the Grothendieck group
of A (respectively B). Let K°(B/A)=ker (K°(A)—>K°(B)). Let
P be a projective 4-module such that P—A®= K°(B[A4). By definition
BRP—B"=0 in K°(B) so that there exists an integer »_>0 such that

BRUPPA™) = (BRQP)DB™ = Bmtn

Thus, [POA™ Eppm+n(B|A) and we have the element Oy n([PD.A™])
eHY M min(B)) and this defines in view of the map HYMy(B)) —
HYM(B)) an element of HY(M(B)). We assert that this assignment
gives rise to a map K°(B[A)—>HWM(B)). Let P—A"=P —A" &
K°(B|A). Let m,m >0 be integers such that [PDA™], [PDA™]
are respectively in Pm+n(B[A), Pmr+n(B[A). The equation P—A"=
P’'— A™ implies that there exists an integer £ (which we assume without
loss of generality to be greater than both s and ') such that
PRAYPA*=SP @APDA%. Thus by results of §3, it follows that
Onin+x([POAY ) =Ops 1y ([P’ DA™*]). Note that for any £>m,
in view of Proposition 4.3, @p 1 n([PD A™]) and Oy p+a([PDAY]) define
the same element of AY(M(B)) and similarly for P’ so that the
elements of HY(M(B)) corresponding to P—A™ and P'—A™ are the
same and we have a well defined map ¥: K°(B[A)—~>HY(M(B)) given
by Y(P—A")=class of Opin([PDA™]) where [PDOA™|Epmin(BlA).

4.4. Theorem. The map ¥: K°(BJ|A)—>HWM(B)) is injective.
If B|A is of Galois type, then ¥ is a bijection.
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Proof. We first prove that ¥ is injective. Let P—A", P'—A™ €&
K°(B|A) be such that Y(P—AM)=¥Y(P —A"). Let(POA™)QB—
Brm (P'PA™NQB—B? ™' This means by definition that there
exist integers £, £ >0 which we can assume to be greater respectively
than »° and 7z such that «((P@A™)P0r=c(P DA™ )P0y where O
(respectively Ox/) denote the matrix of order % (respectively £') all whose
entries are zero. This implies that ¢((P@AME)=c(P @A™+,
Since by theorem 3.5, Opintr: Yminii(BlA)—>HY M pim+rx(B)) is
injective, it follows that [P@A™k|=[P' @A™ +¥'] which implies that
PRAYPAMtE-1' 5 P'PAMPA™ K -n Since m-+n-+hbk=m'+n+#,
we have that P—A"=P"— A" in K°(B|A) which shows ¥ is injective.

We now assume that B/A is of Galois type and show that ¥
is surjective. Let c& Mpu(B) represent some element of A M(B)).
By theorem 3.5, there exists an element [P]&pu(B/A) such that
Ou([P])=orbit of ¢ in Myu(B). Then, clearly P—A"K°(B|A) and
Y (P-A™) is the given element of A1(M (B)). This proves the therorem.

§5. The map Tr : H(M(B))—H(B).

In this section, we continue with our previous notation. In §2
we have seen that Tr: M,(B)—B maps an orbit in M,(B) to an orbit
in B. Here we shall prove that Tr maps 1M (B)) into HY(B) and

that this map is a homomorphism for a natural group structure on
HI(M(B)) which we shall define.

To do this we need a few lemmas." The first lemma and its corollary
are most probably well-known, but we include it for lack of proper

reference.

5.1. Lemma. Let B be a commutative ring (with 1) of prime char-
acteristic p>0. Let f: Muy(B)—>B be an additive homomorphism
which satisfies 1) f(af)=f(Ba), ii) f(ba)=8bPf(a) for all bEB,
a, BEMu(B). Then there exists a A& B such that f(a)=MNTr (a)P.

Proof. Let ¢y denote the 7 X » matrix which has 1 as its 7, j** entry
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and zero elsewhere. We remark that f(ey)=0 for i5~7. In fact
Fley)=Ff(ess esy)=f (esj 1) =f(0)=0. Next, note that for any ¢, 7, f(en)=
Flei); in fact flew)=f(eij es)=F (esi eiy)=f(ess). Let flew)=A. We
have a=:‘;,; ayi eij > f(a) =i§ Slagjeip)= 1,2;1 a%’jf(Eij):A; af;=A(Tr a)?.

5.2. Corollary: For any c€ My(B), we have Tr(cP)=(Tr o).

Proof. Let f: My(B)—B be defined by f(¢)=Tr(c?). By Jacobson
formula [3, P. 189], we have for ¢, ' EMu(B) (c+c)P=cP+c'P+sum
of (p—1)-fold Lie-brackets, so that f(c+c)=Tr((c+)?)=Tr(?+
'P)y=Tr(cP)+Tr(c'P)=Ff(c)+f(c"). Also it is easily seen that f(cc')=
F('e) for ¢, c'eMy(B). 1t is clear that f(bc)=6% f(c) so that f satisfies
all the conditions of the lemma so that there exists A& B such that f(c)=
A(Tr(c))? for all ceMy(B). Take now c=c11.  We have f(e11)=
Tr(ef))=Tr(enn)=1; thus A=1 and the corollary is proved.

Let ce Mu(B). We regard ¢ and d™ as elements of End(B").
We have by Jacobson’s formula [3, P. 189]

(5-|_d(n))11:5p_|_(a’(n))1)+ » 3_,,(5’a’(")>,
1<j<p-1

where 7 s5(c, d™) is the co-efficient of 2/ 1 in[...[¢, d™+-cx], ..., dM 4

¢x], where x is a commuting indeterminate.

53. Lemma: Let B be a commutative ring of characteristic p>0.
Then Tr(si(e, d™))=d?YTr ¢) and Tr(sjlc, d™))=0 for ;>I.

Proof. Let j=1, we have si(e, d™)=[...[¢, dM], ..., dW]=

| p—1 times
(d™)P-1(¢) so that Tr(si(c, d™))=Tr((d™)P~1() )=dP-1(Tr ¢). Let
7>1; we note that in any (p—1)-fold Lie bracket occuring in the
co-efficient of x7-1, ¢ occurs at least twice, so that the Lie bracket
is of the form (d™)t[c, '] for some c'&eMy(B) and 7>0. Thus
Tr(sj(c,d™Y) is the sum of the terms which are of the form &%Tr [¢,¢])
so that for j7>1, Tr(sy(e, d™))=0.
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5.4. Lemma. For any integer n>1, the diagram

dn
Muy(B) ———————— My(B)

Tr

|
S
— B
is commultative.
Proof. We have to show that for any c& My(B),
Tr(f(e+d™))=F(Tr()+d).

We know by results of §3 that f(c4+d™)= 3 a40,i(c), where f(X)=
o<i<r

aX+a1 XP+.. . +a, XP e A[X], so that it is enough to show that Tr
(api(c) Y=api(Tr ¢), for 0<Li<». We prove this by induction on Z.
For /=0, this is obvious. Assume that 7>1 and the result holds
for z—1. We have

Tr(api(e)) =Tr((c+dM)P'—(d™)P’)
=Tr(((c+d )P )p—(dm)P’)
=Tr((api-())?+ KEp_lea(p""(f)» (d™)P))
— (Tr(api-+()P+ (@2 (Tr(api+(0)
by using (5.2) and (5.3).

= (api(Tr )P-+H(@P™)Y (agi-(Tr 2))
=api(Tr ¢)

by Corollary (3.3). This completes the proof of the lemma.

5.5. Corollary. The map Tr: Muy(BY—>B induces a map Tr:
HYMu(B) )y>HYB) as also a map HW(M(B))—~HLDB).

Proof. This first assertion is clear from Corollary 2.3 and lemma

5.4. The second assertion is obvious.
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5.6. Proposition. For any integer n>1, the diagram

0]

Pu(BJA) —— —— > HYMu(B)
\
n | ‘ Tr
A |
! o, |
Pic(B/A) -— HY(B)

is commutative.

Proof. Let [Pl€pu(B|A) and let ¢: BQP=B" be a B-isomorphism.
If cg=¢o(d®1)o¢p1—d™, we know that @n([P])=c(P)=orbit of c4.

Now

Tr(On([PI)=Tr(c(P))
=orbit of Tr(cy)
n n
=orbit of (/\¢o (Q1p°/\p1—d) (by Proposition 2.1)
n

=01([A\P).

This proves the proposition.
We know that we have a bijection ¥~1: Y (M (B))—~K°(B|A).

Since K°(B|A) is an additive group (under the operation induced by
direct sum), we can define an abelian group structure on HY(M(B))

by setting for orbits ¢, & & HWM(B)) with ¢, ¢’ as representative,
i4=¥ (Y1 &)+P-1&)).

5.7. Proposition: Forz, ZeHYW M (B)) with ¢, ¢ as representatives,

we have i+ =c@Pc’

Proof. Let ¢, ¢’ be representatives of z, z’. Let P, Py be projective
modules corresponding to ¢, ¢’ respectively and ¢: BOP, = B™,
¢': BRPy=5B" be B-isomorphisms such that c=¢o(d®1)od1—g™),
'=¢'o(dQl)ed'1—d™. We have isomorphisms

2 ¢’
BRUPDPe) = (BRP)D(BRQPy) —> Bmtn
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To prove the proposition, it is enough to show that if we choose the

canonical base for B™+", the matrix of the B-linear map

T=(¢D")oA(d RDeA1o (¢'@¢’—I) — g (m+n)

is c@®c. Let ey, ..., em, €m+1, ..., en be the canonical base for BmM+%
such that ey, ..., e is the canonical base for B™ and ep41,...,€m+n the
canonical base for B%. But it is clear that for 1<i<m, T (e;)=c(es)
for m—+1<é<m+n, T(e;j)=c'(es). This proves the proposition.

The above proposition shows that A1(M (B)) becomes an additive
group under an operation induced by the operation of direct sum
of matrices. On the other hand, it is easy to see that /A1(B) is an
abelian group under the operation induced by the usual addition in
B. It is clear that Tr: HYM(B))—HY(B) is a homomorphism.

5.8. Proposition. 7/%e diagram

F 4
K°(BlA) —- — HYM(B))
det Tr
! o, l
Pic(BlA) — — H1(B)

is commutative.
Proof. Follows from Proposition 5.6.

§6. Some remarks on logarithmic derivatives.

As usual B denotes a commutative ring of prime characteristic
p>0, d: B—B a derivation and A=ker 4.
6.1. If ce My(B) is a logarithmic derivative, i.e. c=ad(a™1) for some
a=GLy(B), then clearly ¢@0y is a logarithmic derivative for any £, in
fact c@0x=Bd (1) where B=a@1lr. However, if c€ Mu(B) (n>1) is
such that ¢@0y is a logarithmic derivative for some £, then ¢ may not be

a logarithmic derivative. We remark that this is however true if z=1.
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Let 4& B such that 6@0r=ad (a™) for some aEGLg1(B). Let al=
(ti1<t,s<k+1.  The above relation gives #:6=d(#;) for all 7 with
1<i<b+1, d(#;)=0 for j7>2. Multiplying these equations by the
corresponding cofactors and adding up we get (det a™1). 6=d(det a™1)
which implies that é is a logarithmic derivative.

6.2. Let f(X)=X? be a polynomial satisfied by & and let there be
an element x&€ B such that d(«x) is a unitin 4. Then any ce My(4)
such that 8,(¢)=0 is a logarithmic derivative.

Proof. Since c=EMu(A), we have by Corollary 3.2, 0=38,(c)=c?.
If dlx)=ucU(4), let

uxP-1,p-1

2,2
a—1=u+uxc+z%!c—+ +7:1_'—

It is easily seen that c=ad(a™1).
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