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Weak approximation, Brauer and R-equivalence
in algebraic groups over arithmetical fields

By

Nguya Quôe THX&G*

Abstract

W e prove some new relations between weak approximation and  some rational equivalence relations
(Brauer and R-equivalence) in algebraic groups over arithmetical fields. By using weak approximation
and local—global approach, we compute completely the group of Brauer equivalence classes of connected
linear algebraic groups over number fields, and also completely compute the  group of R-equivalence
classes of connected linear algebraic groups G, which either are defined over a  totally imaginary number
field, or contains no anisotropic almost simple factors of exceptional type 1 6 D 4 , no r E 6 .  We discuss
some consequences derived from these, e.g., by giving some new criteria for weak approximation in
algebraic groups over number fields, by indicating a  new way to give examples of non stably rational
algebraic groups over local fields and application to norm principle. Some related questions and rela-
tions with groups of Brauer and R-equivalence classes over arbitrary fields of characteristic 0 are also
discussed.

Introduction

L et G  b e  a  linear algebraic group defined over a  fie ld  k. There a re  two
closely related questions in  the  arithmetic theory of algebraic groups over fields:
the question of weak approximation and  that o f rationality o f  a  given G .  It is
very difficult to study such questions fo r arbitrary groups over arbitrary fields.
One should restrict to some class o f groups and fields which are  convenient in
application.

Let X  be a  smooth algebraic variety defined over a field k  of characteristic
O. X =  X x It-, w here k  is a n  algebraic closure of k. Denote by X  the usual
Brauer group o f  X. B r(X ) the cohomological B rauer group I- 1,(X, G„,) o f  X.
Bri (X) = Ker (Br(X) —*Br(X)), Br o (X) = Im (Br(k) --*Br(X)). Following Manin,
Colliot-Thélène and Sansuc (see [Ml]. [M2], [CTS1], [CTS2]), one  defines the
Brauer equivalence and R-equivalence as follow s. First w e construct a  smooth
compactification X o f  X  over k  and we define a  pairing

X (k ) x Br(X) Br(k), (x b) I .. b(x),
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where b c , G„,) and b(x) is the equivalence class of central simple algebras
over k, which is considered a s  a n  element of Br(k).

Two points x, y e A-2(k) are said to be Brauer equivalent (Br-equivalent) if for
any b c  B r ( ) ,  w e  have b (x ) =  b (y ). The equivalence relation on X (k ) induced
from  th e  Br-equivalence re lation on X- (k ) is called  B rauer equivalence relation
and we denote by X(k)/Br the  se t o f Brauer equivalent classes of X (k ) .  It was
shown in [CTS1], p. 212, that the above definition does not depend on the choice
o f  smooth compactification X- . T w o  points x, y E X (k ) a re  called R-equivalent
if  there is a  sequence of points I :, E  (k), x = z i , y = z ,, such  tha t for each pair

there is a k-rational map f  :  P I —> X , regular at 0 and  1 , with f (0 ) =
[(1) = i n  —  1 ) .  We denote by X (k )/R  the set of R-equivalent classes
of X(k).

In  the  definition o f  Brauer equivalence above, one m ay also restrict to the
subgroup Br '  X  of B rX  to  get a  weaker equivalence re la tio n . However, if X  is
rational over k (which is the main case we are interested in), it is known (cf. e.g.
[CTS1], Lemme 16) that these two notions coincide. M oreover in [loc.cit]. Prop.
16, it was shown that the Brauer equivalence is weaker than R-equivalence, i.e..
two points of X (k ), being R-equivalent, are necessarily Br-equivalent. In [loc.cit],
basic theory of Brauer equivalence on tori defined over a field k of characteristic 0
has been developed. In particular, in the arithmetic case, i.e., when k is a local or
global field, formulae for computations of the group T(k)/Br are given and it turns
out to be a birational invariant of T .  Though T(k)/Br is "computable", the group
itself and  its computation is in  general non-trivial.

In  a  subsequent paper [S], Sansuc developed Brauer theory of linear algebaic
groups G over number fields, and applied it to obtain certain fundamental sequences
connecting various arithmetic (obstruction to weak approximation), cohomological
(Tate—Shafarevich group) and geometric invariants (the first Galois cohomology of
the Picard group of a smooth compactification of G over an algebraic closure of k)
for connected linear algebraic groups G  over number fields k.

In this paper we continue the approach taken by Colliot-Thélène and Sansuc,
to  obta in  certain connections between th e  above arithmetic, cohomological and
birational (Brauer and R-) invariants of connected linear algebraic groups G  over
local and global fields of characteristic O. As it was pointed out above, in general,
the  group o f  Brauer equivalence classes of G  is  non-trivial, even in the case of
tori. Therefore it is natural to ask what kind of analogs in the case of arbitrary
connected linear algebraic groups one can  have.

In this paper we recall some useful facts from the Brauer theory in Section 1.
In Section 2 we discuss a relation between the  defect (obstruction) in weak ap-
proximation a n d  th e  groups o f  Brauer and R-equivalence classes of tori over
number fields, and in Section 3 we extend some results obtained here to the general
case of connected linear algebraic groups over number fields. In particular re-
garding the group G(k)/ Br, we computed it completely, which in fact gives apriori
(or preliminary) information on the group G(k)/ R. In  Section 4 w e present our
main results and applications to obtain some new criteria for weak approximation,
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by recovering, extending, and giving some analogs to some classical results obtained
by Colliot—Thélene and Sansuc, H arder and Sansuc. Until recently it was not
known whether the  group G (k )/R  is always finite fo r  any connected linear al-
gebraic group G defined over a  number field k. In his paper in 1993 ([G2]). Gille
gave a  proof o f  this finiteness properly by using his norm principle and  Kato-
Saito's Hasse principle in higher dimension class field theory. However it was not
known how one can compute the actual group G(k)/ R. nor even suggested how it
might look like. One of main results of this section (and of the paper) is Theorem
4.12, which allows us not only to have a new elementary approach to this finiteness
result for all connected linear algebaric groups G  (without using difficult higher
dimensional Hasse principle), bu t also, by using the corresponding result for tori
done in [CTS1], to compute completely the  group G(k)/R fo r  those connected
linear algebraic groups G , w hich either a re  defined over a  totally imaginary
number field k, or contain no anisotropic almost simple factors of exceptional type
3 '43 4 , nor E 6 .  In these last critical cases, it reduces the computation of G(k)/R to
a  particular case of a well-known Platonov—Margulis conjecture about the normal
structure of almost simple simply connected groups over number fields.

A fte r  th e  com pletion o f  th is  p a p e r  (c f . e a r lie r  versions of the  paper:
Preprint ICTP (September 1997), Duke University E-print alg-geom/9711015), there
appeared the paper [G3] where Gille gave detailed proof of m ain results of [G1],
[G2] with some refinements. It turned out that these refinements have one small
overlap with our paper (being indicated below). Also, the exact sequence relating
the defect o f weak approximation and groups of R-equivalence classes [T4] was
also discussed. In  th is paper w e use  some concepts and techniques developed
in [CTS11, [CTS2], [G1], [G2] (with complete exposition in [G3]), [S]. In certain
sense, this paper is a  complement to these works.

N o ta tion . F o r  a  reductive group H ,  w e  c a l l  torus quotient o f  H  the
factor group of H  by its semisimple part [H, H ] .  Any connected linear algebraic
group G  over a field k  of characteristic 0 is a semidirect product G =  LR„(G),
where L  is a Levi (reductive) k-subgroup of G, and R 11 (G ) is the unipotent radical
of G .  L  is unique up to conjugacy by elements from G(k) and by convention , we
call the semisimple part of G the semisimple part of some fixed Levi k-subgroup of
G .  Let S be a finite set of valuations of a global field k, and G a connected linear
algebraic group defined over k. D enote by Cls(G(k)) the  closure o f the  group
G(k) in the product topology, where G(k) is embedded diagonally into the direct
product ni e s  G(k) and  G(k„) has the u-adic topology, induced from that of k,.
W e say that G has weak approximation with respect to S (or in S) if  Cls (G(k)) —
fj, E s  G(k), and has weak approximation over k if  it is so for any finite S. Let

A(S. G) = H G(k )/CIs (G(k )) , A ( G )  H G(k,)1C1(G(k)),
v e S

the obstruction (or defect) of weak approximation in S  and over k, respectively.
w here  Cl d e n o te s  th e  c losure in  t h e  p roduc t topo logy . L e t  G(k)1R (resp.
G(k)/Br) denote the group of R-equivalence (resp. Br-equivalence) classes of G
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over k. Let (.)- be the group Hom (•, Q/Z), and  (•)^  be the group Hom (•. G„,).
III(.) denotes the Tate-Shafarevich group of (•). W e denote also by Br a X :=
BriX/BroX, the arithm etic B rauer group of  X . By Ht(k,G) we denote the Galois
cohomology of G .  Regarding the classification of absolutely almost simple al-
gebraic groups we refer to [Ti].

1. Recall o f some basic facts from Brauer theory of algebraic groups ICTS11,
[Si

Let T  be a  torus defined over field k of characteristic 0 which is split over a
Galois extension K lk  w ith Galois group g. A  k - to r u s  N  is called induced (or
quasi - split), if its character module i■r has a Z-basis, over which Gal(k1k) acts by
permutations. A k-torus S is called g-flasque torus over k if H -

1 (1), S') = 0 for all
subgroup 4 g. It is well-known ([CTS1], [VI]) that any torus T  above has a
g-flasque resolution, i.e., an extension

(1) 1 — * S — N - 4 T —  I

o f  T , where S  is  a g-flasque k-torus, and N  is  a n  induced k-torus. D enote by
Br(k, K ) the kernel of H 2 (k, Gm ) H2 (K, G,„). The exact sequence (1) induces a
homomorphism

(2) H I (k , ) — > H2 (lc,

which is injective, since N  has trivial 1-cohomology.
One has a  cup-product

T (k) x  H2 (K 1 k t) 12> Br(k, K),

which defines, v ia  (2), a  pairing

fi : T(k) x H (K1k,S) 12> Br(k, K).
W e have

1.1. Theorem ([CTS1]), Prop. 17 a n d  C o r o l .) .  1 )  T he m ap f l defines the
Brauer equivalence relation over T (k ), hence also a  map

y: T(k)/Br—  Hom (H 1 (K1k,S), Br(k, K)).

2) W e have the f ollow ing anti-com m utativ e diagram

T(k)1R T(k)/Br

H (k ,S )  — >w  H o r n  ( H 1 (K1k,  ), Br(k, K))

Here b is an isomorphism [CTS1, Theorem 2./ , and co conies from the cup-product

H I (k, S) x H (k H 2 (k, G„,).
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3) T(k)/Br I m  (w ) and T(k)/Br  i s  a  birational invariant in  the  class of
k-tori, stably  equivalent to T.

4) If  k is a  p-adic local f ield, the Brauer equivalence o n  T (k ) coincides with
R-equivalence o n  T (k ) and

T(k)/Br H  I

5) I f  k  is a num ber f ield, and n  is  the composition map

H 1- 4  11 H I (k,,') H H I (k,,S)

then T (k)I Br [Im (.1)11m (11)] -

1.2. Theorem ([CTS1]), Prop. 19). W ith above notation, let k be a  number
field. W e have the following ex act sequences:

(R) 0 —> III(S) —> T(k)/R H T(k,)I R—> A(T)—> 0,

( V) 0 —> A(T) —> H I— >  111( T) —> O.

Slightly in  different form, the exact sequence ( V ) is  due to Voskresenskii. The
following result gives u s  the  group structure on  G (k)/Br, induced from  that of
G (k ).  Denote by Br e G  the  kernel of the homomorphism Br 1 G  Br k, defined
by specializing at the unit element e E  G(k), which is isomorphic to Br„(G) ([S],
Lemme 6.9).

1.3. Proposition ([CTS1], p. 216, [S], Lem. 6.9(1)). L et K  be a f ield and G
a  connected linear algebraic group over K, assum ed to be reductiv e if  K  is not
perfect. T h e n  the pairing

G(K) x Br e G —> Br K

is biadditive. In  particular, G(K)/ Br h as  a  natural group structure induced from
G(K).

The following well-known fact (which is a  direct consequence of the Hasse
principle for Brauer group of global fields) was mentioned in [MT]:

1.4. Proposition ([M T ]) . L et X  be a sm ooth variety  def ined over a  number
f ield k. Then the restriction map

X(k)/Br —> H X(k)/Br

is  injective.

1.5. Rem arks. 1) Notice tha t in  Theorem  1.2, we have identified Ill(S)
with a  subgroup of T(k)/R via the isomorphism (5 of Theorem  1.1, 2). The exact
sequence (V), which is due to Voskresenskii (see e.g. [V1], [S]), has been extended
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to  the case of arbitrary connected linear algebraic groups over number fields by
Sansuc [S].

2) W e a re  interested in  Brauer equivalence re lation for connected linear
algebraic groups, which a re  rational over algebraic closure k  o f  k ,  hence their
sm ooth compactifications a r e  a lso  ra tiona l a n d  th e  Br-equivalence a n d  Br i -
equivalence are the same.

Our objective is to study the analogs of the exact sequence (R) in the case of
Brauer and R-equivalence over local and global fields, for tori in particular, and
for connected linear algebraic groups in  general.

2. A  Brauer relative of exact sequence (R) for algebraic tori

Let S  be a  finite set of valuations o f  a  number fie ld  k , T  a  k-torus. Ts :=
T ( k , ) .  Denote by R T (L ) (resp. B T (L )) the set of elements o f T (L ) which

are R- (resp. Br-) equivalent to 1 in  T (L ), where L  is a field extension of k. Let
R Ts  = {LE  s  R T(k ,), B Ts = FL s  B T ( k ) .  The following result was mentioned in
[V2] (which is valid also for any field k  with non-trivial y-adic valuations).

2.1. Proposition. R T s  C ls ( T ( k ) )  and is an open subgroup in  Ts .

From above one derives the  following

2.2. Corollary.

A ( S  T )  Coker (T (k )/ R  — > HT(k„)1 R ).
VES

A ( T )  Coker (T (k )/R  H T (k ,)I R ).

2.3. C oro lla ry . BTs OE Cls(T(k))•

P ro o f  I f  y  i s  a  non-archimedean. then  T heorem  1 .1 ., (4 ) te lls  u s  that
B T (k „) = R T (k ,). If  ti is  archimedean, then it is well-known that T  is rational
over k r,, hence has trivial groups T(k„)I Br a n d  T (k ,)I R , i.e., B T (k )  = R T (k ) .

I n  w hat fo llow s w e identify  T (k )  w ith  a  subgroup o f  T s  via diagonal
embedding.

2 .4 .  P roposition . W e have
1) A ( S , T )  Coker(T(k)/Br T (k )/B r).

2) A ( T )  Coker(T(k)/Br T(k„)1 Br).

P ro o f  Notice that

Coker(T(k)/Br —> Ts I BTs ) = Ts I T(k)BT s

T51C1s(T(k)),
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since BT s  contains RTs  so  is also an open subgroup o f Ts . So 1) and 2) follow
by noticing that for alm ost all v

T (k )/ B r=  I,

by [CTS1], p. 205.

W e have  the  following close analog o f  a n  e x a c t sequence in [CTS1] (see
Theorem 1.2 above) in the case of R-equivalence of algebraic tori over number
fields.

2.5. Proposition. I) W ith above notation w e have the following exact se-
quence

1 —> T(k)/Brf i
 T(k)/Br A (T ) 1.

2) W ith notation o f  T heorem  1.1, if  th e  restriction m ap H  (k, —> H  (k„.
is surjective f o r all 1), then Ker (w) = III(S).

P ro o f  1) fo llow s directly  from  Propositions 1.4 and 2.4.
2) First w e show that under the  given assumption,

Ker (w) OE III(S).

Consider the following commutative diagram'

H I (k, S) Hom (H I (k. S),Br(k))

H I (k , S) 11„ Hom (H '(k,,. Br(k„))

where w' is an isomorphism by Tate–Nakayama duality. We have, e.g. for V 0 00

H I (k,, S) H I (k,,

Hom (H I (k,„ S),Q1Z)

=  Horn (H I (k„, Br(k„))

Therefore it suffices to show  that w'(q(Ker (co))) =  0 . D e n o te  res, : H  (k, •)
H  (k,, .) the restriction map of cohomology when passing to completion kr . Since
fo r  x e  H I (k, S),o)(x) is  the map

Y (x) U (y), y e H I (k,

the v-component of co' (q (x )) is given by

(q(x))„ : y„ (res„(x))U (y,), y„ e H I (k,,

This diagram is in fact commutative as soon as the equality K er((o ) =  III(S ) is established.



254 NguyM Qu(W Thrltig

Since the cup-product is compatible with restriction maps, and each y,. E  H  (k ,
has the form res„(y), y  E  H I (k,

(res„(x))U (y e ) = (res„(x))U (res„(y)) = res,(xU y).

Therefore, if  X  E  Ker (w ), then res„(xU y) = 0  fo r a ll y , hence

Ker (w) Ker (q) = III(S )

N e x t  w e  show  tha t III(S )  K e r  (w ) .  T h is  is t r u e  i n  general w ithout the
condition on rest, above. W e prove that there exists an exact sequence as follows

0 Ker (w) III(S) L  T(k)/Br.

W e define the  m ap  /3 : III(S) T(k)/R 4 T(k)/Br t o  b e  the composite map,
w here  i is th e  re s tr ic t io n  o f  th e  isomorphism 6 - 1  : 11 1 (k, S) T (k )/ R  (see
Theorem  1.1) to III(S), a n d  p  is  the  p ro jec tion . W e show tha t )6  is  a trivial
homomorphism, and a is just the  identity map.

a) Ker (fl) c  Ker (w ) .  W e have

K er (w ) =  {x H  I (k, S) : (x)U (y) = 0,V y H 1 (k, S)}

W e have an isom orph ism  : T(k) I R  H I (k, S) ([CTS1, Théorème 2]), so

Ker (fl) =  fx e III(S ) c H 1 (k, S) : 6 - 1  (x) E  BT I RT}

=  II1(5) n6(BTIRT)

= {x e III(S) : (x)U (y) -= 0.V y e H I (k, S)} ,

hence Ker (fi) K e r  (w).
b) Im (fl) = Ker (yr )(=  0). Consider the following commutative diagram

III(S) T (k) I R PT T(k„)1 R

fl,, T(k)/Br

     

T(k)/Br YT

If X E  fin (fi), then x  p '(i(s )), s  e  III(S ). Since PT o i = 0 by Theorem 1.2, we
have

q '(n T (i(s ))) = y r(p '(i(s)))

= YT (X )

O,

i.e. x c Ker (yT ).
Conversely, i f  x  E Ker (yT ) .  x =  p ' (t), since  p '  i s  surjective. T hen  0  =

YT(P /(t)) =  (P r(t)) , s o  p ( t )  =  0 , s in ce  q ' i s  a n  isomorphism (see Theorem
1.1 (4)). H e n c e  t e Ker (P T ) =  Im (i) since the upper row is exact by Theorem 1.2.
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Since yr  is  injective (see Proposition 1.4), /3 is trivial and a is an isomorphism.
Hence 2 ) is proved.

A s a  consequence o f the  above proposition, w e have the following

2.6. Proposition. W e have the following exact sequence connecting the two
groups of  rational equivalence classes

0 - 4  III(S) --> T(k)/R —> T(k)/Br —> O.

In particular, the order of  T(k)/Br is equal to  the index  nT  : =  [T (k )IR  :III(S )].

P ro o f  W e have (with above notation) the following commutative diagram.

1 — >  III(S )  T(k)/R  P
T 11,, T(k„)/R A (T ) — >  11;17-

1 T (k) I Br

  

Yr T (k„)1 B r — >  A (T ) 1.

In this diagram, AT is induced from ÂT
I a n d  is just the  quo tien t m ap . Indeed, we

have the vertical isomorphism due to Theorem  1.1, 4), and  it is clear that

4-(Ker (p T )) Ker (yT ).

Therefore it follows that

(T(k)/ R)1Ker (PT) = T(k)/Br
and we are done.

3 .  Some reductive analogs

In  this section we prove some analogs of results in Section 2  for the case of
connected reductive groups G over number fields k. First we recall the following

3.1. Proposition ([T4]). L et G be a connected linear algebraic groups defined
over a  number f ield k, S a f inite set of  valuations of  k. For each r E  S denote by
RG„ the subgroup of  G (k ) consisting of elements R-equivalent to  1, and by  RGs the
direct product of  RG„ f or y  E S. Then RGs  C l s (G(k)).

3.2. Proposition ([T 4 ] ) .  Let G, k, S be as above. Then we have the follow ing
canonical isomorphisms
1) A(S, G) Coker(G(k)/R s G(k,)1 R).

2) A (G ) Coker(G (k)/R G(k)/R).

W e have the following analog in  the  case  of Brauer equivalence relation.

3.3. T heorem . L et G, k, S be as ab o v e . L et BG„ be the subgroup of G(kr )
consisting of elements which are Br-equivalent to 1, and BGs  b e  the direct product
o f  B G ,. Then

BGs C ls(G (k))•
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P ro o f  We follow the proof given in  [T4]. W e know by [CTS1] tha t for a
torus T  over k,T(k„)1R = T(k)/Br, hence it follows that the Theorem holds for
tori. N ow  w e m ay assume th a t G  is  n o t a  torus. Further w e just fo llow  the
proof given in  [T4], where R  is replaced by B r everywhere.

3 .4 .  Theorem . W ith notation a s  abov e w e hav e  the  following canonical
isomorphisms

1) A(S, G) Coker(G(k)/Br —> s G(k)/ Br).

2) A(G) Coker(G(k)/Br — >f l  G(k„)I Br).
In  other w ords, w e have the following exact sequence

0 —> G(k)/ Br H  G(k,)IBr —> A(G) O.
V

P ro o f  The same a s  in  2.4, by making use of Proposition 3.3.

W e need the following technical result.

3.5. Proposition ([0 ] ) .  L et G  be a  connected reductive group defined over a
f ie ld  K  T here ex ists a connected reductiv e K-group H  with simply  connected
semisimple part and an induced K-torus Z such that the following sequence is exact.

(Such H  is called in  the  literature also a  z-extension o f  G  over K.)

The relation between the groups of Brauer equivalence classes of G and H  is
shown in the following statement, where we restrict ourselves only to the case of a
field k of characteristic O. In the second statement, the finiteness is not new, but
we give a sim ple proof o f this fact.

3.6. Proposition. L et k be a f ield o f  characteristic O.
1) I f  H  is a  z-extension of a connected reductive k-group G  then there is a

canonical isomorphism

H(k)/Br G(k)/ Br.

2) If  k is a local or number field, then for any connected linear algebraic group
G. th e  group of Brauer equivalence classes  G(k)/ Br is f inite.

3) L e t k  be a f ield  of  characteristic  0  an d  le t  k (t )  be rational function
f ie ld  in  variable t. T hen the group of  B rauer equivalence classes of  a  collected
linear algebraic group G  is stable under f ield extension k k(t), G(k)/ Br
G(k(t))I Br.

First we need the following (perhaps well-known to experts, but 1 do not know of
any reference).

3 .6 .1 .  L em m a. L et X I> Y  be a  morphism of smooth varieties defined over
a f ield k of characteristic 0 , where X(k) Y ( k )  0 , 7 r *  :  Br Y B r  X  is the
induced honioniorphism.
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a. The follow ing diagram  is connnutative

X (k )  x  B r I X

te Br k

Y (k )  x  Br Y

i.e . the pairing

X (k ) x Br i X  — > Br k

is functional in X . i.e., giv en x c X (k), b  E Br' X , then

n*(b )(x )=  b (n (x )).

b. Assume further that X , Y  are quasi-projective and irreducible and i t  admits
a k-section i : Y  —> X . T h e n  TC and i extend to certain smooth compactifications I .
V I of X , Y  respectively , i.e. we have the following commutative diagram

    

Y

where has k-section i' extending i.

P ro o f  a) L e t  x  c  X (k ), y  =  n (x ) c  Y ( k ) .  Denote by the local
ring of X  (resp. Y) at x (resp. y). O n e  has the following commutative diagram

We denote

:=  Gal(k1k). ( f , ) e  Z 2 (g,

th e  absolute G alo is g roup  o f  k  and  a  2 -cocycle  representative o f  b  E Br i Y.
respectively. Then by [S], Lemme 6.2, b (y ) is  the class [f , , , (y )] in  Br k. This
2-cocycle g ives rise  to  a 2-cocycle o iv] E  Z 2 ( g, , )  w h ic h  is  n o th in g  e ls e
than  a  representative o f  a =  e ( b ) .  Then a (x ) is just the class of

o 70 (4 =  [fs ,t (n (x )) ] =  [fs,r(Y)] E  Br k.

Therefore

(b )(x ) =  b (n (x ))

a s  required.
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b) D enote  by  f  (resp. V ) the closure of X  (resp. Y ) in P" (resp. P'") for
some embedding X  A" P" (resp. Y —» A"  — » P "'). Since it is given by poly-
nomial functions over k, it defines uniquely a k-morphism 7z, : f  —» V extending 7r,
since X , Y  are dense in 3T, V, respectively. In similar way we get extension j ,  of i.
If f  and (W are smooth we are done. O therw ise, assume first that V  is singular
and Z  denotes the singular locus of L e t  Z ' = 7r-

1
1 (Z ) .  Then by blowing-up

(resp. V ) w ith  center in  Z '  (resp. Z )  w e arrive  a t th e  following commutative
diagram (see e.g. [H a], C h . II, Sec. 7, 7.12-7.16):

2r/

One checks that

=  i l
- '(7q 1 (z )) =  Z.

Therefore in  th e  above diagram  o n e  obta ins a lso  a  k-morphism —>
making the diagram commute.

W e show th a t  7z' has a s  its  k-section. Let = = g - 1 (Z ).
W e have the following commutative diagram

4'\9%

2r\z' 04\z

L et y  e V 'Vg be  a n  arbitrary elem ent. Then w e have

g(g / (i i (Y ))) = g l(f  (i V ) ) )

=  g l(il(g (Y ))) =  ( 7r, ° il)(g (Y ))

= g(Y) ,

hence we have

(7z' o =  id.

Since v iv ,-2 °  is  Zariski-dense in  q?J', it follow s that 7z' o =  id  a s  required.
By Hironaka [Hi], after a finite number of blow-ups, we may assume th a t f  is

singular and V  is  sm oo th . This time we apply the same argument as above to get
the  following commutative diagram

< 7,T,'

4 < ,',T;
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where we blow-up the  singular locus Z ' of (to get r )  and  its inverse image
(Z ' )  (to get * ' ) .  Again as above we can show that is  the cross-section of

i t ' .  B y  o u r  construction, ' I  and '),?/' are  smooth, projective and f  and g  define
k-isomorphisms f ro m  s o m e  o p e n  su b se ts  U  ? I  a n d  V  c  'N  t o  X  and
Y, respectively. Thus we obtain smooth compactifications of X and Y with desired
properties. The proof o f the  lemma is complete.

Proof  of  Proposition 3.6. 1 )  Let it : H G be  the  p ro jec tion . It induces
a n  epimorphism

H(k) G(k),

hence also an  epimorphism

7E1 : H(k)/Br G(k)/ Br.

We show that 7E1 is  injective. Since Z  is an induced k-torus, it is well-known that
there is a  k-section

: G H, o i = idG .

By Lemma 3.6.1, b) We may choose k-compactifications of H , G, respectively
with the following commutative diagram (notice tha t Yt , are  k-rational)

( ( k )  x  Br ,YrN
i t  7 ir* l ip Br k

W (k ) x  Br

Since i t  o  j =  idG , it follow s that w e have

(7r o i)  = O  7t * =  idg r

Therefore i*  is surjective. N ow  assume that h c H (k ) such that

7r(h)U = 0, V g e Br

Let g =  7 (h ). Then by Lem m a 3.6.1, a )  we have

i(g)U/î = rc(i(g))U i* ( ) ) = 0, Vh E Br cl  ,

since i*  is  surjective. This implies that i(g ) is belong to the class BY((k) of all
elements with trivial cup-product with Br Yt"-). Since

7r(h) = g = n(i(g)),

one deduces that h = i(g)z, with z E Z (k ) .  Since Z  is k-rational, z is R-equivalent
to the identity element e in Z(k), it follows that h is R-equivalent to i(g), hence also
Br-equivalent to i(g). Since i(g) E B * '(k ), hence h c BYlk), too, and we are done.

(In the case 2) we can prove our statement by using 2). Indeed, we have a
birational equivalence

H  G  x Z,
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and this induces a bijection (see [CTS1], Section 7)

H(k)/Br (G(k)/ Br x Z(k)/Br) G (k )/  B r.

since H(k)/Br  is finite by 2),  i t '  i s  injective, hence also an isomorphism.)
2) We present two closely related proofs, one of which is a direct proof by

using Theorem 3.4 above.
F i r s t  p r o o f  One reduces easily to the case where G is a  connected reductive

g ro u p . Take a z-extension H  of G as above. W e will show that H (k)I Br is finite.
L et H = S6, w here  .6 is a  simply connected semisimple group and  S  a central
torus o f H .  W e have the following exact sequence of k-groups

1—> G—>H—>T—>1

where T  is  a  torus.
First w e assume tha t k  is  a  number field. L e t  ,fP , „%-- be smooth compac-

tifications o f  H  ,T, respectively, with a k-morphism  i t ' :  Y 1' -+ 5 -  extending the
projection H  T. W e  have the following commutative diagram, where all rows
are exact by  the m ain result of Sansuc [S]

0  — >  A ( H )  — >  H  I (k, Pic ovt) - I I I ( H ) 0

,

O A ( T) H I (k, Pi c )  — >  I I I  (  T )  )  0

where 1, 1(3, y are  induced by n.
By Lemma 3.8 (to be proved below) pc is an isom orphism . We want to show

that y is injective (i.e. also a monomorphism of abelian groups, by [S]). W e have
the  following commutative diagram

T(k) H1 (k, G)

 

H I (k, H) HI (k. T)

 

ft T ( k , ) f l , H 1 (kn, 6 ) H  (k,, H)

 

111 -11 (k, ,

 

where s is  the diagonal em bedding. The H asse principle fo r  simply connected
groups says that p is a bijection. It is clear that j  maps III(H) into 111( T). hence
it induces a  map

;t : III(H) —> III(T).

Due to the functoriality of the commutative group III over number field ([S]), is
also a homomorphism of commutative groups.

If x E III(H) such that j(x) = 0 in  H  (k, T) then x = i(g), where g E  H I (k.
Hence g (i(g )) =  (p (g )) is  the trivial element in  11, H (k„. H ), so  p(g) E Im (6').
p(g) = Ô t (t). L e t  i t  T (k )  =  T  x ,(51 = (6", , ô ) ,  w h e r e  T  = f l , 1

 T (k,).

=  FLO T(k ), (5,/x  :  Tr_ H I (kp, 6), (5; Tf — '11„ox, H (ky, = 0. Let
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t =  (t , t1). Then .6 '(t) =  (6 (t oc ). 0). S in c e  T(k ) is dense in T „, we may choose
a  sequence t„ c  T (k ) such that t x  =  Um) , t„. Since FLE „  H I (k„, 6) is finite, we
conclude that fo r  som e N  large enough, w e have 6' (t ) = (5 (tn ) w ith n > N.
Therefore p(g) = p(6(t„)) o r  g  6 ( 0 ,  since p  is  a bijection (H asse principle).
Therefore x = 0 and  w e have a monomorphism

(3) Ill(H) —> 111( T)

as claimed.
From the above commutative diagram we conclude that )3 is injective which

says that the functorial homomorphism

(4) H I (k, Pic ,F ) —> H I (k, Pic ,f()

is  surjective. B y Lem m a 16 of [CTS1], the Brauer equivalence defined on
(resp. 3- ) coincides with the equivalence relation defined by the following pairing

„ '(k) x H I (k, Pic ,f() Br k

(resp.

3- (k) x H I (k, Pic 9- ) —> Br k.)

By Lemma 3.6.1 we have the following commutative diagram

,Y ((k ) x  H I (k, Pic ,Y f)

1m r' z  Br k

9- (k )  x  H  I (k, Pic )

Assume that h c H (k )  J f (k )  w ith 7r(h)U H I (k, Pic ? )  =  O . T h e n  w e  have

(a)(h) = a(7r(h)) = 0

f o r  a l l  a c H I (k, Pic 3- ), a n d  f ro m  surjective m a p  i n  ( 4 )  w e  derive  tha t
hUH I (k, Pic ,Y() =  O . T h u s w e  have proved that 7 induces an injective homo-
morphism

H(k)/Br T(k)/Br.

Therefore, the statement of 2) follows, if k is a  number field, since if k is a field
o f  finite type over Q  a n d  by [C TSI], C oro lla ire  1 , p . 217 , T(k)/Br is finite.
Therefore H(k)/Br, a n d  a fortiori G(k)/ Br, is also finite.

If k is a local field, we may assume that k is non-archimedean, since otherwise
the rational equivalence relations considered are trivial. Then we may invoke the
finiteness of the group H (k)/R proved by Voskresenskii [V2] to ensure the finite-
ness of H(k)/Br d u e  to  the surjectivity H(k)/R —> H(k)/Br ([CTS1], Prop. 16).

S econd  proo f  By using Theorem  3.4 we see that the  number field case is
reduced to the case of local fields, since w e know  [C ST]] that fo r  almost all
u, G(k„)1 R (hence also G(k„)I Br) is trivial. I n  the local field case we may use the
finiteness o f  G(k,)I R proved by Voskresenskii a s  above.
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3) I t  is  w e ll-k n o w n  th a t th e  natural hom om orphism  Br k —> Br k ( t )  is
injective. Therefore t h e  induced  hom om orphism  : G(k)/Br G ( k ( t ) ) I B r  is
injective. T o  show tha t i  is  surjective w e use the stability theorem due to  Gille
[G1, 3], which says that G (k )/ R  G (k (t))I R .  Let x  e  G (k (t)). Then there exists
y e G (k ) s u c h  t h a t  x  y(mod. RG(k(t))), h e n c e  x  y(rnod. BG(k(t))). i.e ., i
is  surjective.

3.6.2. Remark. It was proved in [G2], [G3], that if k is a  number field then
G(k)/R is finite, hence G(k)/ Br is also. H e re  w e  d id  n o t use this finiteness result
of G ille  in  the proof.

In the local non-archimedean field case w e have the following result.

3 .6 .3 . Proposition. Let

—  H  ri> T —> 1

be an an ex act sequence of  connected linear algebraic groups defined over a non-
arch imedean local f ield k„ of  characteristic 0  where Ô  is  semisimple, simply con-
nected and  T  is a  torus. T h e n  w e  have

H(k„)I Br T (k )/ B r .

P ro o f  We make use of Kneser's Theorem on the triviality o f  H  o f  simply
connected groups. In fact, from the exact sequence of cohomology we see that TC

is  surjective on k,-points, thus gives a surjective map

T C  : H(k„)I Br —> T(k)/Br.

B y  th e  proof of P roposition  3 .6  (see (4 ') above) th e  natural homomorphism
H  —> T induces the  following injective map of commutative groups

H(k„)I R —> T(k„)I R,

hence from the surjectivity of 7L above we conclude that H (k .)1 B r T (k ,)I Br.

Before we give the formulation of one of main results, we recall some definition
and notation of Section 2.4.

Given a  torus T  defined over a  number field k we denote by V (T ) a  smooth
compactification of T over k and by S the Neron—Severi k-torus of T. which is by
definition the Cartier dual to the Picard group of V (T )(=  V (T ) x  k ),  S Pic V(T).
The first Galois cohomology of S, which depends o n  T , does not depend on  the
chosen smooth compactification, and so is the Shafarevich—Tate group III(S). B y
Proposition 2.5 w e have the following exact sequence

1 — > T(k)/Br 22+ H T(k„)I Br —> A(T) 1 .

A connection between the above sequence for a connected linear algebraic group G
and the one for torus quotient of a z-extension of reductive part of G is given by
the  following theorem.
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3.7. Theorem. L et G  be  a  connected linear algebraic group defined over a
number field k. Then we have the following commutative diagram, all rows of which
are ex act sequences

1 G(k)/ Brn „  G(k)/Br A(G) 1

(5) 1P

1 - >  T(k)/Br Yr T(k„)I B r — >  A (T ) 1

where T is the torus quotient of any z-extension H  of  the reductive part of  G. and all
vertical maps are  (fiinctorial) isomorphisms (including local com ponents ones). In
particular, the im age of  G(k)/ Br v ia yG  is a f inite  group of  order nT , where the
notation is as  above.

P ro o f  The exactness of the above sequences follows from Propositions 2.5,
1) and 3.4. By Proposition 3.6, 1), there is a  canonical (functorial) isomoprhism
G(K)/ Br H(K)/ Br  fo r  any extension field K  lk . Therefore it suffices to prove
theorem 3.7 fo r H.

W e have the following commutative diagram (see the notation above).

1 H(k)/Br "YH

P

1 T(k)/Br Y T
- >

ri i,H(ki,)1 Br A(H) 1

FI T(k,)1Br A(T) 1

where p,g ,r a re  natural m aps, induced from  the projection pr: H —> T .  By
Proposition 3.6.3, p  i s  injective and q  a n d  a ll its  loca l com ponents of are
isomorphisms.

Next we need the following

3.8. L em m a. W ith above notation, we have a canonical isomorphism of finite
groups

A (G )  A (H )  A (T ) .

P ro o f  T he first isom orphism  is from  [T4]. Consider th e  following com-
mutative diagram

H(k) T(k) HI (k, G)

(6)
I ti1 Y

Hs Ts Fires H1(k„, 6")
where we take S a  sufficiently large finite set of valuations of k containing all the
archimedean ones, such that
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A (H) = HsIC1s(H(k )),

A (T ) = T sIC1s(T (k )).

It is a  general and well-known fact (see, e.g. [T4] for a discussion with references)
tha t for any linear algebraic group P  over k.C1s (P(k )) is  an  open subgroup of
Ps . Also any connected linear algebraic group satisfies weak approximation with
respect to  the set oo of archimedean valuations.

Let ts e  T s, ts = (t x ,t1), where tx  (resp. ti ) is the oo-(resp. finite) component
of ts. Let t„ c T (k ) such that /im„ t„ = t x . Then for n large enough, the element
(t„, t„) is very close to (t x  t„)  in the S-adic (product) topology, i.e., (t; 1 t x  1 )  is
approaching 1 in T s .  Since Cls(T (k )) is open, there is N  such that if n > N . then

( t ï i ltx  , 1) E Cls (T(k)),

(trx,,t„) E Cls (T(k)).

Since ts =  (t„, t„)(1, ), it follows that

(7) each coset of  T sIC1s(T (k )) has a representativ e f rom  1 x  T s,.

Since  H ' (k , 6 ) is trivial for y non-archimedean by Kneser's Theorem [Kn2]. it
follows that

T s„ = n (H s _c c )

and  from (7) we derive that the natural homomorphism

A (S, H) = A (H) A (T) =  A (S, T)

is  surjective.
Next we show that i t  is injective. L e t  I ls  c  H s  such  tha t 7r(hs) E Cl s (T(k)).

Then

n(hs) = limnt , ,  e  T(k),

hence from the commutative diagram (6) we derive

1 = 6n(h s ) = limn 6(t„).

(Notice tha t here  one endows H I (k, 6). H I (k,,, 6) with discrete topologies , a n d
one checks read ily  tha t a ll m aps in  th e  d iagram  (6) a re  continuous.) Since

E s  H I (k t , 6 )  is  f in ite , th e re  is  N I  su ch  th a t if n > N 1  then  (5(t„) = 1. Let
h„ e H (k ), such that n (h„) = t„. Then lim„ n(h 1 hs) = 1 since Cls (H (k )) is open
in  H s ,  we deduce that

hs e 6sCis(H(k ))

for n  large.
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Since 6 has weak approximation property (Kneser—Harder Theorem, see e.g.
[S]), we have 6 s  05(1 -1(k)), hence hs e C ls(H (k)) as required. H ence A(H)
A (T) and the  lemma is proved.

Continuation of  the proof  of  Theorem  3.7. In  the diagram (5) we know that
r  is  a n  isomorphism by Lemma 3.8, q is  a n  isomorphism and  p  is  injective by
Proposition 3.6.3. It follows that yH  a n d  YT  have  isomorphic im a g e s . Therefore

H(k)/Br T (k )/ B r .

In particular, the order of G(k)/ Br is  e q u a l to  nT.

W e have the following result which is a n  analog o f  [CTS1], P rop . 18, and  [S].
T h. 3.3. L et G  be a  connected linear algebraic group defined over number field
k ,H  be a  7.-extension of a Levi subgroup o f G ,T  be torus quotient of H . which
is split over a  finite extension K  of k. Denote by S the Neron—Severi torus of T .
Vo  th e  (finite) set of all valuations of k, such that their extensions of K  have non-
cyclic decom position groups. Then fo r any finite s e t  W  o f valuations o f k  we
have the following formulas

3.9. Corollary (o f  th e  p ro o f  o f  L em m a 3.8). T here are canonical iso-
morphisms of finite groups

A( W , G) A( W, T) Coker (H I (k, S) n H I (k,„ S)),
yew

A ( G )  A ( T )  Coker (H I (k S) H H I (k„, S))
wuvo

P ro o f  The proof of the  first isomorphisms in  these chain o f isomorphisms
follows directly from the proof of Lemma 3.8 a b o v e . The last ones related with S
are  deduced from Theorem 1.2 (well-known).

4. Some variations and applications to weak approximation

In  this section we consider some applications of results obtained in  previous
sections, and also o f  those obtained in  [T 4 ]. W e keep  our notation as above.
First we derive from Proposition 3.3 the  following.

4.1. Proposition. L et S be a f inite se t of valuations of  k an d  G  a connected
linear algebraic group over k. I f  G  has triv ial group G(k,)I B r of  B rauer equiv-
alence classes for all y  e S . then  G  has w eak  approx im ation property  in S .

4.2. Conversely, assume tha t G does not have weak approximation property
w ith respect to  som e o (necessarily non-archimedean). T hen  G  has non-trivial
group G (k)/ Br b y  P ro p o s it io n  3 .3 , h e n c e  a lso  non-trivial group G (k)/ R .
Therefore G  is not stably rational over k„, and  a fortiori, over k.
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4.2.1. Rem arks. 1) Usually counter-examples to weak approximation over
number fields k  serve as examples o f  linear algebraic k-groups, which are non
stably rational over k  o n ly .  The statement 4.2 above shows that these examples
are, in fact, stronger in  the  sense that they serve also as examples of non stably
rational groups over bigger fields (say k,). Of course, this remark can be also
derived from the fact that the Brauer-Manin obstruction to weak approximation
in  connected algebraic groups is the only one ([S]) and the reader may consult a
variety o f examples in [S].

2) W e m ention the following one  o f the  m a in  results due  to Sansuc [S].
Corollaire 9.7, in the case G has no simple component of type E 8  (and also goes
back to Voskresenskii in torus case). Since the Hasse principle is also holds for E8
by Chernousov, the  following holds.

4.2.2. Theorem ([S], C f . T h m  9 .5 .) . I f  G  is  a  connected linear algebraic
group, defined over a  num ber f ield k , then w e have the following exact sequence

( V) 0 -> A (G) -> (k, Pic V (G)) - I I I ( G ) O.

In particular, if  H  (k, Pic V (G)) is triv ial, then G has weak approxim ation over k
and satisfies Hasse principle for H

W e derive the  following consequence o f  th e  proofs given in  S ec tion  3 . In
particular, to  som e exten t, it expla ins w hat is behind  th e  mysterious relation
betw een th e  b a s ic  arithm etic a n d  geom etric inva rian ts  A (G ). III(G ) and
H 1 (k, Pic V (G ) )  o f  a  connec ted  linear a lgeb ra ic  g roup  G  defined  ove r a
number field k  given by the  above theorem.

4.2.3. Proposition. L e t  G  b e  a  connected linear algebraic group ov er a
number field k, H a z -ex tension of  a k-Levi subgroup of  G , T  the torus quotient of
H . T hen  there  are  canonical isomorphisms of finite commutative groups

A (G) A (T), H  (k, Pic V(G)) - - H  (k, Pic V (T)) -  , III(G)1 1 1 ( T),

w here V (G),V (T ) are some smooth compactifications of G , T  over k, respectively.

P ro o f  Recall that we have canonical isomorphism A(G) A (H ) (see  [T 4 ])
and  by Lem m a 3.8 we h a v e  A ( G )  A( T )  (canonically). Let

1 - +Z - >H - >G - >1

be the given z-extension of G .  We show that the projection 7r : G induces an
isomorphism of commutative groups

III(H) III(G).

Indeed, we have the following commutative diagram with exact rows

On 'H I (k , H) H I (k , G) H2 (k Z)

I I I
OH  (k,,, H) H (k,,, G) j1,, H 2 (k.. Z)
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It is clear (by using the Hasse principle for Brauer group of global fields) that the
induced map

111(11) —> III ( G)

is  o n t o .  F rom  the first row one sees that it has trivial kernel and  by twisting
argument one can  see  a lso  that it is injective. By functoriality o f  III  we have

111 (11) III ( G)

a s  isomorphism of commutative g ro u p s . ( I becam e aw are afterw ards that the
above isomorphism was mentioned earlier in  [ K1, Lemma 4.3.2, b).)

N ow  by the  functoriality of the exact sequence

0 —> A (H ) —> I (k, Pic V(H)) - III(H ) — >  0

in the argument H , we deduce (by diagram chasing) that n induces a  canonical
isomorphism o f finite groups

H I (k, Pic V (H)) - H  I (k, Pic V (G ) ) .

W e know from the proof of Proposition 3.6, 2) that there is canonical injective
homomorphism of commutative groups

j : III(H) —> 111( T).

W e now  show tha t j  is  surjective.
F o r  a  smooth k-variety X  we denote by (45'z(X ) the  usual Brauer group (of

equivalence classes of Azumaya algebras over X ) o f  X,

=  Ker (.94 (X ) — >  (X ))/ Im  (Br k —> A*X)).

Mk' (X) the  subgroup o f  all elements o f  .-.2 „ (X ) which have trivial images via
localization maps Mz,(X) —>

By [S], Corollaire 6. 1 1 , w e have the following exact sequence (by using the
simply connectedness o f  G)

0

hence we also have the following exact sequence

0 —> Pih„T —>

and  from this we derive the  following monomorphism

and  by taking the  Pontryagin dual w e have a surjective homomorphism

(M i°(H )) -  —> (2 z° ( T )) -

By [S], Théorème 8.5 ( in  combining with Chernousov's result on Hasse principle
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for E8 ) , w e have a functorial isomorphism of commutative groups

III(G)

or for arbitrary connected linear algebraic group G  over k. From the above we
see that it yields a  surjective homomorphism

III(11) -4 III(T)

as required . Thus w e have canonical isomorphisms

III(G) III(H) III(T).

Now one can use the functoriality of the exact sequence (V ) and canonical iso-
m o rp h is m s  A (G )  A (H )  A (T )  and III(G) I I I ( H )  I I I ( T )  to  g e t  the iso-
morphism

H I (k, Pic V(G)) - H  I (k, P ic  ?(H )) H 1 (k, Pic V(T )) -

Another (more functorial) way to see this canonical isomorphism is as follows.
Instead of using the exact sequence ( V ), we use the following exact sequence for
any connected linear algebraic group G  defined over a  number field k  (see [S],
Corollaire 8.14):

(S) 0 —> A(G) .4b„(G) -  —> III(G) —> 0,

where " o (G ) is  the subgroup of all elements of ,4za (G ) which have almost all
zero-images via localization maps

.(.4„(G) ( a(Gk, )•

T hen  one can  check without difficulties that we have the following canonical
isomorphisms

.44„(H)

and we may use (S ) together with canonical isomorphism (see [S], Corollaire 9.4)

.(4z,o (G) .(2,?„(V(G)) H I (k. Pic V (G)).

Yet another way to prove our proposition is  to  use Kottwitz's theory [K] saying
H I (k , Z (G)), where Ô is the connected Langlands' dual of G and Z(Ô)

denotes the center of Ô.
The proposition follows.

4.2.4. Remarks. One can give, along the proof given by Sansuc (which does
not use the exactness proved for tori by Voskresenskii), an alternative ("short-cut - )
proof of Theorem 4.2.2 (i.e. the exactness of the sequence (V)) by assuming only
the exactness of this sequence for to ri already proved by Voskresenskii [V1].

STEP 1. W e have [V1] the following exact sequence

—> A( T) H I (k Pic V (T)) -  —> III(T) O.
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STEP 2. W e  have (see above)

A(T) A(H) A(G), III(T) III(H) III(G).

STE P 3. S i n c e  V  (T ). V  (H ), (G ) are k-rational, and H 3 (k,G, 1 ) 0  ( w e l l -
know n), w e  derive  from  [M l], L em m e  3 , an d  [V 3 ] ( th a t f o r  a lm o st a ll v.
H 1 (ki,. Pic V (G)) =  0  a n d  fro m  th e  w ell-know n fac t tha t t h e  to ru s  d u a l to

Div v(x)\x V (X ) is a n  induced torus, by combining with the exact sequence

0 —> (),1 , 1V (X )  —> . 1X —> H 2 (k , Div f ( x ) j )

the  following

H i (k, Pic V (X )) .„( V (X)) ( V (X))

where X  stands for T ,H ,G .
STEP 4. We have 1 (T) 4 3 2 „,(H ) M z ,,,(G ), as one can check easily (see

above). N ow  the exact sequence ( V ) fo r G  follows from these steps.

One may ask, by comparing with 4.2, if we have a similar situation assuming
that A(G) = 0, and III(G) O. H ow ever it is  no t true  as the following classical
example shows.

E xam ple . L et a,h  E  Z  (the integers), and  le t K  = Q( A/a . VT)), be a bi-qua-
d ra tic  e x te n s io n  o f  Q , w h e re  Q  d en o te s  th e  ra tional num bers. D enote  by
T (a,h )= k Q (G „,). Then (see [CTS1], Prop. 7, or [V1], p. 157) w e have

H 1 (Q ,Pic V  (T)) = Z/2Z.

If we choose a, h such that all the decomposition groups for K  are cyclic then it is
know n (by Serre) th a t A (T ) =  O . F o r  example, a = 5, b = 29 satisfy this con-
dition. H o w e v e r , one checks that T(5,29) is rational over all completions of Q.
but III(T(a,b)) -= Z/2Z.

In  the  next result we consider some applications to  w eak  approximation in
semisimple groups defined over number fields k.

4.3. Theorem. Let G he a sem isim ple k -group such that G is of  inner type
over k, for all v  c S. Then G has weak approximation over k with respect to S. I n
particular, if G  is  of inner type over k , it has w eak  approx im ation over k .

The theorem follows from the  following

4.4. Proposition. If as a group over k ,,G is an inner type then G has trivial
group G(k„)I R.

First we need the following result due to  Gille [G1], Prop. 2.3.

4.4.1. Proposition ([G 1 ]). Let

1 F —> GI —> G2 -+ 1
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be  an  isogeny o f  connected reductive groups, all def ined over a f ie ld  k  of  char-
acteristic 0 and G (k ) =  G 2(k )1 ),(G i(k )). Then the following sequence of  groups is
exact

Gi(k)IR G 2 (k)/R > CA(k)IR,

where the R-equivalence relation on C),(k) is induced f rom  that o n  Ci(k(t)).

N o t e .  In the case th a t H  (k, G I) is trivial, we identify G (k ) with H I (k. F)
and also write the above exact sequence in  th e  form

G (k)1 R —> G2 (k)1 R H I (k, F) I R —> 0.

Proof  o f  Proposition 4.4. W e d istingu ish  tw o  cases.
1) y e  op. It is well-known that any connected linear algebraic group G over

R has trivial group of R-equivalences. Here is a short indication of p r o o f .  One
reduces easily to proving that any semisimple element s e G(R) is R-equivalent to
1. But this follows from the fact that s belongs to some torus defined over R, and
any such torus is rational over R.

2) y is non-archimedean. Let G.  b e  a k v -split form o f G, which is obtained
from G by an inner twist. Denote by F  the fundamental group of G, which is the
same for G .  One can check that simply connected groups have trivial groups of
R-equivalence classes, we have by Proposition 4.4.1 ([G1], Prop. 2.3) the following
exact sequences

(8) 0 —> Gs (k,)/ R —> I (k„, F) I R —> 0,

(9) 0 —) G ( k ) / R  H I (kr , F)/ R —> 0.

Here we identify H I (k,„ F) with the factor group Gs (k„)/7( 0 k „ ) )  (resp. G(k„)1
7(6 (k,))), where 7E : Ôs  — + G„ (resp. : G  — + G) is the simply connected covering of
G„ (resp. G) and take the factor group m odulo the rational relation induced on
1-11 (kr , F ) .  We have also used the Kneser Theorem on the triviality o f  H  (IQ.
and H I (k„, G). Since G, is rational over k„, the second group in  (8) is  trivial,
therefore by (9) the  group G(k„)1R is also trivial.

Thus by this proposition, and by Proposition 3.3, G has weak approximation with
respect to  S  and Theorem 4.3 is proved.

4 .5 .  R em ark s . 1) One cannot simply drop the inner type assumption, since
there are examples of semisimple quasi-split groups over number fields which do
not have weak approximation property. First examples of such groups were given
b y  Serre (see [Kn 1] and [S] for more information).

2) In the case of number field, this result also extends the previously known
(but m ore general) result by Harder, namely we derive from Theorem 4.3 the
following.

4.5.1. Corollary (Harder [H I f  a  semisimple group G  def ined over a
number field k is split over k„ of  all t E S, then G  has w eak  approximation in S.
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Now we apply our results to give new proofs (and also discuss some extension)
o f some results due to  H arder and  S ansuc . In  the  following theorem, the  first
result is due to  Harder ([H2], Satz 2.2.3) and the second is due to Sansuc ([S], Cor.
5.4). T h e  third, in the case tha t the given group is semisimple and  split over a
metacyclic extension of the given number field, is a lso  due to Sansuc.

Let i t  : G be a central isogeny of semisimple groups, all defined over a
field k, where 6 is simply connected covering o f G . i t  is called a  norm al isogeny
(after Harder [H2]) if p :=  Ker it can be em bedded into a n  induced k-torus M,
such  tha t M  p  is  a lso  a n  induced k-torus. O ne c a n  show , for example. that
adjoint groups have normal isogenies.

4.6. T heorem . The following groups have weak approximation property over
number fields.

1) ([H2]) Semisimple groups which are  images o f  norm al isogenies;
2) ([S]) A bsolutely almost simple groups;
3) Inner forms of connected reductive groups which are split over a metacyclic

extension of  kr f o r all non-arch irnedean u.
Moreover, two connected reductive groups, which are  inner form  of each other

have the sam e group of  R-equivalence classes over local non-archimedean f ields.'

P ro o f  1) Let n: Ô G be a normal isogeny defined over a  number field k,
a n d  S  any fin ite  s e t  o f  valuations o f  k. W e show  th a t  f o r  all u E (S — oc).
G(K„)I R is  trivial. Indeed, le t p =  Ker 7E, M  be  a n  induced k-torus, such that
M/p is also a n  induced k-torus. A s above (see Proposition 4.4.1), we have the
following exact sequences

Ô (k ) G(k,) —> H I (k„, p) —> O.

Ô(k)/R G(k)/R —> H I (k„, p) I R —> O.

One can  show easily that 6(k„)/R is trivial. (H ere is a  short argum ent. O ne
reduces to almost sim ple  case . If  G is isotropic, then it is well-known that G(k r )
has no nontrivial normal subgroup, i.e. G(k,)= RG(k„), since RG(K„) is a normal
Zariski dense subgroup of G (k „ ). Otherwise, G is of inner type A„ by a  result of
K neser, and in this case the result is well-known.)

Hence we have an  isomorphism

G (k )/ R  H I (k„, p)1 R.

By considering similar exact sequences

1 —> p —> M —> M' —> 1,

M(k„)IR ---> M i (k„)IR ---> H I (k„,p)1 R —> O.

where M , M ' a r e  induced tori a n d  using that M , M ' a r e  rational, we get that

2 This last fact W as also m entioned independently by Gille in [G31.
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H I (k„„ u)I R is  trivial, and so  is  G(k i.)1 R. Therefore G  has weak approximation
over k  by  Proposition 3.3.

In  th e  c a s e  G  i s  a n  a d jo in t g ro u p , w e  c a n  use  a  d irec t a rgum en t as
follows. W e m ay use the following (easy to show) fact: adjoint groups over local
p-adic fields are ra tio n a l. This was mentioned in  the  preprints [T1]–[T2]. One
may also argue as fo llow s. Let GI  be  a quasi-split inner form of G defined over k.
and F  be its fundamental g r o u p . By using the  same argument w e have in the
proof of Proposition 4.4, one concludes that G(k„)I R is trivial for all y. Therefore
by  Proposition 3.3, G  has weak approximation over k.

2) Let G  be an  (absolutely) almost sim ple k-group. W e want to show that
for any finite set S  of valuations of k, G(k„)/ R is trivial for all y c S .  [In fact, one
can show a stronger result in this case: see the paper by Chernousov and Platonov:
T he rationality problem of simple algebraic groups, C . R . Acad. Sci. Paris 322
(1996), 245-250, which have many results overlapped with results of [T2], where
also other results were mentioned:

I f  y  is a  non-archimedean valuation, then G  is rational ov er k „ if  G  is not of
ty pe A n d

H ere w e can use the following simple argument as fo llo w s. L et Gq  b e  an
almost simple quasi-split inner form o f  G .  A s in the case 1) we are reduced to
proving the statement for quasi-split groups. Assuming that G is not split, then G
is of type An, Dn, E 6 , o r 3 ' 6 1)4. L et T  be a maximal k-torus of G  containing a
maximal k„-split torus of G .  If G is not of trialitarian type, then we know by Tits
[Ti] that T  is split by a  quadratic extension of k,,. The structure of tori split over
a  quadratic extensions are well-known: they are direct product o f groups of type
G,„, RK /k , (G,„), o r  R K

( I )
/ k , (G„,) where K lk „ is  a  quadratic extension of k,. In

particular they are rational over k„, and so is G by Bruhat decomposition (see, e.g.,
[B T ]). In  the trialitarian case one proves in  th e  sam e w ay that maximal tori
containing a m axim al split torus a re  ra tiona l. T hus by  Proposition 3.3. G  has
weak approximation in S  for any S , thus also over k.

3) a) First we show that if S  is a  finite set of valuations of k  and  G  is a
connected reductive group which is split over metacyclic extension /,, of k ,, for
each non-archimedean y E S then  G  has weak approximation w ith respect to  S.
In  fact we prove the  following stronger result.

4.7. Proposition. I f  G  is  a  connected reductive group defined over a  non-
archimedean k„ and split over a metacyclic extension l„ of k„ then G(k„)I Br is trivial.

P ro o f  It can be shown that there exists a m axim al k-torus T  of G  which is
split over /„. (And in the case of number field k , one can show that there exists a
maximal k-torus T  such that T  is 6-split for y e S.) Let H  be a _7-extension of G.

1 —> Z PI 7-±+ G 1.

Let T y  be the maximal k„-torus of G such that T H  is m apped onto T  via 7T. Let
G be the simply connected covering of the semisimple part G ' of G, and let t  be
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the maximal k r - to rus of 6. w hich is m apped in to  T  via the composite map

6-  — 4  G' —> G.

W e have the following exact sequences of tori.

(10) 1 Z TH T I,

(11) 1 T TH —> To —> 1.

It is clear from  (10), (11) that i '  is also split over /, fo r all y c S. By [CTS1],
Corollaire 3, p. 200, w e have

f(k„)IR  =  T (k„)IR  =  { I}, VI) E S,

therefore T H ( k ) / R =  {1},Vv e S.
Now we consider a  maximal k r -split torus T 1  o f  G .  Then

Z G (T I)= T 'H '.

where T ' is the connected center and H ' is a semisimple k L -group, anisotropic over
If H ' is trivial, i.e ., G  is quasi-split over k„, then the torus T ' is split over

metacyclic extension 1,, so  has trivial group of R-equivalence classes by [CTS1].
Corollaire 3, p. 200, and so is G , since G and Z G (T i )  are birationally equivalent
over k , (using Bruhat decomposition). Therefore G(k„)I B r is  trivial also. One
may therefore assume tha t H ' is  non-trivial, and by replacing G  by ZG(T] ) . one
m ay assume th a t G  has semisimple p a rt G ' anisotropic over

By using a  consequence of the Kneser's Theorem on  the  triviality of H 1 o f
simply connected groups over local non-archimedean fields [Kn2], we see that G'
is necessarily a  product of almost simple k„-factors of type 1A, which may be taken
to be absolutely almost s im p le . So w e have

= x • • • x H,,

where H, is simply connected o f type  1A„,_ 1 f o r  a ll i.
W e now recall the construction of the z -extension H  o f  G .  L e t G = G'P.

where P is a k,,-torus. L e t  F  G '  n P, F 1 = { ( f ,  f  e  F l  and we have the
following exact sequence

1 x  P G —> 1.

By taking the composite of two isogenies

d x P — > G ' xP - 4 G,

w e have an isogeny

1—>F1 —>d x P —>G — 1.

Thus one sees that since è- i s  of inner type (in fact the product of groups SL). the
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group F ' can be embedded into a  split torus Z  defined over lc,. Then we take

F 1' : = {( f  4 - 1 ) : f e F'}

and take
H =  (Z  x (G x P))1F 1'.

From  the very construction is follow s from  (10), (11) that T y  is split over /„.
S in c e  f  and T y  are split over l, ,  the same holds for To. Therefore  To(kr )1R
is trivial by [CTS1], p . 2 0 0 .  Since T0(k,)1R = To(k„)1Br ([CTS1], p . 217) and
H(k„)1Br = To (k)/Br b y  Proposition 3.6.3 and the proof given there, we see
tha t H (k„)IBr G (k„)1Br = { 1 } .  The proof of 4.7  is complete.

N ow  w e see  tha t G(k„)1Br = 1  for all y E S .  T h u s G  has weak approxi-
mation for any given finite set S, which means that G  has weak approximation
over k.

3) b )  Now we assume that G1 is an  inner form of a group G .  First we
prove the last statement in  3) of the theorem.

W e need the following very useful fact, which is due to  O no  in the case of
tori.

4 .8 .  Lemma (Sansuc [S], Lem. 1 .1 0 ). L et G  be a connected reductive group
defined over a  fie ld  k. There exists a  number n, induced k-tori T and  T ' such that
w e have th e follow ing central k-isogeny

1 F 6" X T' --* G" x T —> 1,

w here Ô is th e  simply connected covering of th e  semisimple p a r t G ' of G.

The finite covering o f an  algebraic group by a d irect product o f simply
connected group with an  induced torus (such a s  6n x T' —> G" x T  above) is
called after Sansuc ([S], p . 14) a special covering. It is obvious that to prove our
statement we may assume tha t the group G I itself has a  special covering

(12) 1 ---* F - -4 6 x T ' G—> I

defined over k. Since the inner twist does not effect the center it is obvious that
w e have also a  special covering

(13) 1 F —> x —> G I —> 1,

where Ô 1 i s  the simply connected covering of the semisimple part of G I .  The
exact sequences (12) and (13) induce the following exact sequences of groups of
R-equivalences

(14) (G. (k )  x  T' (k))1 R --> G(k)/R --> H I (k,. F)1 R 0,

(15) (61(k) x T' (k„))1R Gi(k„)1 R H I (k,, F)1 R 0,

(compare with (8) and (9)). Since the first groups in the exact sequences (14), (15)
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are trivial, we obtain

G (k )/R G1 (k 1,)1R H I (k,,, F)1 R.

Now assume that G 1 i s  a n  inner form o f  a  group G  satisfying 3) a )  above.
We will show that GI has weak approximation with respect to any finite set S  of
valuations y where G has metacyclic splitting field extension 1,1k u . By Proposition
3.4, it suffices to show th a t G1(k„)1Br is  trivial for a ll y c S.

L et G = G 'S , where G ' is  the semisimple part of G , and  S  a central torus.
L e t F = s f l G ', 6  b e  th e  simply connected covering o f  G ',  7rG  :  6  G ' the
canonical isogeny. A s in  pa rt a )  we denote

F 1 =  { ( f  ,  f )  :  f  E F} S  x  G'

so w e have a central isogenies

1F 1S  x  G' G = S G ' —> 1,

1 —> F2
-

>S X 6
1

>S X G ' - 1,

where F 2  =  (  ,  1  :  X  E  Ker (7rG ) }  Ker nG . Denote by

m: S  x  O  —* SG'

the composite of isogenies a  and fl, 7r :  (s, srcG(0). Then one checks that

du : =  K e r  = {(7rG (0), ) : E  7E-
G

I (F)}

= (F)

P := Cent(6)

Since G1 is an inner twist of G . G I  = S G;, where G; is the semisimple part of GI

and  snc;=snc= F .  We define

I i i :=  { (x ,x - 1 ) : x /L},

H = (Z  x  (S  x  6))111 1 ,

= (Z  x  (S  x  Gi ))/// j .

Then from  the construction it follows that

H  = 6P, H 1= G P.

where P  is  the connected center o f H  and H 1 , a n d  also

(16) n P = 6, n P.

Therefore we have

(17) To := H /6  T  := 111161.
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From  the  proof o f  th e  p a r t  a )  above (Proposition 4.7) w e  see  tha t T1 (kr )1Br
is  trivial since To (k„)I Br(= H(k„)I Br = G(k)/Br) is triv ia l (see the proof of 4.7
o f  p a r t  a ) ) .  Therefore by Proposition 3.6.3 and relations (16), (17) H i (k.)I Br
(which is isomorphic to T1(k„)IBr) is also trivial, thus so is G1 (k„)I Br. The proof
of Theorem 4.6 is complete.

Now we consider some other analogs related with R-equivalence relations.
We have the following extension of similar property of tori (see Theorem 1.1. (4))
over completions o f  a  number field k.

4.9 . Theorem . L et G  be a  connected linear algebraic group defined over a
local f ield kr . Then the group of  R-equivalence classes and the group of  B rauer
equivalence classes coincide:

G(k)/R = G(k„)I Br.

P ro o f  As above, we may assume that is non-archimedean and G is reductive.

STEP 1. L et G  be a  connected reductive kr -group. G q  be its quasi-split inner
form  def ined over k „ . Then we have

(18) G(k„)IR Gq (k„)I R.

This has been proved in  Theorem 4.6, 3).

STEP 2. L et Gq  b e  a  connected reductive quasi-split kr -group. Then

(19) Gy(k„)/R =  Gq (k,.)I Br.

P ro o f  Take a maximal k„-torus T of G,, containing a maximal k r -split torus
S o f  Gq . Then we have

T = ZGq (S),

and Bruhat decomposition fo r Gq  show s that (see (CTS11, Section 7) w e have

T(kJIR = G q (kr )I Br,

T(k 1 )/Br = Gq (k„)I Br.

Since fo r to ri T  w e have

T(k)IR= T(k„)IBr,

by Theorem 1.1, 4), hence Gq (k )IR  =  Q 1 (101 Br.

STEP 3. If  Gq  is  a quasi-split inner form of a connected reductive kr -group G,
then

(20) G(k„)I Br Gq (k„)I Br.

Indeed, by Proposition 3.6 we may asume that the semisimple part 6. (resp.
dy ) of G (resp. GO is simply connected. From the proof of Theorem 4.6. 3) b (see
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(16), (17)), it follows that we have the following canonical isomorphism

G4 /6,1 G / 6  T,

where T  is quotient torus o f G  (and T  is defined on  the  same field as G ) .  We
know  by Proposition 3.6.3 that

Gq (k„)I Br T (k )/ B r  G (k , )1 B r ,

hence (20) holds.
N ow  the theorem follows from the  combination o f  (18), (19), (20).

4.10. R em ark s . 1) In  [CTS2], Remarque 2.8.17, it w as show n that for a
given smooth variety X  over a local p-adic field and under some condition (H i")
on the universal torsor under some torus, the  Brauer and  R-equivalence are the
s a m e . A lso, it is a  very general method to obtain such kind of results (e.g. one
may obtain similar results for tori over p-adic fields (see [CTS21, Section 2 . for
details).

2) All results above te ll us tha t i f  a  connected reductive group G  over a
number field k fails to have weak approximation over k, then for some valuation y
(which is necessarily non-archimedean), and  the  quasi-split inner form Gq  o f  G
(which is necessarily non-split), we have Gq (k„)I Br 1.

3) O u r  assum ption i n  T heorem  4 .6  o n  th e  e x is te n c e  o f  metacyclic
extension of k, splitting G has local character, so it is weaker than that of Sansuc
[S], Corollaire 5.4, p . 34.

The following local- global statement (or principle) would show that our result
is equivalent to that o f  Sansuc:

A  connected reductive group G  defined over a  num ber f ield k  h as  a  metacyclic
splitting f ield if  and only  if  it is so ov er all com pletions k„ of  k.

4 )  Equally, it is natural (and important) to  ask  for which class of finite
groups the follow ing holds. W e say that a  finite Galois extension k' /k is a  W-
extension if Gal(k' lk) E (g. We require that b e  a  kind of formation of groups.
i.e., it is closed with respect to  the operations of taking subgroups, factor groups
and finite d irec t p roduct. Then w e ask when the  following holds:

A  connected reductive group over a number f ield k has a  -splitting f ield if  and only
if  it is so over all com pletions k„.

Now we are able to formulate and prove a close analog of the exact sequence
(B r) for groups o f  R-equivalence classes.

4.11. Theorem . L et G  he a  connected linear algebraic group defined over a
number field k. L et H  be a _7-extension of the reductive part o f  G , T be its torus
quotient and S  b e  th e  Neron–Severi torus o f  T  T hen  in  the following exact
sequence

(R') 1 —> Ker Pr G  ( k )  I Rf i  G (k „) I R --> A(G) 1
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th e  subgroup Ker pG  h as  f in i te  in d e x  nT  = [T(k)IR:111(S)1, ( o r t h e  same,
Card(T(k)IBr)) in  G (k )IR . Moreover the follow ing sequence is exact

1 Ker PG G(k)/R G(k)/Br 1,
and  the  im age of  G(k)/R in  FL G(k)/R, being isomorphic to  G(k)/ Br. is  also
isomorphic to T(k)/Br.

P ro o f  The fact that the first sequence is exact follows from Proposition 3.2.
From Theorem 3.7 we have the following commutative diagram with exact rows

 

1 Ker PG G(k)/R 11, G(k„)IR

 

A(G) 1

1=

  

(21)
1A G

     

1 G(k) I Br FL G (1(,) I Br A( G) 1.

In the above diagram, the homomorphism .1,G is induced from fl'G  since we have the
vertical isomorphism due to Theorem  4.9, and  it is clear that

.1!G (Ker (pG )) OE Ker (yG ).

Therefore it follows that

(G(k)/R)/Ker (p G ) G (k )/ B r

and the image of  G(k)/R in the product f l  G (k )/R  is isomorphic to the group
G(k)/ Br T (k )/ B r  a n d  has order equal to nT  = [T(k)/R :III(S)] by Proposition
2.6 and Theorem 3.7.

From  Theorem  4.11 it follow s that to determ ine the structure of G(k)/R
one needs to understand the structure of Ker pG , which is given in the following
theorem . W e a lso  derive  th e  following analog o f  th e  e x a c t sequence (R) in
Section 1 in the case the number field k  is totally imaginary and  also in  many
other cases, namely if the semisimple part of G contains no anisotropic factors of
(exceptional, trialitarian) type 134 nor E6.

4.12. Theorem . 1) L et G be a connected linear algebraic group defined over
number f ield k. Then we have the following commutative diagram, where all rows
and columns are  exact sequences

6(k)/R 6(k)IR

rtR

1 Ker G(k)/R G(k)/Br 1- > PG

iP iq r

Ill (S) T(k)/R T(k)/Br 1
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and Ô Gs is  the simply connected covering of the semisimple part Gs of  G , T is the
torus quotient of  the reductive p art o f  a z-extension H  o f  G , S  the Neron–Severi
torus o f  T  and r  is an  isomorphism.

2) If  the semisimple part of  G contains no anisotropie almost simple factors of
types 134 (trialitarian) nor E6 then G-  (k )I R  =  1 . In particular, p  and q  are iso-
morphisms, G (k )/ R  T (k )/ R  and the follow ing exact equence (R') holds for G.

(R ') 1 —> III(S) —> G(k)/R H G(k)/R —> A(G) —> 1.

In  general, (R ')  holds for all connected linear algebraic groups G if  and only if  all
simply connected almost simple groups have triv ial group of  R-equivalence classes.

3) If  k is totally imaginary number field, then p, q are also isomorphisms and
the ex act sequence (R ')  holds for G.

First we need the following results.

4 .1 3 . Theorem ([C M ], Thm . 4.3.). Let G be an almost simple algebraic group
of outer type 2 A„ defined over a field k , G (k ) =  SU (0 ,D ), where 0  is the associated
hermitian form  with respect to an involution J of second kind over a division algebra
D of  center K . L e t  Elf  (re.sp. E'.1 )  be the group of elements which are J-symmetric
(resp. with .1-symmetric reduced norm ) of  D . T hen

G(k)/R I El 1 .

4 .1 4 .  Theorem ([H 3 ] ) .  A ssum e th at k  is totally  im aginary  num ber f ield.
Then any simply connected semisimple k-group has triv ial (Galois) 1-cohomology,
and anisotropic alm ost simple k-groups are  o f  type A .

4 .1 5 . Proposition ([T 4]). L e t  H  be  a  z-extension of  a connected reductive
group G, all def ined over a f ield k. Then the natural projection H  —> G  induces
canonical isomorphism o f  abstract groups

H (k )/R  G (k )/  R .

Proof  o f  Theorem 4.12. 1 )  The assertion regarding the exactness of two
rows and tha t r  is an isomorphism in the above diagram follows from the com-
mutative diagram (21), and the bijectivity of r  follows from Theorem 3.7.

4 .1 6 .  L em m a. W ith above notation, Ker q  Ker pG •

P ro o f  Indeed, if  x e Ker q  then  r(),'G (x)) =  /1-(q(x)) = 0, hence .1.'G (x) = 0
since r  is  an isomorphism. As we mentioned above, the row s in  the diagram
are exact, so x e Ker pG .

The following is a  well-known (and trivial) result from homological algebra.

4 .1 7 .  Lem m a. In  th e  above diagram , p  is  surjective i f  an d  o n ly  if  q  is
surjective.
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4.18. Lem m a. L et T  be a torus defined over a field k, S a f inite set of discrete
valuations of k. Then

Cls(R T(k )) = R Ts.

In particular, if  S  consists o f  real v aluations then R T (k ) is dense (in the S -adic
topology) in T (k ).

P ro o f ' Let

N - 4 P - T — >  1

b e  a flasque resolution o f  T  over k. H ere P  is  a n  induced k-torus a n d  N  is
flasque. By [CTS11, Théorème 2, in  the  above exact sequence we have

q(P(k )) = R T (k ),

hence

Cls(R T(k )) = Cls(q(P(k )))•

If x e q(C/s(P(k))), x =  q(y ), where y  lima p„, p„ c P(k ) then

x q(lim , p„) = urn,, q ( p )

E as(q(P(k ))) = C ls(R T (k )),

hence g(Cls(P(k))) Cls (RT(k)).
Since P has weak approximation property, Cls(P(k )) = Ps , and as mentioned

above, q(Ps) = R I's , hence

R T s  OE Cls (RT(k)).

On the other hand, by Proposition 2.1, R T s is an open subgroup of T s containing
R T (k ), hence the first assertion fo llow s. The rest of the lemma follows from the
previous one  and  also from  the  fac t tha t any  torus over the  real numbers are
rational.

4.19. L em m a. W ith notation as in the theorem, g  (hence also p) is surjective.

P ro o f  W e need only show that

T(k) = g(G(k))R T(k ),

where we may assume th a t G  has simply connected semisimple part and  g
G —> T = GIG' is  the projection.

By Lemma 4.18 we know that

= Clx (RT(k)).

F or x c T (k ) we have

x = lim„ r,,, r,, e  RT(k)
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(the lim it is taken w ith repsect to  the  archimedean op-topology). W e have the
following commutative diagram similar to (6):

G (k )  T (k ) H I (k ,G- )

(22) y

T ,  = >  FLE  H  1 (k u , G- )

w here  a ll row s a re  e x a c t a n d  a ll a rrow s a re  continuous w ith respect t o  the
topologies induced from G,„ and T .  W e  have

6 ,(f l(x )) = lim ,, 5 (f l(r))

=6 x (1=ô(/3 (r,,)) , > No,

fo r some fixed No , since n E ,„ Hi ( k,„ 6)  is finite. H e n c e

6 x(f l(x ))= Y ( 6 (x))

= Y(6 (rn))

fo r n > N o . Since y is  a n  isomorphism (i.e. bijection) b y  Hasse principle, one
concludes that

S(x) So(rn ), Vn > No.

One checks, by using the  interpretation of the coboundary m ap 6  (see [Se]) that

x = r„g(g),

for some y E G ( k ) .  Thus

T(k) = R T(k )q(G(k)),

i.e., q  (and p ,  by Lemma 4.17) is  surjective.

With this lemma, the proof of the exactness of the first column in  Theorem
4.12 is com plete. N ext w e consider th e  exactness of the second colum n. W e
have the following general result.

4 .2 0 . L em m a. L e t k  be a f ield of  characteristic 0 , G a connected reductive
group w ith sim ply  connected sem isim ple p art  6 , T  = G IG '. T hen  w e hav e  the
following exact sequence of groups

ô(k )/R G(k)/R T(k )IR .

P ro o f  It is obvious that if the lemma is true for some power G" = G x • • •
x G, then it is also true for G, so by virtue of Lemma 4.8 we may assume that G
has a  special covering G- x  T ', where T ' is an  induced k-torus, and we have the
following exacts sequence o f algebraic groups, all defined over k:
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where F is a  finite central subgroup of 6 x  T'. From this we derive the following
3 x 3-commutative diagram

1 1 1F n6 F ' H F ' 1

1 6 6x T' T' 1

it
I G T 1- >

11 1
Since 6 is simply connected, / is an isomorphism, hence F f l 6 =  1, and u is also
an isom orphism . From the diagram above we derive the following commutative
diagram

(6 (k ) x  T '(k ) ) I R - 7 4?G ( k ) / R H I (k, F)/ R

1P ' i"
T/(k)1 R T(k)/R (k, F') 1 R

where all rows are exact (see Proposition 4.4.1), and r ' is an isom orphism . Since
T ' is a n  induced k-torus, V (k )/R  =1 , and

(6 (k) x  r (k ))/ R  d (k )/ R .

If XE G(k)/R such that g '(x )=  1, then by chasing o n  this diagram we see that
X E Im rc, thus

K e r  =  Im (G-  (k)I R G (k )/  R )

a s  required.
From this the exactness of the second column of the diagram in the theorem is

proved, hence we have finished the proof of 1).
2 )  The "general" part of 2) follows directly from I). Next we show that if

the semisimple part of G  does not contain anisotropic almost simple factors of
exceptional types 1)4 a n d  E6 then (R ') holds fo r  G.

To see this, we reduce the proof to the following s itu a tio n . Namely, one may
assume that the group G  above is connected reductive with anisotropic semisimple
p a r t .  Indeed, it is clear that w e m ay assume G  to be reductive.

STEP 1. If  H  is an alm ost simple simply connected group over k then H(k) has
no proper noncentral norm al subgroups ex cept possibly  for the following opes:
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• an iso trop ic A ,  a t  (exceptional), E6;
• isotropic exceptional types 2E 5, 2E9 .

This is the result of many authors and the readers are refered to Chapter 9,
Section 9.1 of [PR] for further information. (Quite recently Y. Segev and G. Seitz
announced that the Platonov—Margulis conjecture is true for the case I An .)

STEP 2. I f  H  is as in Step 1, but H  can be o f a n iso tro p ic  type A n ,  then
H(k)/R = 1.

This follows from Step 1, the well-known fact that R H (k ) is  an infinite
normal subgroup o f H (k ), Theorem 4.13 in combination with results of Wang
(that the group SK1(A) = 1 for any central simple algebra A  over number field
k ), and the result of Platonov—Yanchevskii (that / E j  =  1 for number field k).

4 .2 1 .  Lem m a. If H  is simply connected either of isotropic type 2 E 5 o r 2 E 9

then H (k)/R  = 1.

P r o o f  If S ' is a maximal k-split torus of H, then it is well-known by [CTS1]
that we have the following functorial isomorphism o f abstract groups

H (K )/ R  Z H (S 1 )(K )IR ,

for any field extension K  of k. Hence by Theorem 3.4, we have

A ( H )  A(Z H (S ')).

(One can show in general that this last isomorphism holds for any field k, see [T31.)
CASE 2 E6

35 . Let S ' be a maximal k-split torus of H .  The Tits index of H  is
as follows

0 — — •
N

One can check that the centralizer Z Z l l (S ')  of S '  in H  is

ZH (S ') = S'L,

where L is an almost simple simply connected k-group of type 2 A 5 . Since L(k)/R
=  1 by Step 2, from the result of 1) (namely from the commutative diagram in the
theorem), we have the following exact sequence (R') for Z:

(23) 1 —> III(S) Z(k)/R —> [[Z (kV )/R  —> A(Z)—> 1,

where S  is the Neron—Severi torus of the torus ZI L since Z  is the z-extension of
itself. S in c e  Z IL  is a k-split torus, S  has trivial cohomology, so III(S) is trivial.
As we notice earlier that

Z (k )/ R  H (k r )IR
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is  trivial for all t] since H  is simply connected, hence from (23) it follows that

1 = Z(k)/R = H(k)/R

as required.
CASE 2 E 9 . The T its index of H  is  a s  follows

• - •
N

W e have

Z := Z H (S ') =  S'T o L,

where L  i s  a  simply connected k-group o f  (classical) type  D 4  (hence satisfies
L (k )IR =  1), and  To i s  a  one-dimensional k-torus. A s above we have the exact
sequence (R') fo r the  group Z .  In  this case, the torus quotient

T = ZIL = S'Tol(S / To nL )

is  a  two-dimensional k-torus, which is rational over k  b y  a  classical result of
Voskresenskif [V1]. Therefore

T(k)/R = 1.

By [CTS1], Proposition 19(ii), w e have the following exact sequence

0 —+ III(T) B r , X  11 Br„Xt, --+ T(k)/R - —>11I(S) -  —> O.

(H ere X  denotes a  smooth compactification o f  T  over k  and =  Pic( ).) I n
particular, III(S) = O. F u r th e r  w e  argue as above to obtain that Z (k)/R is trivial,
hence so is H (k)/R.

So from  1), Steps 1, 2 and from Lemma 4.21 it follows that the exact sequence
(R ')  h o ld s  fo r  G  except possibly the  case  the  sem isim ple  part o f G  contains
anisotropic almost simple factors of exceptional types D 4 and/or E 6 .  Hence 2) is
proved.

3) We claim that H (k)/R = 1 for any almost simple simply connected group
H  over k. If H  is anisotropic then by Theorem 4.14, H  is of type A , and the
claim follows from Steps 1, 2 in 2). Also from there, by combining with Lemma
4.21, we know that the claim holds for any isotropic group H .  So over totally
imaginary fields k, H (k)/R is trivial for all simply connected semisimple k-groups
H .  To obtain (R ') w e m ay use the result of 1) and Theorem 4.11. W e supply
also a  proof o f this fact independent o f 1 ) a s  follows.

By using the  same argum ent as in  the proof o f  Theorem 4.4 (or 4.6) and
by using the Harder's result on the triviality of the Galois cohomology of simply
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connected groups (Theorem 4.14), we can show that

G (k )/ R  G o (k)/R,

where GI  is  a  quasi-split inner form of G over k  and we may assume also that G
has simply connected reductive part and that G is reductive. Let Tq be  a maximal
k-torus of Gq containing a maximal k-split torus S  of Gq . By the same argument
a s  in  th e  proof o f  4 .6 , 4 .7 , it fo llow s tha t G  and G q h a v e  isomorphic torus
quotients T .  I t is also well-known that fo r  simply connected quasi-split semi-
simple groups G . a n y  maximal torus containing a  maximal k-split torus is also
quasi-split (i.e. induced) torus. Denote such a  to rus by  T .  T h e n

1 T'—>T —>T—>1q q

is an exact sequence of k-tori, and T is cohom ologically trivial. S ince this is a
z-extension, from  Proposition 4.15 it follows that

Tq (k)I R T ( k ) / R ,

hence

G (k )/ R  T (k )/ R ,

and  this is true for any field extension of k. In particular,

G(k„)IR T ( k , ) I  R

for a ll u , hence from (R ) we deduce the exact sequence

(R ') 1 III(S) —> G(k)/R —>
f i  G(k)/R —> A(G) --->

where T  is the torus quotient of any z-extension o f G and S  is its Neron—Severi
torus.

The proof o f Theorem 4.12 is therefore complete.

Rem ark. In  our earlier preprint [T4], we propose another way to express an
exact sequence connecting groups of R-equivalence classes, weak approximation
obstruction A(G) and the Tate—Shafarevich group o f some f in ite  G alois module.
It is clear that the above exact sequence (R') is, in a sense, more true (or natural)
analog of the initial exact sequence (R) for tori established by Colliot—Thélène and
Sansuc.

We derive the following consequence describing a relation between RG (k) and
RGs , extending the corresponding result for tori (Lemma 4.18) over number fields.

4.22. Theorem. Let k be a number field, S  a f inite set of valuations of k. G a
connected linear algebraic k-group. Then

BGs  = RG s  =  C ls (RG (k)) =  C l s (BG (k)).

In other w ords, the groups R G (k ) and B G (k ) have w eak  approximation over k.
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P ro o f We claim that

RGs  = g(G- s)Cls(RG(k)),

where : d Gs is  the universal covering of  the sem isim ple part Gs o f  G.

We may assume that G is reductive. W e first show that R Gs contains the set on
right hanside. It is  know n and  easy  to  see  tha t RGs  i s  an  open  subgroup in
FLE s  G(k i,) , hence also closed. W e know  that fo r simply connected groups

Gs = R 65 = Cls(G(k )),

it(Gs ) n ( R G s )  c  R G s ,

n(G s)C1s(R G (k )) R G s.

To prove the other inclusion, first we assume that O  is the semisimple part of G.
L et T  = G 1 6 .  W e have the following commutative diagram

G(k) j > T(k) HI (k ,6 )

113 Iv

Gs Ts n, E s  H I (k,„ G)

L et x e R G s .  Then p(x )E R T s  = C l s (R T (k )) by Lem m a 4.18, so

p(x) = lim„ r,„ r„ c RT(k).

Then

6(r„) — > 6(p(x)) = 1, n --> oc,

hence

6(r„) = 1, V n > N,

for some fixed N .  Therefore r„ e p(G(k )),r„ = p(g,),g„ c G(k ) for n>  N .  Thus

lim „ p(x g) = 1 .

Let
G

where T ' is a  k-torus. The natural isogeny

: O x —> G

induces an open map

hence

and

p' : G- s  x Gs.
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In  particu la r, 6s T k  i s  a n  o p e n  subgroup o f  Gs . Since Cls (RV (k)) = RTk
by L em m a 4.18, a n d  R T k  i s  o p e n  in  Tk b y  Proposition 2.1, it follows that
Cls(R T '(k )) is open in T .  H e n c e  'dsCls(RT'(k)) is  an  open  subgroup o f  Gs,
and so  is G- sC ls(R G (k )). L et V „,n = 1. 2, ... be a  nested system of open neigh-
bourhoods o f  1 in  Ts such  tha t Vn + i c  V ,  fo r all n,

n„vn= to,
and p(xg; 1) E V„, for a ll n. Then

xg,7 I c Vn.

Since T ' is rational over k, T c C ls (RG(k)) and since G-s Trk is an open subgroup
o f  G s, it follows that fo r a ll n  we have

XE p - 1 ( )gn P- 1 ( Vn)ds (RG(k)).
Since

nnp - i(v )= p - innvo

= P -1 (1)

=
s o  (V, ) f o r m  a  nested system o f o p en  neighbourhoods of
some N,

Therefore for

sC1s(RG(k)), Vn > N,

since d s Cls (RG(k)) is  an  open  subgroup of G .  T h u s

E 6 s Cls (RG(k)) = Cls(6(k))C1s (RG(k)).

since , by  Kneser's a n d  H arder's results, 6. h a s  w e a k  approximation property
over k.

In  general case, let H  be  a  z-extension o f  G,

where it induces the covering isogeny G- G ,  c  G .  By Proposition 4.15 the pro-
jection it induces surjections

RHs  R G s , RH(k) R G ( k ) ,

hence
RGs = E(RH s )

= 7E(G-s)C1s(RH(k)))

= 7(6 s )rc(C18 (RH(k)))

n(G- s)C1s(g(R 11 (k)))

= g(6, )C1s(RG(k)),
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and the claim  is proved. Since  R d ( k )  is  a n  infinite norm al subgroup o f  6(k).
Cls (R .G- (k )) is an  infinite normal subgroup o f C15 (6(k )) G s .  It is known that
6 s  has no proper infinite normal subgroup (consequence of Kneser-Tits conjecture
over local fields). Thus

O s (RG(k))

hence

G-
s  C ls ( R H (k ) )

and RGs  = C ls (R G (k )) . The assertion regarding BGs  follows from Theorem 4.9.
Theorem 4.22 is proved.

W e derive also the following finiteness result o f the  group o f R-equivalence
classes in a slightly different way than the one given in  [G 2 ]. Namely we do not
use the Kato-Saito's Hasse principle for arithmetical varieties (compare [G2] and
[G3]).

4 .2 3 . Theorem ([G2, G3]). I f  k  is  a  num ber f ield then G(k )/R  is f inite.

P ro o f  From well-known theorem o f  Margulis-Prasad it follow s that if  6
is a  simply connected semisimple k-group then 6 (k ) /R  is finite. F r o m  the com-
mutative diagram in Theorem 4.12 and from the finiteness of T (k )1R  (see [CTS1],
Corol. 2, p . 200) it follow s that G(k)1R  is finite.

4 .2 4 . Corollary. L et G he an adjoint sernisimple group defined over a number
f ield  k  and 6 be its sim ply  connected covering. I f  G (k ) /R  =1  then G(k)/R -= 1.
In particular, it is so if  G contains no anisotropie factors of exceptional types D4. E6.

P ro o f  L e t  F = Ker ( G ) ,6 , , ,G  be  quasi-sp lit inner fo rm s o f  6.G
respectively. Denote by  i , T q  their corresponding maximal k-torus containing
maximally k-split torus, which a re  know n to be induced tori. From  the exact
sequence

R G(k)/R —> H I (k , F)I R,

and  from the assumption it follows that G(k)/R — > H I (k ,F)1R  is  injective. By
considering the corresponding sequence for tori

i 1(k )/R Tg (k)/R —> H I (k , F)I R  -4 0,

(we use the fact that H (k , -DO = 0) and from the fact that these tori are induced,
so w e have trivially H 1(k, F)IR  = 0 , thus G (k ) /R  is trivial.

5. Remarks, problems and conjectures

5.1. From  Theorem  4.12 it fo llo w s  th a t  o v e r  a n  arbitrary field k ,  the
finiteness of groups G(k )/R  for connected reductive groups G depends only on the
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finiteness of tori and simply connected groups over k. It seems natural to state
the  following

Problem  1. S tudy  the f initeness of  G(k)/R and G(k)/ Br f o r connected linear
algebraic groups G  over f initely  generated (over the prim e f ield) k.

Problem 2. Same problem as above, but only for purely transcendental extensions
o f  Q, Qp  R, C.

5.2. It is na tura l to  m ake the following

Conjecture 1. The exact sequence (R ') holds fOr any connected linear algebraic
group G over any  num ber .field k.

Notice from  above that this conjecture is equivalent to the  following conjecture

Conjecture 2. G(k)/R is triv ial for cmisotropic almost simple simply connected
group G  of  exceptional type D 4 o r E6 over a num ber f ield k.

A s w e have seen from  above, th e  last conjecture is  a  consequence o f  another
stronger conjecture due to Platonov and  M argulis. (See [PR, Chapter 91 for more
information.)
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