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On splitting of certain Jacobian varieties

By

Ryo Nakajima

Abstract

We give three examples of non-hyperelliptic curves of genus 4 whose
Jacobian varieties are isomorphic to products of four elliptic curves. Two
of the examples belong to one-parameter families of curves whose Jaco-
bian varieties are isomorphic to products of two 2-dimensional complex
tori. By constructing analogous families, we prove that for each n > 1,
there is a one-parameter family of non-hyperelliptic curves of genus 2n
whose Jacobian varieties are isomorphic to products of two n-dimensional
tori.

1. Introduction

1.1. Introduction
The Jacobian variety of a closed Riemann surface, or a complete algebraic

curve over C (in this paper, we call a closed Riemann surface simply a curve)
is the moduli space of line bundles of degree 0 on the curve and it has a
structure of a principally polarised Abelian variety (hereafter P.P.A.V.) The
Jacobian variety is never isomorphic to a non-trivial product of P.P.A.V’s of
lower dimension as a P.P.A.V; however, it can be isomorphic to the product of
complex tori disregarding the polarisation. Such a Jacobian variety is said to
be splitting.

For curves of genus 2, Hayashida and Nishi [5] found many examples of
splitting Jacobian varieties by using number theory. Since then, the case of
genus 2 is well studied. For curves of genus 3, Klein’s curve is known to have
a splitting Jacobian variety (see [2]) and for curves of genus 4, Bring’s curve is
known to have a splitting Jacobian variety (see [7]). Ekedahl and Serre [3] gave
examples of splitting Jacobian varieties of curves with various genera and Earle
[1] gave one-parameter families of hyperelliptic curves with splitting Jacobian
varieties of arbitrary even genus.

In this paper, we shall give certain new examples of splitting Jacobian
varieties. In Sections 2, 3 and 4, examples of non-hyperelliptic curves of genus
4, of which Jacobian varieties are isomorphic to products of four elliptic curves,
will be given. In Sections 2 and 4, we shall also give one-parameter families
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of curves, of which Jacobian varieties are isomorphic to products of two 2-
dimensional complex tori and furthermore, in Section 2, we shall show that a
similar family of curves exists for arbitrary even genus.

1.2. Automorphism and period matrix
Let C be a curve (a closed Riemann surface), and g > 0 be its genus,

{ω1, . . . , ωg} be a basis of holomorphic 1-forms on C, and {λ1, . . . , λg, µ1, . . . , µg}
be a canonical basis of H1(C, Z). Throughout this paper, a topological 1-cycle
and a class in H1(C, Z) determined by the cycle are not distinguished for the
sake of simplicity.

The period matrix Π(C) of the curve C is defined as follows:

πj =




∫
λj

ω1∫
λj

ω2

...∫
λj

ωg


 πg+j =




∫
µj

ω1∫
µj

ω2

...∫
µj

ωg


 (j = 1 . . . g)

Π(C) =
(
π1 π2 . . . π2g

)
.

The Jacobian variety J(C) of the curve C is isomorphic to Cg/Λ(Π(C)),
where Λ(Π(C)) is the lattice in Cg generated by 2g row vectors of Π(C).

Let M =
(
M1 M2

)
be a g×2g matrix. Assuming that M2 is invertible,

we have M−1
2 M =

(
M−1

2 M1 E
)
, where E is the unit matrix. The complex

tori Cg/Λ(M) and Cg/Λ(M−1
2 M) are isomorphic. The matrix

(
M−1

2 M1 E
)

is called the normalised form of the matrix M .
Since we use a canonical basis of H1(C, Z) to define the period matrix, the

period matrix Π(C) =
(
P1 P2

)
of the curve C can always be normalised. Let(

Z E
)

be the normalised form of Π(C). It is known that Z is a symmetric
matrix and its imaginary part Im(Z) is positive definite. A period matrix of
this form is called a normalised period matrix.

Assume that C has an automorphism ϕ. It induces an automorphism ϕ̂
of H1(C, Z) and ϕ̂ maps a canonical basis to a canonical basis. A symplectic
matrix expression Mϕ ∈ Sp(2g, Z) of this action is given by

ϕ̂(λ1, λ2, . . . , µg−1, µg) = (λ1, λ2, . . . , µg−1, µg)Mϕ.

If Π′(C) is the period matrix of C with respect to the canonical basis
{ϕ̂(λ1), . . . , ϕ̂(λg), ϕ̂(µ1), . . . , ϕ̂(µg)}, then Π′(C) = Π(C)Mϕ. Let

(
Z E

)
be

the normalised form of Π(C), and
(
Z′ E

)
be the normalised form of Π′(C),

then Z = Z ′ and this gives a following relation:

Z = Z ′ = (αZ + β)(γZ + δ)−1,

where

Mϕ =
t(

α β
γ δ

)
.
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Thus Z is a fixed point of the action of Mϕ on Sg given by

Mϕ(T ) = (αT + β)(γT + δ)−1,

where Sg is the Siegel upper half plane of degree g, the space of symmetric
matrices of which imaginary parts are positive definite.

1.3. Case of genus 2
Consider the hyperelliptic curve C of genus 2 defined by

C : y2 = (x3 − a3)(x3 − a−3).

The curve C admits the following three automorphisms:

ϕ1 :

{
x �→ ωx

y → y

ϕ2 :

{
x �→ 1/x

y → y/x2

ι :

{
x → x

y �→ −y

(ω = e
2πi
3 ).

Let us regard C as a two-sheeted covering over x-plane P1. Then we may
choose a canonical base λ1, λ2, µ1, µ2 as in Fig. 1. Let ϕ̂1 be the map on

Figure 1.
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H1(C, Z) induced by ϕ1, then

ϕ̂1(λ1) = −λ1 + λ2

ϕ̂1(λ2) = −λ1

ϕ̂1(µ1) = µ2

ϕ̂1(µ2) = −µ1 − µ2.

Thus the symplectic matrix corresponding to ϕ̂1 is given as follows:

ϕ̂1(λ1, λ2, µ1, µ2) = (λ1, λ2, µ1, µ2)

t

−1 −1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 −1


 .

If Π(C) =
(
Z E

)
is the normalised period matrix of C, then Z is a fixed

point of the action of the above matrix;

Z =
(−1 1
−1 0

)
Z

(
0 1
−1 −1

)−1

.

Solving the above equation, we get

Z =
(

2z z
z 2z

)
.

Here z depends on the parameter a. Put

A =




1 0 0 0
1 1 0 0
0 0 1 1
0 0 1 2


 .

The matrix A is an element of SL(4, Z). Multiplying the period matrix from
right by A (this corresponds to the non-symplectic change of a homology basis),
we have (

Z E
)
A =

(
3z z 1 1
3z 2z 1 2

)
and then normalising this, that is, multiplying this from left by the inverse
matrix of the latter half of this matrix (this corresponds to the change of a
basis of 1-forms), we have(

1 1
1 2

)−1 (
Z E

)
A =

(
3z 0 1 0
0 z 0 1

)
.

The lattice Λ1 generated by the first and third rows of the above matrix and
the lattice Λ2 generated by the second and fourth rows are linearly independent
in C2. This means

J(C) ∼= C2/Λ(Π(C))
∼= C/Λ1 × C/Λ2
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and we see the Jacobian variety of C splits into a product of two elliptic curves.

1.4. Complex multiplication
Let E be an elliptic curve. Assume that an n-dimension complex torus T

is isogenous to En, n-th product of E. It is known that the following result
holds (see [6]).

Theorem 1.1. If E has a complex multiplication, then there exist ellip-
tic curves E1 . . . En such that T is isomorphic to a product E1 ×E2 × · · ·×En.

An immediate consequence is the following criterion.

Corollary 1.1. Let J be a Jacobian variety and Π =
(
Z E

)
be its

normalised period matrix. If every element of Z is contained in the same imag-
inary quadratic fields then J is isogenous to a product of elliptic curves.

Proof. Assume that the elements of Z are contained in Q(
√−m), then

there exists n ∈ N such that every element of nZ contains in Z(
√−m). Put

Z ′ = diag(
√−m . . .

√−m) and Π′ =
(
Z ′ E

)
. Let Λ be the lattice generated

by the row vectors of Π and Λ′ be the lattice generated by the row vectors of
Π′, then the multiplying map n : Cd → Cd (d = dim J) induces a surjective
map n̂ : Cd/Λ → Cd/Λ′. This shows that J = Cd/Λ is isogenous to the product
of elliptic curves.

For example, consider the hyperelliptic curve

C ′ : y2 = x6 − 1.

We can calculate the period matrix Π(C ′) of C ′ by the same method as
the one in the previous section.

Π(C ′) =

(
2√
3
i 1√

3
i 1 0

1√
3
i 2√

3
i 0 1

)
.

We have two proofs to show that the Jacobian variety J(C ′) of C ′ splits.

First, the period matrix has the same form
(

2z z 1 0
z 2z 0 1

)
as in previous

section and we know this type of a Jacobian variety splits. Second, every
element of Π(C ′) contains in the imaginary quadratic field Q(

√−3) and from
the above corollary we can also conclude that J(C ′) splits.

1.5. Canonical embedding of curve of genus 4
Every non-hyperelliptic curve of genus g can be canonically embedded in

Pg−1. If g = 4, we can embed a curve in P3 and the classical theory says that
the curve is the intersection of a quadratic surface (or a quadric) S1 of rank 3
or 4 and a cubic surface S2. Conversely, a smooth intersection C of a quadratic
surface and a cubic surface is a canonical curve and thus non-hyperelliptic. If



396 Ryo Nakajima

a quadratic surface is nonsingular, then it is isomorphic to P1 ×P1. Hence, the
curve C can be viewed as a curve in P1 × P1.

If the curve admits an automorphism, it induces a linear transformation on
the vector space of holomorphic 1-forms. Since the canonical embedding is an
embedding with respect to these 1-forms, every automorphism of a canonically
embedded curve is represented by a projective transformation on Pg−1. If g = 4,
an automorphism can be represented as an element of GL(4, C).

2. Curve of genus 4, case 1

2.1. Special case
Let C1 be a curve in P3 defined by

C1 :

{
X0X1 + X2X3 = 0

(X3
0 − X3

3 ) + (X3
2 − X3

1 ) = 0.

The curve C1 is a smooth intersection of the quadratic surface and the
cubic surface. Hence, it is a non-hyperelliptic curve of genus 4. The curve C1

admits the following four automorphisms: (They are written in terms of linear
transformations of four variables X0, X1, X2, X3)

P1 =




1 0 0 0
0 ω 0 0
0 0 ω 0
0 0 0 1


 , P2 =




ω 0 0 0
0 1 0 0
0 0 ω 0
0 0 0 1


 ,

P3 =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 P4 =




0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1




(ω = e−2πi/3).

The order of a group generated by the above automorphisms is 72 and ac-
cording to [8], this is the maximal possible automorphism group of the curve of
genus 4. Thus this gives the automorphism group of C1 (Aut(C1) is isomorphic
to G(9 × 8) in [8]).

The surface S : X0X1 + X2X3 = 0 is isomorphic to P1 × P1 via the map

P1 × P1 −→ S
[z0 : z1] × [w0 : w1] �→ [z1w0 : z0w1 : −z1w1 : z0w0].

Through this map, C1 is isomorphic to the curve defined by an equation

z3 =
1 + w3

1 − w3

in P1 × P1, where z = z1/z0, w = w1/w0.
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Figure 2.

The automorphisms P1, P2, P3, P4 act on (z, w) as

P ′
1 :

{
z �→ ωz

w �→ w
P ′

2 :

{
z �→ z

w �→ ωw

P ′
3 :


 z �→ 1

z
w �→ −w

P ′
4 :

{
z �→ −w

w �→ −z.

Let us consider a configuration of Fig. 2. Here we regard C1 as a three-
sheeted covering over w-plane P1. Each style (normal, dotted or broken) of
curved lines lie on a different sheet of the covering and the automorphism P1

(which corresponds to the change of sheets) maps “normal lines” to “dotted
lines”, “dotted lines” to “broken lines” and “broken lines” to “normal lines”.
For example, P1(λ3) = µ4.

The lines λj and µj (j = 1, 2, 3, 4) in Fig. 2 give a canonical basis of
H1(C, Z). Let MPk

(k = 1, 2, 3, 4) be the symplectic matrices corresponding to
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automorphisms Pk with respect to this basis. Then, we have

MP1 =

t


O

0 1 0 −1
1 0 0 0
0 0 0 1
−1 0 1 0

0 0 −1 0
0 0 0 −1
1 0 −1 0
0 1 0 −1

−E




,

MP2 =

t


−1 0 −1 0
0 −1 0 −1
1 0 0 0
0 1 0 0

O

O

0 0 −1 0
0 0 0 −1
1 0 −1 0
0 1 0 −1




,

MP3 =

t


0 1 0 1
0 0 −1 0
0 −1 0 0
1 0 1 0

0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

O

0 0 0 1
1 0 −1 0
0 −1 0 1
1 0 0 0




,

MP4 =

t


1 0 0 0 0 0 0 0
0 0 0 1 −1 0 1 0
−1 0 −1 0 0 −1 0 0
0 0 0 0 1 0 −1 0
0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 1




.

The fixed point matrices of the actions of MP1 , MP2 and MP4 in the Siegel
upper half plane can be written as

Z =




−2a′ b′ − 1 a′ b′

b′ − 1 −2a′ 1 − 2b′ a′

a′ 1 − 2b′ −2a′ b′ − 1
b′ a′ b′ − 1 −2a′


 ,
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where a′ and b′ are indeterminants. Since Z is also fixed by MP3 , this gives the
relation a′2 = b′2 − b′.

If we choose another canonical basis

λ̄1 = λ1 − µ4, µ̄1 = µ1,

λ̄2 = λ2 + µ3, µ̄2 = µ2,

λ̄3 = λ3 + µ2, µ̄3 = µ3,

λ̄4 = λ4 − µ1, µ̄4 = µ4,

and rewrite MPk
with respect to the new basis, then the fixed point matrices

of the actions of these rewritten symplectic matrices can be written in a form

Z ′ =



−2a b a b

b −2a −2b a
a −2b −2a b
b a b −2a


 , a2 = b2 + b,

with a = a′, b = b′ − 1. Thus we get the one-parameter family of matrices fixed
by the matrices MP1 , MP2 , MP3 and MP4 and the period matrix Π(C1) can be
written as

Π(C1) =
(
Z ′ E

)
.

Choosing a matrix

A =




1 0 0 0 0 0 0 0
0 −2 0 1 0 0 0 0
−1 0 1 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 −1 0 1 0
0 0 0 0 0 1 0 −2
0 0 0 0 1 0 −2 0
0 0 0 0 0 0 0 1




∈ SL(8, Z)

and multiplying the period matrix from right by A, we get

Π(C1)A =



−3a −3b a b −1 0 1 0
3b 3a −2b −2a 0 1 0 −2
3a 3b −2a −2b 1 0 −2 0
0 0 b a 0 0 0 1


 .

By normalising this matrix, we get


3a 3b
3b 3a

O
1

1

O
a b
b a

1
1


 .
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The matrix shows that the Jacobian variety J(C1) of C1 is isomorphic to
the product of two 2-dimensional complex tori T1 and T2, where

T1 = C2/

(
the lattice generated by N1 =

(
3a 3b 1 0
3b 3a 0 1

))

T2 = C2/

(
the lattice generated by N2 =

(
a b 1 0
b a 0 1

))
.

Furthermore, T1 and T2 also split. To show this, take

A1 =




1 1 0 1
1 1 0 2
0 1 1 0
0 2 1 0


 , A2 =




1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1


 ∈ SL(4, Z)

and multiply N1 by A1 and N2 by A2 from right and then normalise the re-
sulting matrices. Then we get(

3a + 3b 0 1 0
0 a+b

3b 0 1

)
,

(
b
a 0 1 0
0 a + b 0 1

)
.

Here we use the equality a2 = b2 + b. Four values 3a + 3b, a + b/3b, a + b, b/a
appearing in above matrices are related by

a + b =
− ( b

a

)
(

b
a

)− 1

a + b

3b
=

(
b
a

)
+ 1

3
(

b
a

) .

These relations show four elliptic curves with period matrices
(
3a + 3b 1

)
,(

a + b/3b 1
)
,
(
a + b 1

)
,
(
b/a 1

)
are isogenous.

Summarising these results, we obtain

Theorem 2.1. The Jacobian variety J(C1) of the curve C1 is isomor-
phic to the product of four elliptic curves, and they are isogenous to one another.

However, we cannot say which values a and b corresponds to the Jacobian
variety J(C1) by this calculation. This is because the dimension of the moduli
space of 4-dimensional P.P.A.V’s. is larger than the dimension of the moduli
space of curves of genus 4.

2.2. One-parameter family case
Let {C1(t)} be a one-parameter family of curves of genus 4 in P3 defined

by

C1(t) :

{
X0X1 + X2X3 = 0

(X3
0 − X3

3 ) + (tX3
2 − X3

1 ) = 0 (t �= −1)
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In P1 × P1, the family can be defined by

z3 =
1 + w3

1 − tw3
.

Note that the curve C1 in the previous subsection is C1(1).
Every member of this family admits automorphisms P1, P2, P4 defined in

the previous subsection. The same argument as in the previous subsection
shows that the period matrix of C1(t) takes the form


−2a b a b 1

b −2a −2b a 1
a −2b −2a b 1
b a b −2a 1




and the Jacobian variety is isomorphic to the product of two 2-dimensional
complex tori.

2.3. Higher genera case
We extend the result to the one for higher genera. Let {Cm

1 (t)} be a one-
parameter family of curves of genus (2m − 2) in P1 × P1 given by an equation

z3 =
1 + wm

1 − twm
(t �= −1, m > 1).

Every member of this family admits automorphisms

Pm,1 :

{
z �→ ωz

w �→ w

Pm,2 :

{
z �→ z

w �→ ζmw,

where ω = e2πi/3, ζm = e2πi/m.

Proposition 2.1. Each member of {Cm
1 (t)} is non-hyperelliptic for

m > 4.

Proof. If Cm
1 (t) is hyperelliptic, then Cm

1 (t) can be realised as a two-
sheeted covering over P1 with (4m− 2) ramification points and every automor-
phism of Cm

1 (t) induces the automorphism of P1.
If 3 does not divide the number m then (Pm,1Pm,2) generates a cyclic

subgroup of Aut(Cm
1 (t)) of order 3m. Let x be local coordinates of P1 and t be

a map induced by (Pm,1Pm,2) on P1. Every automorphism on P1 is a projective
linear transformation and the automorphism t can be written as t : x �→ ax+b

cx+d .

Since t3m = 1, the matrix Mt =
(

a b
c d

)
can be diagonalised. Thus by choosing

a suitable local coordinates x′, t can be written as t : x′ �→ ζk
3mx′ for some
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Figure 3.

k. Since the fixed points of t are 0 and ∞, the number of fixed points of
(Pm,1Pm,2)m is at most 4. However, (Pm,1Pm,2)m = Pm,1 or P 2

m,1 fixes 2m
points. This is a contradiction.

If 3 divides the number m then Aut(Cm
1 (t)) has a subgroup isomorphic to

Z/3Z×Z/3Z. But Aut(P1) never has a subgroup isomorphic to Z/3Z×Z/3Z.
This is a contradiction.

Let us consider a configuration of Fig. 3. The meaning of normal, dotted
and broken lines are the same as in Fig. 2

Define

λj = αj ,

λ(m−1)+j = Pm,1(αj),

µj = βj ,

µ(m−1)+j = (Pm,1)2(βj)
(j = 1, . . . , m − 1).

Then λ1, . . . , λ2m−2, µ1, . . . , µ2m−2 form a canonical basis. The symplectic ma-
trices corresponding to the automorphisms with respect to this basis are given
by

MPm,1 =

t


O Em−1

−Em−1 −Em−1
O

O
−Em−1 Em−1

−Em−1 O


,

MPm,2 =

t


Q1 O
O Q1

O

O
Q2 O
O Q2
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where

Q1 =




−1 1 0 . . . 0
−1 0 1 . . . 0
...

. . .
−1 0 0 . . . 1
−1 0 0 . . . 0


 , Q2 =




0 1 0 . . . 0
0 0 1 . . . 0
...

. . .
0 0 0 . . . 1
−1 −1 −1 . . . −1




Em−1 = (unit matrix of degree m − 1).

Let Z = (zj,k) be a fixed point matrix of the actions of automorphisms
MPm,1 and MPm,2 . The matrix Z has the following properties:

zj,k = zk,j , zj,k = z(2m−2)+1−k,(2m−2)+1−j .

Choose a matrix

S =




Em−1 Em−1

Q3 + Em−1 Q3
O

O
Em−1 − Q3 Q3

−Em−1 Em−1


 ,

where

Q3 =




1
1

. . .
1


 .

Multiplying Π =
(
Z E2m−2

)
from left by S and then normalising it, we get

the matrix of the form (
Z1 O Em−1 O
O Z2 O Em−1

)
.

Hence the Jacobian variety J(Cm
1 (t)) splits.

Theorem 2.2. The Jacobian variety of Cm
1 (t) splits into a product of

two (m − 1)-dimensional complex tori.

3. Curve of genus 4, case 2

3.1. Special case
Let C2 be a curve of genus 4 in P3 defined by

C2 :

{
X2

0 + X2
1 + X2

2 = 0

X0X1X2 − X3
3 = 0.
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The curve C2 admits the following three automorphisms: (They are written
in terms of linear transformations of four variables X0, X1, X2, X3)

P1 =




ω2 0 0 0
0 ω2 0 0
0 0 ω2 0
0 0 0 1


 , P2 =




0 1 0 0
−1 0 0 0
0 0 −1 0
0 0 0 1


 ,

P3 =




0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1


 (ω = e−2πi/3).

The automorphism group Aut(C2) is generated by the above three automor-
phisms and its order is 72 (Aut(C2) is isomorphic to G(8 × 9) in [8] and this
is the maximal possible automorphism group).

Put z = (X1 − iX2)/X3. The mapping z : C2 → P1 is three-to-one and
it ramifies at the points z = 0,∞, 1,−1, i,−i. If we put w = X3/X0, we can
embed C2 into P1 × P1 by (z, w). The image of this map is a curve defined by

w3 =
z4 − 1
4z2

i.

This is a singular curve.
The automorphisms P1, P2 and P3 act on (z, w) as follows:

P1 :

{
z �→ z

w �→ ωw

P2 :




z �→ z − 1
z + 1

w �→ 2zw

z2 − 1

P3 :




z �→ z − 1
z + 1

i

w �→ 2zw

z2 − 1

Let us consider a configuration of Fig. 4. In Fig. 4, we regard C2 as a
three-sheeted covering over z-plane P1. Cycles αj , βj(j = 1, 2, 3) in Fig. 4 are
taken so as to pass through the same point (z, w) = (1/2, 3

√
15/16i).

Define

λ1 = α1 + (P1)2(β2),

λ2 = α1 + P1(α2) + (P1)2(β2),

λ3 = (P1)2(β2),

λ4 = α3 + (P1)2(β2),

µ1 = α2,

µ2 = β1,

µ3 = P1(α3),
µ4 = β3.
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Figure 4.
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Then λj and µj (j = 1, 2, 3, 4) form a canonical basis. With respect to this
basis, the symplectic matrix corresponding to P3 has the form

MP3 =

t


0 0 −1 0 −1 1 −1 −1
0 0 1 −1 0 0 0 0
0 0 −1 0 −1 0 −1 −1
0 0 1 0 0 0 −1 −1
0 −1 0 0 0 0 −1 −1
0 0 0 0 0 0 0 −1
1 1 0 0 0 0 0 0
−1 0 1 0 0 0 0 0




.

To simplify calculations we change the basis as follows:

λ̄1 = λ3,

λ̄2 = −λ3 + λ4,

λ̄3 = −µ1,

λ̄4 = λ2,

µ̄1 = µ1 + µ3 + µ4,

µ̄2 = µ4,

µ̄3 = λ1 − λ3,

µ̄4 = µ2.

Then the symplectic matrix corresponding to P3 with respect to this new
basis is given by

M ′
P3

=

t


−1 0 0 0 −1 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 −1 0 0




.

The matrices corresponding to the other two automorphisms are given by

M ′
P1

=

t


−1 −1 0 −1 −1 1 0 1
0 0 1 0 1 −1 0 0
−1 0 0 −1 0 0 −1 0
1 1 0 0 1 0 0 −1
1 0 −1 1 0 0 1 −1
0 1 0 0 1 −1 0 −1
−1 0 1 0 0 −1 −1 0
1 0 0 1 1 0 1 −1




,
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M ′
P2

=

t


1 0 −1 1 1 0 1 −1
−1 0 1 0 0 −1 0 0
0 0 0 1 0 0 0 −1
−1 −1 0 −1 −1 1 0 1
−1 0 0 −1 −1 0 −1 1
−1 0 0 0 −1 0 0 0
0 0 1 1 0 −1 0 0
−1 −1 0 −1 −1 0 0 1




.

Let us determine the period matrix of the curve C2. Calculating the fixed
point matrices under the actions of the matrices M ′

P1
, M ′

P2
, M ′

P3
and M ′

P4
, we

get four symmetric matrices:

Z1(ζ) =




ζ −1 ζ −ζ − 1
−1 −ζ 0 1
ζ 0 0 −ζ − 1

−ζ − 1 1 −ζ − 1 1


 ,

Z2(ζ) =




ζ ζ
3ζ+1

ζ2

3ζ+1
1

3ζ+1
ζ

3ζ+1
38
49 + 36

49ζ 15
49 − 9

49ζ 49ζ+196
147ζ+392

ζ2

3ζ+1
15
49 − 9

49ζ 294ζ+147
147ζ+392

−49ζ−147
147ζ+392

1
3ζ+1

49ζ+196
147ζ+392

−49ζ−147
147ζ+392

343ζ+196
147ζ+392


 ,

where ζ = e−2πi/3 or e−4πi/3.
By changing the canonical basis by

A =




0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 1 0 1 0 0
0 1 0 −1 1 0 0 0
0 0 0 1 0 0 1 0
−1 1 1 −1 0 0 0 1




∈ Sp(8, Z),

the matrix Z1(ζ) is changed into

Z ′
1(ζ) =



−ζ 0 0 0
0 ζ ζ −ζ
0 ζ 0 −ζ
0 −ζ −ζ 0


 .

Thus we see that the principally polarised abelian variety C4/Λ(
(
Z ′

1(ζ) E
)
)

is isomorphic to a product of an elliptic curve (as a 1-dimensional P.P.A.V.)
and a 3-dimensional P.P.A.V. Therefore

(
Z1(ζ) E

)
cannot be a period matrix

of the Jacobian variety and we conclude that the period matrix of C2 has a
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form
(
Z2(ζ) E

)
. On the other hand, Im(Z2(ζ)) is positive definite if and only

if ζ = e−2πi/3; hence the period matrix is
(
Z2(e−2πi/3) E

)
.

Since every element of the period matrix is contained in the imaginary
quadratic field Q(

√−3), by Corollary1.1, we obtain the following theorem.

Theorem 3.1. The Jacobian variety J(C2) of C2 is isomorphic to the
product of four elliptic curves.

3.2. One-parameter family case
Let {C2(t)} be a one-parameter family of curves defined by

C2(t) :

{
X2

0 + X2
1 + X2

2 − tX2
3 = 0

X0X1X2 − X3
3 = 0

(t3 �= −27),

in P3.
The curve C2 in the previous subsection is C2(0). Each member of this

family admits automorphisms P2 and P3 defined in the previous subsection.
Put SX0,X1 = (P2)2. In terms of linear transformations of four variables

X0, X1, X2, X3, the automorphism SX0,X1 can be written as

SX0,X1 =



−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1


 .

The automorphism SX0,X1 has two fixed points [1 : i : 0 : 0], [1 : −i : 0 :
0]. Thus by the Hurwitz formula, the genus of the quotient curve C ′

2(t) =
C2(t)/〈SX0,X1〉 is 2. The inhomogeneous equation of this curve is given by

C ′
2(t) : y2 = x6 − t2

4
x4 +

t

2
x2 − 1

4
.

Indeed, define the map πX0,X1 : C2(t) → C ′
2(t) by


x =

X0X1

X2
3

y =
X2

0X2
1 (X2

0 − X2
1 )

X6
3

;

then this is a two-to-one map and each fibre consists of an orbit of SX0,X1 .
The curve C ′

2(t) has natural maps σ′(t) and σ′′(t) to two elliptic curves

E′(t) : q′2 = p′3 − t2

4
p′2 +

t

2
p′ − 1

4
,

E′′(t) : q′′2 = p′′4 − t2

4
p′′3 +

t

2
p′′2 − 1

4
p′′,

defined by

σ′(t) :

{
p′ = x2

q′ = y
σ′′(t) :

{
p′′ = x2

q′′ = xy.
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Let ω′ and ω′′ be holomorphic 1-forms on the elliptic curves E′(t) and
E′′(t) and let ω′

X0,X1
and ω′′

X0,X1
be holomorphic 1-forms on C2(t) defined by

ω′
X0,X1

= (σ′(t) · πX0,X1)
∗(ω′),

ω′′
X0,X1

= (σ′′(t) · πX0,X1)
∗(ω′′).

If we use the map πX1,X2 : C2(t) → C ′
2(t) defined by


x =

X1X2

X2
3

y =
X2

1X2
2 (X2

1 − X2
2 )

X6
3

instead of πX0,X1 , we can define ω′
X1,X2

, ω′′
X1,X2

similarly and ω′
X2,X0

, ω′′
X2,X0

as
well. Observing the zeros of the forms, we know that ω′

X0,X1
, ω′

X1,X2
, ω′

X2,X0
are

the same form up to constant multiplication and ω′′
X0,X1

, ω′′
X1,X2

, ω′′
X2,X0

, ω′
X0,X1

form a basis of holomorphic 1-forms on C2(t). Thus we obtain the following
theorem.

Theorem 3.2. The Jacobian variety J(C2(t)) of the curve C2(t) is
isogenous to the product of four elliptic curves.

If t = 0, two curves

E′(0) : q′2 = p′3 − 1
4
,

E′′(0) : q′′2 = p′′4 − 1
4
p′′

are isomorphic and E′(0) has a complex multiplication; hence, from Theorem
1.1 we infer the result in the previous subsection again.

4. Curve of genus 4, case 3

4.1. One-parameter family case
Let {H(t)} be a one-parameter family of hyperelliptic curves defined by

an equation

H(t) : y2 = (x5 − t5)(x5 − t−5) (t �= 0, 1,−1).

Each member of the family admits the following three automorphisms:

P ′
1 :

{
x �→ ζ5x

y �→ y
(ζ5 = e2πi/5)

P ′
2 :

{
x �→ 1/x

y �→ y/x5

ι :

{
x �→ x

y �→ −y.
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Let P̃ ′
1, P̃

′
2 and ι̃ be the linear transformations on the vector space of holo-

morphic 1-forms on the curve H(t) induced by the automorphisms P ′
1, P

′
2 and

ι respectively. If we choose

{
dx

y
,
xdx

y
,
x2dx

y
,
x3dx

y

}

as a basis of holomorphic 1-forms, the matrix expressions of P̃1, P̃2 and ι̃ are
given by

P̃ ′
1 :




ζ5 0 0 0
0 ζ2

5 0 0
0 0 ζ3

5 0
0 0 0 ζ4

5


 , P̃ ′

2 :




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 ,

ι̃ :



−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 .

It is known that for every t, the Jacobian variety J(H(t)) of the curve H(t)
splits into the product of two 2-dimensional complex tori (See [1]).

In this subsection, we consider “non-hyperelliptic variant” of H(t), that is,
a non-hyperelliptic curve of which period matrix is fixed by the same symplectic
matrices MP ′

1
and MP ′

2
as to the period matrix of H(t) except the symplectic

matrix Mι corresponding to hyperelliptic involution. Let {C3(t)} be a one-
parameter family of curves defined by the homogeneous equations

C3(t) :

{
X0X3 + X1X2 = 0

(X2
0X2 + X2

3X1) − t(X2
1X0 + X2

2X3) = 0
(t �= 0).

Each member of C3(t) admits the following two automorphisms:

P1 :




ζ5 0 0 0
0 ζ2

5 0 0
0 0 ζ3

5 0
0 0 0 ζ4

5


 , P2 :




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 .

We shall show that every member of this family also has a splitting Jaco-
bian variety.

Put z = X2
1X2/X3

0 . Then z : C3(t) → P1 is a three-to-one map and it
ramifies at the points z = 0,∞, t,−1/t. If we take w = X2/X0, we can embed
C3(t) into P1 × P1 by (z, w). The image of this map is the curve defined by

w5 =
tz2 − z3

1 + tz
.
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Figure 5.

The automorphisms P1 and P2 act on (z, w) as follows:

P1 :

{
z �→ z

w �→ ζ5w

P2 :

{
z �→ −1/z

w �→ −1/w.

Let us consider a configuration in Fig. 5. Here we regard C3(t) as a three-
sheeted covering over z-plane P1. Cycles α0, β0 in Fig. 5 are passing through
the point (z, w) = (1/2, γ), where γ is one of the numbers that satisfy the
equation γ5 = (2t − 1)/(4t + 8). We denote (P1)j(α0) by αj and (P1)j(β0) by
βj(j = 0, 1, 2, 3, 4).

Define

λ1 = α0,

λ2 = α0 + α1,

λ3 = α0 + α1 + α2,

λ4 = α0 + α1 + α2 + α3,

µ1 = β0 + α1 + α2,

µ2 = β1 + α2 + α3,

µ3 = β2 + α3 + α4,

µ4 = β3 + α4 + α0,

then λj and µj (j = 1, 2, 3, 4) form a canonical basis. With respect to this
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basis, the symplectic matrices corresponding to P1, P2 are given by

MP1 =

t


−1 1 0 0
−1 0 1 0
−1 0 0 1
−1 0 0 0

O

O

0 1 0 0
0 0 1 0
0 0 0 1
−1 −1 −1 −1




MP2 =

t


−1 1 0 0
0 1 0 0
0 1 0 −1
0 1 −1 0

O

O

−1 0 0 0
1 1 1 1
0 0 0 −1
0 0 −1 0




.

The fixed point matrices of the actions of MP1 and MP2 in the Siegel upper
half plane are given by

Z =




2b a b 2b − a
a 2a 2a − b b
b 2a − b 2a a

2b − a b a 2b


 ,

where a and b are indeterminants. The period matrix Π(C3(t)) of C3(t) can be
written as

(
Z E

)
.

Choose a matrix

A =




0 0 0 1 0 0 0 0
1 1 1 0 0 0 0 0
1 0 1 0 0 0 0 0
−1 0 0 1 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 2 0 0 1
0 0 0 0 2 −1 0 1
0 0 0 0 0 1 1 0




∈ SL(8, Z)

and multiply Π(C3(t)) by A from right. Then we get

Π(C3(t))A =




2a − b a a + b 4b − a 1 0 1 0
4a − 2b 2a 4a − b a + b 2 0 0 1
3a − b 2a − b 4a − b a + b 2 −1 0 1
a − b b a + b 4b − a 0 1 1 0


 .
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Normalise this matrix we get


2a − b a
a − b b

O
1

1

O
4a − b a + b
a + b 4b − a

1
1


 .

Hence, the Jacobian variety J(C3(t)) of C3(t) is isomorphic to a product
of two 2-dimensional complex tori T1(t) and T2(t), where

T1(t) = C2/

(
the lattice generated by

(
2a − b a 1 0
a − b b 0 1

))

T2(t) = C2/

(
the lattice generated by

(
4a − b a + b 1 0
a + b 4b − a 0 1

))
.

Thus we obtain the following theorem.

Theorem 4.1. The Jacobian variety of C3(t) splits into the product of
two 2-dimensional complex tori.

4.2. Bring’s curve
The curve C3 = C3(1) is called Bring’s curve. The automorphism group

of Bring’s curve is isomorphic to S5, the symmetric group of 5 letters. It is
known that the Jacobian variety of the Bring’s curve splits into a product of
four mutually isogenous elliptic curves (see [4], [7]). We can show this fact by
calculating the period matrix by using an additional automorphism.

The curve C3 admits the automorphism

P3 :




0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0




in addition to P1 and P2. The symplectic matrix corresponding to P3 with
respect to the canonical basis introduced in the previous subsection is

MP3 =

t


−1 −1 1 1 −1 0 0 1
0 −1 0 0 0 0 −1 1
−1 0 1 0 1 1 1 2
−1 −1 0 1 0 −1 0 1
0 0 0 0 1 0 1 1
0 0 0 0 0 −1 0 −1
0 0 0 0 −1 0 0 −1
0 0 0 0 −1 0 −1 0




.

In the previous subsection, we calculate the fixed point matrix Z of actions
of the matrices MP1 and MP2 and show that the Jacobian variety J(C3(t)) splits
into a product of two 2-dimensional complex tori T1(t) and T2(t).
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For the curve C3, the matrix Z is also fixed by MP3 . This gives the new
relation 2b − 3a = 1. Thus we get the one-parameter family of matrices fixed
by MP1 , MP2 and MP3 .

Since 2b−3a = 1, the Jacobian variety J(C3) of Bring’s curve is isomorphic
to a product of tori T ′

1 and T ′
2, where

T ′
1 = C2/

(
the lattice generated by N ′

1 =
(

1
2a − 1

2 a 1 0
− 1

2a − 1
2

3
2a + 1

2 0 1

))

T ′
2 = C2/

(
the lattice generated by N ′

2 =
(

5
2a − 1

2
5
2a + 1

2 1 0
5
2a + 1

2 5a + 2 0 1

))
.

Choose

A1 =




1 −2 0 0
0 1 0 0
1 −1 1 0
0 1 −1 1


 , A2 =




1 −1 0 0
0 1 0 0
3 −1 1 0
2 1 1 1


 ∈ SL(4, Z)

and multiply N ′
1 by A1 and N ′

2 by A2 from right and then normalise the re-
sulting matrices. Then we get(

τ 0 1 0
0 5τ 0 1

)
,

(
5τ 0 1 0
0 5τ 0 1

)
,

where τ = 1
2a + 1

2 . Thus we obtain the following theorem.

Theorem 4.2. The Jacobian variety J(C3) of Bring’s curve splits into
the product of four elliptic curves Eτ × E5τ × E5τ × E5τ .

This theorem is a special case of Theorem 4.1 in [4].
By this calculation we cannot say which value a corresponds to the period

matrix of C3. In [7], the explicit period matrix is given by using Schottky’s
relation.
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