On splitting of certain Jacobian varieties

By
Ryo Nakajima

Abstract

We give three examples of non-hyperelliptic curves of genus 4 whose Jacobian varieties are isomorphic to products of four elliptic curves. Two of the examples belong to one-parameter families of curves whose Jacobian varieties are isomorphic to products of two 2-dimensional complex tori. By constructing analogous families, we prove that for each $n>1$, there is a one-parameter family of non-hyperelliptic curves of genus $2 n$ whose Jacobian varieties are isomorphic to products of two n-dimensional tori.

1. Introduction

1.1. Introduction

The Jacobian variety of a closed Riemann surface, or a complete algebraic curve over \mathbb{C} (in this paper, we call a closed Riemann surface simply a curve) is the moduli space of line bundles of degree 0 on the curve and it has a structure of a principally polarised Abelian variety (hereafter P.P.A.V.) The Jacobian variety is never isomorphic to a non-trivial product of P.P.A.V's of lower dimension as a P.P.A.V; however, it can be isomorphic to the product of complex tori disregarding the polarisation. Such a Jacobian variety is said to be splitting.

For curves of genus 2, Hayashida and Nishi [5] found many examples of splitting Jacobian varieties by using number theory. Since then, the case of genus 2 is well studied. For curves of genus 3, Klein's curve is known to have a splitting Jacobian variety (see [2]) and for curves of genus 4, Bring's curve is known to have a splitting Jacobian variety (see [7]). Ekedahl and Serre [3] gave examples of splitting Jacobian varieties of curves with various genera and Earle [1] gave one-parameter families of hyperelliptic curves with splitting Jacobian varieties of arbitrary even genus.

In this paper, we shall give certain new examples of splitting Jacobian varieties. In Sections 2, 3 and 4, examples of non-hyperelliptic curves of genus 4, of which Jacobian varieties are isomorphic to products of four elliptic curves, will be given. In Sections 2 and 4, we shall also give one-parameter families

[^0]of curves, of which Jacobian varieties are isomorphic to products of two 2dimensional complex tori and furthermore, in Section 2, we shall show that a similar family of curves exists for arbitrary even genus.

1.2. Automorphism and period matrix

Let C be a curve (a closed Riemann surface), and $g>0$ be its genus, $\left\{\omega_{1}, \ldots, \omega_{g}\right\}$ be a basis of holomorphic 1-forms on C, and $\left\{\lambda_{1}, \ldots, \lambda_{g}, \mu_{1}, \ldots, \mu_{g}\right\}$ be a canonical basis of $H_{1}(C, \mathbb{Z})$. Throughout this paper, a topological 1-cycle and a class in $H_{1}(C, \mathbb{Z})$ determined by the cycle are not distinguished for the sake of simplicity.

The period matrix $\Pi(C)$ of the curve C is defined as follows:

$$
\begin{gathered}
\pi_{j}=\left(\begin{array}{c}
\int_{\lambda_{j}} \omega_{1} \\
\int_{\lambda_{j}} \omega_{2} \\
\vdots \\
\int_{\lambda_{j}} \omega_{g}
\end{array}\right) \quad \pi_{g+j}=\left(\begin{array}{c}
\int_{\mu_{j}} \omega_{1} \\
\int_{\mu_{j}} \omega_{2} \\
\vdots \\
\int_{\mu_{j}} \omega_{g}
\end{array}\right) \quad(j=1 \ldots g) \\
\Pi(C)=\left(\begin{array}{llll}
\pi_{1} & \pi_{2} & \ldots & \pi_{2 g}
\end{array}\right) .
\end{gathered}
$$

The Jacobian variety $J(C)$ of the curve C is isomorphic to $\mathbb{C}^{g} / \Lambda(\Pi(C))$, where $\Lambda(\Pi(C))$ is the lattice in \mathbb{C}^{g} generated by $2 g$ row vectors of $\Pi(C)$.

Let $M=\left(\begin{array}{ll}M_{1} & M_{2}\end{array}\right)$ be a $g \times 2 g$ matrix. Assuming that M_{2} is invertible, we have $M_{2}^{-1} M=\left(\begin{array}{ll}M_{2}^{-1} M_{1} & E\end{array}\right)$, where E is the unit matrix. The complex tori $\mathbb{C}^{g} / \Lambda(M)$ and $\mathbb{C}^{g} / \Lambda\left(M_{2}^{-1} M\right)$ are isomorphic. The matrix $\left(\begin{array}{ll}M_{2}^{-1} M_{1} & E\end{array}\right)$ is called the normalised form of the matrix M.

Since we use a canonical basis of $H_{1}(C, \mathbb{Z})$ to define the period matrix, the period matrix $\Pi(C)=\left(\begin{array}{ll}P_{1} & P_{2}\end{array}\right)$ of the curve C can always be normalised. Let $\left(\begin{array}{ll}Z & E\end{array}\right)$ be the normalised form of $\Pi(C)$. It is known that Z is a symmetric matrix and its imaginary part $\operatorname{Im}(Z)$ is positive definite. A period matrix of this form is called a normalised period matrix.

Assume that C has an automorphism φ. It induces an automorphism $\hat{\varphi}$ of $H^{1}(C, \mathbb{Z})$ and $\hat{\varphi}$ maps a canonical basis to a canonical basis. A symplectic matrix expression $M_{\varphi} \in S p(2 g, \mathbb{Z})$ of this action is given by

$$
\hat{\varphi}\left(\lambda_{1}, \lambda_{2}, \ldots, \mu_{g-1}, \mu_{g}\right)=\left(\lambda_{1}, \lambda_{2}, \ldots, \mu_{g-1}, \mu_{g}\right) M_{\varphi}
$$

If $\Pi^{\prime}(C)$ is the period matrix of C with respect to the canonical basis $\left\{\hat{\varphi}\left(\lambda_{1}\right), \ldots, \hat{\varphi}\left(\lambda_{g}\right), \hat{\varphi}\left(\mu_{1}\right), \ldots, \hat{\varphi}\left(\mu_{g}\right)\right\}$, then $\Pi^{\prime}(C)=\Pi(C) M_{\varphi}$. Let $\left(\begin{array}{ll}Z & E\end{array}\right)$ be the normalised form of $\Pi(C)$, and $\left(\begin{array}{ll}Z^{\prime} & E\end{array}\right)$ be the normalised form of $\Pi^{\prime}(C)$, then $Z=Z^{\prime}$ and this gives a following relation:

$$
Z=Z^{\prime}=(\alpha Z+\beta)(\gamma Z+\delta)^{-1}
$$

where

$$
M_{\varphi}=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)
$$

Thus Z is a fixed point of the action of M_{φ} on \mathfrak{S}_{g} given by

$$
M_{\varphi}(T)=(\alpha T+\beta)(\gamma T+\delta)^{-1}
$$

where \mathfrak{S}_{g} is the Siegel upper half plane of degree g, the space of symmetric matrices of which imaginary parts are positive definite.

1.3. Case of genus 2

Consider the hyperelliptic curve C of genus 2 defined by

$$
C: y^{2}=\left(x^{3}-a^{3}\right)\left(x^{3}-a^{-3}\right)
$$

The curve C admits the following three automorphisms:

$$
\begin{aligned}
& \varphi_{1}:\left\{\begin{array}{l}
x \mapsto \omega x \\
y \rightarrow y
\end{array}\right. \\
& \varphi_{2}:\left\{\begin{array}{l}
x \mapsto 1 / x \\
y \rightarrow y / x^{2}
\end{array} \quad\left(\omega=e^{\frac{2 \pi i}{3}}\right) .\right. \\
& \iota:\left\{\begin{array}{l}
x \rightarrow x \\
y \mapsto-y
\end{array}\right.
\end{aligned}
$$

Let us regard C as a two-sheeted covering over x-plane \mathbb{P}^{1}. Then we may choose a canonical base $\lambda_{1}, \lambda_{2}, \mu_{1}, \mu_{2}$ as in Fig. 1. Let $\hat{\varphi}_{1}$ be the map on

Figure 1.
$H^{1}(C, \mathbb{Z})$ induced by φ_{1}, then

$$
\begin{aligned}
& \hat{\varphi}_{1}\left(\lambda_{1}\right)=-\lambda_{1}+\lambda_{2} \\
& \hat{\varphi}_{1}\left(\lambda_{2}\right)=-\lambda_{1} \\
& \hat{\varphi}_{1}\left(\mu_{1}\right)=\mu_{2} \\
& \hat{\varphi}_{1}\left(\mu_{2}\right)=-\mu_{1}-\mu_{2} .
\end{aligned}
$$

Thus the symplectic matrix corresponding to $\hat{\varphi}_{1}$ is given as follows:

$$
\hat{\varphi}_{1}\left(\lambda_{1}, \lambda_{2}, \mu_{1}, \mu_{2}\right)=\left(\lambda_{1}, \lambda_{2}, \mu_{1}, \mu_{2}\right)\left(\begin{array}{cccc}
-1 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & -1
\end{array}\right) .
$$

If $\Pi(C)=\left(\begin{array}{ll}Z & E\end{array}\right)$ is the normalised period matrix of C, then Z is a fixed point of the action of the above matrix;

$$
Z=\left(\begin{array}{ll}
-1 & 1 \\
-1 & 0
\end{array}\right) Z\left(\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right)^{-1}
$$

Solving the above equation, we get

$$
Z=\left(\begin{array}{cc}
2 z & z \\
z & 2 z
\end{array}\right)
$$

Here z depends on the parameter a. Put

$$
A=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 2
\end{array}\right)
$$

The matrix A is an element of $S L(4, \mathbb{Z})$. Multiplying the period matrix from right by A (this corresponds to the non-symplectic change of a homology basis), we have

$$
\text { E) } A=\left(\begin{array}{cccc}
3 z & z & 1 & 1 \\
3 z & 2 z & 1 & 2
\end{array}\right)
$$

and then normalising this, that is, multiplying this from left by the inverse matrix of the latter half of this matrix (this corresponds to the change of a basis of 1-forms), we have

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)^{-1}\left(\begin{array}{ll}
Z & E
\end{array}\right) A=\left(\begin{array}{cccc}
3 z & 0 & 1 & 0 \\
0 & z & 0 & 1
\end{array}\right) .
$$

The lattice Λ_{1} generated by the first and third rows of the above matrix and the lattice Λ_{2} generated by the second and fourth rows are linearly independent in \mathbb{C}^{2}. This means

$$
\begin{aligned}
J(C) & \cong \mathbb{C}^{2} / \Lambda(\Pi(C)) \\
& \cong \mathbb{C} / \Lambda_{1} \times \mathbb{C} / \Lambda_{2}
\end{aligned}
$$

and we see the Jacobian variety of C splits into a product of two elliptic curves.

1.4. Complex multiplication

Let E be an elliptic curve. Assume that an n-dimension complex torus T is isogenous to E^{n}, n-th product of E. It is known that the following result holds (see [6]).

Theorem 1.1. If E has a complex multiplication, then there exist elliptic curves $E_{1} \ldots E_{n}$ such that T is isomorphic to a product $E_{1} \times E_{2} \times \cdots \times E_{n}$.

An immediate consequence is the following criterion.
Corollary 1.1. Let J be a Jacobian variety and $\Pi=\left(\begin{array}{ll}Z & E\end{array}\right)$ be its normalised period matrix. If every element of Z is contained in the same imaginary quadratic fields then J is isogenous to a product of elliptic curves.

Proof. Assume that the elements of Z are contained in $\mathbb{Q}(\sqrt{-m})$, then there exists $n \in \mathbb{N}$ such that every element of $n Z$ contains in $\mathbb{Z}(\sqrt{-m})$. Put $Z^{\prime}=\operatorname{diag}(\sqrt{-m} \ldots \sqrt{-m})$ and $\Pi^{\prime}=\left(\begin{array}{ll}Z^{\prime} & E\end{array}\right)$. Let Λ be the lattice generated by the row vectors of Π and Λ^{\prime} be the lattice generated by the row vectors of Π^{\prime}, then the multiplying map $n: \mathbb{C}^{d} \rightarrow \mathbb{C}^{d}(d=\operatorname{dim} J)$ induces a surjective map $\hat{n}: \mathbb{C}^{d} / \Lambda \rightarrow \mathbb{C}^{d} / \Lambda^{\prime}$. This shows that $J=\mathbb{C}^{d} / \Lambda$ is isogenous to the product of elliptic curves.

For example, consider the hyperelliptic curve

$$
C^{\prime}: y^{2}=x^{6}-1
$$

We can calculate the period matrix $\Pi\left(C^{\prime}\right)$ of C^{\prime} by the same method as the one in the previous section.

$$
\Pi\left(C^{\prime}\right)=\left(\begin{array}{llll}
\frac{2}{\sqrt{3}} i & \frac{1}{\sqrt{3}} i & 1 & 0 \\
\frac{1}{\sqrt{3}} i & \frac{2}{\sqrt{3}} i & 0 & 1
\end{array}\right)
$$

We have two proofs to show that the Jacobian variety $J\left(C^{\prime}\right)$ of C^{\prime} splits. First, the period matrix has the same form $\left(\begin{array}{cccc}2 z & z & 1 & 0 \\ z & 2 z & 0 & 1\end{array}\right)$ as in previous section and we know this type of a Jacobian variety splits. Second, every element of $\Pi\left(C^{\prime}\right)$ contains in the imaginary quadratic field $\mathbb{Q}(\sqrt{-3})$ and from the above corollary we can also conclude that $J\left(C^{\prime}\right)$ splits.

1.5. Canonical embedding of curve of genus 4

Every non-hyperelliptic curve of genus g can be canonically embedded in \mathbb{P}^{g-1}. If $g=4$, we can embed a curve in \mathbb{P}^{3} and the classical theory says that the curve is the intersection of a quadratic surface (or a quadric) S_{1} of rank 3 or 4 and a cubic surface S_{2}. Conversely, a smooth intersection C of a quadratic surface and a cubic surface is a canonical curve and thus non-hyperelliptic. If
a quadratic surface is nonsingular, then it is isomorphic to $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Hence, the curve C can be viewed as a curve in $\mathbb{P}^{1} \times \mathbb{P}^{1}$.

If the curve admits an automorphism, it induces a linear transformation on the vector space of holomorphic 1-forms. Since the canonical embedding is an embedding with respect to these 1-forms, every automorphism of a canonically embedded curve is represented by a projective transformation on \mathbb{P}^{g-1}. If $g=4$, an automorphism can be represented as an element of $G L(4, \mathbb{C})$.

2. Curve of genus 4 , case 1

2.1. Special case

Let C_{1} be a curve in \mathbb{P}^{3} defined by

$$
C_{1}:\left\{\begin{array}{l}
X_{0} X_{1}+X_{2} X_{3}=0 \\
\left(X_{0}^{3}-X_{3}^{3}\right)+\left(X_{2}^{3}-X_{1}^{3}\right)=0
\end{array}\right.
$$

The curve C_{1} is a smooth intersection of the quadratic surface and the cubic surface. Hence, it is a non-hyperelliptic curve of genus 4. The curve C_{1} admits the following four automorphisms: (They are written in terms of linear transformations of four variables $X_{0}, X_{1}, X_{2}, X_{3}$)

$$
\begin{array}{ll}
P_{1}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \omega & 0 & 0 \\
0 & 0 & \omega & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad P_{2}=\left(\begin{array}{cccc}
\omega & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \omega & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \\
P_{3}=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \quad P_{4}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
\end{array}
$$

The order of a group generated by the above automorphisms is 72 and according to [8], this is the maximal possible automorphism group of the curve of genus 4. Thus this gives the automorphism group of $C_{1}\left(\boldsymbol{A u t}\left(C_{1}\right)\right.$ is isomorphic to $G(9 \times 8)$ in [8]).

The surface $S: X_{0} X_{1}+X_{2} X_{3}=0$ is isomorphic to $\mathbb{P}^{1} \times \mathbb{P}^{1}$ via the map

$$
\begin{array}{ccc}
\mathbb{P}^{1} \times \mathbb{P}^{1} & \longrightarrow & S \\
{\left[z_{0}: z_{1}\right] \times\left[w_{0}: w_{1}\right]} & \mapsto & {\left[z_{1} w_{0}: z_{0} w_{1}:-z_{1} w_{1}: z_{0} w_{0}\right] .}
\end{array}
$$

Through this map, C_{1} is isomorphic to the curve defined by an equation

$$
z^{3}=\frac{1+w^{3}}{1-w^{3}}
$$

in $\mathbb{P}^{1} \times \mathbb{P}^{1}$, where $z=z_{1} / z_{0}, w=w_{1} / w_{0}$.

Figure 2.

The automorphisms $P_{1}, P_{2}, P_{3}, P_{4}$ act on (z, w) as

$$
\begin{aligned}
& P_{1}^{\prime}:\left\{\begin{array}{c}
z \mapsto \omega z \\
w \mapsto w
\end{array} \quad P_{2}^{\prime}:\left\{\begin{array}{c}
z \mapsto z \\
w \mapsto \omega w
\end{array}\right.\right. \\
& P_{3}^{\prime}:\left\{\begin{array}{c}
z \mapsto \frac{1}{z} \\
w \mapsto-w
\end{array} \quad P_{4}^{\prime}:\left\{\begin{array}{c}
z \mapsto-w \\
w \mapsto-z .
\end{array}\right.\right.
\end{aligned}
$$

Let us consider a configuration of Fig. 2. Here we regard C_{1} as a threesheeted covering over w-plane \mathbb{P}^{1}. Each style (normal, dotted or broken) of curved lines lie on a different sheet of the covering and the automorphism P_{1} (which corresponds to the change of sheets) maps "normal lines" to "dotted lines", "dotted lines" to "broken lines" and "broken lines" to "normal lines". For example, $P_{1}\left(\lambda_{3}\right)=\mu_{4}$.

The lines λ_{j} and $\mu_{j}(j=1,2,3,4)$ in Fig. 2 give a canonical basis of $H_{1}(C, \mathbb{Z})$. Let $M_{P_{k}}(k=1,2,3,4)$ be the symplectic matrices corresponding to
automorphisms P_{k} with respect to this basis. Then, we have

$$
\begin{aligned}
& M_{P_{2}}=\left(\begin{array}{cccccccc}
-1 & 0 & -1 & 0 & & & & \\
0 & -1 & 0 & -1 & & & O & \\
1 & 0 & 0 & 0 & & & & \\
0 & 1 & 0 & 0 & & & & \\
& & & & 0 & 0 & -1 & 0 \\
& O & & 0 & 0 & 0 & -1 \\
& & & & 1 & 0 & -1 & 0 \\
& & & 1 & 0 & -1
\end{array}\right), \\
& M_{P_{3}}=\left(\begin{array}{cccccccc}
0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 & -1 \\
0 & -1 & 0 & 0 & -1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
& & & & 0 & 0 & 0 & 1 \\
& O & & 1 & 0 & -1 & 0 \\
& & & & 0 & -1 & 0 & 1 \\
& & & & 1 & 0 & 0 & 0
\end{array}\right), \\
& M_{P_{4}}=\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 & 1 & 0 \\
-1 & 0 & -1 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1
\end{array}\right) .
\end{aligned}
$$

The fixed point matrices of the actions of $M_{P_{1}}, M_{P_{2}}$ and $M_{P_{4}}$ in the Siegel upper half plane can be written as

$$
Z=\left(\begin{array}{cccc}
-2 a^{\prime} & b^{\prime}-1 & a^{\prime} & b^{\prime} \\
b^{\prime}-1 & -2 a^{\prime} & 1-2 b^{\prime} & a^{\prime} \\
a^{\prime} & 1-2 b^{\prime} & -2 a^{\prime} & b^{\prime}-1 \\
b^{\prime} & a^{\prime} & b^{\prime}-1 & -2 a^{\prime}
\end{array}\right),
$$

where a^{\prime} and b^{\prime} are indeterminants. Since Z is also fixed by $M_{P_{3}}$, this gives the relation $a^{\prime 2}=b^{\prime 2}-b^{\prime}$.

If we choose another canonical basis

$$
\begin{array}{ll}
\overline{\lambda_{1}}=\lambda_{1}-\mu_{4}, & \overline{\mu_{1}}=\mu_{1}, \\
\overline{\lambda_{2}}=\lambda_{2}+\mu_{3}, & \overline{\mu_{2}}=\mu_{2}, \\
\overline{\lambda_{3}}=\lambda_{3}+\mu_{2}, & \overline{\mu_{3}}=\mu_{3}, \\
\overline{\lambda_{4}}=\lambda_{4}-\mu_{1}, & \overline{\mu_{4}}=\mu_{4},
\end{array}
$$

and rewrite $M_{P_{k}}$ with respect to the new basis, then the fixed point matrices of the actions of these rewritten symplectic matrices can be written in a form

$$
Z^{\prime}=\left(\begin{array}{cccc}
-2 a & b & a & b \\
b & -2 a & -2 b & a \\
a & -2 b & -2 a & b \\
b & a & b & -2 a
\end{array}\right), \quad a^{2}=b^{2}+b
$$

with $a=a^{\prime}, b=b^{\prime}-1$. Thus we get the one-parameter family of matrices fixed by the matrices $M_{P_{1}}, M_{P_{2}}, M_{P_{3}}$ and $M_{P_{4}}$ and the period matrix $\Pi\left(C_{1}\right)$ can be written as

$$
\Pi\left(C_{1}\right)=\left(\begin{array}{ll}
Z^{\prime} & E
\end{array}\right) .
$$

Choosing a matrix

$$
A=\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -2 & 0 & 1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & -2 \\
0 & 0 & 0 & 0 & 1 & 0 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \in S L(8, \mathbb{Z})
$$

and multiplying the period matrix from right by A, we get

$$
\Pi\left(C_{1}\right) A=\left(\begin{array}{cccccccc}
-3 a & -3 b & a & b & -1 & 0 & 1 & 0 \\
3 b & 3 a & -2 b & -2 a & 0 & 1 & 0 & -2 \\
3 a & 3 b & -2 a & -2 b & 1 & 0 & -2 & 0 \\
0 & 0 & b & a & 0 & 0 & 0 & 1
\end{array}\right)
$$

By normalising this matrix, we get

$$
\left(\begin{array}{ccccccc}
3 a & 3 b & & O & 1 & & \\
3 b & 3 a & 0 & & 1 & & \\
& O & a & b & & & 1 \\
& & b & a & & & \\
\hline
\end{array}\right)
$$

The matrix shows that the Jacobian variety $J\left(C_{1}\right)$ of C_{1} is isomorphic to the product of two 2-dimensional complex tori T_{1} and T_{2}, where

$$
\begin{aligned}
& T_{1}=\mathbb{C}^{2} /\left(\text { the lattice generated by } N_{1}=\left(\begin{array}{llll}
3 a & 3 b & 1 & 0 \\
3 b & 3 a & 0 & 1
\end{array}\right)\right) \\
& T_{2}=\mathbb{C}^{2} /\left(\text { the lattice generated by } N_{2}=\left(\begin{array}{llll}
a & b & 1 & 0 \\
b & a & 0 & 1
\end{array}\right)\right)
\end{aligned}
$$

Furthermore, T_{1} and T_{2} also split. To show this, take

$$
A_{1}=\left(\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 1 & 0 & 2 \\
0 & 1 & 1 & 0 \\
0 & 2 & 1 & 0
\end{array}\right), \quad A_{2}=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right) \in S L(4, \mathbb{Z})
$$

and multiply N_{1} by A_{1} and N_{2} by A_{2} from right and then normalise the resulting matrices. Then we get

$$
\left(\begin{array}{cccc}
3 a+3 b & 0 & 1 & 0 \\
0 & \frac{a+b}{3 b} & 0 & 1
\end{array}\right), \quad\left(\begin{array}{cccc}
\frac{b}{a} & 0 & 1 & 0 \\
0 & a+b & 0 & 1
\end{array}\right)
$$

Here we use the equality $a^{2}=b^{2}+b$. Four values $3 a+3 b, a+b / 3 b, a+b, b / a$ appearing in above matrices are related by

$$
\begin{aligned}
a+b & =\frac{-\left(\frac{b}{a}\right)}{\left(\frac{b}{a}\right)-1} \\
\frac{a+b}{3 b} & =\frac{\left(\frac{b}{a}\right)+1}{3\left(\frac{b}{a}\right)}
\end{aligned}
$$

These relations show four elliptic curves with period matrices $\left(\begin{array}{ll}3 a+3 b & 1\end{array}\right)$, $\left(\begin{array}{ll}a+b / 3 b & 1\end{array}\right),\left(\begin{array}{ll}a+b & 1\end{array}\right),\left(\begin{array}{ll}b / a & 1\end{array}\right)$ are isogenous.

Summarising these results, we obtain
Theorem 2.1. The Jacobian variety $J\left(C_{1}\right)$ of the curve C_{1} is isomorphic to the product of four elliptic curves, and they are isogenous to one another.

However, we cannot say which values a and b corresponds to the Jacobian variety $J\left(C_{1}\right)$ by this calculation. This is because the dimension of the moduli space of 4-dimensional P.P.A.V's. is larger than the dimension of the moduli space of curves of genus 4 .

2.2. One-parameter family case

Let $\left\{C_{1}(t)\right\}$ be a one-parameter family of curves of genus 4 in \mathbb{P}^{3} defined by

$$
C_{1}(t):\left\{\begin{array}{l}
X_{0} X_{1}+X_{2} X_{3}=0 \\
\left(X_{0}^{3}-X_{3}^{3}\right)+\left(t X_{2}^{3}-X_{1}^{3}\right)=0(t \neq-1)
\end{array}\right.
$$

In $\mathbb{P}^{1} \times \mathbb{P}^{1}$, the family can be defined by

$$
z^{3}=\frac{1+w^{3}}{1-t w^{3}}
$$

Note that the curve C_{1} in the previous subsection is $C_{1}(1)$.
Every member of this family admits automorphisms P_{1}, P_{2}, P_{4} defined in the previous subsection. The same argument as in the previous subsection shows that the period matrix of $C_{1}(t)$ takes the form

$$
\left(\begin{array}{cccccccc}
-2 a & b & a & b & 1 & & & \\
b & -2 a & -2 b & a & & 1 & & \\
a & -2 b & -2 a & b & & & 1 & \\
b & a & b & -2 a & & & & 1
\end{array}\right)
$$

and the Jacobian variety is isomorphic to the product of two 2-dimensional complex tori.

2.3. Higher genera case

We extend the result to the one for higher genera. Let $\left\{C_{1}^{m}(t)\right\}$ be a oneparameter family of curves of genus $(2 m-2)$ in $\mathbb{P}^{1} \times \mathbb{P}^{1}$ given by an equation

$$
z^{3}=\frac{1+w^{m}}{1-t w^{m}}(t \neq-1, m>1)
$$

Every member of this family admits automorphisms

$$
\begin{aligned}
& P_{m, 1}:\left\{\begin{array}{c}
z \mapsto \omega z \\
w \mapsto w
\end{array}\right. \\
& P_{m, 2}:\left\{\begin{array}{c}
z \mapsto z \\
w \mapsto \zeta_{m} w
\end{array}\right.
\end{aligned}
$$

where $\omega=e^{2 \pi i / 3}, \zeta_{m}=e^{2 \pi i / m}$.
Proposition 2.1. Each member of $\left\{C_{1}^{m}(t)\right\}$ is non-hyperelliptic for $m>4$.

Proof. If $C_{1}^{m}(t)$ is hyperelliptic, then $C_{1}^{m}(t)$ can be realised as a twosheeted covering over \mathbb{P}^{1} with $(4 m-2)$ ramification points and every automorphism of $C_{1}^{m}(t)$ induces the automorphism of \mathbb{P}^{1}.

If 3 does not divide the number m then $\left(P_{m, 1} P_{m, 2}\right)$ generates a cyclic subgroup of $\operatorname{Aut}\left(C_{1}^{m}(t)\right)$ of order $3 m$. Let x be local coordinates of \mathbb{P}^{1} and t be a map induced by $\left(P_{m, 1} P_{m, 2}\right)$ on \mathbb{P}^{1}. Every automorphism on \mathbb{P}^{1} is a projective linear transformation and the automorphism t can be written as $t: x \mapsto \frac{a x+b}{c x+d}$. Since $t^{3 m}=1$, the matrix $M_{t}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ can be diagonalised. Thus by choosing a suitable local coordinates x^{\prime}, t can be written as $t: x^{\prime} \mapsto \zeta_{3 m}^{k} x^{\prime}$ for some

Figure 3.
k. Since the fixed points of t are 0 and ∞, the number of fixed points of $\left(P_{m, 1} P_{m, 2}\right)^{m}$ is at most 4. However, $\left(P_{m, 1} P_{m, 2}\right)^{m}=P_{m, 1}$ or $P_{m, 1}^{2}$ fixes $2 m$ points. This is a contradiction.

If 3 divides the number m then $\boldsymbol{\operatorname { A u t }}\left(C_{1}^{m}(t)\right)$ has a subgroup isomorphic to $\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$. But $\operatorname{Aut}\left(\mathbb{P}^{1}\right)$ never has a subgroup isomorphic to $\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$. This is a contradiction.

Let us consider a configuration of Fig. 3. The meaning of normal, dotted and broken lines are the same as in Fig. 2

Define

$$
\begin{array}{ll}
\lambda_{j}=\alpha_{j}, & \mu_{j}=\beta_{j} \\
\lambda_{(m-1)+j}=P_{m, 1}\left(\alpha_{j}\right), & \mu_{(m-1)+j}=\left(P_{m, 1}\right)^{2}\left(\beta_{j}\right)
\end{array} \quad(j=1, \ldots, m-1)
$$

Then $\lambda_{1}, \ldots, \lambda_{2 m-2}, \mu_{1}, \ldots, \mu_{2 m-2}$ form a canonical basis. The symplectic matrices corresponding to the automorphisms with respect to this basis are given by

$$
\begin{gathered}
M_{P_{m, 1}}=\left(\begin{array}{cccc}
O & E_{m-1} & & O \\
-E_{m-1} & -E_{m-1} & & \\
O & & -E_{m-1} & E_{m-1} \\
-E_{m-1} & O
\end{array}\right), \\
M_{P_{m, 2}}=\left(\begin{array}{ccc}
Q_{1} & O & \\
O & Q_{1} & O \\
O & Q_{2} & O \\
O & O & Q_{2}
\end{array}\right)
\end{gathered}
$$

where

$$
\begin{aligned}
& Q_{1}=\left(\begin{array}{ccccc}
-1 & 1 & 0 & \ldots & 0 \\
-1 & 0 & 1 & \ldots & 0 \\
\vdots & & & \ddots & \\
-1 & 0 & 0 & \ldots & 1 \\
-1 & 0 & 0 & \ldots & 0
\end{array}\right), Q_{2}=\left(\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & & & \ddots & \\
0 & 0 & 0 & \ldots & 1 \\
-1 & -1 & -1 & \ldots & -1
\end{array}\right) \\
& E_{m-1}=(\text { unit matrix of degree } m-1) .
\end{aligned}
$$

Let $Z=\left(z_{j, k}\right)$ be a fixed point matrix of the actions of automorphisms $M_{P_{m, 1}}$ and $M_{P_{m, 2}}$. The matrix Z has the following properties:

$$
z_{j, k}=z_{k, j}, \quad z_{j, k}=z_{(2 m-2)+1-k,(2 m-2)+1-j}
$$

Choose a matrix

$$
S=\left(\begin{array}{cccc}
E_{m-1} & E_{m-1} & O & \\
Q_{3}+E_{m-1} & Q_{3} & O & E_{m-1}-Q_{3} \\
O & & Q_{3} \\
& & -E_{m-1} & E_{m-1}
\end{array}\right)
$$

where

$$
Q_{3}=\left(\begin{array}{llll}
& & & 1 \\
& & 1 & \\
& \ldots & &
\end{array}\right)
$$

Multiplying $\Pi=\left(\begin{array}{ll}Z & E_{2 m-2}\end{array}\right)$ from left by S and then normalising it, we get the matrix of the form

$$
\left(\begin{array}{cccc}
Z_{1} & O & E_{m-1} & O \\
O & Z_{2} & O & E_{m-1}
\end{array}\right)
$$

Hence the Jacobian variety $J\left(C_{1}^{m}(t)\right)$ splits.
Theorem 2.2. The Jacobian variety of $C_{1}^{m}(t)$ splits into a product of two ($m-1$)-dimensional complex tori.

3. Curve of genus 4 , case 2

3.1. Special case

Let C_{2} be a curve of genus 4 in \mathbb{P}^{3} defined by

$$
C_{2}:\left\{\begin{array}{l}
X_{0}^{2}+X_{1}^{2}+X_{2}^{2}=0 \\
X_{0} X_{1} X_{2}-X_{3}^{3}=0
\end{array}\right.
$$

The curve C_{2} admits the following three automorphisms: (They are written in terms of linear transformations of four variables $X_{0}, X_{1}, X_{2}, X_{3}$)

$$
\begin{aligned}
& P_{1}=\left(\begin{array}{cccc}
\omega^{2} & 0 & 0 & 0 \\
0 & \omega^{2} & 0 & 0 \\
0 & 0 & \omega^{2} & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad P_{2}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \\
& P_{3}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

The automorphism group $\operatorname{Aut}\left(C_{2}\right)$ is generated by the above three automorphisms and its order is $72\left(\operatorname{Aut}\left(C_{2}\right)\right.$ is isomorphic to $G(8 \times 9)$ in [8] and this is the maximal possible automorphism group).

Put $z=\left(X_{1}-i X_{2}\right) / X_{3}$. The mapping $z: C_{2} \rightarrow \mathbb{P}^{1}$ is three-to-one and it ramifies at the points $z=0, \infty, 1,-1, i,-i$. If we put $w=X_{3} / X_{0}$, we can embed C_{2} into $\mathbb{P}^{1} \times \mathbb{P}^{1}$ by (z, w). The image of this map is a curve defined by

$$
w^{3}=\frac{z^{4}-1}{4 z^{2}} i
$$

This is a singular curve.
The automorphisms P_{1}, P_{2} and P_{3} act on (z, w) as follows:

$$
\begin{aligned}
& P_{1}:\left\{\begin{array}{l}
z \mapsto z \\
w \mapsto \omega w
\end{array}\right. \\
& P_{2}:\left\{\begin{array}{l}
z \mapsto \frac{z-1}{z+1} \\
w \mapsto \frac{2 z w}{z^{2}-1}
\end{array}\right. \\
& P_{3}:\left\{\begin{array}{l}
z \mapsto \frac{z-1}{z+1} i \\
w \mapsto \frac{2 z w}{z^{2}-1}
\end{array}\right.
\end{aligned}
$$

Let us consider a configuration of Fig. 4. In Fig. 4, we regard C_{2} as a three-sheeted covering over z-plane \mathbb{P}^{1}. Cycles $\alpha_{j}, \beta_{j}(j=1,2,3)$ in Fig. 4 are taken so as to pass through the same point $(z, w)=(1 / 2, \sqrt[3]{15 / 16} i)$.

Define

$$
\begin{array}{ll}
\lambda_{1}=\alpha_{1}+\left(P_{1}\right)^{2}\left(\beta_{2}\right), & \mu_{1}=\alpha_{2}, \\
\lambda_{2}=\alpha_{1}+P_{1}\left(\alpha_{2}\right)+\left(P_{1}\right)^{2}\left(\beta_{2}\right), & \mu_{2}=\beta_{1} \\
\lambda_{3}=\left(P_{1}\right)^{2}\left(\beta_{2}\right), & \mu_{3}=P_{1}\left(\alpha_{3}\right), \\
\lambda_{4}=\alpha_{3}+\left(P_{1}\right)^{2}\left(\beta_{2}\right), & \mu_{4}=\beta_{3} .
\end{array}
$$

Figure 4.

Then λ_{j} and $\mu_{j}(j=1,2,3,4)$ form a canonical basis. With respect to this basis, the symplectic matrix corresponding to P_{3} has the form

$$
M_{P_{3}}=\left(\begin{array}{cccccccc}
0 & 0 & -1 & 0 & -1 & 1 & -1 & -1 \\
0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & -1 & 0 & -1 & -1 \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & -1 \\
0 & -1 & 0 & 0 & 0 & 0 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

To simplify calculations we change the basis as follows:

$$
\begin{array}{ll}
\overline{\lambda_{1}}=\lambda_{3}, & \overline{\mu_{1}}=\mu_{1}+\mu_{3}+\mu_{4}, \\
\overline{\lambda_{2}}=-\lambda_{3}+\lambda_{4}, & \overline{\mu_{2}}=\mu_{4}, \\
\overline{\lambda_{3}}=-\mu_{1}, & \overline{\mu_{3}}=\lambda_{1}-\lambda_{3}, \\
\overline{\lambda_{4}}=\lambda_{2}, & \overline{\mu_{4}}=\mu_{2} .
\end{array}
$$

Then the symplectic matrix corresponding to P_{3} with respect to this new basis is given by

$$
M_{P_{3}}^{\prime}=\left(\begin{array}{cccccccc}
-1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 0
\end{array}\right) .
$$

The matrices corresponding to the other two automorphisms are given by

$$
M_{P_{1}}^{\prime}=\left(\begin{array}{cccccccc}
-1 & -1 & 0 & -1 & -1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & -1 & 0 & 0 \\
-1 & 0 & 0 & -1 & 0 & 0 & -1 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 & 0 & -1 \\
1 & 0 & -1 & 1 & 0 & 0 & 1 & -1 \\
0 & 1 & 0 & 0 & 1 & -1 & 0 & -1 \\
-1 & 0 & 1 & 0 & 0 & -1 & -1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 1 & -1
\end{array}\right)
$$

$$
M_{P_{2}}^{\prime}=\left(\begin{array}{cccccccc}
1 & 0 & -1 & 1 & 1 & 0 & 1 & -1 \\
-1 & 0 & 1 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 \\
-1 & -1 & 0 & -1 & -1 & 1 & 0 & 1 \\
-1 & 0 & 0 & -1 & -1 & 0 & -1 & 1 \\
-1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & -1 & 0 & 0 \\
-1 & -1 & 0 & -1 & -1 & 0 & 0 & 1
\end{array}\right) .
$$

Let us determine the period matrix of the curve C_{2}. Calculating the fixed point matrices under the actions of the matrices $M_{P_{1}}^{\prime}, M_{P_{2}}^{\prime}, M_{P_{3}}^{\prime}$ and $M_{P_{4}}^{\prime}$, we get four symmetric matrices:

$$
\begin{gathered}
Z_{1}(\zeta)=\left(\begin{array}{cccc}
\zeta & -1 & \zeta & -\zeta-1 \\
-1 & -\zeta & 0 & 1 \\
\zeta & 0 & 0 & -\zeta-1 \\
-\zeta-1 & 1 & -\zeta-1 & 1
\end{array}\right), \\
Z_{2}(\zeta)=\left(\begin{array}{cccc}
\zeta & \frac{\zeta}{3 \zeta+1} & \frac{\zeta^{2}}{3 \zeta+1} & \frac{1}{3 \zeta+1} \\
\frac{\zeta}{3 \zeta+1} & \frac{38}{49}+\frac{36}{49} \zeta & \frac{15}{49}-\frac{9}{49} \zeta & \frac{49++196}{147 \zeta+392} \\
\frac{\zeta^{2}}{3 \zeta+1} & \frac{15}{49}-\frac{9}{49} \zeta & \frac{294 \zeta+147}{147 \zeta+392} & \frac{-49 \zeta-147}{147 \zeta+392} \\
\frac{1}{3 \zeta+1} & \frac{49+196}{147 \zeta+392} & \frac{-49 \zeta-147}{147 \zeta+392} & \frac{343 \zeta+196}{147 \zeta+392}
\end{array}\right),
\end{gathered}
$$

where $\zeta=e^{-2 \pi i / 3}$ or $e^{-4 \pi i / 3}$.
By changing the canonical basis by

$$
A=\left(\begin{array}{cccccccc}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & -1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
-1 & 1 & 1 & -1 & 0 & 0 & 0 & 1
\end{array}\right) \in S p(8, \mathbb{Z})
$$

the matrix $Z_{1}(\zeta)$ is changed into

$$
Z_{1}^{\prime}(\zeta)=\left(\begin{array}{cccc}
-\zeta & 0 & 0 & 0 \\
0 & \zeta & \zeta & -\zeta \\
0 & \zeta & 0 & -\zeta \\
0 & -\zeta & -\zeta & 0
\end{array}\right)
$$

Thus we see that the principally polarised abelian variety $\mathbb{C}^{4} / \Lambda\left(\left(Z_{1}^{\prime}(\zeta) E\right)\right)$ is isomorphic to a product of an elliptic curve (as a 1-dimensional P.P.A.V.) and a 3-dimensional P.P.A.V. Therefore $\left(Z_{1}(\zeta) \quad E\right)$ cannot be a period matrix of the Jacobian variety and we conclude that the period matrix of C_{2} has a
form $\left(Z_{2}(\zeta) \quad E\right)$. On the other hand, $\operatorname{Im}\left(Z_{2}(\zeta)\right)$ is positive definite if and only if $\zeta=e^{-2 \pi i / 3}$; hence the period matrix is $\left(Z_{2}\left(e^{-2 \pi i / 3}\right) \quad E\right)$.

Since every element of the period matrix is contained in the imaginary quadratic field $\mathbb{Q}(\sqrt{-3})$, by Corollary1.1, we obtain the following theorem.

Theorem 3.1. The Jacobian variety $J\left(C_{2}\right)$ of C_{2} is isomorphic to the product of four elliptic curves.

3.2. One-parameter family case

Let $\left\{C_{2}(t)\right\}$ be a one-parameter family of curves defined by

$$
C_{2}(t):\left\{\begin{array}{l}
X_{0}^{2}+X_{1}^{2}+X_{2}^{2}-t X_{3}^{2}=0 \\
X_{0} X_{1} X_{2}-X_{3}^{3}=0
\end{array} \quad\left(t^{3} \neq-27\right)\right.
$$

in \mathbb{P}^{3}.
The curve C_{2} in the previous subsection is $C_{2}(0)$. Each member of this family admits automorphisms P_{2} and P_{3} defined in the previous subsection.

Put $S_{X_{0}, X_{1}}=\left(P_{2}\right)^{2}$. In terms of linear transformations of four variables $X_{0}, X_{1}, X_{2}, X_{3}$, the automorphism $S_{X_{0}, X_{1}}$ can be written as

$$
S_{X_{0}, X_{1}}=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

The automorphism $S_{X_{0}, X_{1}}$ has two fixed points $[1: i: 0: 0],[1:-i: 0:$ $0]$. Thus by the Hurwitz formula, the genus of the quotient curve $C_{2}^{\prime}(t)=$ $C_{2}(t) /\left\langle S_{X_{0}, X_{1}}\right\rangle$ is 2 . The inhomogeneous equation of this curve is given by

$$
C_{2}^{\prime}(t): y^{2}=x^{6}-\frac{t^{2}}{4} x^{4}+\frac{t}{2} x^{2}-\frac{1}{4}
$$

Indeed, define the map $\pi_{X_{0}, X_{1}}: C_{2}(t) \rightarrow C_{2}^{\prime}(t)$ by

$$
\left\{\begin{array}{l}
x=\frac{X_{0} X_{1}}{X_{3}^{2}} \\
y=\frac{X_{0}^{2} X_{1}^{2}\left(X_{0}^{2}-X_{1}^{2}\right)}{X_{3}^{6}}
\end{array}\right.
$$

then this is a two-to-one map and each fibre consists of an orbit of $S_{X_{0}, X_{1}}$.
The curve $C_{2}^{\prime}(t)$ has natural maps $\sigma^{\prime}(t)$ and $\sigma^{\prime \prime}(t)$ to two elliptic curves

$$
\begin{aligned}
& E^{\prime}(t): q^{\prime 2}=p^{3}-\frac{t^{2}}{4} p^{\prime 2}+\frac{t}{2} p^{\prime}-\frac{1}{4} \\
& E^{\prime \prime}(t): q^{\prime \prime 2}=p^{\prime \prime 4}-\frac{t^{2}}{4} p^{\prime \prime 3}+\frac{t}{2} p^{\prime \prime 2}-\frac{1}{4} p^{\prime \prime}
\end{aligned}
$$

defined by

$$
\sigma^{\prime}(t):\left\{\begin{array}{l}
p^{\prime}=x^{2} \\
q^{\prime}=y
\end{array} \sigma^{\prime \prime}(t):\left\{\begin{array}{l}
p^{\prime \prime}=x^{2} \\
q^{\prime \prime}=x y
\end{array}\right.\right.
$$

Let ω^{\prime} and $\omega^{\prime \prime}$ be holomorphic 1-forms on the elliptic curves $E^{\prime}(t)$ and $E^{\prime \prime}(t)$ and let $\omega_{X_{0}, X_{1}}^{\prime}$ and $\omega_{X_{0}, X_{1}}^{\prime \prime}$ be holomorphic 1-forms on $C_{2}(t)$ defined by

$$
\begin{aligned}
& \omega_{X_{0}, X_{1}}^{\prime}=\left(\sigma^{\prime}(t) \cdot \pi_{X_{0}, X_{1}}\right)^{*}\left(\omega^{\prime}\right) \\
& \omega_{X_{0}, X_{1}}^{\prime \prime}=\left(\sigma^{\prime \prime}(t) \cdot \pi_{X_{0}, X_{1}}\right)^{*}\left(\omega^{\prime \prime}\right)
\end{aligned}
$$

If we use the map $\pi_{X_{1}, X_{2}}: C_{2}(t) \rightarrow C_{2}^{\prime}(t)$ defined by

$$
\left\{\begin{array}{l}
x=\frac{X_{1} X_{2}}{X_{3}^{2}} \\
y=\frac{X_{1}^{2} X_{2}^{2}\left(X_{1}^{2}-X_{2}^{2}\right)}{X_{3}^{6}}
\end{array}\right.
$$

instead of $\pi_{X_{0}, X_{1}}$, we can define $\omega_{X_{1}, X_{2}}^{\prime}, \omega_{X_{1}, X_{2}}^{\prime \prime}$ similarly and $\omega_{X_{2}, X_{0}}^{\prime}, \omega_{X_{2}, X_{0}}^{\prime \prime}$ as well. Observing the zeros of the forms, we know that $\omega_{X_{0}, X_{1}}^{\prime}, \omega_{X_{1}, X_{2}}^{\prime}, \omega_{X_{2}, X_{0}}^{\prime}$ are the same form up to constant multiplication and $\omega_{X_{0}, X_{1}}^{\prime \prime}, \omega_{X_{1}, X_{2}}^{\prime \prime}, \omega_{X_{2}, X_{0}}^{\prime \prime}, \omega_{X_{0}, X_{1}}^{\prime}$ form a basis of holomorphic 1-forms on $C_{2}(t)$. Thus we obtain the following theorem.

Theorem 3.2. The Jacobian variety $J\left(C_{2}(t)\right)$ of the curve $C_{2}(t)$ is isogenous to the product of four elliptic curves.

If $t=0$, two curves

$$
\begin{aligned}
& E^{\prime}(0): q^{\prime 2}=p^{3}-\frac{1}{4} \\
& E^{\prime \prime}(0): q^{\prime \prime 2}=p^{\prime \prime 4}-\frac{1}{4} p^{\prime \prime}
\end{aligned}
$$

are isomorphic and $E^{\prime}(0)$ has a complex multiplication; hence, from Theorem 1.1 we infer the result in the previous subsection again.

4. Curve of genus 4 , case 3

4.1. One-parameter family case

Let $\{H(t)\}$ be a one-parameter family of hyperelliptic curves defined by an equation

$$
H(t): y^{2}=\left(x^{5}-t^{5}\right)\left(x^{5}-t^{-5}\right) \quad(t \neq 0,1,-1)
$$

Each member of the family admits the following three automorphisms:

$$
\begin{aligned}
& P_{1}^{\prime}:\left\{\begin{array}{l}
x \mapsto \zeta_{5} x \\
y \mapsto y
\end{array} \quad\left(\zeta_{5}=e^{2 \pi i / 5}\right)\right. \\
& P_{2}^{\prime}:\left\{\begin{array}{l}
x \mapsto 1 / x \\
y \mapsto y / x^{5}
\end{array}\right. \\
& \iota:\left\{\begin{array}{l}
x \mapsto x \\
y \mapsto-y .
\end{array}\right.
\end{aligned}
$$

Let $\tilde{P}_{1}^{\prime}, \tilde{P}_{2}^{\prime}$ and $\tilde{\iota}$ be the linear transformations on the vector space of holomorphic 1-forms on the curve $H(t)$ induced by the automorphisms $P_{1}^{\prime}, P_{2}^{\prime}$ and ι respectively. If we choose

$$
\left\{\frac{d x}{y}, \frac{x d x}{y}, \frac{x^{2} d x}{y}, \frac{x^{3} d x}{y}\right\}
$$

as a basis of holomorphic 1-forms, the matrix expressions of $\tilde{P}_{1}, \tilde{P}_{2}$ and $\tilde{\iota}$ are given by

$$
\begin{aligned}
& \tilde{P}_{1}^{\prime}:\left(\begin{array}{cccc}
\zeta_{5} & 0 & 0 & 0 \\
0 & \zeta_{5}^{2} & 0 & 0 \\
0 & 0 & \zeta_{5}^{3} & 0 \\
0 & 0 & 0 & \zeta_{5}^{4}
\end{array}\right), \quad \tilde{P}_{2}^{\prime}:\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \\
& \tilde{\iota}:\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
\end{aligned}
$$

It is known that for every t, the Jacobian variety $J(H(t))$ of the curve $H(t)$ splits into the product of two 2-dimensional complex tori (See [1]).

In this subsection, we consider "non-hyperelliptic variant" of $H(t)$, that is, a non-hyperelliptic curve of which period matrix is fixed by the same symplectic matrices $M_{P_{1}^{\prime}}$ and $M_{P_{2}^{\prime}}$ as to the period matrix of $H(t)$ except the symplectic matrix M_{ι} corresponding to hyperelliptic involution. Let $\left\{C_{3}(t)\right\}$ be a oneparameter family of curves defined by the homogeneous equations

$$
C_{3}(t):\left\{\begin{array}{l}
X_{0} X_{3}+X_{1} X_{2}=0 \\
\left(X_{0}^{2} X_{2}+X_{3}^{2} X_{1}\right)-t\left(X_{1}^{2} X_{0}+X_{2}^{2} X_{3}\right)=0
\end{array} \quad(t \neq 0)\right.
$$

Each member of $C_{3}(t)$ admits the following two automorphisms:

$$
P_{1}:\left(\begin{array}{cccc}
\zeta_{5} & 0 & 0 & 0 \\
0 & \zeta_{5}^{2} & 0 & 0 \\
0 & 0 & \zeta_{5}^{3} & 0 \\
0 & 0 & 0 & \zeta_{5}^{4}
\end{array}\right), \quad P_{2}:\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

We shall show that every member of this family also has a splitting Jacobian variety.

Put $z=X_{1}^{2} X_{2} / X_{0}^{3}$. Then $z: C_{3}(t) \rightarrow \mathbb{P}^{1}$ is a three-to-one map and it ramifies at the points $z=0, \infty, t,-1 / t$. If we take $w=X_{2} / X_{0}$, we can embed $C_{3}(t)$ into $\mathbb{P}^{1} \times \mathbb{P}^{1}$ by (z, w). The image of this map is the curve defined by

$$
w^{5}=\frac{t z^{2}-z^{3}}{1+t z}
$$

Figure 5.

The automorphisms P_{1} and P_{2} act on (z, w) as follows:

$$
\begin{aligned}
& P_{1}:\left\{\begin{array}{c}
z \mapsto z \\
w \mapsto \zeta_{5} w
\end{array}\right. \\
& P_{2}:\left\{\begin{array}{c}
z \mapsto-1 / z \\
w \mapsto-1 / w .
\end{array}\right.
\end{aligned}
$$

Let us consider a configuration in Fig. 5. Here we regard $C_{3}(t)$ as a threesheeted covering over z-plane \mathbb{P}^{1}. Cycles α_{0}, β_{0} in Fig. 5 are passing through the point $(z, w)=(1 / 2, \gamma)$, where γ is one of the numbers that satisfy the equation $\gamma^{5}=(2 t-1) /(4 t+8)$. We denote $\left(P_{1}\right)^{j}\left(\alpha_{0}\right)$ by α_{j} and $\left(P_{1}\right)^{j}\left(\beta_{0}\right)$ by $\beta_{j}(j=0,1,2,3,4)$.

Define

$$
\begin{array}{ll}
\lambda_{1}=\alpha_{0}, & \mu_{1}=\beta_{0}+\alpha_{1}+\alpha_{2} \\
\lambda_{2}=\alpha_{0}+\alpha_{1}, & \mu_{2}=\beta_{1}+\alpha_{2}+\alpha_{3} \\
\lambda_{3}=\alpha_{0}+\alpha_{1}+\alpha_{2}, & \mu_{3}=\beta_{2}+\alpha_{3}+\alpha_{4} \\
\lambda_{4}=\alpha_{0}+\alpha_{1}+\alpha_{2}+\alpha_{3}, & \mu_{4}=\beta_{3}+\alpha_{4}+\alpha_{0}
\end{array}
$$

then λ_{j} and $\mu_{j}(j=1,2,3,4)$ form a canonical basis. With respect to this
basis, the symplectic matrices corresponding to P_{1}, P_{2} are given by

$$
\begin{aligned}
M_{P_{1}} & =\left(\begin{array}{cccccccc}
-1 & 1 & 0 & 0 & & & & \\
-1 & 0 & 1 & 0 & & & O & \\
-1 & 0 & 0 & 1 & & & & \\
-1 & 0 & 0 & 0 & & & \\
& & & & 0 & 1 & 0 & 0 \\
& O & & 0 & 0 & 1 & 0 \\
& & & & 0 & 0 & 1 \\
-1 & -1 & -1 & -1
\end{array}\right) \\
M_{P_{2}} & =\left(\begin{array}{cccccccc}
-1 & 1 & 0 & 0 & & & \\
0 & 1 & 0 & 0 & & & O & \\
0 & 1 & 0 & -1 & \\
0 & 1 & -1 & 0 & & & \\
& & & & & -1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0
\end{array}\right) .
\end{aligned}
$$

The fixed point matrices of the actions of $M_{P_{1}}$ and $M_{P_{2}}$ in the Siegel upper half plane are given by

$$
Z=\left(\begin{array}{cccc}
2 b & a & b & 2 b-a \\
a & 2 a & 2 a-b & b \\
b & 2 a-b & 2 a & a \\
2 b-a & b & a & 2 b
\end{array}\right)
$$

where a and b are indeterminants. The period matrix $\Pi\left(C_{3}(t)\right)$ of $C_{3}(t)$ can be written as $\left(\begin{array}{ll}Z & E\end{array}\right)$.

Choose a matrix

$$
A=\left(\begin{array}{cccccccc}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 2 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 2 & -1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0
\end{array}\right) \in S L(8, \mathbb{Z})
$$

and multiply $\Pi\left(C_{3}(t)\right)$ by A from right. Then we get

$$
\Pi\left(C_{3}(t)\right) A=\left(\begin{array}{cccccccc}
2 a-b & a & a+b & 4 b-a & 1 & 0 & 1 & 0 \\
4 a-2 b & 2 a & 4 a-b & a+b & 2 & 0 & 0 & 1 \\
3 a-b & 2 a-b & 4 a-b & a+b & 2 & -1 & 0 & 1 \\
a-b & b & a+b & 4 b-a & 0 & 1 & 1 & 0
\end{array}\right) .
$$

Normalise this matrix we get

$$
\left(\begin{array}{cccccc}
2 a-b & a & & & 1 & \\
& & \\
a-b & b & & & 1 & \\
\\
O & & 4 a-b & a+b & & \\
a+b & 4 b-a & & & & \\
& & a b
\end{array}\right)
$$

Hence, the Jacobian variety $J\left(C_{3}(t)\right)$ of $C_{3}(t)$ is isomorphic to a product of two 2-dimensional complex tori $T_{1}(t)$ and $T_{2}(t)$, where

$$
\begin{aligned}
& T_{1}(t)=\mathbb{C}^{2} /\left(\text { the lattice generated by }\left(\begin{array}{cccc}
2 a-b & a & 1 & 0 \\
a-b & b & 0 & 1
\end{array}\right)\right) \\
& T_{2}(t)=\mathbb{C}^{2} /\left(\text { the lattice generated by }\left(\begin{array}{cccc}
4 a-b & a+b & 1 & 0 \\
a+b & 4 b-a & 0 & 1
\end{array}\right)\right) .
\end{aligned}
$$

Thus we obtain the following theorem.
Theorem 4.1. The Jacobian variety of $C_{3}(t)$ splits into the product of two 2-dimensional complex tori.

4.2. Bring's curve

The curve $C_{3}=C_{3}(1)$ is called Bring's curve. The automorphism group of Bring's curve is isomorphic to S_{5}, the symmetric group of 5 letters. It is known that the Jacobian variety of the Bring's curve splits into a product of four mutually isogenous elliptic curves (see [4], [7]). We can show this fact by calculating the period matrix by using an additional automorphism.

The curve C_{3} admits the automorphism

$$
P_{3}:\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

in addition to P_{1} and P_{2}. The symplectic matrix corresponding to P_{3} with respect to the canonical basis introduced in the previous subsection is

$$
M_{P_{3}}=\left(\begin{array}{cccccccc}
-1 & -1 & 1 & 1 & -1 & 0 & 0 & 1 \\
0 & -1 & 0 & 0 & 0 & 0 & -1 & 1 \\
-1 & 0 & 1 & 0 & 1 & 1 & 1 & 2 \\
-1 & -1 & 0 & 1 & 0 & -1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 & 0 & -1 & 0
\end{array}\right)
$$

In the previous subsection, we calculate the fixed point matrix Z of actions of the matrices $M_{P_{1}}$ and $M_{P_{2}}$ and show that the Jacobian variety $J\left(C_{3}(t)\right)$ splits into a product of two 2-dimensional complex tori $T_{1}(t)$ and $T_{2}(t)$.

For the curve C_{3}, the matrix Z is also fixed by $M_{P_{3}}$. This gives the new relation $2 b-3 a=1$. Thus we get the one-parameter family of matrices fixed by $M_{P_{1}}, M_{P_{2}}$ and $M_{P_{3}}$.

Since $2 b-3 a=1$, the Jacobian variety $J\left(C_{3}\right)$ of Bring's curve is isomorphic to a product of tori T_{1}^{\prime} and T_{2}^{\prime}, where

$$
\left.\begin{array}{rl}
T_{1}^{\prime} & =\mathbb{C}^{2} /\left(\text { the lattice generated by } N_{1}^{\prime}\right.
\end{array}=\left(\begin{array}{cccc}
\frac{1}{2} a-\frac{1}{2} & a & 1 & 0 \\
-\frac{1}{2} a-\frac{1}{2} & \frac{3}{2} a+\frac{1}{2} & 0 & 1
\end{array}\right)\right) .
$$

Choose

$$
A_{1}=\left(\begin{array}{cccc}
1 & -2 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & -1 & 1 & 0 \\
0 & 1 & -1 & 1
\end{array}\right), \quad A_{2}=\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
3 & -1 & 1 & 0 \\
2 & 1 & 1 & 1
\end{array}\right) \in S L(4, \mathbb{Z})
$$

and multiply N_{1}^{\prime} by A_{1} and N_{2}^{\prime} by A_{2} from right and then normalise the resulting matrices. Then we get

$$
\left(\begin{array}{cccc}
\tau & 0 & 1 & 0 \\
0 & 5 \tau & 0 & 1
\end{array}\right), \quad\left(\begin{array}{cccc}
5 \tau & 0 & 1 & 0 \\
0 & 5 \tau & 0 & 1
\end{array}\right)
$$

where $\tau=\frac{1}{2} a+\frac{1}{2}$. Thus we obtain the following theorem.
Theorem 4.2. The Jacobian variety $J\left(C_{3}\right)$ of Bring's curve splits into the product of four elliptic curves $E_{\tau} \times E_{5 \tau} \times E_{5 \tau} \times E_{5 \tau}$.

This theorem is a special case of Theorem 4.1 in [4].
By this calculation we cannot say which value a corresponds to the period matrix of C_{3}. In [7], the explicit period matrix is given by using Schottky's relation.

Department of Mathematics Kyoto University e-mail: ry-nakajima@kodansha.co.jp

References

[1] C. J. Earle, Some Jacobians which split, Lecture Notes in Math. 747, Springer-Verlag, pp. 101-107.
[2] C. J. Earle and H. E. Rauch, Function theorist, Differential Geometry and Complex Analysis, Springer-Verlag, pp. 15-31.
[3] T. Ekedahl and J.-P. Serre, Exemples de courbes algébriques à jacobienne complètement décomposable, C.R. Acad. Sci. Paris Sér. I Math. 317 (1993), 509-513.
[4] V. González-Aguilera and R. E. Rodríguez, Families of irreducible principally polarized abelian varieties isomorphic to a product of elliptic curves, Proc. Amer. Math. Soc. 128-3 (2000), 629-636.
[5] T. Hayashida and M. Nishi, Existence of curves of genus two on a product of two elliptic curves, J. Math. Soc. Japan 17 (1965), 1-16.
[6] T. Katsura, On the structure of singular abelian varieties, Proc. Japan Acad. 51-4 (1975), 224-228.
[7] G. Riera and R. E. Rodríguez, The period matrix of Bring's curve, Pacific J. Math. 154-1 (1992), 179-200.
[8] I. Kuribayashi and A. Kuribayashi, Automorphism groups of compact Riemann surfaces of genera three and four, J. Pure Appl. Algebra 65-3 (1990), 277-292.

[^0]: Received Septemer 26, 2006
 Revised February 23, 2007

