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Abstract. A normal projective non-Gorenstein log-terminal surface S
is called a log del Pezzo surface of index three if the three-times of the anti-
canonical divisor −3KS is an ample Cartier divisor. We classify all log del
Pezzo surfaces of index three. The technique for the classification is based on
the argument of Nakayama.

1. Introduction.

A normal projective surface S is called a log del Pezzo surface if S is log-terminal

and the anti-canonical divisor −KS is ample (Q-Cartier divisor). Log del Pezzo surfaces

constitute an interesting class of rational surfaces and naturally appear in the minimal

model program (MMP, for short). An important invariant of a log del Pezzo surface S is

the index, which is defined to be the minimum of the positive integer a such that −aKS

is Cartier. Log del Pezzo surfaces with small index have been studied by many authors.

The classification of log del Pezzo surfaces with index one (that is, with at most rational

double points) is well-known (see [Bre80], [Dem80], [HW81]).

The next case, the classification of log del Pezzo surfaces of index two, was also

studied by several authors. Alexeev and Nikulin specify all the deformation classes of

log del Pezzo surfaces of index two over the complex number field C by using K3 surface

theory [AN88], [AN89], [AN06]. Recently, Ohashi and Taki proceed this method and

classify the deformation classes of log del Pezzo surfaces of index three under the condition

−3KS ∼ 2C where C is a smooth curve which does not intersect the singularities. On

the other hand, Nakayama introduces the geometric argument for the study of log del

Pezzo surfaces of index two which is completely different from that of Alexeev–Nikulin,

and he gave the complete list of isomorphism classes of log del Pezzo surfaces of index

two in any characteristic [Nak07]. Nakayama’s argument is useful in the study of log

del Pezzo surfaces not only the case index is two but also the case index is arbitrary. In

fact, by using Nakayama’s idea, the first author classified some classes of log del Pezzo

surfaces in [Fuj14a] that include the classes treated in the study of Ohashi and Taki.

In this paper, we extend a part of Nakayama’s argument to work in arbitrary index.

Moreover, we give the classification of log del Pezzo surfaces of index three by using

this method. Our strategy to understand log del Pezzo surfaces is as follows. (Detail

is given in Section 3. See also [Fuj14b].) Let S be a log del Pezzo surface of index

a > 1. Take the minimal resolution α : M → S and set EM := −aKM/S . Then we

know that M is nonsingular rational and EM is nonzero effective. We can recover S
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from the pair (M,EM ) by considering the morphism defined by a multiple of the divisor

LM := −aKM −EM . Hence we can reduce the study of S to the study of such (M,EM ).

We remark that KM + LM is nef and (KM + LM · LM ) > 0 holds (see Proposition 3.4).

We call such a pair (M,EM ) an a-basic pair (see Definition 3.3).

�
�

�
�S : log del Pezzo surface of index a

�
Take the minimal resolution M → S

EM := −aKM/S

��
�

�
�(M,EM ) : a-basic pair

Figure 1. Reduction to a-basic pairs.

From now on, let (M,EM ) be an a-basic pair. Since M is rational, we can get

a birational morphism from M to P2 or a Hirzebruch surface Fn having a (−n)-curve.
However, it is hard to analyze the morphism in general. To evade this problem, we “de-

compose” the step contracting (−1)-curves into ((i+1)K +L)-minimal model programs

(((i+ 1)K + L)-MMPs, for short) for 1 ≤ i ≤ a− 1. More precisely, we give a sequence

M = M0
π1−→M1

π2−→ · · · πb−→Mb

for some integer b such that 1 ≤ b ≤ a−1. The construction of each πi is done inductively

as follows. We assume that iKMi−1
+ Li−1 is nef and Ei−1 is nonzero effective, where

Li−1 (resp. Ei−1) is the strict transform of LM (resp. EM ) in Mi−1. The morphism

πi : Mi−1 → Mi is obtained by the composition of all the morphisms in the step of an

((i + 1)KMi−1 + Li−1)-MMP. More precisely, in each step, we contract a (−1)-curve
which intersects (the strict transform of) (i + 1)KMi−1 + Li−1 negatively. We continue

this process until we get a Mori fiber space or a minimal model with respect to ((i +

1)KMi−1
+ Li−1)-MMP. If this MMP induces a minimal model (with respect to the

((i + 1)KMi−1
+ Li−1)-MMP), then we proceed to construct πi+1 : Mi → Mi+1. If

this MMP induces a Mori fiber space, then set b := i and stop the process. We can

show that Ei is also nonzero effective for each i. We note that 1 ≤ b ≤ a − 1 since

aKMi
+ Li = −Ei cannot be nef for each 1 ≤ i ≤ b. The surface Mb is either P2 or Fn.

From the construction, we have iKMi−1
+Li−1 = π∗i (iKMi

+Li) for each i. In particular,

−KMi−1 is πi-nef. Let Δi ⊂ Mi be a closed zero-dimensional subscheme such that the

corresponding ideal sheaf IΔi is defined as IΔi := (πi)∗OMi−1(−KMi−1/Mi
). The scheme

Δi has a nice property (called the (ν1)-condition in Definition 2.1). For example, the

morphism πi is recovered from Δi (see Definition 2.4 and Proposition 2.5). The multiplet

(Mb, Eb; Δ1, . . . ,Δb) constructed as above is called an a-fundamental multiplet of length

b. The classification of a-basic pairs is reduced to the classification of a-fundamental

multiplets. This is our strategy. In the case where a = 2, this is nothing but Nakayama’s

argument. (In Section 3, we only consider the case a = 3. However, the program we
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mentioned works for arbitrary a. See [Fuj14b] for details.) We summarize our strategy

via flowcharts in Figures 1 and 2.

�
�

�
�(M,EM ) : a-basic pair

�
M0 := M , E0 := EM

L0 := −aKM0 − E0, i := 1

�
Run ((i+ 1)KMi−1 + Li−1)-MMP;

πi : Mi−1 →Mi is the
output of the MMP, where
Δi ⊂Mi : subscheme with

IΔi := (πi)∗OMi−1(−KMi−1/Mi
)

Ei := (πi)∗Ei−1, Li := (πi)∗Li−1

����������

���������

���������

��������� Is (i+ 1)KMi + Li nef ?

�No

b := i

��
�

�
�(Mb, Eb; Δ1, . . . ,Δb) : a-fundamental multiplet of length b

�Yes
i := i+ 1

�

Figure 2. Reduction to a-fundamental multiplets.

Our approach is useful from various viewpoints. For example, it is easy to handle a-

fundamental multiplets (Mb, Eb; Δ1, . . . ,Δb) since we can analyze each Δi deeply and we

can study the multiplets by somewhat numerical and combinatorial ways. Furthermore,

the choice of the process πi : Mi−1 →Mi is less ambiguous. In fact, if 1 ≤ i ≤ b−1, then

πi is uniquely determined since iKMi−1 + Li−1 is nef and big.

Next we consider the case where a = 3, which is the main subject treated in this

paper. In this case we treat the following four objects:

• A log del Pezzo surface S of index three.

• A 3-basic pair (M,EM ) consisting of a kind of nonsingular projective rational

surface M and an effective divisor EM .

• A median triplet (Z,EZ ; ΔZ), which is a kind of 3-fundamental multiplet of length

one, consisting of a rational surface Z isomorphic to P2 or Fn, of an effective divisor

EZ , and of a zero-dimensional subscheme ΔZ ⊂ Z with the (ν1)-condition.
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• A bottom tetrad (X,EX ; ΔZ ,ΔX), which is a kind of 3-fundamental multiplet of

length two, consisting of a rational surface X isomorphic to P2 or Fn, of an effective

divisor EX , of a zero-dimensional subscheme ΔX ⊂ X, and of a zero-dimensional

subscheme ΔZ ⊂ Z with the (ν1)-condition, where Z → X is the elimination of

ΔX (see Definition 2.4).

The classes of median triplets and bottom tetrads are introduced in order to get the list

of log del Pezzo surfaces of index three without duplication. In Sections 3 and 5, we show

that for any 3-fundamental multiplet of length one (resp. of length two) we have a median

triplet (resp. a bottom tetrad) such that the associated 3-basic pairs are isomorphic. By

virtue of these modifications we can obtain the list of log del Pezzo surfaces of index

three without overlap.

Now we summarize the contents of this paper. In Section 2, we review some basic

properties of zero-dimensional schemes which satisfies the (ν1)-condition and we give the

list of (weighted) dual graphs associated with log-terminal singularities of index three. In

Section 3, we introduce the notions of 3-basic pairs, 3-(pseudo-)fundamental multiplets,

(pseudo-)median triplets and bottom tetrads associated with log del Pezzo surfaces of

index three. Moreover, we discuss relations among them. Precisely, we show that the

structure of log del Pezzo surfaces of index three is specified from that of 3-fundamental

multiplets of length one and of length two through the 3-basic pairs. Furthermore, we

see that the classification of 3-fundamental multiplets of length one (resp. 3-fundamental

multiplets of length two) can be reduced to that of median triplets (resp. bottom tetrads).

In Section 4, we discuss some local properties of 3-(pseudo-)fundamental multiplets which

are used in later sections. More precisely, we determine the possibility of the structure

of zero-dimensional subschemes ΔZ and ΔX with (ν1)-condition over a fixed point on

some effective divisor. Thanks to the arguments in this section, we can pare down the

candidates of zero-dimensional schemes of 3-fundamental multiplets. Section 5 is the

most technical part in this paper. In this section, we treat 3-fundamental multiplets of

length two with trivial 2KX+LX which give the same log del Pezzo surface of index three.

Thanks to the arguments in this section, the conditions of Definition 3.11 make sense. In

Section 6, we classify median triplets. There are exactly 77 types of median triplets (see

Theorem 6.1). From Section 7 to Section 9, we give the classification of bottom tetrads

(X,EX ; ΔZ ,ΔX). In Section 7, we classify bottom tetrads with big 2KX + LX . There

are exactly 45 types of such tetrads (see Theorem 7.1). In Section 8, we classify bottom

tetrads with non-big and nontrivial 2KX + LX . There are exactly 115 types of such

tetrads (see Theorem 8.1). In Section 9, we classify bottom tetrads such that 2KX +LX

is trivial. There are exactly 63 types of such tetrads (see Theorem 9.1). In Section 10,

we see some structure properties of log del Pezzo surfaces of index three. In Proposition

10.2, we show that the lists in Sections 6–9 have no redundancy. In Proposition 10.3,

we tabulate the list of non-Gorenstein points for log del Pezzo surfaces of index three.

In Proposition 10.4, we tabulate the list of the anti-canonical volumes for log del Pezzo

surfaces of index three.
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Notation and terminology. We work in the category of algebraic (separated

and of finite type) schemes over a fixed algebraically closed field k of arbitrary charac-

teristic. A variety means a reduced and irreducible algebraic scheme. A surface means

a two-dimensional variety. For a proper variety X, let ρ(X) be the Picard number of X.

For a normal variety X, we say that D is a Q-divisor (resp. divisor or Z-divisor) if

D is a finite sum D =
∑

aiDi where Di are prime divisors and ai ∈ Q (resp. ai ∈ Z). For

a Q-divisor D =
∑

aiDi, the value ai is denoted by coeffDi
D and set coeffD := {ai}i.

A normal variety X is called log-terminal if the canonical divisor KX is Q-Cartier and

the discrepancy discrep(X) of X is bigger than −1 (see [KM98, Section 2.3]). For a

proper birational morphism f : Y → X between normal varieties such that both KX and

KY are Q-Cartier, we set

KY/X :=
∑

E0⊂Y f-exceptional

a(E0, X)E0,

where a(E0, X) is the discrepancy of E0 with respect to X (see [KM98, Section 2.3]).

(We note that if aKX and aKY are Cartier for a ∈ Z>0, then aKY/X is a Z-divisor.)

For a nonsingular surface S and a projective curve C which is a closed subvariety of

S, the curve C is called a (−n)-curve if C is a nonsingular rational curve and (C2) = −n.
For a birational map M ��� S between normal surfaces and a curve C ⊂ S, the strict

transform of C on M is denoted by CM .

For a zero-dimensional scheme Δ, let |Δ| be the support of Δ.

Let S be a nonsingular surface and let E =
∑

wjDj be an effective divisor on S

(wj > 0). The weighted dual graph of E is defined as follows. A vertex corresponding

to a component Dj . Let vj be the vertex corresponding to Dj . Assume that Di and Dj

satisfy that |Di ∩Dj | = {P1, . . . , Pm} such that the local intersection number of Di and

Dj at Pk is sk. For any 1 ≤ h ≤ m, vi and vj are joined by a line with the numbered

box sh if sh ≥ 2. If sh = 1, then vi and vj are joined by a line with no box. Moreover,

for each vertex v corresponding to D, we define the weight w of v as w := coeffD E and

denote it by v(w). In the dual graphs of divisors, a vertex corresponding to (−n)-curve
is expressed as n©. On the other hand, an arbitrary irreducible curve is expressed by the

symbol 
 when it is not necessarily a (−n)-curve.
Let Fn → P1 be a Hirzebruch surface PP1(O⊕O(n)) of degree n with the P1-fibration.

A section σ ⊂ Fn with σ2 = −n is called a minimal section. If n > 0, then such σ is

unique. A section σ∞ with σ ∩ σ∞ = ∅ is called a section at infinity. For a section at

infinity σ∞, we have σ∞ ∼ σ + nl, where l is a fiber of the fibration. For the projective

plane P2, we sometimes denote a line on P2 by l.

For two integers c and d, we set s(c, d) := max{0, c+ d− 1}.
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2. Preliminaries.

2.1. Elimination of subschemes.

In this section, we recall the results in [Nak07]. Let X be a nonsingular surface and

Δ be a zero-dimensional subscheme of X. The ideal sheaf of Δ is denoted by IΔ.

Definition 2.1. Let P be a point of Δ.

(1) Let νP (Δ) := max{ν ∈ Z>0 | IΔ ⊂ mν
P }, where mP is the maximal ideal sheaf in

OX defining P . If νP (Δ) = 1 for any P ∈ Δ, then we say that Δ satisfies the

(ν1)-condition.

(2) The multiplicity multP Δ of Δ at P is given by the length of the Artinian local

ring OΔ,P .

(3) The degree degΔ of Δ is given by
∑

P∈Δ multP Δ.

Definition 2.2. For an effective divisor D and a point P , we set multP D :=

max{ν ∈ Z>0 | OX(−D) ⊂ mν
P }.

Remark 2.3. Let π : Y → X be the blowing up along P and let e be the exceptional

curve. Then multP D is equal to coeffe π
∗D.

Definition 2.4. Assume that Δ satisfies the (ν1)-condition. Let V → X be

the blowing up along Δ. The elimination of Δ is the birational projective morphism

ψ : Z → X defined as the composition of the minimal resolution Z → V of V and

the morphism V → X. For a divisor E on X and for a positive integer s, we set

EΔ,s
Z := ψ∗E − sKZ/X .

Proposition 2.5 ([Nak07, Proposition 2.9]). (1) We assume that the sub-

scheme Δ satisfies the (ν1)-condition and let ψ : Z → X be the elimination of

Δ. Then the anti-canonical divisor −KZ is ψ-nef. More precisely, for any P ∈ Δ

with multP Δ = k, the set-theoretic inverse image ψ−1(P ) is the straight chain∑k
j=1 ΓP,j of nonsingular rational curves and the weighted dual graph of the divi-

sor KZ/X around over P is the following :

2©
ΓP,1

(1)

2©
(2)

ΓP,2

2©
ΓP,k−1

(k − 1)

1©
ΓP,k

(k)

(2) Conversely, for a non-isomorphic proper birational morphism ψ : Z → X between

nonsingular surfaces such that −KZ is ψ-nef, the morphism ψ is the elimination

of Δ which satisfies the (ν1)-condition defined by the ideal IΔ := ψ∗OZ(−KZ/X).

Definition 2.6. Under the assumption of Proposition 2.5 (1), we always denote

the exceptional curves of ψ over P by ΓP,1, . . . ,ΓP,k. The order is determined as Propo-

sition 2.5 (1). We set ΓP,0 := ∅.
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2.2. Curves in nonsingular surfaces.

Lemma 2.7. Let π : M → X be a birational morphism between nonsingular projec-

tive surfaces and let C be a reduced and irreducible curve on X. Then (C2)− ((CM )2) =

(KM/X · CM ) + 2pa(C)− 2pa(C
M ), where pa(•) is the arithmetic genus.

Proof. Follows from the genus formula. �

Proposition 2.8 ([Fuj14a, Corollary 2.10]). Let X be a nonsingular complete

surface, Δ be a zero-dimensional subscheme of X which satisfies the (ν1)-condition,

π : M → X be the elimination of Δ and C1, C2 be distinct nonsingular curves on X. We

set k := degΔ and kh := deg(Δ ∩Ch) for h = 1, 2. Then (C1 ·C2) ≥ k1 + k2 − k holds.

2.3. Dual exceptional graphs.

In this section, we see the classification result of the weighted dual graphs of the

exceptional divisors for non-Gorenstein log-terminal surface singularities of index three.

If k = C, Ohashi–Taki completed the classification in [OT12, Section 2]. We remark

that the following list is the same as the list in [OT12, Section 2].

Proposition 2.9. Let P ∈ S be a non-Gorenstein log-terminal surface singularity

and let α : M → S be the minimal resolution of P ∈ S. Assume that −3KS is Cartier.

Then the weighted dual graph of the effective Z-divisor −3KM/S is one of the list in

Table 1.

Proof. By [KM98, Chapter 4], all of the exceptional curves are nonsingular

rational curves and the weighted dual graph Γ of −3KM/S is a tree and either a straight

chain or having exactly one fork. Assume that Γ is a straight chain. Then Γ is of the

form:

c1��
��E1

(w1)

c2��
��

(w2)

E2

ct−1��
��Et−1

(wt−1)

ct��
��Et

(wt)

We note that ci ≥ 2 and wi = 1 or 2. We only consider the case t ≥ 4. (The case t ≤ 3

can be proven same way.) Since (3KM/S · Ei) = 3(KM · Ei) = 3(ci − 2), we have

ci =

⎧⎪⎨
⎪⎩

(6− w2)/(3− w1) if i = 1,

(6− wi−1 − wi+1)/(3− wi) if 2 ≤ i ≤ t− 1,

(6− wt−1)/(3− wt) if i = t.

Suppose that wi = 1 for some 2 ≤ i ≤ t − 1. We may assume that wj = 2 for any

2 ≤ j ≤ i − 1 if i ≥ 3. If i ≥ 3, then ci = (6 − wi−1 − wi+1)/2 < 2, a contradiction. If

i = 2, then we have c2 = 2. However, we see that c1 = 5/2, a contradiction. Thus wi = 2

for any 2 ≤ i ≤ t− 1. Hence the form of Γ is one of At(1, 1), At(1, 2) or At(2, 2).

Assume that Γ has one fork. Then Γ is of the form:
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a1��
��

(e1)

A1

as��
��As

(es)

d��
��D

(h)

�
�
�

bt��
��Bt

(ft)

b1��
��B1

(f1)

�
�
��

cu��
��Cu

(gu)
��
��
c1��

��C1

(g1)

Table 1. The list of the weighted dual graphs of −3KM/S .

Symbol Graph

A1(1) 3©
(1)

A1(2) 6©
(2)

A2(1, 2) 2©
(1)

5©
(2)

A2(2, 2) 4©
(2)

4©
(2)

A3(1, 1) 2©
(1)

4©
(2)

2©
(1)

A3(1, 2) 2©
(1)

3©
(2)

4©
(2)

A3(2, 2) 4©
(2)

2©
(2)

4©
(2)

At(1, 1) 2©
(1)

3©
(2)

2©
(2)

2©
(2)

3©
(2)

2©
(1)

At(1, 2) 2©
(1)

3©
(2)

2©
(2)

2©
(2)

2©
(2)

4©
(2)

At(2, 2) 4©
(2)

2©
(2)

2©
(2)

2©
(2)

2©
(2)

4©
(2)

(t ≥ 4)

2©
(1)

3©
(2)

2©
(1)

2©
(1)

D4(1)

4©
(2)

2©
(2)

2©
(1)

2©
(1)

D4(2)

2©
(1)

3©
(2)

2©
(2)

2©
(2)

2©
(1)

2©
(1)

Dt(1)

4©
(2)

2©
(2)

2©
(2)

2©
(2)

2©
(1)

2©
(1)

Dt(2)

(t ≥ 5)

(The dual graph of An(l,m) (resp. Dn(m)) is of type An (resp. Dn).)
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Using the same argument, we have d = (6 − es − ft − gu)/(3 − h). Thus h = 2 and we

can assume that es = ft = 1. Then we must have s = t = 1 and gi = 2 for any 2 ≤ i ≤ u

by the same argument. Therefore the assertion holds. �

3. Log del Pezzo surfaces and related objects.

In this section, we define the notion of log del Pezzo surfaces, the notion of 3-basic

pairs, the notion of 3-fundamental triplets, and the notion of bottom tetrads, and see

the correspondence between them.

3.1. Log del Pezzo surfaces.

Definition 3.1. (1) A normal projective surface S is called a log del Pezzo sur-

face if S is log-terminal and the anti-canonical divisor −KS is an ample Q-Cartier

divisor.

(2) Fix a ≥ 2. A log del Pezzo surface is called a log del Pezzo surface of index a if

−aKS is Cartier and −a′KS is not Cartier for any positive integer a′ < a.

Remark 3.2. Any log del Pezzo surface is a rational surface by [Nak07, Proposi-

tion 3.6]. In particular, the Picard group Pic(S) of S is a finitely generated and torsion-

free Abelian group.

3.2. a-basic pairs.

We introduce the following notion which is a kind of modification of the notion of

basic pairs in the sense of [Nak07, Section 3].

Definition 3.3. Fix a ≥ 2. A pair (M,EM ) is called an a-basic pair if the

following conditions are satisfied:

(C1) M is a nonsingular projective rational surface.

(C2) EM is a nonzero effective divisor on M such that coeff EM ⊂ {1, . . . , a − 1} and

SuppEM is simple normal crossing.

(C3) A Cartier divisor LM ∼ −aKM −EM (called the fundamental divisor of (M,EM ))

satisfies that KM + LM is nef and (KM + LM · LM ) > 0.

(C4) For any component E0 ≤ EM , we have (LM · E0) = 0.

Now we see the correspondence between log del Pezzo surfaces of index a and a-basic

pairs. The proof is essentially the same as the proof in [Fuj14a, Proposition 3.7].

Proposition 3.4. Fix a ≥ 2.

(1) Let S be a non-Gorenstein log del Pezzo surface such that −aKS is Cartier. Let

α : M → S be the minimal resolution of S and let EM := −aKM/S. Then (M,EM )

is an a-basic pair and the divisor α∗(−aKS) is the fundamental divisor of (M,EM ).

(2) Let (M,EM ) be an a-basic pair and LM be the fundamental divisor of (M,EM ).

Then there exists a projective and birational morphism α : M → S such that S is
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a non-Gorenstein log del Pezzo surface with −aKS Cartier and LM ∼ α∗(−aKS)

holds. Moreover, the morphism α is the minimal resolution of S.

In particular, there is a one-to-one correspondence between the set of isomorphism classes

of log del Pezzo surfaces of index three and the set of isomorphism classes of 3-basic pairs.

Proof. The proof of (2) is essentially the same as the proof in [Fuj14a, Propo-

sition 3.7]. We only prove (1). The conditions (C1), (C2) and (C4) follow immediately.

We check the condition (C3). Assume that KM + LM is not nef. If there exists a (−1)-
curve γ on M such that (KM + LM · γ) < 0, then (LM · γ) = 0. However, this implies

that γ is α-exceptional. This leads to a contradiction since α is the minimal resolution.

Hence M 
 P2 or Fn by [Mor82, Theorem 2.1] and the fact M is a nonsingular rational

surface. Since α is not an isomorphism, M 
 Fn and S is isomorphic to the weighted

projective plane P(1, 1, n) for some n ≥ 2. This implies that EM = (a(n − 2)/n)σ and

KM + LM ∼ (−2 + a(n + 2)/n)σ + (a − 1)(n + 2)l. However, this leads to a contra-

diction since we assume that KM + LM is not nef. Thus KM + LM must be nef. If

(KM + LM · LM ) = 0, then −KM is numerically equivalent to LM by the Hodge index

theorem. In particular, −KM is nef and big. This implies that S has at most du Val

singularities. This leads to a contradiction. Thus (KM + LM · LM ) > 0. �

As a corollary of Proposition 3.4, we have the following result. The proof is the same

as the proof in [Fuj14a, Lemma 3.8]. We omit the proof.

Corollary 3.5. Let (M,EM ) be a 3-basic pair and LM be the fundamental divi-

sor. Then the following hold.

(1) Any connected component of the weighted dual graph of EM is of the form in Table

1.

(2) If a curve C on M satisfies that C ∩ EM �= ∅ and (LM · C) = 0, then C ≤ EM

holds.

(3) The anti-canonical divisor −KM is big and non-nef. In particular, M is a Mori

dream space (for the definition, see [TVAV11]).

3.3. Median triplets.

In order to classify 3-basic pairs, we define the notion of median triplets which is

a kind of modification of the notion of fundamental triplets in the sense of Nakayama

[Nak07]. The correspondence between 3-basic pairs and (pseudo-)median triplets will

be given in Theorem 3.12.

Definition 3.6. A triplet (Z,EZ ; ΔZ) is called a 3-pseudo-fundamental multiplet

of length one if the following conditions are satisfied:

(F1) Z is a nonsingular projective surface.

(F2) ΔZ is a zero-dimensional subscheme of Z which satisfies the (ν1)-condition.

(F3) EZ is a nonzero effective divisor on Z.
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(F4) A divisor LZ ∼ −3KZ−EZ (called the fundamental divisor of (Z,E,ΔZ)) satisfies

that (2KZ + LZ · γ) ≥ 0 for any (−1)-curve γ on Z.

(F5) Let φ : M → Z be the elimination of ΔZ and let EM := (EZ)
ΔZ, 2
M . Then the pair

(M,EM ) is a 3-basic pair (called the associated 3-basic pair).

Moreover, if 2KZ +LZ is not nef, then we call such triplet (Z,EZ ; ΔZ) a 3-fundamental

multiplet of length one.

Lemma 3.7. Let (Z,EZ ; ΔZ) be a 3-pseudo-fundamental multiplet of length one,

LZ be the fundamental divisor of (Z,EZ ; ΔZ) and (M,EM ) be the associated 3-basic pair.

(1) The divisor LM := (LZ)
ΔZ, 1
M is the fundamental divisor of the 3-basic pair (M,EM ).

We have LZ is nef and big, KZ + LZ is nef and (KZ + LZ · LZ) > 0.

(2) If 2KZ + LZ is not nef, then Z 
 P2 or Fn. Moreover, (2KZ + LZ · l) < 0 holds.

(3) If 2KZ + LZ is nef, then KZ + LZ is big.

(4) We have (LZ · EZ) = 2 degΔZ . Moreover, for any nonsingular component E0 ≤
EZ , we have (LZ · E0) = deg(ΔZ ∩ E0).

(5) For any point Q ∈ ΔZ , 2 ≤ multQ EZ ≤ 4 holds.

Proof. (1) We know that −3KM − EM = φ∗(−3KZ − EZ) −KM/Z ∼ φ∗LZ −
KM/Z , where φ is the elimination of ΔZ . Since KM + LM = φ∗(KZ + LZ) and LM =

φ∗LZ −KM/Z , the assertions hold.

(2) Since (2KZ+LZ ·γ) ≥ 0 for any (−1)-curve, Z 
 P2 or Fn, and (2KZ+LZ ·l) < 0

holds by [Mor82, Theorem 2.1].

(3) Follows from the equality 2(KZ + LZ) = (2KZ + LZ) + LZ .

(4) Since 0 = (LM · EM ) = (LZ · EZ) + 2(K2
M/Z), we have (LZ · EZ) = 2 degΔZ .

Similarly, for any nonsingular component E0 ≤ EZ , we have 0 = (LM · EM
0 ) = (LZ ·

E0)− (KM/Z · EM
0 ).

(5) Follows from the equality coeffΓQ,1
EM = multQ EZ − 2. �

Definition 3.8. Let (Z,EZ ; ΔZ) be a 3-pseudo-fundamental multiplet of length

one. Such (Z,EZ ; ΔZ) is called a pseudo-median triplet if one of the following holds:

(A) KZ + LZ is big.

(B) KZ +LZ is not big, Z 
 Fn (KZ +LZ is trivial with respect to Fn → P1), and the

following conditions are satisfied:

(F6) ΔZ ∩ σ = ∅ holds, where σ ⊂ Z is a minimal section. In particular, if n = 0,

then ΔZ = ∅.
(F7) Assume that EZ contains a section D of Fn/P

1, then σ ≤ EZ and coeffσ EZ ≥
coeffD EZ holds. Moreover, if coeffσ EZ = coeffD EZ , then n + (D2) ≥
deg(ΔZ ∩D) holds.

If 2KZ + LZ is not nef in addition, then we call such a triplet (Z,EZ ; ΔZ) a median

triplet.
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3.4. Bottom tetrads.

In this section, we define the notion of bottom tetrads which is also a kind of mod-

ification of the notion of fundamental triplets in the sense of Nakayama [Nak07]. The

correspondence between (special) pseudo-median triplets and bottom tetrads will be

given in Theorems 3.12 and 5.4.

Definition 3.9. A tetrad (X,EX ; ΔZ ,ΔX) is called a 3-fundamental multiplet of

length two if the following conditions are satisfied:

(B1) X is a nonsingular projective surface.

(B2) ΔX is a zero-dimensional subscheme of X which satisfies the (ν1)-condition.

(B3) EX is a nonzero effective divisor on X.

(B4) A divisor LX ∼ −3KX −EX (called the fundamental divisor of (X,EX ; ΔZ ,ΔX))

satisfies that 2KX +LX is nef and (3KX +LX · γ) ≥ 0 for any (−1)-curve γ on X.

(B5) Let ψ : Z → X be the elimination of ΔX and let EZ := (EX)ΔX, 1
Z . Then the

triplet (Z,EZ ; ΔZ) is a 3-pseudo-fundamental multiplet of length one. (The triplet

is in fact a pseudo-median triplet (Lemma 3.10). We call the triplet the associated

pseudo-median triplet.)

Lemma 3.10. Let (X,EX ; ΔZ ,ΔX) be a 3-fundamental multiplet of length two,

let LX be the fundamental divisor, let ψ : Z → X be the elimination of ΔX and let

EZ := (EX)ΔX, 1
Z .

(1) X is isomorphic to either P2 or Fn. Moreover, (EX · l) > 0 holds.

(2) LZ := (LX)ΔX, 2
Z is the fundamental divisor of (Z,EZ ; ΔZ), LZ is nef and big, and

KZ + LZ is big. In particular, the triplet (Z,EZ ; ΔZ) is a pseudo-median triplet.

(3) We have (LX · EX) = 2(degΔZ + degΔX). Moreover, for any nonsingular com-

ponent E0 ≤ EX , we have (LX · E0) = deg(ΔZ ∩ EZ
0 ) + 2 deg(ΔX ∩ E0).

(4) For any point P ∈ ΔX , 1 ≤ multP EX ≤ 3 holds.

(5) We have (KX + LX · LX) > 2 degΔX .

Proof. (1) Since EX is nonzero effective, the divisor 3KX +LX is not nef. Then

the assertion follows from [Mor82, Theorem 2.1].

(2) Follows from LZ ∼ −3KZ − (EX)ΔX, 1
Z , 2KZ +LZ = ψ∗(2KX +LX) and Lemma

3.7, where ψ is the elimination of ΔX .

(3) We have (LX · EX) = (LZ · EZ) − 2(K2
Z/X). Similarly, we have (LX · E0) =

(LZ · EZ
0 ) + 2(KZ/X · EZ

0 ). Thus the assertion holds by Lemma 3.7.

(4) Follows from the equality coeffΓP,1
EZ = multP EX − 1.

(5) Follows from (KZ + LZ · LZ) = (KX + LX · LX)− 2 degΔX . �

Definition 3.11. Let (X,EX ; ΔZ ,ΔX) be a 3-fundamental multiplet of length

two and LX be a fundamental divisor. Such (X,EX ; ΔZ ,ΔX) is called a bottom tetrad

if one of the following holds:
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(A) 2KX + LX is big.

(B) 2KX +LX is non-big and nontrivial, X 
 Fn (2KX +LX is trivial with respect to

Fn → P1) and the following conditions are satisfied:

(B6) ΔX ∩ σ = ∅ holds, where σ ⊂ X is a minimal section. In particular, if n = 0,

then ΔX = ∅.
(B7) Assume that σ �≤ EX or n = 0, then any section D ≤ EX of Fn/P

1 satisfies

that (D2) ≥ deg(ΔX ∩D).

(B8) Assume that σ ≤ EX and n ≥ 1. Then any section D ≤ EX of Fn/P
1 satisfies

that n+ (D2) ≥ deg(ΔX ∩D).

(C) 2KX + LX is trivial. In this case, we require that either X 
 P2, or ΔX = ∅ and

X 
 P1 × P1, F2. Moreover, if X 
 P2, then the following conditions are satisfied:

(B9) Assume that EX = C+ l, where C is a nonsingular conic and l is a line. Then

ΔX∩C∩l �= ∅. If we further assume that |C∩l| = {P} and deg(ΔX\{P}) ≥ 4,

then ΔZ ∩ l \ {P} �= ∅.
(B10) Assume that EX = l1 + l2 + l3, where l1, l2, l3 are distinct lines. Then

l1 ∩ l2 ∩ l3 = ∅. Moreover, #|ΔX ∩ ((l1 ∩ l2) ∪ (l1 ∩ l3) ∪ (l2 ∩ l3))| ≥ 2.

(B11) Assume that EX = 2l1 + l2, where l1, l2 are distinct lines. Set P := l1 ∩ l2.

Then the following conditions are satisfied:

(a) #|ΔX ∩ l1 \ {P}| ≤ 1. Moreover, if {P1} = |ΔX ∩ l1 \ {P}|, then

multP1
ΔX ≤ 2 and multP ΔX = multP (ΔX ∩ l2).

(b) If degΔX = 4, then deg(ΔX ∩ l2) = 3.

(c) If degΔX ≥ 5 and {P1} = |ΔX∩l1\{P}|, then either multP1
(ΔX∩l1) = 2

or deg(ΔX ∩ l1) = 1 holds.

Now we see the correspondence between 3-basic pairs, pseudo-median triplets and

bottom tetrads. The relationship between pseudo-median triplets (Z,EZ ; ΔZ) with

2KZ + LZ trivial and bottom tetrads (X,EX ; ΔZ ,ΔX) with 2KX + LX trivial will

be treaded in Section 5.

Theorem 3.12. (1) Let (M,EM ) be a 3-basic pair and LM be the fundamental

divisor. Then there exists a projective birational morphism φ : M → Z onto a

nonsingular surface and a zero-dimensional subscheme ΔZ ⊂ Z satisfying the (ν1)-

condition such that the morphism φ is the elimination of ΔZ , the triplet (Z,EZ ; ΔZ)

is a pseudo-median triplet and the associated 3-basic pair is equal to (M,EM ),

where EZ := φ∗EM . Moreover, the divisor φ∗LM is the fundamental divisor of

(Z,EZ ; ΔZ).

(2) Let (Z,EZ ; ΔZ) be a pseudo-median triplet such that 2KZ +LZ is nef and nontriv-

ial, where LZ is the fundamental divisor. Then there exists a projective birational

morphism ψ : Z → X onto a nonsingular surface and a zero-dimensional subscheme

ΔX ⊂ X satisfying the (ν1)-condition such that the morphism ψ is the elimination
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of ΔX , the tetrad (X,EX ; ΔZ ,ΔX) is a bottom tetrad and the associated pseudo-

median triplet is equal to (Z,EZ ; ΔZ), where EX := ψ∗EZ . Moreover, the divisor

ψ∗LZ is the fundamental divisor of (X,EX ; ΔZ ,ΔX).

Proof. The idea of the proof is based on the technique in [Nak07, Proposition

4.5]. It is easy to get a 3-pseudo-fundamental multiplet of length one from a 3-basic

pair (resp. to get a 3-fundamental multiplet of length two from a pseudo-median triplet).

Indeed, if there exists a (−1)-curve γ such that (2KM+LM ·γ) < 0 (resp. (3KZ+LZ ·γ) <
0), then we contract the curve γ. We note that (LM · γ) = 1 since KM + LM is nef.

(resp. (LZ ·γ) = 2 since 2KZ +LZ is nef). By continuing this process, we get a 3-pseudo-

fundamental multiplet of length one (resp. 3-fundamental multiplet of length two).

From now on, we assume that KM +LM (resp. 2KZ +LZ) is non-big (resp. non-big

and nontrivial). Then Z (resp. X) is isomorphic to Fn. We will replace the triplet (resp.

the tetrad) if necessary. The condition (FB6) (resp. the condition (B6)) follows easily

(see [Nak07, Proposition 4.5 Step 1]).

(1) We check the condition (FB7). Assume that EM contains a section of M/P1.

We pick a section D ≤ EM of M/P1 such that the value c := coeffD EM is the largest

among sections of M/P1. Moreover, we replace D such that the value −n′ := (D2) is

the smallest among sections with c = coeffD EM . Note that n′ ≥ 2 by Corollary 3.5. By

[Nak07, Lemma 4.4], there exists a morphism φ′ : M → Z ′ = Fn′ over P1 such that D

is the total transform of the minimal section σ′ ⊂ Fn′ . Then the triplet (Z ′, φ′∗EM ; ΔZ′)

satisfies the conditions (FB6) and (FB7), where ΔZ′ corresponds to the morphism φ′.
(2) We check the conditions (B7) and (B8). Assume that EZ contains a section of

Z/P1. If all sections D ≤ EZ satisfy that (D2) ≥ 0, then the condition (B7) is satisfied.
We assume that there exists a section D ≤ EZ such that (D2) < 0. We replace D ≤ EZ

such that the value −n′ := (D2) is the smallest. By [Nak07, Lemma 4.4], there exists a

morphism ψ′ : Z → X ′ = Fn′ over P
1 such that D is the total transform of the minimal

section σ′ ⊂ Fn′ . Then the tetrad (X ′, ψ′∗EZ ; ΔZ ,ΔX′) satisfies the conditions (B7) and
(B8), where ΔX′ corresponds to the morphism ψ′. �

Proposition 3.13. (1) Let Z be a nonsingular projective rational surface, EZ

be a nonzero effective divisor on Z, LZ be a divisor with LZ ∼ −3KZ − EZ , ΔZ

be a zero-dimensional closed subscheme of Z which satisfies the (ν1)-condition,

φ : M → Z be the elimination of ΔZ , EM := (EZ)
ΔZ, 2
M and LM := (LZ)

ΔZ, 1
M .

Assume that KZ + LZ is nef and (KZ + LZ · LZ) > 0, SuppEM is simple normal

crossing, coeff EM ⊂ {1, 2} and (LM ·E0) = 0 for any component E0 ≤ EM . Then

the pair (M,EM ) is a 3-basic pair.

(2) Let X be a nonsingular projective rational surface, EX be a nonzero effective di-

visor on X, LX be a divisor with LX ∼ −3KX − EX , ΔX be a zero-dimensional

closed subscheme of X which satisfies the (ν1)-condition, ψ : Z → X be the elimi-

nation of ΔX , EZ := (EX)ΔX, 1
Z , LZ := (LX)ΔX, 2

Z , ΔZ be a zero-dimensional closed

subscheme of Z which satisfies the (ν1)-condition, φ : M → Z be the elimination

of ΔZ , EM := (EZ)
ΔZ, 2
M and LM := (LZ)

ΔZ, 1
M . Assume that 2KX + LX is nef,

(KX+LX ·LX) > 2 degΔX , SuppEM is simple normal crossing, coeff EM ⊂ {1, 2}
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and (LM ·E0) = 0 for any component E0 ≤ EM . Then the pair (M,EM ) is a 3-basic

pair.

Proof. (1) Since KM + LM = φ∗(KZ + LZ), the divisor KM + LM is nef and

(KM + LM · LM ) > 0. Thus the assertion holds.

(2) We know that (KZ + LZ · LZ) = (KX + LX · LX) − 2 degΔX . By (1), it is

enough to show that KZ +LZ is nef. Assume that there exists a curve C ⊂ Z such that

(KZ + LZ · C) < 0. Since 2KZ + LZ = ψ∗(2KX + LX) is nef, we have

0 > (KZ + LZ · C) = 2(2KZ + LZ · C) + (EZ · C) ≥ (EZ · C).

Thus C ≤ EZ . In particular, CM ≤ EM . However, we have

0 > 2(KZ + LZ · C) = (2KZ + LZ · C) + (LZ · C)

≥ (LZ · C) = (LM +KM/Z · CM ) ≥ (LM · CM ).

This contradicts to the assumption. Thus KZ + LZ is nef. �

4. Local properties.

In this section, we analyze the local properties of pseudo-median triplets and bottom

tetrads.

4.1. Local properties of pseudo-median triplets.

Let (Z,EZ ; ΔZ) be a 3-pseudo-fundamental multiplet of length one, Q ∈ ΔZ be a

point, φ : M → Z be the elimination of ΔZ and (M,EM ) be the associated 3-basic pair.

Lemma 4.1. Assume that EZ = sl around Q, where Q ∈ l is nonsingular and

s ≥ 0. Here l is not necessarily a line on P2 or a fiber of Fn/P
1. Then s = 2 and ΔZ ⊂ l

around Q. Moreover, EM = 2lM around over Q.

Proof. Since EM = φ∗EZ−2KM/Z is effective and does not contain a (−1)-curve,
the assertion follows from [Fuj14a, Example 2.5]. �

Lemma 4.2. Assume that EZ = s1l1+s2l2 around Q, where Q ∈ li is nonsingular,

s1 ≥ s2 ≥ 1, and l1 and l2 intersect transversally at Q.

(1) If (s1, s2) = (1, 1), then multQ ΔZ = 1 and EM = lM1 + lM2 around over Q. The

weighted dual graph of EM around over Q is the following :



lM1

(1)
� 


(1)

lM2

(2) If (s1, s2) = (2, 1), then multQ ΔZ = multQ(ΔZ ∩ l2) = 2, multQ(ΔZ ∩ l1) = 1 and

EM = 2lM1 + ΓQ,1 + lM2 around over Q. The weighted dual graph of EM around

over Q is the following :
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lM1

(2)

2©
(1)

ΓQ,1

� 

(1)

lM2

(3) If (s1, s2) = (2, 2), we can assume that multQ(ΔZ ∩ l1) = 1. Let k := multQ ΔZ .

Then k = multQ(ΔZ ∩ l2)+1 and EM = 2lM1 +2ΓQ,1+ · · ·+2ΓQ,k−1+2lM2 around

over Q. The weighted dual graph of EM around over Q is the following :



lM1

(2)

2©
(2)

ΓQ,1

2©
(2)

ΓQ,k−1



(2)

lM2

Proof. Follows immediately from [Fuj14a, Example 2.6]. �

Lemma 4.3. (1) The divisor EZ is not of the form EZ = l1 + l2 + l3 around Q,

where l1, l2, l3 are distinct and Q ∈ li is nonsingular for 1 ≤ i ≤ 3.

(2) Assume that EZ = 2l1 + l2 + l3 around Q, where l1, l2, l3 are distinct and Q ∈ li
is nonsingular for 1 ≤ i ≤ 3. Then either lM2 or lM3 is not a connected component

of EM .

Proof. (1) Assume the contrary. Set mij := multQ(li ∩ lj) for 1 ≤ i < j ≤ 3. We

can assume that m12 ≥ m13 ≥ m23 ≥ 1. Then multQ ΔZ ≥ m23 and coeffΓQ,m23
EM =

m23. Thus m23 ≤ 2. Assume that m23 = 1. Then coeffΓQ,1
EM = coeff lM3

EM = 1 and

ΓQ,1∩lM3 �= ∅. This contradicts to Corollary 3.5. Thusm23 = 2. Setm := multQ(ΔZ∩l2).
Then coeffΓQ,m

EM = 2, and ΓQ,m intersects lM2 . Moreover, ΓQ,m intersects lM1 or

ΓQ,m+1, and coeffΓQ,m+1
EM ≥ 1 (if m + 1 ≤ multQ ΔZ). Thus the vertex of the dual

graph of EM corresponding to ΓQ,m is a fork. On the other hand, ΓQ,2 intersects lM3
and ΓQ,1. Thus the vertex of the dual graph of EM corresponding to ΓQ,2 is also a fork.

However, ΓQ,2 and ΓQ,m belong to a same connected component of EM . This contradicts

to Corollary 3.5.

(2) Assume the contrary. The morphism φ : M → Z factors through the monoidal

transform Z1 → Z at Q. Then EZ1
:= EZ1

M is equal to 2lZ1
1 + 2ΓZ1

Q,1 + lZ1
2 + lZ1

3 . If

ΓZ1

Q,1 ∩ lZ1
2 ∩ lZ1

3 = ∅, then either ΓQ,1 ∩ lM2 �= ∅ or ΓQ,1 ∩ lM3 �= ∅ holds, which leads to a

contradiction. Thus we can take Q1 ∈ ΓZ1

Q,1∩ lZ1
2 ∩ lZ1

3 and the morphism M → Z1 factors

through the monoidal transform Z2 → Z1 at Q1. We note that Q1 �∈ lZ1
1 by Lemma 3.7

(5). We must continue this process infinitely many times. This leads to a contradiction.

�

Lemma 4.4. Assume that EZ = l1 + l2 around Q, where Q ∈ li is nonsingular,

{Q} = |l1 ∩ l2|, and multQ(l1 ∩ l2) = m ≥ 2. Then multQ ΔZ = multQ(ΔZ ∩ l1) =

multQ(Δ ∩ l2) = m holds. In other words, ΔZ is equal to l1 ∩ l2 around Q. Moreover,

EM = lM1 + lM2 and the weighted dual graph of EM around over Q is the following :
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lM1

(1)
� 


(1)

lM2

Proof. The morphism φ : M → Z factors through the monoidal transform

π1 : Z1 → Z at Q. Then EZ1 := EZ1

M is equal to lZ1
1 + lZ1

2 around over Q such that

{Q1} := |lZ1
1 ∩ lZ1

2 | and multQ1
(lZ1
1 ∩ lZ1

2 ) = m− 1 hold. If m− 1 ≥ 2, then φ1 : M → Z1

factors through the monoidal transform π2 : Z2 → Z1 at Q1. By repeating the same

argument, we get the following sequence:

M
φm−1−−−→ Zm−1

πm−1−−−→ Zm−2
πm−2−−−→ · · · π1−→ Z.

If φm−1 is an isomorphism around over Q, then the weighted dual graph of EM over Q

is the following:



lM1

(1)



(1)

lM2

This contradicts to Corollary 3.5. Indeed, two curves in EM such that both coefficients

are equal to one does not meet together. Thus φm−1 around over Q is equal to the

monoidal transform at Qm−1 by Lemmas 4.1 and 4.2. �

Lemma 4.5. Assume that EZ = 2l1 + l2 around Q, where Q ∈ li is nonsingular,

{Q} = |l1 ∩ l2|, multQ(l1 ∩ l2) = 2.

(1) Assume that multQ(ΔZ ∩ l2) ≥ 3. Then multQ ΔZ = multQ(ΔZ ∩ l2) = 4,

multQ(ΔZ ∩ l1) = 2 and EM = 2lM1 +ΓQ,1+2ΓQ,2+ΓQ,3+ lM2 . The weighted dual

graph of EM around over Q is the following :



lM1

(2)

2©
(2)

ΓQ,2

2©
(1)

ΓQ,3

2©
(2)

ΓQ,1

� 

(1)

lM2

(2) Assume that multQ(ΔZ∩l2) = 2. Set k := multQ ΔZ . Then multQ(ΔZ∩l1) = k−1

and EM = 2lM1 + ΓQ,1 + 2ΓQ,2 + · · · + 2ΓQ,k−1 + lM2 . The weighted dual graph of

EM around over Q is the following :



lM1

(2)

2©
(2)

ΓQ,k−1

2©
(2)

ΓQ,3

2©
(2)

ΓQ,2

2©
(1)

ΓQ,1



(1)

lM2
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Proof. The morphism φ : M → Z factors through the monoidal transform

π1 : Z1 → Z at Q. Then EZ1 := EZ1

M around over Q is equal to 2lZ1
1 + lZ1

2 + ΓZ1

Q,1

such that Q1 := lZ1
1 ∩ lZ1

2 (meet transversally) and Q1 ∈ ΓZ1

Q,1. Thus φ1 : M → Z1 factors

through the monoidal transform π2 : Z2 → Z1 at Q1. Then EZ2
:= EZ2

M around over Q is

equal to 2lZ2
1 + lZ2

2 +ΓZ2

Q,1+2ΓZ2

Q,2. For the case (1), the morphism M → Z2 is not isomor-

phic over Q22 := lZ1
2 ∩ΓZ2

Q,2 since multQ(ΔZ ∩ l2) ≥ 3. Then we can apply Lemma 4.2 to

the local property around Q22; multQ ΔZ = multQ(ΔZ∩ l2) = 4 and multQ(ΔZ∩ l1) = 2.

For the case (2), if multQ(ΔZ ∩ l1) ≥ 3, then the morphism M → Z2 is not isomorphic

over Q21 := lZ2
1 ∩ΓZ2

Q,2. Then we can apply Lemma 4.2 to the local property around Q21;

we obtain that multQ(Δ ∩ l1) = k − 1. The remaining parts follow easily. �

4.2. Local properties of bottom tetrads.

Let (X,EX ; ΔZ ,ΔX) be a 3-fundamental multiplet of length two, P ∈ ΔX be a

point, ψ : Z → X be the elimination of ΔX , (Z,EZ ; ΔZ) be the associated pseudo-

median triplet, φ : M → Z be the elimination of ΔZ and (M,EM ) be the associated

3-basic pair.

Lemma 4.6. Assume that EX = sl around P , where P ∈ l is nonsingular and

s ≥ 0. Here l is not necessarily a line on P2 or a fiber of Fn/P
1. Then s = 1 or 2 holds.

If s = 1, then ΔX ⊂ l and ΔZ = ∅ around over P . In this case, EZ = lZ and EM = lM

around over P . Assume that s = 2. Set k := multP ΔX and j := multP (ΔX ∩ l). Then

one of the following holds :

(1) (k, j) = (4, 2). In this case, ΔZ = ∅ and EZ(= EM ) = 2lZ + ΓP,1 + 2ΓP,2 + ΓP,3

around over P . The weighted dual graph of EZ around over P is the following :



lZ

(2)

2©
(2)

ΓP,2

2©
(1)

ΓP,1

2©
(1)

ΓP,3

(2) (k, j) = (2, 2). In this case, EZ = 2lZ + ΓP,1 + 2ΓP,2, |ΔZ | ⊂ ΓP,2 around over

P and deg(ΔZ ∩ ΓP,2) = 2. The weighted dual graph of EZ around over P is the

following :



lZ

(2)

1©
(2)

ΓP,2

2©
(1)

ΓP,1

(3) (k, j) = (2, 1). In this case, ΔZ = ∅ and EZ(= EM ) = 2lZ + ΓP,1 around over P .

The weighted dual graph of EZ around over P is the following :



lZ

(2)

2©
(1)

ΓP,1
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(4) (k, j) = (1, 1). In this case, |ΔZ | = {Q} around over P , where Q := lZ ∩ ΓP,1.

Moreover, we have multQ ΔZ = multQ(ΔZ ∩ ΓP,1) = 2 and multQ(ΔZ ∩ lZ) = 1

hold. The weighted dual graph of EZ around over P is the following :



lZ

(2)

1©
(1)

ΓP,1

The weighted dual graph of EM around over P is the following :



lM

(2)

2©
(1)

ΓQ,1

� 3©
(1)

ΓM
P,1

Proof. If s = 1, then the assertion is trivial by [Fuj14a, Example 2.5] and Lemma

4.1. We assume that s = 2. If j ≥ 3, then coeffΓP,3
EZ = 3. This leads to a contradiction.

Thus j = 1 or 2. If j = 1 and k ≥ 3, then coeffΓP,3
EZ = −1, which is a contradiction. If

j = 2 and k ≥ 5, then coeffΓP,5
EZ = −1, which is a contradiction. If (k, j) = (3, 2) then

ΓP,3∩ΔZ �= ∅ and ΓP,2∩ΔZ = ∅. Indeed, (LZ ·ΓP,3) = 2 and (LZ ·ΓP,2) = 0 hold, where

LZ is the fundamental divisor of (Z,EZ ,ΔZ). However, we know that coeffΓP,3
EZ = 1

and the curve ΓP,2 is the only component of EZ which meets ΓP,3. Thus ΔZ ∩ΓP,3 = ∅,
which is a contradiction. Therefore (k, j) = (4, 2), (2, 2), (2, 1) or (1, 1). The remaining

parts follow easily from Lemmas 4.1 and 4.2. �

Lemma 4.7. Assume that EX = s1l1+s2l2 around P , where P ∈ li is nonsingular,

s1 ≥ s2 ≥ 1, and l1 and l2 intersect transversally at P . Then (s1, s2) = (1, 1) or (2, 1).

Moreover, we have the following :

(1) Assume that (s1, s2) = (1, 1). Then multP ΔX = 1. Set Qi := lZi ∩ ΓP,1. Then

|ΔZ | = {Q1, Q2} around over P and multQi ΔZ = 1. In this case, EZ = lZ1 +

ΓP,1 + lZ2 and EM = lM1 + ΓM
P,1 + lM2 around over P . The weighted dual graph of

EZ around over P is the following :



lZ1

(1)

1©
(1)

ΓP,1



(1)

lZ2

The weighted dual graph of EM around over P is the following :



lM1

(1)
� 3©

(1)

ΓM
P,1

� 

(1)

lM2

(2) Assume that (s1, s2) = (2, 1). Then multP (ΔX ∩ l1) = 1. Set k := multP ΔX and

j := multP (ΔX ∩ l2). Then one of the following holds :
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(a) k = j ≥ 1 holds. In this case, |ΔZ | ⊂ ΓP,k, deg(ΔZ ∩ ΓP,k) = 2 and EZ =

2lZ1 +2ΓP,1 + · · ·+2ΓP,k + lZ2 around over P . The weighted dual graph of EZ

around over P is the following :



lZ1

(2)

2©
(2)

ΓP,1

2©
(2)

ΓP,k−1

1©
(2)

ΓP,k



(1)

lZ2

(b) k = j + 2 ≥ 3 holds. In this case, ΔZ = ∅ and EZ(= EM ) = 2lZ1 + 2ΓP,1 +

· · · + 2ΓP,k−2 + ΓP,k−1 + lZ2 around over P . The weighted dual graph of EZ

around over P is the following :



lZ1

(2)

2©
(2)

ΓP,1

2©
(2)

ΓP,k−2

2©
(1)

ΓP,k−1



(1)

lZ2

Proof. If (s1, s2) = (2, 2), then coeffΓP,1
EZ = 3, a contradiction. Thus (s1, s2) =

(1, 1) or (2, 1).

(1) Assume that (s1, s2) = (1, 1). Set k := multP ΔX . If k ≥ 2, then ΓP,1 ∩ΔZ = ∅,
coeffΓP,1

EZ = 1, coeff lZ1
EZ = 1 and the curve lZ1 is the unique component of EZ which

meets ΓP,1. This contradicts to Corollary 3.5. Thus k = 1. Then deg(ΓP,1 ∩ΔZ) = 2.

By Lemma 4.2, we have ΔZ = {Q1, Q2} and multQi EZ = 1 around over P .

(2) Assume that (s1, s2) = (2, 1). If multP (ΔX∩l1) ≥ 2, then coeffΓP,2
EZ = 3. This

leads to a contradiction. Thus multP (ΔX ∩ l1) = 1. If k ≥ j + 3, then coeffΓP,j+3
EZ =

−1, a contradiction. If k = j + 1, then coeffΓP,k
EZ = 1, deg(ΔZ ∩ ΓP,k) = 2 and

deg(ΔZ ∩ΓP,k−1) = 0. Note that the curve ΓP,k−1 is the unique component of EZ which

meets ΓP,k. Thus ΔX ∩ΓP,k = ∅, a contradiction. Thus either k = j or j+2 holds. The

remaining assertions follow from Lemmas 4.1 and 4.2. �

Lemma 4.8. Assume that EX = l1+ l2+ l3 around P , where P ∈ li is nonsingular,

and li and lj intersect transversally at P for any 1 ≤ i < j ≤ 3. Then we can assume that

multP (ΔX ∩ l2) = multP (ΔX ∩ l3) = 1. Set k := multP ΔX and j := multP (ΔX ∩ l1).

Then k = j, |ΔZ | ⊂ ΓP,k, deg(ΔZ ∩ΓP,k) = 2 and EZ = lZ2 + lZ3 +2ΓP,1+ · · ·+2ΓP,k+ lZ1
around over P . The weighted dual graph of EZ around over P is the following (if k = 1,

then ΓP,1 is a (−1)-curve and meets lZ1 , l
Z
2 and lZ3 ):



lZ1

(1)

1©
(2)

ΓP,k

2©
(2)

ΓP,2

2©
(2)

ΓP,1



(1)

lZ2



(1)

lZ3
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Proof. Assume that k ≥ j+3. Then coeffΓP,k
EZ ≤ −1, which is a contradiction.

Assume that k = j + 1. Then coeffΓP,k
EZ = 1, deg(ΔZ ∩ ΓP,k) = 2, ΔZ ∩ ΓP,k−1 = ∅,

and the curve ΓP,k−1 is the unique component of EZ which meets ΓP,k. This leads to a

contradiction. Assume that k = j + 2. Then ΔZ = ∅ around over P and the weighted

dual graph of EZ(= EM ) around over P is the following:

2©
ΓP,k−1

(1)

2©
(2)

ΓP,k−2

2©
(2)

ΓP,1



(1)

lZ2



(1)

lZ3

(1)

lZ1

This leads to a contradiction to Corollary 3.5. The remaining assertions follow from

Lemmas 4.1 and 4.2. �

Lemma 4.9. Assume that EX = l1 + l2 around P , where P ∈ li is nonsingular,

{P} = |l1 ∩ l2|, and multP (l1 ∩ l2) = 2. Set k := multP ΔX , ji := multP (ΔX ∩ li)

and assume that j1 ≥ j2. Then k = j1, j2 = 2, |ΔZ | ⊂ ΓP,k, deg(ΔZ ∩ ΓP,k) = 2 and

EZ = lZ2 + ΓP,1 + 2ΓP,2 + · · · + 2ΓP,k + lZ1 around over P . The weighted dual graph of

EZ around over P is the following :

2©
ΓP,1

(1)

2©
(2)

ΓP,2

2©
(2)

ΓP,k−1

1©
(2)

ΓP,k



(1)

lZ1



(1)

lZ2

Proof. The morphism ψ : Z → X factors though the monoidal transform

π : X1 → X at P . Set EX1
:= EX1

Z . Then EX1
= lX1

1 + lX1
2 + ΓX1

P,1 around over P .

We note that any two curves intersect transversally at P1 := lX1
1 ∩ lX1

2 . If ψ1 : Z → X1

is isomorphic around P1, then contradicts to Lemma 4.3. Thus ψ1 factors through the

monoidal transform at P1. Then we can apply the argument of Lemma 4.8 and we can

get the assertion. �

Lemma 4.10. Assume that EX = C around P , where C is defined by x2 = y3,

where {x, y} is a regular parameter system at P . Then multP ΔX = 1, |ΔZ | = {Q},
multQ ΔZ = multQ(ΔZ ∩ CZ) = multQ(ΔZ ∩ ΓP,1) = 2 around over P , where Q :=

CZ ∩ ΓP,1. The weighted dual graph of EM around over P is the following :



CM

(1)
� 3©

(1)

ΓM
P,1

Proof. The morphism ψ : Z → X factors though the monoidal transform

π : X1 → X at P . Set EX1 := EX1

Z . Then EX1 = CX1 + ΓX1

P,1 and both compo-

nents are nonsingular around over P . Moreover, {Q} := |CX1 ∩ ΓX1

P,1| satisfies that
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multQ(C
X1 ∩ ΓX1

P,1) = 2. If Z → X1 is not an isomorphism around Q, then −KZ is not

ψ-nef by Lemma 4.9, which leads to a contradiction. Thus Z → X1 is an isomorphism

around Q. The remaining assertions follows from Lemma 4.4. �

5. On bottom tetrads.

In this section, we consider the relationship between pseudo-median triplets

(Z,EZ ; ΔZ) (LZ : the fundamental divisor) with 2KZ + LZ trivial and bottom tetrads

(X,EX ; ΔZ ,ΔX) (LX : the fundamental divisor) with 2KX + LX trivial. Since −KZ is

nef and big, there exists a birational morphism Z → X = P2 unless Z = P1 × P1 or F2

by [HW81, Corollary 3.6]. Moreover, for any birational morphism Z → X = P2, there

exists a zero-dimensional subscheme ΔX ⊂ X which satisfies the (ν1)-condition and the

morphism Z → X is the elimination of ΔX . By this way, we obtain a 3-fundamental mul-

tiplet (X,EX ; ΔZ ,ΔX) of length two. The following lemmas show that we can replace

the tetrad with a “suitable” one.

Lemma 5.1. Let (X = P2, EX ; ΔZ ,ΔX) be a 3-fundamental multiplet of length two

with EX = 2l1 + l2, where l1, l2 are distinct lines. Set P := l1 ∩ l2. Assume that one of

the following holds :

(1) There exists a point P1 ∈ ΔX ∩ l1 \ {P} such that one of the following holds:

(a) multP1 ΔX > 2.

(b) degΔX ≥ 5, multP1(ΔX ∩ l1) = 1 and deg(ΔX ∩ l1) ≥ 2.

(2) #|ΔX ∩ l1 \ {P}| ≥ 2.

(3) #|ΔX ∩ l1 \ {P}| = 1 and multP ΔX > multP (ΔX ∩ l2).

(4) degΔX = 4 and deg(ΔX ∩ l2) = 2.

Then there exists a 3-fundamental multiplet (X ′ = P2, EX′ ; ΔZ ,ΔX′) of length two

such that both (X,EX ; ΔZ ,ΔX) and (X ′, EX′ ; ΔZ ,ΔX′) induce the same pseudo-median

triplet, and either holds:

(i) EX′ is reduced, or

(ii) EX′ = 2l′1 + l′2 such that l′1, l
′
2 are distinct lines and none of the conditions (1),

(2), (3), (4) hold.

Proof. Set dXi := deg(ΔX ∩ li), dZi := deg(ΔZ ∩ lZi ) for i = 1, 2, and b :=

multP ΔX . Note that 2dXi + dZi = 6 and dXi + dZi = 1− ((lMi )2). Thus (dX1 , dZ1 ) = (3, 0),

(2, 2), (1, 4), (0, 6), and (dX2 , dZ2 ) = (3, 0), (2, 2). By Lemma 4.7, multP (ΔX ∩ l1) =

1 if b ≥ 1. Let (Z,EZ ; ΔZ) be the associated pseudo-median triplet and LZ be the

fundamental divisor. We note that EZ ∼ −KZ .

Step 1: Assume that (1a), (2) or (3). We will show that we can replace with another

tetrad such that the condition (i) holds.

(1a) By Lemma 4.1, (multP1 ΔX ,multP1(ΔX ∩ l1)) = (4, 2). Let X1 → X be the

elimination of ΔX around P1. Then ρ(X1) = 5, Z → X factors through X1 → X
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and EX1

Z = lX1
2 + 2lX1

1 + 2ΓX1

P1,2
+ ΓX1

P1,1
+ ΓX1

P1,3
. Since (lX1

1 )2 = −1, (ΓX1

P1,2
)2 = −2

and ρ(X1) = 5, there exists a birational morphism ψ′ : Z → X1 → X ′ = P2 such that

ψ′∗(l
Z
1 + ΓP1,2) = 0. Thus EX′ := ψ′∗EZ = ψ′∗(l

Z
2 + ΓP1,1 + ΓP1,3) is reduced.

(2) Set {P1, . . . , Pj} = |ΔZ ∩ l1 \{P}| (j ≥ 2). Assume that j ≥ 3. Then (dX1 , dZ1 ) =

(3, 0), j = 3 and P �∈ ΔX . Moreover, (multPi
ΔX ,multPi

(ΔX ∩ li)) = (2, 1) for any

1 ≤ i ≤ 3. This implies that lZ1 intersects with ΓM
P1,1

, ΓM
P2,1

, ΓM
P3,1

and lM2 , which leads

to a contradiction. Thus j = 2. Assume that P ∈ ΔX . Then (dX1 , dZ1 ) = (3, 0) and

(multPi
ΔX ,multPi

(ΔX ∩ li)) = (2, 1) for i = 1, 2. Let X1 → X be the elimination of

ΔX around P1, P2. Then ρ(X1) = 5, Z → X factors through X1 → X and EX1

Z =

lX1
2 + 2lX1

1 + ΓX1

P1,1
+ ΓX1

P2,1
. Since (lX1

1 )2 = −1, there exists a birational morphism

ψ′ : Z → X1 → X ′ = P2 such that ψ′∗l
Z
1 = 0. Thus EX′ := ψ′∗EZ = ψ′∗(l

Z
2 +ΓP1,1+ΓP2,1)

is reduced. Assume that P �∈ ΔX . Let X1 → X be the composition of the elimination

of ΔX around l2 and the monoidal transform at P1, P2. Then ρ(X1) ≥ 4, Z → X

factors through X1 → X and EX1

Z = lX1
2 + 2lX1

1 + ΓX1

P1,1
+ ΓX1

P2,1
. Since (lX1

1 )2 = −1,
there exists a birational morphism ψ′ : Z → X1 → X ′ = P2 such that ψ′∗l

Z
1 = 0. Thus

EX′ := ψ′∗EZ = ψ′∗(l
Z
2 + ΓP1,1 + ΓP2,1) is reduced.

(3) Set {P1} = |ΔZ ∩ l1 \ {P}|. By Lemma 4.7, b = multP (ΔX ∩ l2) + 2 ≥ 3.

Let X1 → X be the composition of the elimination of ΔX around P and the monoidal

transform at P1. Then ρ(X1) = b + 2, Z → X factors through X1 → X and EX1

Z =

lX1
2 +2lX1

1 +2ΓX1

P,1 + · · ·+2ΓX1

P,b−2 +ΓX1

P,b−1 +ΓX1

P1,1
. Since (lX1

1 )2 = −1 and (ΓX1

P,i)
2 = −2

for 1 ≤ i ≤ b − 2, there exists a birational morphism ψ′ : Z → X1 → X ′ = P2 such

that ψ′∗(l
Z
1 + ΓP,1 + · · ·+ ΓP,b−2) = 0. Thus EX′ := ψ′∗EZ = ψ′∗(l

Z
2 + ΓP1,1 + ΓP,b−1) is

reduced.

Step 2: We assume the case (1b). We can assume that {P1} = |ΔX ∩ l1 \ {P}|,
dX1 = 2 and b = multP (ΔX ∩ l2). Assume that multP1 ΔX = 1. Set Q1 := lZ1 ∩ ΓP1,1.

Since multQ1 ΔZ = 2 and multQ1(ΔZ ∩ lZ1 ) = 1, we have degΔZ ≥ deg(ΔZ ∩ lZ1 ) +

deg(ΔZ ∩ΓP,b)+ (2− 1) = 5. However, degΔX +degΔZ = (LX ·EX)/2 = 9. This leads

to a contradiction. Thus multP1
ΔX = 2, ((lZ1 )

2) = −1 and ((ΓP1,1)
2) = −2. There exists

a birational morphism χ : Z → X0 such that ρ(Z)− ρ(X0) = 2 and χ(lZ1 ∪ΓP1,1) = {R}.
Moreover, there exists a birational morphism τ : X0 → X ′ = P2. Set ψ′ := τ ◦ χ. Since

EX′ := ψ′∗EZ = ψ′∗(l
Z
2 + 2(ΓP,1 + · · ·+ ΓP,b)), unless EX′ is reduced, we can write that

EX′ = 2l′1 + l′2 with l′1, l
′
2 distinct lines, where l′1 = ψ′∗ΓP,1 and l′2 = ψ′∗l

Z
2 . Indeed,

ψ′∗ΓP,1 �= 0 since ((χ∗ΓP,1)
2) ≥ 0. Let P ′1 be the image of R. Since EZ ∼ −KZ , τ

is an isomorphism around R. Thus multP ′1 ΔX′ = multP ′1(ΔX′ ∩ l′1) = 2, where ΔX′

corresponds to the morphism ψ′. Moreover, degΔX′ = degΔX ≥ 5. Therefore, by

combining with the argument in Step 1, we can get another tetrad which satisfies that

none of the conditions (1), (2), (3), (4) are satisfied and degΔX′ ≥ 5.

We assume the case (4). We can assume that b = multP (ΔX∩ l2). If ΔX∩ l1\{P} =
∅, then ΔX ⊂ l2. This implies that degΔX = 2, which leads to a contradiction. Thus

we can assume that {P1} = |ΔX ∩ l1 \ {P}| and multP1
ΔX = 2. Then we can write

that EZ = ΓP1,1 + 2D + lZ2 , where D is an effective divisor on Z. Moreover, ρ(Z) ≥ 5.

There exists a birational morphism ψ′ : Z → X1 → X ′ = P2 such that ψ′∗l
Z
2 = 0. Unless

EX′ := ψ′∗EZ = ψ′∗(ΓP1,1 + 2D) is not reduced, we can write EX′ = 2l′1 + l′2 with l′1, l
′
2

distinct lines, where l′2 = ψ′∗ΓP1,1. Note that deg(ΔX′ ∩ l′2) = 3. By combining with the
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previous arguments, we can get another tetrad satisfying the condition (i) or (ii). �

Lemma 5.2. Let (X = P2, EX ; ΔZ ,ΔX) be a 3-fundamental multiplet of length

two with EX = l1 + l2 + l3, where l1, l2, l3 are distinct lines. Assume that one of the

following holds:

(1) l1 ∩ l2 ∩ l3 �= ∅.
(2) l1 ∩ l2 ∩ l3 = ∅ and #|ΔX ∩ ((l1 ∩ l2) ∪ (l1 ∩ l3) ∪ (l2 ∩ l3))| ≤ 1.

Then there exists a 3-fundamental multiplet (X ′ = P2, EX′ ; ΔZ ,ΔX′) of length two

such that both (X,EX ; ΔZ ,ΔX) and (X ′, EX′ ; ΔZ ,ΔX′) induce the same pseudo-median

triplet, EX′ is reduced and the number of the component of EX′ is less than three.

Proof. Set dXi := deg(ΔX ∩ li), d
Z
i := deg(ΔZ ∩ lZi ) for 1 ≤ i ≤ 3. Then, we

have (dXi , dZi ) = (2, 2) or (3, 0).

Assume the case (1). Set P := l1 ∩ l2 ∩ l3. By Lemma 4.3, P ∈ ΔX . If deg(ΔX ∩ li \
{P}) = 1 for all 1 ≤ i ≤ 3, then multP ΔX = 1 and (dXi , dZi ) = (2, 2) for all 1 ≤ i ≤ 3 by

Lemma 4.8. However, this implies that deg(ΔZ∩ΓP,1) ≥ 3. This leads to a contradiction.

Thus we can assume that deg(ΔX ∩ l1 \ {P}) = 2. Let X1 → X be the elimination of

ΔX \{P}. Then ρ(X1) ≥ 5, Z → X factors through X1 → X and EX1

Z = lX1
1 + lX1

2 + lX1
3 .

Since ((lX1
1 )2) = −1, there exists a birational morphism ψ′ : Z → X1 → X ′ = P2 such

that ψ′∗l
Z
1 = 0. Thus EX′ := ψ′∗EZ = ψ′∗(l

Z
2 + lZ3 ).

Assume the case (2). Set Pij := li ∩ lj for 1 ≤ i < j ≤ 3. We can assume that

P12, P13 �∈ ΔX . By Lemmas 4.2 and 4.7, dXi = 2 for any 1 ≤ i ≤ 3. Let X1 → X

be the elimination of ΔX \ {P23}. Then ρ(X1) ≥ 5, Z → X factors through X1 → X

and EX1

Z = lX1
1 + lX1

2 + lX1
3 . Since ((lX1

1 )2) = −1, there exists a birational morphism

ψ′ : Z → X1 → X ′ = P2 such that ψ′∗l
Z
1 = 0. Thus EX′ := ψ′∗EZ = ψ′∗(l

Z
2 + lZ3 ). �

Lemma 5.3. Let (X = P2, EX ; ΔZ ,ΔX) be a 3-fundamental multiplet of length two

with EX = C + l, where C is a nonsingular conic and l is a line. Assume that one of

the following holds :

(1) ΔX ∩ C ∩ l = ∅.
(2) |C ∩ l| = {P}, deg(ΔX \ {P}) ≥ 4 and ΔX ∩ l \ {P} = ∅.

Then there exists a 3-fundamental multiplet (X ′ = P2, EX′ ; ΔZ ,ΔX′) of length two

such that both (X,EX ; ΔZ ,ΔX) and (X ′, EX′ ; ΔZ ,ΔX′) induce the same 3-fundamental

triplet, EX′ is the union of a nonsingular conic and a line and neither the conditions (1)

nor (2) holds unless EX′ is reduced and irreducible.

Proof. Assume the case (1). Then EZ = CZ + lZ . By Lemmas 4.2 and 4.9,

deg(ΔZ ∩CZ) = deg(ΔZ ∩ lZ) = 2. Thus ((lZ)2) = −1 and ρ(Z) = 8. Then there exists

a birational morphism ψ′ : Z → X ′ = P2 such that EX′ := ψ′∗EZ = ψ′∗C
Z is reduced and

irreducible.

Assume the case (2). We can assume that P ∈ ΔX . By the assumption, deg(ΔX ∩
C \ {P}) ≥ 4. There exists a line l0 ⊂ X such that P �∈ l0 and deg(ΔX ∩ l0) = 2 since
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ΔX \ {P} ⊂ C. Let X1 → X be the elimination of ΔX \ {P}. Then ρ(X1) ≥ 5, Z → X

factors through X1 → X and EX1

Z = CX1+lX1 . We note that there exists a (−1)-curve Γ
on X1 over X such that CX1 ∩Γ �= ∅ and lX1

0 ∩Γ = ∅ since deg(ΔX ∩C \{P}) ≥ 4. There

exists a birational morphism ψ′ : Z → X1 → X ′ = P2 such that the strict transforms of

l0 and Γ are mapped by ψ′ to points. In this case, EX′ = ψ′∗(C
Z + lZ). We can assume

that EX′ = C ′ + l′, where C ′ is a nonsingular conic and l′ is a line. By construction,

|C ′ ∩ l′| = {P ′}, ΔX′ ∩C ′ \ {P ′} �= ∅ and ΔX′ ∩ l′ \ {P ′} �= ∅. Thus the assertion holds.

�

As an immediate consequence of Lemmas 5.1, 5.2 and 5.3, we have the following

theorem.

Theorem 5.4. Let (Z,EZ ; ΔZ) be a pseudo-median triplet such that 2KZ + LZ

is trivial, where LZ is the fundamental divisor. Then there exists a projective birational

morphism ψ : Z → X onto a nonsingular surface and a zero-dimensional subscheme

ΔX ⊂ X satisfying the (ν1)-condition such that the morphism ψ is the elimination of

ΔX , the tetrad (X,EX ; ΔZ ,ΔX) is a bottom tetrad and the associated pseudo-median

triplet is equal to (Z,EZ ; ΔZ), where EX := ψ∗EZ . Moreover, the divisor ψ∗LZ is the

fundamental divisor of (X,EX ; ΔZ ,ΔX).

6. Classification of median triplets.

We classify median triplets (Z,EZ ; ΔZ).

Theorem 6.1. The median triplets (Z,EZ ; ΔZ) are classified by the types defined

as follows:

The case Z = P2 :

[4]0 EZ = 2C (C: nonsingular conic), degΔZ = 10 and ΔZ ⊂ C.

[4]2(c,d) ((c, d) = (0, 0), (1, 1), . . . , (5, 1)) EZ = 2l1+2l2 (l1, l2: distinct lines), degΔZ =

10, deg(ΔZ ∩ l1) = deg(ΔZ ∩ l2) = 5, multQ(ΔZ ∩ l1) = c, multQ(ΔZ ∩ l2) = d and

multQ ΔZ = c+ d, where Q = l1 ∩ l2.

[5]K EZ = 2C+ l (C: nonsingular conic, l: line), |C∩ l| = {Q}, degΔZ = 10, deg(ΔZ ∩
C) = 8, multQ ΔZ = multQ(ΔZ ∩ l) = 4 and multQ(ΔZ ∩ C) = 2.

[5]A EZ = 2C + l (C: nonsingular conic, l: line), |C ∩ l| = {Q1, Q2}, degΔZ = 10,

deg(ΔZ ∩ C) = 8 and multQi
ΔZ = multQi

(ΔZ ∩ l) = 2 for i = 1, 2.

[5]3(c,d) ((c, d) = (0, 0), (1, 1), (2, 1), (3, 1)) EZ = 2l1+2l2+ l3 (l1, l2, l3: distinct lines),

l1∩ l2∩ l3 = ∅, degΔZ = 10, deg(ΔZ ∩ li) = 4, multQi3 ΔZ = multQi3(ΔZ ∩ l3) = 2

for i = 1, 2, multQ12(ΔZ ∩ l1) = c, multQ12(ΔZ ∩ l2) = d and multQ12 ΔZ = c+ d,

where Qij = li ∩ lj for 1 ≤ i < j ≤ 3.

[5]4 EZ = 2l1 + l2 + l3 + l4 (l1, . . . , l4: distinct lines), Qij are distinct for 1 ≤ i <

j ≤ 4, degΔZ = 10, deg(ΔZ ∩ l1) = 4, multQij
ΔZ = 1 for 2 ≤ i < j ≤ 4
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and multQ1j ΔZ = multQ1j (ΔZ ∩ lj) = 2 for 2 ≤ j ≤ 4, where Qij = li ∩ lj for

1 ≤ i < j ≤ 4.

[5]5 EZ = l1+l2+l3+l4+l5 (l1, . . . , l5: distinct lines), Qij are distinct for 1 ≤ i < j ≤ 5,

degΔZ = 10 and multQij ΔZ = 1 for 1 ≤ i < j ≤ 5, where Qij = li ∩ lj for

1 ≤ i < j ≤ 5.

The case Z = P1 × P1 :

[0;3,3]D EZ = 2C+σ+ l (C ∼ σ+ l nonsingular), C ∩σ∩ l = ∅, degΔZ = 9, deg(ΔZ ∩
C) = 6, multQ ΔZ = 1, multQσ ΔZ = multQσ (ΔZ ∩ σ) = 2 and multQl

ΔZ =

multQl
(ΔZ ∩ l) = 2, where Q = σ ∩ l, Qσ = C ∩ l and Ql = C ∩ l.

[0;3,3]22(c,d) ((c, d) = (0, 0), (1, 1), (2, 1)) EZ = 2σ1 + σ2 + 2l1 + l2 (σ1, σ2: distinct

minimal sections, l1, l2: distinct fibers), degΔZ = 9, deg(ΔZ ∩ σ1) = deg(ΔZ ∩
l1) = 3, multQ11(ΔZ ∩ σ1) = c, multQ11(ΔZ ∩ l1) = d, multQ11 ΔZ = c + d,

multQ12 ΔZ = multQ12(ΔZ ∩ l2) = 2, multQ21 ΔZ = multQ21(ΔZ ∩ σ2) = 2 and

multQ22 ΔZ = 1, where Qij = σi ∩ lj for 1 ≤ i, j ≤ 2.

[0;3,3]23 EZ = 2σ1+σ2+l1+l2+l3 (σ1, σ2: distinct minimal sections, l1, l2, l3: distinct

fibers), degΔZ = 9, multQ1j ΔZ = multQ1j (ΔZ ∩ lj) = 2 and multQ2j ΔZ = 1 for

1 ≤ j ≤ 3, where Qij = σi ∩ lj for 1 ≤ i ≤ 2 and 1 ≤ j ≤ 3.

[0;3,3]33 EZ = σ1 + σ2 + σ3 + l1 + l2 + l3 (σ1, σ2, σ3: distinct minimal sections, l1,

l2, l3: distinct fibers), degΔZ = 9 and multQij
ΔZ = 1, where Qij = σi ∩ lj for

1 ≤ i, j ≤ 3.

The case Z = F1 :

[1;3,4]0 EZ = 2C + σ (C ∼ σ + 2l nonsingular), degΔZ = 9, deg(ΔZ ∩ C) = 8 and

multQ ΔZ = multQ(ΔZ ∩ σ) = 2, where Q = C ∩ σ.

[1;3,4]1(c,d) ((c, d) = (0, 0), (1, 1), . . . , (5, 1), (1, 2)) EZ = 2σ∞ + σ + 2l, degΔZ = 9,

deg(ΔZ ∩σ) = multQ ΔZ = 2, deg(ΔZ ∩ l) = 3, deg(ΔZ ∩σ∞) = 5, multQ∞(ΔZ ∩
σ∞) = c, multQ∞(ΔZ ∩ l) = d and multQ∞ ΔZ = c + d, where Q = σ ∩ l and

Q∞ = σ∞ ∩ l.

[1;3,4]2 EZ = 2σ∞+ σ+ l1 + l2 (l1, l2: distinct fibers), degΔZ = 9, deg(ΔZ ∩ σ∞) = 5,

multQ1
ΔZ = multQ2

ΔZ = 1, multQ∞1
ΔZ = multQ∞1

(ΔZ ∩ l1) = multQ∞2
ΔZ =

multQ∞2
(ΔZ ∩ l2) = 2, where Qi = σ ∩ li and Q∞i = σ∞ ∩ li for i = 1, 2.

[1;4,4] EZ = 2C (C ∼ 2σ + 2l nonsingular), degΔZ = 10 and ΔZ ⊂ C.

[1;4,5]K(c) (3 ≤ c ≤ 9) EZ = 2C+ l (C ∼ 2σ+2l nonsingular, C ∩ l = {Q}), degΔZ =

9, deg(ΔZ∩C) = 8, multQ ΔZ = c, multQ(ΔZ∩C) = c−1 and multQ(ΔZ∩l) = 2.

[1;4,5]A EZ = 2C + l (C ∼ 2σ + 2l nonsingular, C ∩ l = {Q1, Q2}), degΔZ = 9,

deg(ΔZ ∩ C) = 8, |ΔZ | ∩ l = {Q1} and multQ1 ΔZ = multQ1(ΔZ ∩ l) = 2.
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The case Z = F2 :

[2;3,5]1 EZ = 2σ∞ + σ + l, degΔZ = 9, deg(ΔZ ∩ σ∞) = 7, multQ ΔZ = 1 and

multQ∞ ΔZ = multQ∞(ΔZ ∩ l) = 2, where Q = σ ∩ l and Q∞ = σ∞ ∩ l.

[2;3,6]0 EZ = 2C + σ (C ∼ σ + 3l nonsingular), degΔZ = 9, deg(ΔZ ∩ C) = 9 and

ΔZ ∩ σ = ∅.

[2;3,6]1(c,d) ((c, d) = (0, 0), (1, 1), . . . , (6, 1), (2, 1), (3, 1)) EZ = 2σ∞+σ+2l, degΔZ =

9, ΔZ ∩ σ = ∅, deg(ΔZ ∩ σ∞) = 6, deg(ΔZ ∩ l) = 3, multQ(ΔZ ∩ σ∞) = c,

multQ(ΔZ ∩ l) = d and multQ ΔZ = c+ d, where Q = σ∞ ∩ l.

The case Z = F3 :

[3;3,6] EZ = 2σ∞ + σ, degΔZ = 9 and ΔZ ⊂ σ∞.

[3;4,9]A EZ = 2C+2σ+l (C ∼ σ+4l nonsingular, σ∩C∩l = ∅), degΔZ = 9, ΔZ∩σ = ∅,
deg(ΔZ ∩ C) = 8 and multQ ΔZ = multQ(ΔZ ∩ l) = 2, where Q = C ∩ l.

[3;4,9]B EZ = σ∞,1 + σ∞,2 + σ∞,3 + σ (σ∞,1, σ∞,2, σ∞,3: distinct sections at infinity),

σ∞,1 ∩ σ∞,2 ∩ σ∞,3 = ∅, degΔZ = 9 such that ΔZ is the disjoint union of σ∞,1 ∩
σ∞,2, σ∞,1 ∩ σ∞,3 and σ∞,2 ∩ σ∞,3.

[3;4,9]C(c,d) ((c, d) = (0, 0), (1, 1), . . . , (5, 1), (1, 2)) EZ = 2σ∞ + 2σ + 2l1 + l2 (l1, l2:

distinct fibers), degΔZ = 9, ΔZ ∩ σ = ∅, deg(ΔZ ∩ σ∞) = 6, deg(ΔZ ∩ l1) = 2,

multQ1
(ΔZ ∩σ∞) = c, multQ1

(ΔZ ∩ l1) = d, multQ1
ΔZ = c+ d and multQ2

ΔZ =

multQ2
(ΔZ ∩ l2) = 2, where Qi = σ∞ ∩ li for i = 1, 2.

[3;4,9]D EZ = 2σ∞+2σ+ l1 + l2 + l3 (l1, l2, l3: distinct fibers), degΔZ = 9, deg(ΔZ ∩
σ∞) = 6 and multQi

ΔZ = multQi
(ΔZ ∩ li) = 2 for 1 ≤ i ≤ 3, where Qi = σ∞ ∩ li

for 1 ≤ i ≤ 3.

[3;4,9]E EZ = σ∞,1+σ∞,2+2σ+2l1+l2 (σ∞,1, σ∞,2: distinct sections at infinity, l1, l2:

distinct fibers), σ∞,1∩σ∞,2∩(l1∪l2) = ∅, degΔZ = 9, multQi1 ΔZ = multQi1(ΔZ∩
σ∞,i) = 2, multQi2 ΔZ = 1 for i = 1, 2, and ΔZ \ {Q11, Q12, Q21, Q22} = σ∞,1 ∩
σ∞,2, where Qij = σ∞,i ∩ lj for 1 ≤ i, j ≤ 2.

[3;4,9]F EZ = σ∞,1+σ∞,2+2σ+ l1+ l2+ l3 (σ∞,1, σ∞,2: distinct sections at infinity, l1,

l2, l3: distinct fibers), σ∞,1 ∩ σ∞,2 ∩ (l1 ∪ l2 ∪ l3) = ∅, degΔZ = 9, multQij
ΔZ = 1

for 1 ≤ i ≤ 2, 1 ≤ j ≤ 3, and ΔZ \ {Qij}ij = σ∞,1 ∩ σ∞,2, where Qij = σ∞,i ∩ lj
for 1 ≤ i ≤ 2, 1 ≤ j ≤ 3.

The case Z = F4 :

[4;4,10]0 EZ = 2C + 2σ (C ∼ σ + 5l nonsingular), degΔZ = 10, ΔZ ∩ σ = ∅ and

ΔZ ⊂ C.
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[4;4,10]1(c,d) ((c, d) = (0, 0), (1, 1), . . . , (1, 8), (2, 1)) EZ = 2σ + 2σ∞ + 2l, degΔZ =

10, ΔZ ∩ σ = ∅, deg(ΔZ ∩ σ∞) = 8, deg(ΔZ ∩ l) = 2, multQ(ΔZ ∩ σ∞) = c,

multQ(ΔZ ∩ l) = d and multQ ΔZ = c+ d, where Q = σ∞ ∩ l.

[4;4,10]2 EZ = 2σ∞+2σ+l1+l2 (l1, l2: distinct fibers), degΔZ = 10, deg(ΔZ∩σ∞) = 8

and multQi
ΔZ = multQi

(ΔZ ∩ li) = 2, where Qi = σ∞ ∩ li for i = 1, 2.

The case Z = F5 :

[5;4,11]1 EZ = 2σ∞ + 2σ + l, degΔZ = 11, deg(ΔZ ∩ σ∞) = 10 and multQ ΔZ =

multQ(ΔZ ∩ l) = 2, where Q = σ∞ ∩ l.

The case Z = F6 :

[6;4,12]0 EZ = 2σ∞ + 2σ, degΔZ = 12 and ΔZ ⊂ σ∞.

We start to prove Theorem 6.1. Any of the triplet in Theorem 6.1 is a median triplet

by Proposition 3.13. We show the converse. Let (Z,EZ ; ΔZ) be a median triplet, LZ

be the fundamental divisor, φ : M → Z be the elimination of ΔZ , EM := (EZ)
ΔZ, 2
M and

kZ := degΔZ . By Lemma 3.7, Z = P2 or Fn and (2KZ + LZ · l) < 0.

6.1. The case Z = P2.

We consider the case Z = P2. Set LZ ∼ hl and EZ ∼ el. Then e = 9 − h and

4 ≤ h ≤ 5 hold since EZ ∼ −3KZ − LZ , (KZ + LZ · LZ) > 0 and 2KZ + LZ is not nef.

Thus (h, e) = (5, 4) or (4, 5). Moreover, kZ = (LZ · EZ)/2 = 10.

Claim 6.2. Any component C ≤ EZ is either a nonsingular conic or a line. More-

over, coeffC EZ = 2 holds unless C is a line and h = 4.

Proof. Set m := degC. By Lemma 2.7, m2 − ((CM )2) = (LZ · C) + 2pa(C) =

m2 + (h− 3)m+ 2. Thus −2− ((CM )2) = (h− 3)m. Hence ((CM )2) ≤ −4 (this implies

that coeffC EZ = 2) unless (h,m) = (4, 1). Therefore m ≤ 2 since e ≤ 5. �

6.1.1. The case (h, e) = (5, 4).

By Claim 6.2, we have either EZ = 2C for a nonsingular conic C, or EZ = 2l1 +2l2
for distinct lines l1, l2.

The case EZ = 2C: In this case, deg(ΔZ ∩ C) = 10. Thus ΔZ ⊂ C. This triplet

is nothing but the type [4]0.

The case EZ = 2l1 + 2l2: We know that deg(ΔZ ∩ li) = 5 for i = 1, 2. Set

Q := l1 ∩ l2, c := multQ(ΔZ ∩ l1) and d := multQ(ΔZ ∩ l2). We may assume that c ≥ d.

By Lemma 4.2, multQ ΔZ = c+ d. This triplet is nothing but the type [4]2(c,d).

6.1.2. The case (h, e) = (4, 5).

By Claim 6.2, any component of EZ is either a nonsingular conic or a line.

The case EZ = 2C+ l: We consider the case EZ contains a nonsingular conic C. Then

EZ = 2C+ l, where l is a line. We know that deg(ΔZ ∩C) = 8 and deg(ΔZ ∩ l) = 4. We

assume that C is tangent to l at one point Q. Note that multQ(ΔZ∩l) = deg(ΔZ∩l) = 4.

By Lemma 4.5, we have multQ ΔZ = 4 and multQ(ΔZ ∩ C) = 2. This triplet is nothing
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but the type [5]K . We assume that C and l meet at two points Q1 and Q2. By Lemma

4.2, we have multQi ΔZ = multQi(ΔZ ∩ l) = 2 for i = 1, 2. This triplet is nothing but

the type [5]A.

The case EZ = 2l1 + 2l2 + l3: We consider the case EZ = 2l1 + 2l2 + l3, where l1,

l2, l3 are distinct lines. Set Qij := li ∩ lj for 1 ≤ i < j ≤ 3, c := multQ12
(ΔZ ∩ l1) and

d := multQ12
(ΔZ ∩ l2). We may assume that c ≥ d. By Lemma 3.7, Qij are distinct

points. By Lemma 4.2, multQi3
ΔZ = multQi3

(ΔZ ∩ l3) = 2 for i = 1, 2. Moreover,

multQ12
ΔZ = c+ d. This triplet is nothing but the type [5]3(c,d).

The case EZ = 2l1 + l2 + l3 + l4: We assume that EZ = 2l1 + l2 + l3 + l4, where

l1, . . . , l4 are distinct lines. Set Qij := li ∩ lj for 1 ≤ i < j ≤ 4. By Lemmas 3.7 and 4.3,

Qij are distinct for 1 ≤ i < j ≤ 4. By Lemma 4.2, multQ1j ΔZ = multQ1j (ΔZ ∩ lj) = 2

for 2 ≤ j ≤ 4 and multQij ΔZ = 1 for 2 ≤ i < j ≤ 4. This triplet is nothing but the type

[5]4.

The case EZ = l1+l2+l3+l4+l5: We assume that EZ = l1+· · ·+l5, where l1, . . . , l5
are distinct lines. Set Qij := li ∩ lj for 1 ≤ i < j ≤ 5. Assume that Q12 = Q13. By

Lemmas 3.7 and 4.3, we can assume that Q12 = Q14 and Q12 �= Q15. Then we can assume

that multQ12
(ΔZ ∩ l1) ≤ 1. Since |ΔZ | ∩ l1 ⊂ {Q12, Q15} and multQ15

(ΔZ ∩ l1) ≤ 1,

we have deg(ΔZ ∩ l1) ≤ 2. This leads to a contradiction. Therefore Qij are distinct

for 1 ≤ i < j ≤ 5. We know that #{Qij}ij = 10, degΔZ = 10, |ΔZ | ⊂ {Qij}ij and

multQij ΔZ ≤ 1. Thus multQij ΔZ = 1 for 1 ≤ i < j ≤ 5. This triplet is nothing but the

type [5]5.

6.2. The case Z = Fn with KZ + LZ big.

We consider the case Z = Fn such that KZ + LZ is big. Set LZ ∼ h0σ + hl,

EZ ∼ e0σ + el and kZ := degΔZ . Then e0 = 6 − h0 and e = 3(n + 2) − h hold since

EZ ∼ −3KZ − LZ and KZ ∼ −2σ − (n+ 2)l.

Claim 6.3. We have h0 = 3 (hence e0 = 3), kZ = 9 and max{2n + 2, 3n} ≤ h ≤
2n + 6. In particular, n ≤ 6. Furthermore, we have 3 ≤ h ≤ 6 if n = 0, and 5 ≤ h ≤ 8

if n = 1.

Proof. Since KZ + LZ is nef and big and (2KZ + LZ · l) < 0, we have h0 = 3

and h ≥ 2n + 2. Since LZ is nef, we have h ≥ 3n. Moreover, if n = 0 then h ≥ 3 since

KZ + LZ is big; if n = 1 then h ≥ 5 since (2KZ + LZ · σ) ≥ 0. We know that EZ �≥ 3σ.

Thus e = 3(n+ 2)− h ≥ n. Finally, we have kZ = (LZ · EZ)/2 = 9. �

Claim 6.4. (1) We have (n, h) = (0, 3), (1, 5), (2, 6), (2, 7), (3, 9).

(2) Any irreducible component C ≤ EZ apart from σ, l is a section of Fn/P
1 and

coeffC EZ = 2. Moreover, either (i) or (ii) holds :

(i) C = σ∞ with n ≥ 1 and (n, h) = (1, 5), (2, 6), (2, 7), (3, 9).

(ii) C ∼ σ + (n+ 1)l and (n, h) = (0, 3), (1, 5), (2, 6).

Proof. Assume that there exists an irreducible component C ≤ EZ apart from σ,

l. (If n ≥ 1, then such a component always exists since 3σ �≤ EZ .) Set C ∼ mσ+(nm+u)l

with 1 ≤ m ≤ 3 and u ≥ 0. If n = 0, then we assume further that u ≥ 1. Furthermore,
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if (n, h) = (0, 3), then we can further assume that u ≥ m. By Lemma 2.7, nm2 +2um−
((CM )2) = (C2)− ((CM )2) = (LZ ·C)+2pa(C) = nm2+(2u+h−n−2)m+u+2. Thus

−((CM )2) = (h − n − 2)m + u + 2 ≥ 4. This implies that coeffC EZ = 2. Thus m = 1

(i.e., C is a section) since 2C ≤ EZ . We have deg(ΔZ ∩ C) = (LZ · C) = h + 3u. Since

deg(ΔZ ∩ C) ≤ kZ = 9, we have u ≤ 3 − h/3(≤ 2). In particular, n ≤ 3 since h ≤ 9.

Since σ + (n+ 6− h− 2u)l ∼ EZ − 2C ≥ 0, we have n+ 6− h− 2u ≥ 0. If u = 2 then

n+ 2 ≥ h, a contradiction. If u = 1, then (n, h) = (0, 3), (0, 4), (1, 5) or (2, 6). If u = 0,

then (n, h) = (1, 5), (1, 6), (1, 7), (2, 6), (2, 7), (2, 8) or (3, 9).

We assume that n = 0. If σ ≤ EZ , then ((σM )2) = −h since deg(ΔZ ∩σ) = h. Thus

coeffσ EZ = 2 unless h = 3. From the above claim, we must have h = 3 if n = 0.

We assume that (n, h) = (1, 6), (1, 7) or (2, 8). By the above claim, EZ = σ+2σ∞ if

(n, h) = (1, 7) or (2, 8); EZ = σ+2σ∞+ l if (n, h) = (1, 6). However, by Lemmas 4.1 and

4.2, deg(ΔZ ∩ σ) ≤ 1. This contradicts to the fact deg(ΔZ ∩ σ) = (LZ · σ) = h− 3n ≥ 2.

Therefore (n, h) = (0, 3), (1, 5), (2, 6), (2, 7) or (3, 9). �

6.2.1. The case (n, h) = (0, 3).

In this case, we know that EZ ∼ 3σ + 3l. Assume that there exists an irreducible

component C ≤ EZ such that C ∼ σ+ l. Then EZ = 2C+σ+ l. Set Q := σ∩ l. Assume

that Q ∈ C. We can assume that multQ(ΔZ ∩ l) = 1. However, by Lemmas 4.1 and 4.2,

3 = deg(ΔZ ∩ l) = multQ(ΔZ ∩ l). This is a contradiction. Thus C ∩ σ ∩ l = ∅. Set

Qσ := C ∩ σ and Ql := C ∩ l. Then multQ ΔZ = 1, multQσ
ΔZ = multQσ

(ΔZ ∩ σ) = 2

and multQl
ΔZ = multQl

(ΔZ ∩ l) = 2 by Lemma 4.2. This is nothing but the type

[0;3,3]D. Assume that any irreducible component of EZ is either σ or l. We consider the

case EZ = 2σ1 + σ2 + 2l1 + l2 (σ1, σ2: distinct minimal sections, l1, l2: distinct fibers).

Set c := multQ11(ΔZ ∩ σ1) and d := multQ11(ΔZ ∩ l1), where Q11 := σ1 ∩ l1. Then

multQ11 ΔZ = c+d. We may assume that c ≥ d. This induces the type [0;3,3]22(c,d). If

EZ = 2σ1 + σ2 + l1 + l2 + l3 (σ1, σ2: distinct minimal sections, l1, l2, l3: distinct fibers),

then this induces the type [0;3,3]23. If EZ = σ1 + σ2 + σ3 + l1 + l2 + l3 (σ1, σ2, σ3:

distinct minimal sections, l1, l2, l3: distinct fibers), then this induces the type [0;3,3]33.

6.2.2. The case (n, h) = (1, 5).

In this case, we know that EZ ∼ 3σ + 4l. Assume that there exists an irreducible

component C ≤ EZ with C ∼ σ + 2l. Then EZ = 2C + σ and deg(ΔZ ∩ C) = 8. Set

Q := C∩σ. By Lemma 4.2, multQ ΔZ = multQ(ΔZ∩σ) = 2. This is nothing but the type

[1;3,4]0. Assume that EZ = 2σ∞+σ+2l. Set Q∞ := σ∞∩ l, c := multQ∞(ΔZ∩σ∞) and

d := multQ∞(ΔZ ∩ l). Then multQ∞ ΔZ = c + d. This induces the type [1;3,4]1(c,d).

Assume that EZ = 2σ∞ + σ + l1 + l2 (l1, l2: distinct fibers). This induces the type

[1;3,4]2.

6.2.3. The case (n, h) = (2, 6).

In this case, we know that EZ ∼ 3σ + 6l. Assume that there exists an irreducible

component C ≤ EZ such that C ∼ σ + 3l. Then EZ = 2C + σ and deg(ΔZ ∩ C) = 8.

Set Q := C ∩ σ. By Lemma 4.2, multQ ΔZ = multQ(ΔZ ∩ σ) = 2. This is nothing

but the type [2;3,6]0. Assume that EZ = 2σ∞ + σ + l1 + l2 (l1, l2: distinct fibers).

Since ΔZ ∩ σ = ∅, we have |ΔZ | ∩ l1 ⊂ {Q1}, where Q1 := σ∞ ∩ l1. By Lemma 4.2,

multQ1(ΔZ ∩ l1) ≤ 2. However, deg(ΔZ ∩ l1) = 3, which leads to the contradiction.
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Assume that EZ = 2σ∞ + σ + 2l. Set Q := σ∞ ∩ l, c := multQ(ΔZ ∩ σ∞) and d :=

multQ(ΔZ ∩ l). Then multQ ΔZ = c+ d. This induces the type [2;3,6]1(c,d).

6.2.4. The case (n, h) = (2, 7).

In this case, we know that EZ = 2σ∞ + σ + l by Claim 6.4. This case induces the

type [2;3,5]1.

6.2.5. The case (n, h) = (3, 9).

In this case, we know that EZ = 2σ∞ + σ by Claim 6.4. This case induces the type

[3;3,6].

6.3. The case Z = FFFn with KZ + LZ non-big.

We consider the case Z = Fn such that KZ + LZ is not big. Set LZ ∼ h0σ + hl,

EZ ∼ e0σ + el and kZ := degΔZ . Then e0 = 6 − h0 and e = 3(n + 2) − h hold since

EZ ∼ −3KZ − LZ . We remark that n ≥ 1 by the condition (FB6).

Claim 6.5. We have h0 = 2 (hence e0 = 4) and max{n+ 3, 2n} ≤ h ≤ n+ 6. (In

particular, n ≤ 6.) Moreover, kZ = h− n+ 6.

Proof. Since KZ +LZ is nef, nontrivial, non-big and (2KZ +LZ · l) < 0, h0 = 2

and h ≥ n + 3 hold. Since LZ is nef, we have h ≥ 2n. We know that EZ �≥ 3σ. Thus

e = 3(n+ 2)− h ≥ 2n. Finally, we have kZ = (LZ · EZ)/2 = h− n+ 6. �

Claim 6.6. (1) The pair (n, h) is one of (1, 4), (1, 5), (3, 6), (4, 8), (5, 10) or

(6, 12).

(2) (i) If n = 1, then there exists a nonsingular curve C with C ∼ 2σ + 2l such that

2C ≤ EZ .

(ii) If n ≥ 3, then any irreducible component C ≤ EZ apart from σ, l is a section

of Fn/P
1 and either C ∼ σ + nl or C ∼ σ + (n + 1)l holds. Furthermore, if

n ≥ 4, then such C satisfies that coeffC EZ = 2.

Proof. Since 3σ �≤ EZ , there exists an irreducible component C ≤ EZ apart from

σ, l. Set C ∼ mσ + (nm+ u)l with m ≥ 1, u ≥ 0. Assume that m ≥ 2. By Lemma 2.7,

nm2+2um−((CM )2) = (C2)−((CM )2) = (LZ ·C)+2pa(C) = nm2+(2u+h−n−2)m+2.

Thus −((CM )2) = (h−n−2)m+2 ≥ 4. This implies that coeffC EZ = 2. Since 2C ≤ EZ ,

m = 2 and 3n+ 6− h ≥ 2(2n+ u). Hence (n, h, u) = (1, 4, 0) or (1, 5, 0).

Assume that m = 1, that is, C is a section. By the condition (FB7), σ ≤ EZ .

By the condition (FB6), ΔZ ∩ σ = ∅. Thus h = 2n. In particular, n ≥ 3. We

know that deg(ΔZ ∩ C) = 2n + 2u ≤ kZ = n + 6. Thus u = 0 or 1. Moreover,

((CM )2) = (C2)− deg(ΔZ ∩ C) = −n. Thus if n ≥ 4, then coeffC EZ = 2. �

6.3.1. The case (n, h) = (1, 4).

In this case, we know that EZ = 2C+ l (C ∼ 2σ+2l nonsingular), deg(ΔZ ∩C) = 8

and kZ = 9. Assume that |C ∩ l| = {Q}. Then multQ(ΔZ ∩ l) = deg(ΔZ ∩ l) = 2.

Set c := multQ ΔZ . By Lemma 4.5, we have multQ(ΔZ ∩ C) = c − 1. This is nothing

but the type [1;4,5]K(c). Assume that |C ∩ l| = {Q1, Q2}. By Lemma 4.2 and the fact
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deg(ΔZ∩l) = 2, we can assume that |ΔZ |∩l = {Q1} and multQ1 ΔZ = multQ1(ΔZ∩l) =
2. This is nothing but the type [1;4,5]A.

6.3.2. The case (n, h) = (1, 5).

In this case, we know that EZ = 2C (C ∼ 2σ + 2l nonsingular), deg(ΔZ ∩ C) = 10

and kZ = 10. This is nothing but the type [1;4,4].

6.3.3. The case (n, h) = (3, 6).

In this case, we know that EZ ∼ 4σ + 9l and kZ = 9.

Assume that there exists an irreducible component C ≤ EZ with C ∼ σ + 4l. Then

deg(ΔZ∩C) = 8. Since 3σ �≤ EZ , there exists an irreducible component C ′ ≤ EZ−C such

that C ′ is a section apart from σ. Assume that C �= C ′. We can write C ′ ∼ σ + (3 + u)l

with u = 0 or 1 and deg(ΔZ∩C ′) = 6+2u. Thus deg(ΔZ∩C∩C ′) ≥ 5+2u by Proposition

2.8. However, (C · C ′) = 4 + u. This leads to a contradiction. Thus coeffC EZ = 2. By

the condition (FB7), we have EZ = 2C + 2σ + l. Since ΔZ ∩ σ = ∅, C ∩ σ ∩ l = ∅. This
case induces the type [3;4,9]A.

From now on, we can assume that any component of EZ is one of σ∞, σ or l. Assume

that coeffσ EZ = 1. By the condition (FB7), EZ = σ∞,1 + σ∞,2 + σ∞,3 + σ, where σ∞,i

are distinct sections at infinity. By Lemma 4.3, σ∞,1 ∩ σ∞,2 ∩ σ∞,3 = ∅. Moreover, by

Lemma 4.4, for any Q ∈ σ∞,i ∩ σ∞,j , ΔZ is equal to σ∞,i ∩ σ∞,j around Q. This case is

nothing but the type [3;4,9]B .

Assume that coeffσ EZ = 2 and 2σ∞ ≤ EZ . Consider the case EZ = 2σ∞ +

2σ + 2l1 + l2 (l1, l2: distinct fibers). Set Q1 := σ∞ ∩ l1, c := multQ1(ΔZ ∩ σ∞) and

d := multQ1(ΔZ ∩ l1). This case induces the type [3;4,9]C(c,d). Consider the case

EZ = 2σ∞ + 2σ + l1 + l2 + l3 (l1, l2, l3: distinct fibers). This case induces the type

[3;4,9]D.

Assume that coeffσ EZ = 2 and any other section C satisfies that coeffC EZ ≤ 1.

Consider the case EZ = σ∞,1 + σ∞,2 + 2σ + 2l1 + l2 (σ∞,1, σ∞,2: distinct sections

at infinity, l1, l2: distinct fibers). We know that ((σ∞,i)
2) = −3. Thus σM

∞,i is a

connected component of EM for i = 1, 2. By Lemma 4.3, σ∞,1 ∩ σ∞,2 ∩ (l1 ∪ l2) = ∅.
By Lemmas 4.2 and 4.4, this case induces the type [3;4,9]E . Consider the case EZ =

σ∞,1+σ∞,2+2σ+ l1+ l2+ l3 (σ∞,1, σ∞,2: distinct sections at infinity, l1, l2, l3: distinct

fibers). By Lemma 4.3, σ∞,1 ∩ σ∞,2 ∩ (l1 ∪ l2 ∪ l3) = ∅. By Lemmas 4.2 and 4.4, this

case induces the type [3;4,9]F .

6.3.4. The case (n, h) = (4, 8).

In this case, we know that EZ ∼ 4σ+10l and kZ = 10. Assume that there exists an

irreducible component C ≤ EZ with C ∼ σ+5l. Then EZ = 2C+2σ and deg(ΔZ∩C) =

10. This case is nothing but the type [4;4,10]0. Assume that σ∞ ≤ EZ . Then 2σ∞+2σ ≤
EZ . Consider the case EZ = 2σ∞ + 2σ + 2l. Set Q := σ∞ ∩ l, c := multQ(ΔZ ∩ σ∞)

and d := multQ(ΔZ ∩ l). This case induces the type [4;4,10]1(c,d). Consider the case

EZ = 2σ∞ + 2σ + l1 + l2 (l1, l2: distinct fibers). This case induces the type [4;4,10]2.

6.3.5. The case (n, h) = (5, 10).

In this case, we know that EZ = 2σ∞ + 2σ + l and kZ = 11. This case induces the

type [5;4,11]1.
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6.3.6. The case (n, h) = (6, 12).

In this case, we know that EZ = 2σ∞ + 2σ and kZ = 12. Since deg(ΔZ ∩ C) = 12,

this case is nothing but the type [6;4,12]0.

As a consequence, we have completed the proof of Theorem 6.1.

7. Classification of bottom tetrads, I.

We classify bottom tetrads (X,EX ; ΔZ ,ΔX) with big 2KX + LX .

Theorem 7.1. The bottom tetrads (X,EX ; ΔZ ,ΔX) with big 2KX +LX are clas-

sified by the types defined as follows (We assume that any of them satisfies that both ΔX

and ΔZ satisfy the (ν1)-condition.):

The case X = P2 and EX = l (l is a line) :

[1]0 ΔX ⊂ l with degΔX = 4 and ΔZ = ∅.

The case X = P2 and EX = C (C is a nonsingular conic) :

[2]0 ΔX ⊂ C with degΔX = 7 and ΔZ = ∅.

The case EX = 2l (l is a line) :

[2]1A |ΔX | = {P1, P2, P3} such that (multPi
ΔX ,multPi

(ΔX ∩ l)) = (2, 1) for any i = 1,

2, 3. |ΔZ | = {Q} with Q ∈ lZ \ (ΓP1,1 ∪ ΓP2,1 ∪ ΓP3,1) such that multQ ΔZ = 1.

[2]1B |ΔX | = {P1, P2, P3} such that (multPi
ΔX ,multPi

(ΔX ∩ l)) = (2, 1) for i = 1,

2 and (multP3
ΔX ,multP3

(ΔX ∩ l)) = (1, 1). |ΔZ | = {Q} with Q = lZ ∩ ΓP3,1,

ΔZ ⊂ ΓP3,1 and degΔZ = 2.

[2]1C |ΔX | = {P1, P2} such that (multP1 ΔX ,multP1(ΔX ∩ l)) = (4, 2) and

(multP2 ΔX ,multP2(ΔX ∩ l)) = (2, 1). |ΔZ | = {Q} with Q ∈ lZ \ (ΓP1,2 ∪ ΓP2,1)

such that multQ ΔZ = 1.

[2]1D |ΔX | = {P1, P2} such that (multP1
ΔX ,multP1

(ΔX ∩ l)) = (4, 2) and

(multP2
ΔX ,multP2

(ΔX∩l)) = (1, 1). |ΔZ | = {Q} with Q = lZ∩ΓP2,1, ΔZ ⊂ ΓP2,1

and degΔZ = 2.

[2]1E(c,d) ((c, d) = (0, 0), (1, 1) or (1, 2)) |ΔX | = {P1, P2} such that (multP1
ΔX ,

multP1
(ΔX ∩ l)) = (2, 2) and (multP2

ΔX , multP2
(ΔX ∩ l)) = (2, 1). degΔZ = 3,

deg(ΔZ ∩ ΓP1,2) = 2, deg(ΔZ ∩ lZ) = 1 such that ΔZ ∩ (ΓP1,1 ∪ ΓP2,1) = ∅,
multQ(ΔZ ∩ lZ) = c, multQ(ΔZ ∩ ΓP1,2) = d and multQ ΔZ = c + d, where

Q = lZ ∩ ΓP1,2.

[2]1F |ΔX | = {P1, P2} such that (multP1
ΔX ,multP1

(ΔX ∩ l)) = (2, 2) and

(multP2
ΔX ,multP2

(ΔX ∩ l)) = (1, 1). degΔZ = 4, multQ ΔZ = multQ(Δ ∩
ΓP2,1) = 2, deg(ΔZ ∩ΓP1,2) = 2 and |ΔZ |∩ (lZ ∪ΓP1,1) = ∅, where Q := lZ ∩ΓP2,1.
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[2]1G |ΔX | = {P1, P2} such that (multPi ΔX ,multPi(ΔX ∩ l)) = (1, 1) for any i = 1, 2.

degΔZ = 5, deg(ΔZ ∩ lZ) = 3 and multQi ΔZ = multQi(ΔZ ∩ ΓPi,1) = 2 hold,

where Qi := lZ ∩ ΓPi,1.

[2]1H |ΔX | = {P1, P2} such that (multP1
ΔX ,multP1

(ΔX ∩ l)) = (2, 1) and

(multP2
ΔX ,multP2

(ΔX ∩ l)) = (1, 1). degΔZ = 4, deg(ΔZ ∩ lZ) = 3, multQ ΔZ =

multQ(ΔZ ∩ ΓP2,1) = 2 and ΔZ ∩ ΓP1,1 = ∅ hold, where Q := lZ ∩ ΓP2,1.

[2]1I |ΔX | = {P1, P2} such that (multPi
ΔX ,multPi

(ΔX ∩ l)) = (2, 1) for any i = 1, 2.

degΔZ = 3, ΔZ ⊂ lZ and ΔZ ∩ (ΓP1,1 ∪ ΓP2,1) = ∅.

[2]1J(c,d) ((c, d) = (0, 0), (1, 1), (2, 1), (3, 1), (1, 2)) |ΔX | = {P} such that

(multP ΔX ,multP (ΔX ∩ l)) = (2, 2). degΔZ = 5, deg(ΔZ ∩ lZ) = 3,

deg(ΔZ ∩ ΓP,2) = 2, ΔZ ∩ ΓP,1 = ∅, c = multQ(ΔZ ∩ lZ), d = multQ(ΔZ ∩ ΓP,2)

and multQ ΔZ = c+ d, where Q = lZ ∩ ΓP,2.

[2]1K |ΔX | = {P} such that (multP ΔX ,multP (ΔX ∩ l)) = (4, 2). degΔZ = 3, ΔZ ⊂ lZ

and ΔZ ∩ ΓP,2 = ∅.

[2]1L |ΔX | = {P} such that (multP ΔX ,multP (ΔX ∩ l)) = (2, 1). degΔZ = 5, ΔZ ⊂ lZ

and ΔZ ∩ ΓP,1 = ∅.

[2]1M |ΔX | = {P} such that multP ΔX = 1. degΔZ = 6, deg(ΔZ ∩ lZ) = 5 and

multQ ΔZ = multQ(ΔZ ∩ ΓP,1) = 2, where Q = lZ ∩ ΓP,1.

[2]1N ΔX = ∅, degΔZ = 7 and ΔZ ⊂ lZ .

The case X = P2 and EX = l1 + l2 (li are distinct lines. Set P := l1 ∩ l2.) :

[2]2A degΔX = 5, deg(ΔX ∩ li) = 3 and multP ΔX = 1. |ΔZ | = {Q1, Q2} such that

multQi
ΔZ = 1, where Qi = lZi ∩ ΓP,1.

[2]2B degΔX = 6, deg(ΔX ∩ li) = 3 and P �∈ ΔX . |ΔZ | = {Q} such that multQ ΔZ = 1,

where Q = lZ1 ∩ lZ2 .

The case X = P1 × P1 :

[0;1,0] EX = σ, degΔX = 3, ΔX ⊂ σ and ΔZ = ∅.

[0;1,1]0 EX = C such that C is nonsingular, C ∈ |σ + l|, degΔX = 5, ΔX ⊂ C and

ΔZ = ∅.

[0;1,1]1〈0〉 EX = σ + l, degΔX = 4, deg(ΔX ∩ σ) = deg(ΔX ∩ l) = 2, P �∈ ΔX ,

degΔZ = 1 and Q ∈ ΔZ , where P = σ ∩ l and Q = σZ ∩ lZ .

[0;1,1]1〈1〉 EX = σ + l, degΔX = 3, deg(ΔX ∩ σ) = deg(ΔX ∩ l) = 2, multP ΔX = 1,

degΔZ = 2 and Qσ, Ql ∈ ΔZ , where P = σ∩l, Qσ = σZ∩ΓP,1 and Ql = lZ∩ΓP,1.
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The case X = F1 :

[1;1,0] EX = σ, degΔX = 2, ΔX ⊂ σ and ΔZ = ∅.

[1;1,1]0 EX = σ∞, degΔX = 4, ΔX ⊂ σ∞ and ΔZ = ∅.

[1;1,1]1〈0〉 EX = σ + l, degΔX = 3, P �∈ ΔX , deg(ΔX ∩ σ) = 1, deg(ΔX ∩ l) = 2,

degΔZ = 1 and Q ∈ ΔZ , where P = σ ∩ l and Q = σZ ∩ lZ .

[1;1,1]1〈1〉 EX = σ + l, degΔX = 2, multP ΔX = 1, deg(ΔX ∩ l) = 2, degΔZ = 2 and

Qσ, Ql ∈ ΔZ , where P = σ ∩ l, Qσ = σZ ∩ ΓP,1 and Ql = lZ ∩ ΓP,1.

The case X = F2 :

[2;1,0] EX = σ, degΔX = 1, ΔX ⊂ σ and ΔZ = ∅.

[2;1,1] EX = σ+l, degΔX = 2, ΔX ⊂ l\σ, degΔZ = 1 and Q ∈ ΔZ , where Q = σZ∩lZ .

[2;1,2]0 EX = σ∞, degΔX = 5, ΔX ⊂ σ∞ and ΔZ = ∅.

[2;1,2]1A EX = σ + 2l, degΔX = 4, |ΔX | = {P1, P2} such that Pi �∈ σ and

(multPi ΔX ,multPi(ΔX ∩ l)) = (2, 1) for i = 1, 2. degΔZ = 1 and ΔZ ⊂
lZ \ (σZ ∪ ΓP1,1 ∪ ΓP2,1).

[2;1,2]1B EX = σ + 2l, degΔX = 3, |ΔX | = {P1, P2} such that P1, P2 ∈ l \ σ,

(multP1
ΔX ,multP1

(ΔX ∩ l)) = (2, 1) and multP2
ΔX = 1. degΔZ = 2 and

multQ ΔZ = multQ(ΔZ ∩ ΓP2,1) = 2, where Q = lZ ∩ ΓP2,1.

[2;1,2]1C EX = σ + 2l, degΔX = 4, |ΔX | = {P} such that P �∈ σ and

(multP ΔX ,multP (ΔX ∩ l)) = (4, 2). degΔZ = 1 and ΔZ ⊂ lZ \ (σZ ∪ ΓP,2).

[2;1,2]1D(c,d) ((c, d) = (0, 0), (1, 1), (1, 2)) EX = σ + 2l, |ΔX | = {P}, degΔX = 2,

ΔX ⊂ l\σ, degΔZ = 3, deg(ΔZ∩lZ) = 1, deg(ΔZ∩ΓP,2) = 2, ΔZ∩(σZ∪ΓP,1) = ∅,
multQ(ΔZ∩lZ) = c, multQ(ΔZ∩ΓP,2) = d, multQ ΔZ = c+d, where Q = lZ∩ΓP,2.

[2;1,2]1E EX = σ + 2l, degΔX = 2, |ΔX | = {P} such that P �∈ σ and

(multP ΔX ,multP (ΔX ∩ l)) = (2, 1). degΔZ = 3 and ΔZ ⊂ lZ \ (σZ ∪ ΓP,1).

[2;1,2]1F EX = σ+2l, degΔX = 1, |ΔX | = {P} such that P ∈ l\σ and multP ΔX = 1.

degΔZ = 4, multQ ΔZ = multQ(ΔZ ∩ ΓP,1) = 2 and ΔZ \ {Q} ⊂ lZ \ σZ , where

Q = lZ ∩ ΓP,1.

[2;1,2]1G EX = σ + 2l, ΔX = ∅, degΔZ = 5 and ΔZ ⊂ lZ \ σZ .

The case X = F3 :

[3;1,0]0 EX = σ, ΔX = ∅ and ΔZ = ∅.

We start to prove Theorem 7.1. Any tetrad in Theorem 7.1 is a bottom tetrad by

Proposition 3.13. We show the converse.
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7.1. The case X = P2.

Let (X = P2, EX ; ΔZ ,ΔX) be a bottom tetrad, LX be the fundamental divisor,

ψ : Z → X be the elimination of ΔX , φ : M → Z be the elimination of ΔZ , EZ :=

(EX)ΔX, 1
Z and EM := (EZ)

ΔZ, 2
M . Set LX ∼ hl, EX ∼ el, kX := degΔX and kZ :=

degΔZ . Then e = 9−h, h ≥ 6 and kX+kZ = he/2 hold. Thus (h, e, kX+kZ) = (6, 3, 9),

(7, 2, 7) or (8, 1, 4). Moreover, if h = 6 then kX ≤ 8 holds since (KX + LX · LX) > 2kX .

Claim 7.2. Pick any nonsingular component C ≤ EX .

(1) If C is a conic, then (h, ((CM )2), deg(ΔX ∩ C), deg(ΔZ ∩ CZ)) = (6,−2, 6, 0),
(6,−3, 5, 2) or (7,−3, 7, 0).

(2) If C is a line, then (h, ((CM )2), deg(ΔX ∩ C), deg(ΔZ ∩ CZ)) = (6,−2, 3, 0),
(6,−3, 2, 2), (6,−4, 1, 4), (6,−5, 0, 6), (7,−3, 3, 1), (7,−4, 2, 3), (7,−5, 1, 5),
(7,−6, 0, 7) or (8,−3, 4, 0).

Proof. Set m := degC (m = 1 or 2). We note that if m = 2 then h ≤ 7. We

also note that if m = 1 and h = 8 then ((CM )2) = −2 or −3 by Corollary 3.5. We have

hm = 2deg(ΔX ∩C)+deg(ΔZ ∩CZ) and ((CM )2) = m2−deg(ΔX ∩C)−deg(ΔZ ∩CZ).

Thus the assertion holds. �

If 2KX +LX is big, then h = 7 or 8. We consider the case EX = l, i.e., h = 8. Then

kX = deg(ΔX ∩ l) = 4 and kZ = 0. This is nothing but the type [1]0. Now we consider

the case EX ∼ 2l, i.e., h = 7.

7.1.1. The case EX = C (C : nonsingular conic).

In this case, we have kX = deg(ΔX ∩ C) = 7 and kZ = 0. This is nothing but the

type [2]0.

7.1.2. The case EX = 2l (l : line).

Set dX := deg(ΔX ∩ l) and dZ := deg(ΔZ ∩ lZ). By Claim 7.2, we have

(dX , dZ , ((l
M )2)) = (3, 1,−3), (2, 3,−4), (1, 5,−5) or (0, 7,−6).

The case (dX , dZ) = (3, 1): By Lemma 4.6, one of the following holds:

(A) |ΔX | = {P1, P2, P3} such that (multPi
ΔX ,multPi

(ΔX ∩ l)) = (2, 1) for any i = 1,

2, 3.

(B) |ΔX | = {P1, P2, P3} such that (multPi
ΔX ,multPi

(ΔX ∩ l)) = (2, 1) for i = 1, 2

and (multP3
ΔX ,multP3

(ΔX ∩ l)) = (1, 1).

(C) |ΔX | = {P1, P2} such that (multP1
ΔX ,multP1

(ΔX ∩ l)) = (4, 2) and

(multP2
ΔX ,multP2

(ΔX ∩ l)) = (2, 1).

(D) |ΔX | = {P1, P2} such that (multP1
ΔX ,multP1

(ΔX ∩ l)) = (4, 2) and

(multP2
ΔX ,multP2

(ΔX ∩ l)) = (1, 1).

(E) |ΔX | = {P1, P2} such that (multP1
ΔX ,multP1

(ΔX ∩ l)) = (2, 2) and

(multP2
ΔX ,multP2

(ΔX ∩ l)) = (2, 1).
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(F) |ΔX | = {P1, P2} such that (multP1 ΔX ,multP1(ΔX ∩ l)) = (2, 2) and

(multP2 ΔX ,multP2(ΔX ∩ l)) = (1, 1).

Indeed, if there exist two points P1, P2 ∈ ΔX such that multPi
ΔX = 1 for i = 1, 2, then

degΔZ ≥ 2. This is a contradiction.

We consider the case (A). Then kZ = 1 and ΔZ ∩ ΓPi,1 = ∅ for i = 1, 2, 3. This is

nothing but the type [2]1A.

We consider the case (B). Then kZ = 2. Moreover, multQ ΔZ = multQ(ΔZ ∩
ΓP3,1) = 2 and multQ(ΔZ ∩ lZ) = 1, where Q := lZ ∩ΓP3,1. This is nothing but the type

[2]1B .

We consider the case (C). Then kZ = 1 and ΔZ ⊂ lZ \ (ΓP1,2 ∪ ΓP2,1). This is

nothing but the type [2]1C .

We consider the case (D). Then kZ = 2. Moreover, multQ ΔZ = multQ(ΔZ ∩
ΓP2,1) = 2, where Q := lZ ∩ ΓP2,1. This is nothing but the type [2]1D.

We consider the case (E). Then kZ = 3, deg(ΔZ ∩ΓP1,2) = 2 and deg(ΔZ ∩ lZ) = 1.

Set Q := lZ∩ΓP1,2, c := multQ(ΔZ∩ lZ) and d := multQ(ΔZ∩ΓP1,2). Then multQ ΔZ =

c+ d. This is nothing but the type [2]1E(c,d).

We consider the case (F). Then kZ = 4. Moreover, degΔZ = 4, multQ ΔZ =

multQ(ΔZ ∩ ΓP2,1) = 2 and deg(ΔZ ∩ ΓP1,2) = 2 hold, where Q := lZ ∩ ΓP2,1. This is

nothing but the type [2]1F .

The case (dX , dZ) = (2, 3): By Lemma 4.6, one of the following holds:

(G) |ΔX | = {P1, P2} such that (multPi
ΔX ,multPi

(ΔX ∩ l)) = (1, 1) for any i = 1, 2.

(H) |ΔX | = {P1, P2} such that (multP1
ΔX ,multP1

(ΔX ∩ l)) = (2, 1) and

(multP2
ΔX ,multP2

(ΔX ∩ l)) = (1, 1).

(I) |ΔX | = {P1, P2} such that (multPi
ΔX ,multPi

(ΔX ∩ l)) = (2, 1) for any i = 1, 2.

(J) |ΔX | = {P} such that (multP ΔX ,multP (ΔX ∩ l)) = (2, 2).

(K) |ΔX | = {P} such that (multP ΔX ,multP (ΔX ∩ l)) = (4, 2).

We consider the case (G). Then kZ = 5. Set Qi := lZ ∩ ΓPi,1. Then multQi
ΔZ =

multQi
(ΔZ ∩ ΓPi,1) = 2 and multQi

(ΔZ ∩ lZ) = 1 hold. Moreover, there exists a point

Q ∈ lZ \ {Q1, Q2} such that multQ ΔZ = 1 since dZ = 3. This is nothing but the type

[2]1G.

We consider the case (H). Then kZ = 4. Set Q := lZ ∩ ΓP2,1. Then multQ ΔZ =

multQ(ΔZ ∩ ΓP2,1) = 2 and multQ(ΔZ ∩ lZ) = 1 hold. Moreover, ΔZ ∩ ΓP1,1 = ∅. This
is nothing but the type [2]1H .

We consider the case (I). Then kZ = dZ = 3. Moreover, ΔZ ∩ (ΓP1,1 ∪ ΓP2,1) = ∅.
This is nothing but the type [2]1I .

We consider the case (J). Then kZ = 5. Set Q := lZ ∩ ΓP,2, c := multQ(ΔZ ∩ lZ)

and d := multQ(ΔZ ∩ ΓP,2). Then multQ ΔZ = c + d. Moreover, (c, d) = (0, 0), (1, 1),

(2, 1), (3, 1) or (1, 2) since kZ = 3 and deg(ΔZ ∩ ΓP,2) = 2. This is nothing but the type

[2]1J(c,d).

We consider the case (K). Then kZ = dZ = 3, ΔZ ∩ ΓP,2 = ∅. This is nothing but

the type [2]1K .
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The case (dX , dZ) = (1, 5): By Lemma 4.6, one of the following holds:

(L) |ΔX | = {P} such that (multP ΔX ,multP (ΔX ∩ l)) = (2, 1).

(M) |ΔX | = {P} such that (multP ΔX ,multP (ΔX ∩ l)) = (1, 1).

We consider the case (L). Then kZ = dZ = 5, ΔZ ∩ ΓP,1 = ∅. This is nothing but

the type [2]1L.

We consider the case (M). Then kZ = 6. Set Q := lZ ∩ ΓP,1. Then multQ ΔZ =

multQ(ΔZ ∩ ΓP,1) = 2 and multQ(ΔZ ∩ lZ) = 1. This is nothing but the type [2]1M .

The case (dX , dZ) = (0, 7): In this case, ΔX = ∅, ΔZ ⊂ lZ . This is nothing but the

type [2]1N .

7.1.3. The case EX = l1 + l2 (li : distinct lines).

Set P := l1 ∩ l2. By Claim 7.2, ((lM1 )2) = ((lM2 )2) = −3. Thus (deg(ΔX ∩
li), deg(ΔZ ∩ lZi )) = (3, 1). Assume that P ∈ ΔX . Then multP ΔX = 1 by Lemma

4.7. This case induces the type [2]2A. Assume that P �∈ ΔX . Then multQ ΔZ = 1 by

Lemma 4.2, where Q := lZ1 ∩ lZ2 . This case induces the type [2]2B .

7.2. The case X = Fn.

Let (X = Fn, EX ; ΔZ ,ΔX) be a bottom tetrad such that 2KX + LX is big, where

LX is the fundamental divisor, ψ : Z → X be the elimination of ΔX , φ : M → Z be

the elimination of ΔZ , EZ := (EX)ΔX, 1
Z and EM := (EZ)

ΔZ, 2
M . Set LX ∼ h0σ + hl,

EX ∼ e0σ+el, kX := degΔX and kZ := degΔZ . Then e0 = 6−h0 and e = 3(n+2)−h.

Since 2KX +LX is nef and big, we have h0 = 5. Thus e0 = 1. We know that kX + kZ =

(LX · EX)/2 = 5n− 2h+ 15.

Claim 7.3. We have (n, h, kX+kZ) = (0, 5, 5), (0, 6, 3), (1, 8, 4), (1, 9, 2), (2, 10, 5),

(2, 11, 3), (2, 12, 1) or (3, 15, 0).

Proof. We have max{5n, 3n+ 4} ≤ h ≤ 3n+ 6 since LX and 2KX +LX are nef

and big and EX is effective. In particular, n ≤ 3. Moreover, if n = 0, then h ≥ 5. If

n = 1, then h ≥ 8 since (EX · σ) ≤ 0. �

7.2.1. The case (n, h) = (0, 5).

In this case, EX ∼ σ + l. Assume that EX = C, where C is nonsingular. Then

ΔZ = ∅ and ΔX ⊂ C. This is nothing but the type [0;1,1]0. Assume that EX = σ+l. Set

P := σ∩l. Then 2 deg(ΔX∩σ)+deg(ΔZ∩σZ) = 5 and 2 deg(ΔX∩l)+deg(ΔZ∩lZ) = 5.

By Lemmas 4.2 and 4.7, if P �∈ ΔX then this induces the type [0;1,1]1〈0〉; if P ∈ ΔX

then this induces the type [0;1,1]1〈1〉.
7.2.2. The case (n, h) = (0, 6).

In this case, EX = σ. Thus ΔZ = ∅ and ΔX ⊂ σ. This is nothing but the type

[0;1,0].

7.2.3. The case (n, h) = (1, 8).

In this case, EX ∼ σ + l. Assume that EX = σ∞. Then ΔZ = ∅ and ΔX ⊂ σ∞.

This is nothing but the type [1;1,1]0. Assume that EX = σ + l. Set P := σ ∩ l. Then

2 deg(ΔX ∩σ)+deg(ΔZ∩σZ) = 3 and 2 deg(ΔX ∩ l)+deg(ΔZ∩ lZ) = 5. By Lemmas 4.2
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and 4.7, we can show that if P �∈ ΔX then this induces the type [1;1,1]1〈0〉; if P ∈ ΔX

then this induces the type [1;1,1]1〈1〉.
7.2.4. The case (n, h) = (1, 9).

In this case, EX = σ. Thus ΔZ = ∅ and ΔX ⊂ σ. This is nothing but the type

[1;1,0].

7.2.5. The case (n, h) = (2, 10).

In this case, EX ∼ σ + 2l.

The case EX = σ∞: Then ΔZ = ∅ and ΔX ⊂ σ∞. This is nothing but the type

[2;1,2]0.

The case EX = σ + l1 + l2 (l1, l2 are distinct): In this case, ΔX ∩ σ = ∅ and

ΔZ ∩ σZ = ∅. Thus σM , lM1 ≤ EM meet together. This contradicts to Corollary 3.5.

The case EX = σ+2l: In this case, ΔX∩σ = ∅ and ΔZ∩σZ = ∅. Set dX := deg(ΔX∩l)
and dZ := deg(ΔZ ∩ lZ). Since 2dX + dZ = 5, we have (dX , dZ) = (2, 1), (1, 3) or (0, 5).

We consider the case (dX , dZ) = (2, 1). One of the following holds:

(A) |ΔX | ∩ l = {P1, P2} such that (multPi ΔX ,multPi(ΔX ∩ l)) = (2, 1) for i = 1, 2.

(B) |ΔX | ∩ l = {P1, P2} such that (multP1
ΔX ,multP1

(ΔX ∩ l)) = (2, 1) and

(multP2
ΔX ,multP2

(ΔX ∩ l)) = (1, 1).

(C) |ΔX | ∩ l = {P} such that (multP ΔX ,multP (ΔX ∩ l)) = (4, 2).

(D) |ΔX | ∩ l = {P} such that (multP ΔX ,multP (ΔX ∩ l)) = (2, 2).

We can show that the case (X) (X ∈ {A, B, C}) corresponds to the type [2;1,2]1X. We

consider the case (D). SetQ := lZ∩ΓP,2, c := multQ(ΔZ∩lZ) and d := multQ(ΔZ∩ΓP,2).

Then we can show that this case corresponds to the type [2;1,2]1D.

We consider the case (dX , dZ) = (1, 3). One of the following holds:

(E) |ΔX | ∩ l = {P} such that (multP ΔX ,multP (ΔX ∩ l)) = (2, 1).

(F) |ΔX | ∩ l = {P} such that (multP ΔX ,multP (ΔX ∩ l)) = (1, 1).

The case (X) (X ∈ {E, F}) corresponds to the type [2;1,2]1X.

We consider the case (dX , dZ) = (0, 5). Then ΔX = ∅ and ΔZ ⊂ lZ . This is nothing

but the type [2;1,2]1G.

7.2.6. The case (n, h) = (2, 11).

In this case, EX = σ+l. Then ΔX∩σ = ∅ and deg(ΔZ∩σZ) = 1. Thus degΔZ = 1,

|ΔZ | = {Q}, where Q := σZ ∩ lZ . Moreover, we have deg(ΔX ∩ l) = 2. This is nothing

but the type [2;1,1].

7.2.7. The case (n, h) = (2, 12).

In this case, EX = σ. Thus ΔZ = ∅ and ΔX ⊂ σ. This is nothing but the type

[2;1,0].

7.2.8. The case (n, h) = (3, 15).

In this case, EX = σ, ΔX = ∅ and ΔZ = ∅. This is nothing but the type [3;1,0].

As a consequence, we have completed the proof of Theorem 7.1.
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8. Classification of bottom tetrads, II.

We classify bottom tetrads (X,EX ; ΔZ ,ΔX) such thatX = Fn, 2KX+LX is non-big

and nontrivial.

Theorem 8.1. The bottom tetrads (X,EX ; ΔZ ,ΔX) such that X = Fn and non-

big, nontrivial 2KX + LX are classified by the types defined as follows (We assume that

any of them satisfies that both ΔX and ΔZ satisfy the (ν1)-condition.):

The case X = P1 × P1 :

[0;2,0] EX = 2σ, ΔX = ∅, degΔZ = 6 and ΔZ ⊂ σZ .

The case X = F1 :

[1;2,0] EX = 2σ, ΔX = ∅, degΔZ = 5 and ΔZ ⊂ σZ .

[1;2,1]1A EX = 2σ + l, degΔX = 2, ΔX ⊂ l \ σ, degΔZ = 4 and ΔZ ⊂ σZ \ lZ .

[1;2,1]1B EX = 2σ+ l, degΔX = 1, ΔX ⊂ l \ σ, degΔZ = 5, multQ ΔZ = multQ(ΔZ ∩
lZ) = 2 and ΔZ \ {Q} ⊂ σZ , where Q = σZ ∩ lZ .

[1;2,2]U EX = C with C : nonsingular and C ∼ 2σ + 2l, degΔX = 7, ΔX ⊂ C and

ΔZ = ∅.

[1;2,2]0A EX = 2σ∞, degΔX = 2, |ΔX | = {P}, multP (ΔX ∩ σ∞) = 1, degΔZ = 5 and

ΔZ ⊂ σZ
∞ \ ΓP,1.

[1;2,2]0B EX = 2σ∞, degΔX = 1, |ΔX | = {P} with P ∈ σ∞, degΔZ = 6, multQ ΔZ =

multQ(ΔZ ∩ ΓP,1) = 2, ΔZ \ {Q} ⊂ σZ
∞, where Q = σ∞ ∩ ΓP,1.

[1;2,2]0C EX = 2σ∞, ΔX = ∅, degΔZ = 7 and ΔZ ⊂ σZ
∞.

[1;2,2]1A EX = 2σ + 2l, degΔX = 4, ΔX ∩ σ = ∅, |ΔX | = {P1, P2},
(multPi ΔX ,multPi(ΔX ∩ li)) = (2, 1) for i = 1, 2, degΔZ = 3 and ΔZ ⊂ σZ \ lZ .

[1;2,2]1B EX = 2σ+2l, degΔX = 4, ΔX∩σ = ∅, |ΔX | = {P}, (multP ΔX ,multP (ΔX∩
l)) = (4, 2), degΔZ = 3, ΔZ ⊂ σZ \ lZ .

[1;2,2]1C EX = 2σ + 2l, degΔX = 2, ΔX ∩ σ = ∅, |ΔX | = {P}, ΔX ⊂ l, degΔZ = 5,

deg(ΔZ ∩ σZ) = 3, deg(ΔZ ∩ ΓP,2) = 2 and ΔZ ⊂ (σZ ∪ ΓP,2) \ (lZ ∪ ΓP,1).

[1;2,2]1D(c,d) ((c, d) = (0, 0), (1, 1), (2, 1), (3, 1), (1, 2)) EX = 2σ + 2l, degΔX = 2,

|ΔX | = {P}, (multP ΔX ,multP (ΔX ∩ l)) = (2, 1), ΔX ∩ σ = ∅, degΔZ = 5,

ΔZ ∩ ΓP,1 = ∅, deg(ΔZ ∩ σZ) = 3, deg(ΔZ ∩ lZ) = 2, multQ(ΔZ ∩ σZ) = c,

multQ(ΔZ ∩ lZ) = d and multQ ΔZ = c+ d, where Q = σZ ∩ lZ .
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[1;2,2]1E(c,d) ((c, d) = (0, 0), (1, 1), (2, 1), (3, 1)) EX = 2σ + 2l, degΔX = 1, |ΔX | =
{P}, P ∈ l \ σ, degΔZ = 6, deg(ΔZ ∩ σZ) = 3, deg(ΔZ ∩ lZ) = 2, multQ1 ΔZ =

multQ1(ΔZ ∩ ΓP,1) = 2, multQ0(ΔZ ∩ σZ) = c, multQ0(ΔZ ∩ lZ) = d and

multQ0 ΔZ = c+ d, where Q0 = σZ ∩ lZ and Q1 = lZ ∩ ΓP,1.

[1;2,2]1F (c,d) ((c, d) = (0, 0), (1, 1), . . . , (3, 1), (1, 2), . . . , (1, 4)) EX = 2σ + 2l, ΔX = ∅,
degΔZ = 7, deg(ΔZ ∩ σZ) = 3, deg(ΔZ ∩ lZ) = 4, multQ(ΔZ ∩ σZ) = c,

multQ(ΔZ ∩ lZ) = d and multQ ΔZ = c+ d, where Q = σZ ∩ lZ .

[1;2,2]2A EX = 2σ+ l1+ l2 (l1, l2 : distinct fibers), degΔX = 4, ΔX ∩σ = ∅, deg(ΔX ∩
l1) = deg(ΔX ∩ l2) = 2, degΔZ = 3 and ΔZ ⊂ σZ \ (lZ1 ∪ lZ2 ).

[1;2,2]2B EX = 2σ+ l1+ l2 (l1, l2 : distinct fibers), degΔX = 3, ΔX ∩σ = ∅, deg(ΔX ∩
l1) = 1, deg(ΔX ∩ l2) = 2, degΔZ = 4, multQ ΔZ = multQ(ΔZ ∩ lZ1 ) = 2 and

ΔZ \ {Q} ⊂ σZ \ lZ2 , where Q = σZ ∩ lZ1 .

[1;2,2]2C EX = 2σ+ l1+ l2 (l1, l2 : distinct fibers), degΔX = 2, ΔX ∩σ = ∅, deg(ΔX ∩
l1) = deg(ΔX ∩ l2) = 1, degΔZ = 5, multQi ΔZ = multQi(ΔZ ∩ lZi ) = 2 for i = 1,

2 and ΔZ \ {Q1, Q2} ⊂ σZ , where Qi = σZ ∩ lZi .

The case X = F2 :

[2;2,0] EX = 2σ, ΔX = ∅, degΔZ = 4 and ΔZ ⊂ σZ .

[2;2,1]1A EX = 2σ + l, degΔX = 2, ΔX ⊂ l \ σ, degΔZ = 3 and ΔZ ⊂ σZ \ lZ .

[2;2,1]1B EX = 2σ+ l, degΔX = 1, ΔX ⊂ l \ σ, degΔZ = 4, multQ ΔZ = multQ(ΔZ ∩
lZ) = 2 and ΔZ \ {Q} ⊂ σZ , where Q = σZ ∩ lZ .

[2;2,2]1A EX = 2σ + 2l, degΔX = 4, ΔX ∩ σ = ∅, |ΔX | = {P1, P2},
(multPi

ΔX ,multPi
(ΔX ∩ l)) = (2, 1) for i = 1, 2, degΔZ = 2 and ΔZ ⊂ σZ \ lZ .

[2;2,2]1B EX = 2σ+2l, degΔX = 4, ΔX∩σ = ∅, |ΔX | = {P}, (multP ΔX ,multP (ΔX∩
l)) = (4, 2), degΔZ = 2, ΔZ ⊂ σZ \ lZ .

[2;2,2]1C EX = 2σ + 2l, degΔX = 2, ΔX ∩ σ = ∅, |ΔX | = {P}, ΔX ⊂ l, degΔZ = 4,

deg(ΔZ ∩ σZ) = 2, deg(ΔZ ∩ ΓP,2) = 2 and ΔZ ⊂ (σZ ∪ ΓP,2) \ (lZ ∪ ΓP,1).

[2;2,2]1D(c,d) ((c, d) = (0, 0), (1, 1), (2, 1), (1, 2)) EX = 2σ + 2l, degΔX = 2, |ΔX | =
{P}, (multP ΔX ,multP (ΔX∩l1)) = (2, 1), ΔX∩σ = ∅, degΔZ = 4, ΔZ∩ΓP,1 = ∅,
deg(ΔZ ∩σZ) = deg(ΔZ ∩ lZ) = 2, multQ(ΔZ ∩σZ) = c, multQ(ΔZ ∩ lZ) = d and

multQ ΔZ = c+ d, where Q = σZ ∩ lZ .

[2;2,2]1E(c,d) ((c, d) = (0, 0), (1, 1), or (2, 1)) EX = 2σ + 2l, |ΔX | = {P}, degΔX = 1,

P ∈ l \ σ, degΔZ = 5, deg(ΔZ ∩ σZ) = deg(ΔZ ∩ lZ) = 2, multQ1
ΔZ =

multQ1
(ΔZ ∩ ΓP,1) = 2, multQ0

(ΔZ ∩ σZ) = c, multQ0
(ΔZ ∩ lZ) = d and

multQ0
ΔZ = c+ d, where Q0 = σZ ∩ lZ and Q1 = lZ ∩ ΓP,1.
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[2;2,2]1F (c,d) ((c, d) = (0, 0), (1, 1), . . . , (1, 4), or (2, 1)) EX = 2σ + 2l, ΔX = ∅,
degΔZ = 6, deg(ΔZ ∩ σZ) = 2, deg(ΔZ ∩ lZ) = 4, multQ(ΔZ ∩ σZ) = c,

multQ(ΔZ ∩ lZ) = d and multQ ΔZ = c+ d, where Q = σZ ∩ lZ .

[2;2,2]2A EX = 2σ+ l1+ l2 (l1, l2 : distinct fibers), degΔX = 4, ΔX ∩σ = ∅, deg(ΔX ∩
l1) = deg(ΔX ∩ l2) = 2, degΔZ = 2 and ΔZ ⊂ σZ \ (lZ1 ∪ lZ2 ).

[2;2,2]2B EX = 2σ+ l1+ l2 (l1, l2 : distinct fibers), degΔX = 3, ΔX ∩σ = ∅, deg(ΔX ∩
l1) = 1, deg(ΔX ∩ l2) = 2, degΔZ = 3, multQ ΔZ = multQ(ΔZ ∩ lZ1 ) = 2 and

ΔZ \ {Q} ⊂ σZ \ lZ2 , where Q = σZ ∩ lZ1 .

[2;2,2]2C EX = 2σ+ l1+ l2 (l1, l2 : distinct fibers), degΔX = 2, ΔX ∩σ = ∅, deg(ΔX ∩
l1) = deg(ΔX ∩ l2) = 1, degΔZ = 4 and multQi ΔZ = multQi(ΔZ ∩ lZi ) = 2 for

i = 1, 2, where Qi = σZ ∩ lZi .

[2;2,3]V EX = σ + C with C : nonsingular, C ∼ σ + 3l, degΔX = 6, ΔX ⊂ C \ σ,
degΔZ = 1 and Q ∈ ΔZ , where Q = σZ ∩ CZ .

[2;2,3]H〈0〉 EX = σ + σ∞ + l, degΔX = 5, P �∈ ΔX , ΔX ∩ σ = ∅, deg(ΔX ∩ σ∞) = 4

and deg(ΔX ∩ l) = 1, where P = σ∞ ∩ l. degΔZ = 2 and |ΔZ | = {Q,Q∞}, where
Q = σZ ∩ lZ and Q∞ = σZ

∞ ∩ lZ .

[2;2,3]H〈1〉 EX = σ+σ∞+l, degΔX = 4, multP ΔX = 1, ΔX ⊂ σ∞, where P = σ∞∩l.
degΔZ = 3 and Q1, Q2, Q3 ∈ ΔZ , where Q1 = σZ ∩ lZ , Q2 = σZ

∞ ∩ ΓP,1 and

Q3 = lZ ∩ ΓP,1.

[2;2,3]2A1 EX = 2σ+2l1+l2 (l1, l2 : distinct fibers), degΔX = 6, ΔX∩σ = ∅, |ΔX |∩l1 =

{P1, P2}, (multPi
ΔX ,multPi

(ΔX ∩ li)) = (2, 1) for i = 1, 2, deg(ΔX ∩ l2) = 2,

degΔZ = 1 and ΔZ ⊂ σZ \ (lZ1 ∪ lZ2 ).

[2;2,3]2A2 EX = 2σ+2l1+l2 (l1, l2 : distinct fibers), degΔX = 5, ΔX∩σ = ∅, |ΔX |∩l1 =

{P1, P2}, (multPi ΔX ,multPi(ΔX ∩ li)) = (2, 1) for i = 1, 2, deg(ΔX ∩ l2) = 1,

degΔZ = 2 and multQ ΔZ = multQ(ΔZ ∩ lZ2 ) = 2, where Q = σZ ∩ lZ2 .

[2;2,3]2B1 EX = 2σ + 2l1 + l2 (l1, l2 : distinct fibers), degΔX = 6, ΔX ∩ σ = ∅,
|ΔX |∩l1 = {P}, (multP ΔX ,multP (ΔX∩l1)) = (4, 2), deg(ΔX∩l2) = 2, degΔZ =

1 and ΔZ ⊂ σZ \ (lZ1 ∪ lZ2 ).

[2;2,3]2B2 EX = 2σ + 2l1 + l2 (l1, l2 : distinct fibers), degΔX = 5, ΔX ∩ σ = ∅,
|ΔX |∩l1 = {P}, (multP ΔX ,multP (ΔX∩l1)) = (4, 2), deg(ΔX∩l2) = 1, degΔZ =

2 and multQ ΔZ = multQ(ΔZ ∩ lZ2 ) = 2, where Q = σZ ∩ lZ2 .

[2;2,3]2C1 EX = 2σ + 2l1 + l2 (l1, l2 : distinct fibers), degΔX = 4, ΔX ∩ σ = ∅,
|ΔX |∩l1 = {P}, (multP ΔX ,multP (ΔX∩l1)) = (2, 2), deg(ΔX∩l2) = 2, degΔZ =

3, deg(ΔZ ∩ σZ) = 1, deg(ΔZ ∩ ΓP,2) = 2 and ΔZ ∩ (lZ1 ∪ lZ2 ∪ ΓP,1) = ∅.
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[2;2,3]2C2 EX = 2σ + 2l1 + l2 (l1, l2 : distinct fibers), degΔX = 3, ΔX ∩ σ = ∅,
|ΔX |∩l1 = {P}, (multP ΔX ,multP (ΔX∩l1)) = (2, 2), deg(ΔX∩l2) = 1, degΔZ =

4, multQ ΔZ = multQ(ΔZ ∩ lZ2 ) = 2, deg(ΔZ ∩ΓP,2) = 2 and ΔZ ∩ (lZ1 ∪ΓP,1) = ∅,
where Q = σZ ∩ lZ2 .

[2;2,3]2D1(c,d) ((c, d) = (0, 0), (1, 1), (1, 2)) EX = 2σ + 2l1 + l2 (l1, l2 : distinct fibers),

degΔX = 4, ΔX ∩ σ = ∅, |ΔX | ∩ l1 = {P}, (multP ΔX ,multP (ΔX ∩ l1)) = (2, 1),

deg(ΔX ∩ l2) = 2, degΔZ = 3, deg(ΔZ ∩ σZ) = 1, deg(ΔZ ∩ lZ1 ) = 2, multQ(ΔZ ∩
σZ) = c, multQ(ΔZ ∩ lZ1 ) = d, multQ ΔZ = c+ d, and ΔZ ∩ (lZ2 ∪ΓP,1) = ∅, where
Q = σZ ∩ lZ1 .

[2;2,3]2D2 EX = 2σ + 2l1 + l2 (l1, l2 : distinct fibers), degΔX = 3, ΔX ∩ σ = ∅,
|ΔX |∩l1 = {P}, (multP ΔX ,multP (ΔX∩l1)) = (2, 1), deg(ΔX∩l2) = 1, degΔZ =

4, multQ ΔZ = multQ(ΔZ∩lZ2 ) = 2, deg(ΔZ∩lZ1 ) = 2 and ΔZ∩lZ1 ∩(σZ∪ΓP,1) = ∅,
where Q = σZ ∩ lZ2 .

[2;2,3]2E1(c,d) ((c, d) = (0, 0), (1, 1)) EX = 2σ + 2l1 + l2 (l1, l2 : distinct fibers),

degΔX = 3, ΔX ∩ σ = ∅, |ΔX | ∩ l1 = {P}, deg(ΔX ∩ l2) = 2, degΔZ = 4,

deg(ΔZ ∩ σZ) = 1, deg(ΔZ ∩ lZ1 ) = 2, ΔZ ∩ lZ2 = ∅, multQ1
ΔZ = multQ1

(ΔZ ∩
ΓP,1) = 2, multQ2

(ΔZ ∩ σZ) = c, multQ2
(ΔZ ∩ lZ1 ) = d and multQ2

ΔZ = c + d,

where Q1 = lZ1 ∩ ΓP,1 and Q2 = σZ ∩ lZ1 .

[2;2,3]2E2 EX = 2σ + 2l1 + l2 (l1, l2 : distinct fibers), degΔX = 2, ΔX ∩ σ = ∅,
|ΔX |∩l1 = {P}, deg(ΔX∩l2) = 1, degΔZ = 5, multQ1 ΔZ = multQ1(ΔZ∩ΓP,1) =

2, multQ2 ΔZ = multQ2(ΔZ ∩ lZ2 ) = 2, deg(ΔZ ∩ lZ1 ) = 2 and ΔZ ∩ σZ ∩ lZ1 = ∅,
where Q1 = lZ1 ∩ ΓP,1 and Q2 = σZ ∩ lZ2 .

[2;2,3]2F1(c,d) ((c, d) = (0, 0), (1, 1), . . . , (1, 4)) EX = 2σ + 2l1 + l2 (l1, l2 : distinct

fibers), degΔX = 2, ΔX ⊂ l2\σ, degΔZ = 5, deg(ΔZ∩σZ) = 1, deg(ΔZ∩lZ1 ) = 4,

ΔZ ∩ lZ2 = ∅, multQ(ΔZ ∩ σZ) = c, multQ(ΔZ ∩ lZ1 ) = d and multQ ΔZ = c + d,

where Q = σZ ∩ lZ1 .

[2;2,3]2F2 EX = 2σ+2l1+l2 (l1, l2 : distinct fibers), degΔX = 1, ΔX ⊂ l2\σ, degΔZ =

6, multQ ΔZ = multQ(ΔZ ∩ lZ2 ) = 2, deg(ΔZ ∩ lZ1 ) = 4 and ΔZ ∩ σZ ∩ lZ1 = ∅,
where Q = σZ ∩ lZ2 .

[2;2,3]3A EX = 2σ + l1 + l2 + l3 (l1, l2, l3 : distinct fibers), degΔX = 6, ΔX ∩ σ = ∅,
deg(ΔX ∩ li) = 2 for i = 1, 2, 3, degΔZ = 1 and ΔZ ⊂ σZ \ (lZ1 ∪ lZ2 ∪ lZ3 ).

[2;2,3]3B EX = 2σ + l1 + l2 + l3 (l1, l2, l3 : distinct fibers), degΔX = 5, ΔX ∩ σ = ∅,
deg(ΔX ∩ li) = 2 for i = 1, 2, deg(ΔX ∩ l3) = 1, degΔZ = 2 and multQ ΔZ =

multQ(ΔZ ∩ lZ3 ) = 2, where Q = σZ ∩ lZ3 .

The case X = F3 :

[3;2,0] EX = 2σ, ΔX = ∅, degΔZ = 3 and ΔZ ⊂ σZ .
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[3;2,1]1A EX = 2σ + l, degΔX = 2, ΔX ⊂ l \ σ, degΔZ = 2 and ΔZ ⊂ σZ \ lZ .

[3;2,1]1B EX = 2σ+ l, degΔX = 1, ΔX ⊂ l \ σ, degΔZ = 3, multQ ΔZ = multQ(ΔZ ∩
lZ) = 2 and ΔZ \ {Q} ⊂ σZ , where Q = σZ ∩ lZ .

[3;2,2]1A EX = 2σ + 2l, degΔX = 4, ΔX ∩ σ = ∅, |ΔX | = {P1, P2},
(multPi ΔX ,multPi(ΔX ∩ l)) = (2, 1) for i = 1, 2, degΔZ = 1 and ΔZ ⊂ σZ \ lZ .

[3;2,2]1B EX = 2σ+2l, degΔX = 4, ΔX∩σ = ∅, |ΔX | = {P}, (multP ΔX ,multP (ΔX∩
l)) = (4, 2), degΔZ = 1 and ΔZ ⊂ σZ \ lZ .

[3;2,2]1C EX = 2σ + 2l, degΔX = 2, ΔX ∩ σ = ∅, |ΔX | = {P}, ΔX ⊂ l, degΔZ = 3,

deg(ΔZ ∩ σZ) = 1, deg(ΔZ ∩ ΓP,2) = 2 and ΔZ ⊂ (σZ ∪ ΓP,2) \ (lZ ∪ ΓP,1).

[3;2,2]1D(c,d) ((c, d) = (0, 0), (1, 1), or (1, 2)) EX = 2σ + 2l, |ΔX | = {P}, degΔX = 2,

(multP ΔX ,multP (ΔX ∩ l)) = (2, 1), ΔX ∩ σ = ∅, degΔZ = 3, ΔZ ∩ ΓP,1 = ∅,
deg(ΔZ ∩ σZ) = 1, deg(ΔZ ∩ lZ) = 2, multQ(ΔZ ∩ σZ) = c, multQ(ΔZ ∩ lZ) = d

and multQ ΔZ = c+ d, where Q = σZ ∩ lZ .

[3;2,2]1E(c,d) ((c, d) = (0, 0), (1, 1)) EX = 2σ+2l, |ΔX | = {P}, degΔX = 1, P ∈ l \σ,
degΔZ = 4, deg(ΔZ ∩ σZ) = 1, deg(ΔZ ∩ lZ) = 2, multQ1 ΔZ = multQ1(ΔZ ∩
ΓP,1) = 2, multQ2(ΔZ ∩ σZ) = c, multQ2(ΔZ ∩ lZ) = d and multQ2 ΔZ = c + d,

where Q1 = lZ ∩ ΓP1,1 and Q2 = σZ ∩ lZ .

[3;2,2]1F (c,d) ((c, d) = (0, 0), (1, 1), . . . , (1, 4)) EX = 2σ + 2l, ΔX = ∅, degΔZ = 5,

deg(ΔZ ∩ σZ) = 1, deg(ΔZ ∩ lZ) = 4, multQ(ΔZ ∩ σZ) = c, multQ(ΔZ ∩ lZ) = d

and multQ ΔZ = c+ d, where Q = σZ ∩ lZ .

[3;2,2]2A EX = 2σ+ l1+ l2 (l1, l2 : distinct fibers), degΔX = 4, ΔX ∩σ = ∅, deg(ΔX ∩
l1) = deg(ΔX ∩ l2) = 2, degΔZ = 1 and ΔZ ⊂ σZ \ (lZ1 ∪ lZ2 ).

[3;2,2]2B EX = 2σ+ l1+ l2 (l1, l2 : distinct fibers), degΔX = 3, ΔX ∩σ = ∅, deg(ΔX ∩
l1) = 1, deg(ΔX ∩ l2) = 2, degΔZ = 2 and multQ ΔZ = multQ(ΔZ ∩ lZ1 ) = 2,

where Q = σZ ∩ lZ1 .

[3;2,3]0 EX = σ + σ∞, degΔX = 6, ΔX ⊂ σ∞ and ΔZ = ∅.

[3;2,3]2A EX = 2σ+2l1+l2 (l1, l2 : distinct fibers), degΔX = 6, ΔX∩σ = ∅, |ΔX |∩l1 =

{P1, P2}, (multPi ΔX ,multPi(ΔX ∩ l1)) = (2, 1) for i = 1, 2, deg(ΔX ∩ l2) = 2 and

ΔZ = ∅.

[3;2,3]2B EX = 2σ + 2l1 + l2 (l1, l2 : distinct fibers), degΔX = 6, ΔX ∩ σ = ∅,
|ΔX | ∩ l1 = {P}, (multP ΔX ,multP (ΔX ∩ l1)) = (4, 2), deg(ΔX ∩ l2) = 2 and

ΔZ = ∅.

[3;2,3]2C EX = 2σ+2l1+l2 (l1, l2 : distinct fibers), degΔX = 4, ΔX∩σ = ∅, |ΔX |∩l1 =

{P}, (multP ΔX ,multP (ΔX ∩ l1)) = (2, 2), deg(ΔX ∩ l2) = 2, degΔZ = 2 and

ΔZ ⊂ ΓP,2 \ (lZ1 ∪ ΓP,1).
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[3;2,3]2D EX = 2σ+2l1+l2 (l1, l2 : distinct fibers), degΔX = 4, ΔX∩σ = ∅, |ΔX |∩l1 =

{P}, (multP ΔX ,multP (ΔX ∩ l1)) = (2, 1), deg(ΔX ∩ l2) = 2, degΔZ = 2 and

ΔZ ⊂ lZ1 \ (σZ ∪ ΓP,1).

[3;2,3]2E EX = 2σ + 2l1 + l2 (l1, l2 : distinct fibers), degΔX = 3, ΔX ∩ σ = ∅,
|ΔX |∩l1 = {P}, deg(ΔX∩l2) = 2, degΔZ = 3, multQ ΔZ = multQ(ΔZ∩ΓP,1) = 2

and ΔZ \ {Q} ⊂ lZ1 \ σZ , where Q = lZ1 ∩ ΓP,1.

[3;2,3]2F EX = 2σ+2l1+l2 (l1, l2 : distinct fibers), degΔX = 2, ΔX ⊂ l2\σ, degΔZ = 4

and ΔZ ⊂ lZ1 \ σZ .

[3;2,3]3 EX = 2σ + l1 + l2 + l3 (l1, l2, l3 : distinct fibers), degΔX = 6, ΔX ∩ σ = ∅,
deg(ΔX ∩ li) = 2 for i = 1, 2, 3 and ΔZ = ∅.

The case X = F4 :

[4;2,0] EX = 2σ, ΔX = ∅, degΔZ = 2 and ΔZ ⊂ σZ .

[4;2,1]1A EX = 2σ + l, degΔX = 2, ΔX ⊂ l \ σ, degΔZ = 1 and ΔZ ⊂ σZ \ lZ .

[4;2,1]1B EX = 2σ + l, degΔX = 1, ΔX ⊂ l \ σ, degΔZ = 2 and multQ ΔZ =

multQ(ΔZ ∩ lZ) = 2, where Q = σZ ∩ lZ .

[4;2,2]1A EX = 2σ + 2l, degΔX = 4, ΔX ∩ σ = ∅, |ΔX | = {P1, P2},
(multPi ΔX ,multPi(ΔX ∩ l)) = (2, 1) for i = 1, 2 and ΔZ = ∅.

[4;2,2]1B EX = 2σ+2l, degΔX = 4, ΔX∩σ = ∅, |ΔX | = {P}, (multP ΔX ,multP (ΔX∩
l)) = (4, 2) and ΔZ = ∅.

[4;2,2]1C EX = 2σ + 2l, degΔX = 2, ΔX ∩ σ = ∅, |ΔX | = {P}, ΔX ⊂ l, degΔZ = 2

and ΔZ ⊂ ΓP,2 \ (lZ ∪ ΓP,1).

[4;2,2]1D EX = 2σ+2l, |ΔX | = {P}, degΔX = 2, ΔX∩σ = ∅, (multP ΔX ,multP (ΔX∩
l)) = (2, 1), degΔZ = 2 and ΔZ ⊂ lZ \ (σZ ∪ ΓP,1).

[4;2,2]1E EX = 2σ + 2l, |ΔX | = {P}, degΔX = 1, P ∈ l \ σ, degΔZ = 3, multQ ΔZ =

multQ(ΔZ ∩ ΓP,1) = 2 and ΔZ \ {Q} ⊂ lZ \ σZ , where Q = lZ ∩ ΓP,1.

[4;2,2]1F EX = 2σ + 2l, ΔX = ∅, degΔZ = 4 and ΔZ ⊂ lZ \ σZ .

[4;2,2]2 EX = 2σ + l1 + l2 (l1, l2 : distinct fibers), degΔX = 4, ΔX ∩ σ = ∅, deg(ΔX ∩
l1) = deg(ΔX ∩ l2) = 2 and ΔZ = ∅.

The case X = F5 :

[5;2,0] EX = 2σ, ΔX = ∅, degΔZ = 1 and ΔZ ⊂ σZ .

[5;2,1]1 EX = 2σ + l, degΔX = 2, ΔX ⊂ l \ σ and ΔZ = ∅.
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The case X = F6 :

[6;2,0] EX = 2σ, ΔX = ∅ and degΔZ = ∅.

We start to prove Theorem 8.1. Any tetrad in Theorem 8.1 is a bottom tetrad

by Proposition 3.13. We show the converse. Let (X = Fn, EX ; ΔZ ,ΔX) be a bottom

tetrad such that 2KX + LX is non-big and nontrivial, where LX is the fundamental

divisor, ψ : Z → X be the elimination of ΔX , φ : M → Z be the elimination of ΔZ ,

EZ := (EX)ΔX, 1
Z and EM := (EZ)

ΔZ, 2
M . Set LX ∼ h0σ+hl, EX ∼ e0σ+el, kX := degΔX

and kZ := degΔZ . Then e0 = 6 − h0 and e = 3(n + 2) − h. Since 2KX + LX is nef

and non-big, we can assume that h0 = 4. Thus e0 = 2. We know that kX + kZ =

(LX · EX)/2 = 2n− h+ 12.

Claim 8.2. We have (n, h) = (0, 5), (0, 6), (1, 7), (1, 8), (1, 9), (2, 9), (2, 10),

(2, 11), (2, 12), (3, 12), (3, 13), (3, 14), (3, 15), (4, 16), (4, 17), (4, 18), (5, 20), (5, 21) or

(6, 24).

Proof. Since 2KX +LX ∼ (h−2n−4)l is nef and nontrivial, we have h ≥ 2n+5.

Moreover, 4n ≤ h ≤ 3n + 6 holds since LX is nef and EX is effective. In particular,

n ≤ 6. �

We consider the case that EX contains an irreducible component C which is neither

σ nor l. Then one of the following holds:

(1) (n, h) = (0, 5) and C ∼ σ + l.

(2) (n, h) = (0, 5) and C ∼ 2σ + l.

(3) (n, h) = (1, 7) and C = σ∞.

(4) (n, h) = (1, 7) and C ∼ σ + 2l.

(5) (n, h) = (1, 7) and C ∼ 2σ + 2l.

(6) (n, h) = (1, 8) and C = σ∞.

(7) (n, h) = (2, 9) and C = σ∞.

(8) (n, h) = (2, 9) and C ∼ σ + 3l.

(9) (n, h) = (2, 10) and C = σ∞.

(10) (n, h) = (3, 12) and C = σ∞.

We consider the case (1). Then EX = σ + C and ΔX = ∅. Thus kZ ≤ 1. This

leads to a contradiction. We consider the case (2). Then EX = C and ΔX = ∅. Thus

kZ = 0. This leads to a contradiction. We consider the case (3). If coeffσ∞ EX = 1, then

deg(ΔZ ∩ σZ
∞) ≤ 1 by Lemma 4.7. Since 2 deg(ΔX ∩ σ∞) + deg(ΔZ ∩ σZ

∞) = 7, we have

deg(ΔX ∩ σ∞) = 3. This contradicts to the conditions (B7) and (B8). Thus EX = 2σ∞.

By (B7) and (B8), we have deg(ΔX ∩ σ∞) ≤ 1. Assume that deg(ΔX ∩ σ∞) = 1. Then

deg(ΔZ ∩ σZ
∞) = 5, |ΔX | = {P}, and either (multP ΔX ,multP (ΔX ∩ σ∞)) = (2, 1) or
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(1, 1). We can show that these cases correspond to the types [1;2,2]0A and [1;2,2]0B
respectively. Assume that deg(ΔX ∩ σ∞) = 0. Then ΔX = ∅, deg(ΔZ ∩ σZ

∞) = 7 and

ΔZ ⊂ σZ
∞. This is nothing but the type [1;2,2]0C . We consider the case (4). Then

EX = σ + C and deg(ΔZ ∩ CZ) ≤ 2 by Lemmas 4.7 and 4.9. Since 2 deg(ΔX ∩ C) +

deg(ΔZ ∩ CZ) = 11, we have deg(ΔX ∩ σ∞) = 5. This contradicts to the conditions

(B7) and (B8). We consider the case (5). Then EX = C, C is nonsingular, ΔX ⊂ C

and ΔZ = ∅. This is nothing but the type [1;2,2]U . We consider the case (6). Then

EX = σ + σ∞, ΔX ∩ σ = ∅ and ΔZ ∩ σZ = ∅, which leads to a contradiction. Indeed,

EM does not contain any (−1)-curve. We consider the case (7). Then EX = σ + σ∞ + l

and 2 deg(ΔX ∩ σ∞) + deg(ΔZ ∩ σZ
∞) = 9. By Lemma 4.7, we have deg(ΔZ ∩ σZ

∞) = 1

and deg(ΔZ ∩ σZ) = 1. Set P := σ∞ ∩ l. If P �∈ ΔX , then the case corresponds to the

type [2;2,3]H〈0〉. If P ∈ ΔX , then the case corresponds to the type [2;2,3]H〈1〉. We

consider the case (8). Then EX = σ + C and 2 deg(ΔX ∩ C) + deg(ΔZ ∩ CZ) = 13. By

Lemma 4.7, we have deg(ΔZ ∩ CZ) = 1. This corresponds to the type [2;2,3]V . We

consider the case (9). Then EX = σ+σ∞, ΔX ∩σ = ∅ and ΔZ ∩σZ = ∅, which leads to

a contradiction. Indeed, any irreducible connected component of EM is not a (−2)-curve
by Corollary 3.5. We consider the case (10). Then EX = σ+σ∞, ΔX ⊂ σ∞ and ΔZ = ∅.
This is nothing but the type [3;2,3]0.

From now on, we can assume that EX = 2σ +
∑j

i=1 cili, where li are distinct fibers

and ci > 0 with
∑j

i=1 ci = e. Indeed, if (n, h) = (0, 5) and EZ = σ + σ′ + l, or

(n, h) = (0, 6) and EZ = σ + σ′ (σ, σ′ are distinct minimal sections), then ΔX = ∅ and

kZ ≤ 2. This leads to a contradiction. Set dXi := deg(ΔX ∩ li) and dZi := deg(ΔZ ∩ lZi ).

We know that 2dXi + dZi = 4. Thus (dXi , dZi ) = (2, 0), (1, 2) or (0, 4).

Assume the case ci = 2 for some i. Then one of the following holds:

(A) (dXi , dZi ) = (2, 0), |ΔX | = {P1, P2} and (multPt
ΔX ,multPt

(ΔX ∩ li)) = (2, 1) for

t = 1, 2.

(B) (dXi , dZi ) = (2, 0), |ΔX | = {P} and (multP ΔX ,multP (ΔX ∩ li)) = (4, 2).

(C) (dXi , dZi ) = (2, 0), |ΔX | = {P} and (multP ΔX ,multP (ΔX ∩ li)) = (2, 2).

(D) (dXi , dZi ) = (1, 2), |ΔX | = {P} and (multP ΔX ,multP (ΔX ∩ li)) = (2, 1).

(E) (dXi , dZi ) = (1, 2), |ΔX | = {P} and (multP ΔX ,multP (ΔX ∩ li)) = (1, 1).

(F) (dXi , dZi ) = (0, 4).

Assume the case ci = 1 for some i. By Lemma 4.2, one of the following holds:

(1) (dXi , dZi ) = (2, 0).

(2) (dXi , dZi ) = (1, 2).

We note that multQ ΔZ = multQ(ΔZ ∩ lZi ) = 2 and multQ(ΔZ ∩ σZ) = 1 for the

case (2) since ΔX ∩ σ = ∅, where Q := σZ ∩ lZi .

8.1. The case (n, h) = (0, 5).

In this case, kX = 0, j = 1 and c1 = 1, which leads to a contradiction; neither the

case (1) nor (2) occurs.
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8.2. The case (n, h) = (0, 6).

In this case, kX = 0, kZ = 6, EX = 2σ and deg(ΔZ ∩ σZ) = 6. This case is nothing

but the type [0;2,0].

8.3. The case (n, h) = (1, 7).

Assume that j = 1. Then c1 = 2. We can show that the case (X) (X ∈ {A, . . . ,F})
corresponds to the type [1;2,2]1X. More precisely, the case (X) (X ∈ {D, E, F}) with

c := multQ(ΔZ ∩ σZ) and d := multQ(ΔZ ∩ lZ1 ) corresponds to the type [1;2,2]1X(c,d),

where Q := σZ ∩ lZ1 .

Assume that j = 2. Then c1 = c2 = 1. If both l1 and l2 satisfy the condition (1),

then this corresponds to the type [1;2,2]2A. If l1 satisfies the condition (1) and l2 satisfies

the condition (2), then this corresponds to the type [1;2,2]2B . If both l1 and l2 satisfy

the condition (2), then this corresponds to the type [1;2,2]2C .

8.4. The case (n, h) = (1, 8).

In this case, j = 1 and c1 = 1. If l1 satisfies the condition (1), then this corresponds

to the type [1;2,1]1A. If l1 satisfies the condition (2), then this corresponds to the type

[1;2,1]1B .

8.5. The case (n, h) = (1, 9).

In this case, kX = 0, kZ = 5, EX = 2σ and deg(ΔZ ∩ σZ) = 5. This case is nothing

but the type [1;2,0].

8.6. The case (n, h) = (2, 9).

Assume that j = 2. Then we can assume that c1 = 2 and c2 = 1. We can show

that the case (X), (y) (X ∈ {A, . . . ,F}, y ∈ {1, 2}) corresponds to the type [2;2,3]2Xy.

More precisely, the case (X), (1) (X ∈ {D, E, F}) with c := multQ(ΔZ ∩ σZ) and d :=

multQ(ΔZ ∩ lZ1 ) corresponds to the type [2;2,3]2X1(c,d), where Q := σZ ∩ lZ1 .

Assume that j = 3. Then c1 = c2 = c3 = 1. Since deg(ΔZ ∩σZ) = 1, we can assume

that either (dZ1 , d
Z
2 , d

Z
3 ) = (0, 0, 0) or (0, 0, 2) holds. The case (dZ1 , d

Z
2 , d

Z
3 ) = (0, 0, 0)

corresponds to the type [2;2,3]3A and the case (dZ1 , d
Z
2 , d

Z
3 ) = (0, 0, 2) corresponds to the

type [2;2,3]3B .

8.7. The case (n, h) = (2, 10).

Assume that j = 1. Then c1 = 2. We can show that the case (X) (X ∈ {A, . . . ,F})
corresponds to the type [2;2,2]1X. More precisely, the case (X) (X ∈ {D, E, F}) with

c := multQ(ΔZ ∩ σZ) and d := multQ(ΔZ ∩ lZ1 ) corresponds to the type [2;2,2]1X(c,d),

where Q := σZ ∩ lZ1 .

Assume that j = 2. Then c1 = c2 = 1. We can assume that one of (dZ1 , d
Z
2 ) = (0, 0),

(2, 0) or (2, 2) holds. We can show that the case (dZ1 , d
Z
2 ) = (0, 0) corresponds to the

type [2;2,2]2A, the case (d
Z
1 , d

Z
2 ) = (2, 0) corresponds to the type [2;2,2]2B , and the case

(dZ1 , d
Z
2 ) = (2, 2) corresponds to the type [2;2,2]2C .

8.8. The case (n, h) = (2, 11).

In this case, j = 1 and c1 = 1. If l1 satisfies the condition (1), then this corresponds

to the type [2;2,1]1A. If l1 satisfies the condition (2), then this corresponds to the type

[2;2,1]1B .
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8.9. The case (n, h) = (2, 12).

In this case, kX = 0, kZ = 4, EX = 2σ and deg(ΔZ ∩ σZ) = 4. This case is nothing

but the type [2;2,0].

8.10. The case (n, h) = (3, 12).

In this case, we have ΔZ ∩ σZ = ∅. Assume that j = 2. Then we can assume that

c1 = 2 and c2 = 1. We know that the curve l2 satisfies the condition (1). We can show

that the case (X) (X ∈ {A, . . . ,F}) corresponds to the type [3;2,3]2X.

Assume that j = 3. Then c1 = c2 = c3 = 1 and (dZ1 , d
Z
2 , d

Z
3 ) = (0, 0, 0) hold. This

corresponds to the type [3;2,3]3.

8.11. The case (n, h) = (3, 13).

Assume that j = 1. Then c1 = 2. We can show that the case (X) (X ∈ {A, . . . ,F})
corresponds to the type [3;2,2]1X. More precisely, the case (X) (X ∈ {D, E, F}) with

c := multQ(ΔZ ∩ σZ) and d := multQ(ΔZ ∩ lZ1 ) corresponds to the type [3;2,2]1X(c,d),

where Q := σZ ∩ lZ1 .

Assume that j = 2. Then c1 = c2 = 1. Since deg(ΔZ ∩ σZ) = 1, we can assume

that either (dZ1 , d
Z
2 ) = (0, 0) or (2, 0) holds. We can show that the case (dZ1 , d

Z
2 ) = (0, 0)

corresponds to the type [3;2,2]2A and the case (dZ1 , d
Z
2 ) = (2, 0) corresponds to the type

[3;2,2]2B .

8.12. The case (n, h) = (3, 14).

In this case, j = 1 and c1 = 1. If l1 satisfies the condition (1), then this corresponds

to the type [3;2,1]1A. If l1 satisfies the condition (2), then this corresponds to the type

[3;2,1]1B .

8.13. The case (n, h) = (3, 15).

In this case, kX = 0, kZ = 3, EX = 2σ and deg(ΔZ ∩ σZ) = 3. This case is nothing

but the type [3;2,0].

8.14. The case (n, h) = (4, 16).

In this case, we have ΔZ ∩ σZ = ∅. Assume that j = 1. Then c1 = 2. We can show

that the case (X) (X ∈ {A, . . . ,F}) corresponds to the type [4;2,2]1X.

Assume that j = 2. Then c1 = c2 = 1 and (dZ1 , d
Z
2 ) = (0, 0) hold. This corresponds

to the type [4;2,2]2.

8.15. The case (n, h) = (4, 17).

In this case, j = 1 and c1 = 1. If l1 satisfies the condition (1), then this corresponds

to the type [4;2,1]1A. If l1 satisfies the condition (2), then this corresponds to the type

[4;2,1]1B .

8.16. The case (n, h) = (4, 18).

In this case, kX = 0, kZ = 2, EX = 2σ and deg(ΔZ ∩ σZ) = 2. This case is nothing

but the type [4;2,0].

8.17. The case (n, h) = (5, 20).

We note that ΔZ ∩ σZ = ∅. In this case, j = 1, c1 = 1 and the curve l1 satisfies the

condition (1). This corresponds to the type [5;2,1]1.
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8.18. The case (n, h) = (5, 21).

In this case, kX = 0, kZ = 1, EX = 2σ and deg(ΔZ ∩ σZ) = 1. This case is nothing

but the type [5;2,0].

8.19. The case (n, h) = (6, 24).

In this case, kX = kZ = 0 and EX = 2σ. This case is nothing but the type [6;2,0].

As a consequence, we have completed the proof of Theorem 8.1.

9. Classification of bottom tetrads, III.

We classify bottom tetrads (X,EX ; ΔZ ,ΔX) with trivial 2KX + LX .

Theorem 9.1. The bottom tetrads (X,EX ; ΔZ ,ΔX) with trivial 2KX + LX are

classified by the types defined as follows (We assume that any of them satisfies that ΔZ

satisfies the (ν1)-condition.):

The case X = P2 and EX = C (C is an irreducible nodal cubic curve. Let P be the

singular point of C.) :

[3]NA ΔX ⊂ C \ {P} and degΔX = 8. ΔZ = {Q} and degΔZ = 1, where Q is the

singular point of CZ .

[3]NB degΔX = 7, multP ΔX = 1 and ΔX \ {P} ⊂ C. |ΔZ | = {Q1, Q2} and

multQi ΔZ = 1, where {Q1, Q2} = CZ ∩ ΓP,1.

The case X = P2 and EX = C (C is an irreducible cuspidal cubic curve. Let P be

the singular point of C.) :

[3]CA ΔX ⊂ C \ {P} and degΔX = 8. ΔZ = {Q} and degΔZ = 1, where Q is the

singular point of CZ .

[3]CB degΔX = 7, multP ΔX = 1 and ΔX \ {P} ⊂ C. |ΔZ | = {Q}, multQ ΔZ =

multQ(ΔZ ∩ CZ) = multQ(ΔZ ∩ ΓP,1) = 2, where {Q} = CZ ∩ ΓP,1.

The case X = P2 and EX = C + l (C is a nonsingular conic and l is a line. C and

l meet at two points P1, P2.) :

[3]AA degΔX = 5, deg(ΔX ∩ C) = 5, deg(ΔX ∩ l) = 2 and multPi ΔX = 1 for i = 1,

2. degΔZ = 4 and |ΔZ | = {Q1C , Q1l, Q2C , Q2l}, where QiC := CZ ∩ ΓPi,1 and

Qil := lZ ∩ ΓPi, 1.

[3]AB degΔX = 6, deg(ΔX ∩ C) = 5, deg(ΔX ∩ l) = 2, P2 �∈ ΔX and multP1
ΔX = 1.

degΔZ = 3 and |ΔZ | = {Q2, Q1C , Q1l}, where Q2 := CZ ∩ lZ , Q1C := CZ ∩ΓP1,1

and Q1l := lZ ∩ ΓP1, 1.

The case X = P2 and EX = C + l (C is a nonsingular conic and l is a line. C and

l are tangent to each other at one point P .) :
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[3]KA degΔX = 5, deg(ΔX ∩ C) = 5, deg(ΔX ∩ l) = 2 and multP ΔX = multP (ΔX ∩
C) = multP (ΔX ∩ l) = 2. degΔZ = 4, multQC

ΔZ = multQC
(ΔZ ∩ CZ) = 2 and

multQl
ΔZ = multQl

(ΔZ ∩ lZ) = 2, where QC = CZ ∩ ΓP,2 and Ql = lZ ∩ ΓP,2.

[3]KB〈b〉 (2 ≤ b ≤ 6) degΔX = 7, deg(ΔX ∩C) = 6, deg(ΔX ∩ l) = 3, b = multP ΔX =

multP (ΔX ∩C) and multP (ΔX ∩ l) = 2. degΔZ = 2, ΔZ ⊂ ΓP,b and ΔZ ∩ (CZ ∪
lZ ∪ ΓP,b−1) = ∅.

[3]KC〈b〉 (2 ≤ b ≤ 5) degΔX = 6, deg(ΔX ∩C) = 5, deg(ΔX ∩ l) = 3, b = multP ΔX =

multP (ΔX ∩ C) and multP (ΔX ∩ l) = 2. degΔZ = 3, multQ ΔZ = multQ(ΔZ ∩
CZ) = 2 and ΔZ \ {Q} ⊂ ΓP,b \ (lZ ∪ ΓP,b−1), where Q = CZ ∩ ΓP,b.

The case X = P2 and EX = 2l1 + l2 (li are distinct lines. Set P := l1 ∩ l2.) :

[3]2A〈b〉 (1 ≤ b ≤ 3) degΔX = 5, b = multP ΔX = multP (ΔX∩l2), multP (ΔX∩l1) = 1,

|ΔX |∩l1 = {P, P1} with (multP1
ΔX , multP1

(ΔX∩l1)) = (2, 2) and deg(ΔX∩l2) =
3. degΔZ = 4, ΔZ ⊂ ΓP,b ∪ ΓP1,2, ΔZ ∩ (lZ1 ∪ lZ2 ∪ ΓP1,1 ∪ ΓP,b−1) = ∅ and

deg(ΔZ ∩ ΓP,b) = deg(ΔZ ∩ ΓP1,2) = 2.

[3]2B1〈1〉(c,d) ((c, d) = (0, 0), (1, 1), (1, 2)) degΔX = 4, |ΔX | ∩ l1 = {P, P1} with

multP1 ΔX = 1, multP ΔX = 1 and deg(ΔX∩l2) = 3. degΔZ = 5, deg(ΔZ∩lZ1 ) =
deg(ΔZ ∩ ΓP,1) = 2, multQ2 ΔZ = multQ2(ΔZ ∩ ΓP1,1) = 2, ΔZ ∩ lZ2 = ∅,
multQ1(ΔZ ∩ lZ1 ) = c, multQ1(ΔZ ∩ ΓP,1) = d and multQ1 ΔZ = c + d, where

Q1 = lZ1 ∩ ΓP,1 and Q2 = lZ1 ∩ ΓP1,1.

[3]2B1〈b〉 (2 ≤ b ≤ 3) degΔX = 4, b = multP ΔX = multP (ΔX∩l2), |ΔX |∩l1 = {P, P1}
with multP1

ΔX = 1 and deg(ΔX ∩ l2) = 3. degΔZ = 5, deg(ΔZ ∩ lZ1 ) = deg(ΔZ ∩
ΓP,b) = 2, multQ ΔZ = multQ(ΔZ ∩ ΓP1,1) = 2 and ΔZ ∩ (lZ2 ∪ ΓP,1 ∪ ΓP,b−1) = ∅,
where Q = lZ1 ∩ ΓP1,1.

[3]2B2〈1〉(c,d) ((c, d) = (0, 0), (1, 1)) degΔX = 3, multP ΔX = 1, |ΔX | ∩ l1 = {P, P1}
with multP1 ΔX = 1 and deg(ΔX ∩ l2) = 2. degΔZ = 6, deg(ΔZ ∩ lZ1 ) = deg(ΔZ ∩
ΓP,1) = 2, multQ1 ΔZ = multQ1(ΔZ∩ lZ2 ) = 2, multQ2 ΔZ = multQ2(ΔZ∩ΓP1,1) =

2, multQ3(ΔZ ∩ lZ1 ) = c, multQ3(ΔZ ∩ ΓP,1) = d and multQ3 ΔZ = c + d, where

Q1 = lZ2 ∩ ΓP,1, Q2 = lZ1 ∩ ΓP1,1 and Q3 = lZ1 ∩ ΓP,1.

[3]2B2〈2〉 degΔX = 3, multP ΔX = multP (ΔX ∩ l2) = 2, |ΔX | ∩ l1 = {P, P1} with

multP1
ΔX = 1. degΔZ = 6, multQ ΔZ = multQ(ΔZ ∩ lZ2 ) = 2, deg(ΔZ ∩ lZ1 ) =

deg(ΔZ ∩ ΓP,2) = 2, multQ1
ΔZ = multQ1

(ΔZ ∩ ΓP1,1) = 2 and ΔZ ∩ ΓP,1 = ∅,
where Q = lZ2 ∩ ΓP,2 and Q1 = lZ1 ∩ ΓP1,1.

[3]2C1〈1〉(c,d) ((c, d) = (0, 0), (1, 1), . . . , (4, 1), (1, 2)) degΔX=3, multP ΔX = 1 and

ΔX ⊂ l2. degΔZ = 6, deg(ΔZ ∩ lZ1 ) = 4, deg(ΔZ ∩ ΓP,1) = 2, ΔZ ∩ lZ2 = ∅,
multQ(ΔZ∩lZ1 ) = c, multQ(ΔZ∩ΓP,1) = d, multQ ΔZ = c+d, where Q = lZ1 ∩ΓP,1.

[3]2C1〈b〉 (2 ≤ b ≤ 3) degΔX = 3, b = multP ΔX = multP (ΔX ∩ l2), multP (ΔX ∩
l1) = 1 and ΔX ⊂ l2. degΔZ = 6, deg(ΔZ ∩ lZ1 ) = 4, deg(ΔZ ∩ ΓP,b) = 2 and

ΔZ ∩ (ΓP,b−1 ∪ lZ2 ) = ∅.
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[3]2C2〈1〉(c,d) ((c, d) = (0, 0), (1, 1), . . . , (4, 1)) degΔX = 2 and ΔX ⊂ l2, multP ΔX =

1. degΔZ = 7, deg(ΔZ ∩ lZ1 ) = 4, deg(ΔZ ∩ ΓP,1) = 2, multQ1(ΔZ ∩ lZ1 ) = c,

multQ1
(ΔZ∩ΓP,1) = d, multQ1

ΔZ = c+d and multQ2
ΔZ = multQ2

(ΔZ∩lZ2 ) = 2,

where Q1 = lZ1 ∩ ΓP,1 and Q2 = lZ2 ∩ ΓP,1.

[3]2C2〈2〉 degΔX = 2 and multP ΔX = multP (ΔX ∩ l2) = 2. degΔZ = 7, deg(ΔZ ∩
lZ1 ) = 4, deg(ΔZ ∩ΓP,2) = 2, ΔZ ∩ΓP,1 = ∅ and multQ ΔZ = multQ(ΔZ ∩ lZ2 ) = 2,

where Q = lZ2 ∩ ΓP,2.

[3]2C3〈b〉 (3 ≤ b ≤ 5) degΔX = 5, b = multP ΔX = multP (ΔX ∩ l2) + 2, multP (ΔX ∩
l1) = 1 and deg(ΔX ∩ l2) = 3. degΔZ = 4, ΔZ ⊂ lZ1 and ΔZ ∩ ΓP,1 = ∅.

[3]2D(c,d) ((c, d) = (0, 0), (1, 1), (1, 2), (2, 1)) degΔX = 5, P �∈ ΔX , |ΔX | ∩ l1 = {P1},
(multP1

ΔX , multP1
(ΔX∩l1)) = (2, 2), deg(ΔX∩l2) = 3. degΔZ = 4, multQ(ΔZ∩

lZ1 ) = c, multQ(ΔZ ∩ ΓP1,2) = d, multQ ΔZ = c + d, deg(ΔZ ∩ lZ1 ) = deg(ΔZ ∩
ΓP1,2) = 2, ΔZ ∩ (lZ2 ∪ ΓP1,1) = ∅, where Q = lZ1 ∩ ΓP1,2.

[3]2E degΔX = 5, P �∈ ΔX , |ΔX |∩l1 = {P1} with (multP1
ΔX , multP1

(ΔX∩l1)) = (2, 1)

and deg(ΔX ∩ l2) = 3. degΔZ = 4, ΔZ ⊂ lZ1 and ΔZ ∩ (lZ2 ∪ ΓP1,1) = ∅.

[3]2F1 degΔX = 3, P �∈ ΔX , |ΔX |∩l1 = {P1} with multP1 ΔX = 1 and deg(ΔX∩l2) = 2.

degΔZ = 6, multQ1 ΔZ = multQ1(ΔZ ∩ lZ2 ) = 2, deg(ΔZ ∩ lZ1 ) = 2, multQ2 ΔZ =

multQ2
(ΔZ∩ΓP1,1) = 2, deg(ΔZ∩lZ1 ) = 4, where Q1 = lZ1 ∩lZ2 and Q2 = lZ1 ∩ΓP1,1.

[3]2F2 degΔX = 4, P �∈ ΔX , |ΔX | ∩ l1 = {P1}, multP1
ΔX = 1, deg(ΔX ∩ l2) = 3.

degΔZ = 5, multQ ΔZ = multQ(ΔZ ∩ ΓP1,1) = 2, deg(ΔZ ∩ lZ1 ) = 4, ΔZ ∩ lZ2 = ∅,
where Q = lZ1 ∩ ΓP1,1.

[3]2G1 degΔX = 2, P �∈ ΔX , ΔX ⊂ l2. degΔZ = 7, multQ ΔZ = multQ(ΔZ ∩ lZ2 ) = 2

and deg(ΔZ ∩ lZ1 ) = 6, where Q = lZ1 ∩ lZ2 .

[3]2G2 degΔX = 3, P �∈ ΔX , ΔX ⊂ l2. degΔZ = 6, ΔZ ⊂ lZ1 and ΔZ ∩ lZ2 = ∅.

The case X = P2 and EX = l1 + l2 + l3 (li are distinct lines and l1 ∩ l2 ∩ l3 = ∅. Set

Pij := li ∩ lj(1 ≤ i < j ≤ 3).) :

[3]3A degΔX = 4, multP12
ΔX = multP13

ΔX = 1, P23 �∈ ΔX and deg(ΔX ∩ li) = 2

for i = 1, 2, 3. degΔZ = 5 and |ΔZ | = {Q12, Q21, Q13, Q31, Q23}, where

Q12 = lZ1 ∩ ΓP12,1, Q21 = lZ2 ∩ ΓP12,1, Q13 = lZ1 ∩ ΓP13,1, Q31 = lZ3 ∩ ΓP13,1, and

Q23 = lZ2 ∩ lZ3 .

[3]3B degΔX = 3 and |ΔX | = {P12, P13, P23}. degΔZ = 6 and |ΔZ | = {Q12, Q21,

Q13, Q31, Q23, Q32}, where Q12 = lZ1 ∩ΓP12,1, Q21 = lZ2 ∩ΓP12,1, Q13 = lZ1 ∩ΓP13,1,

Q31 = lZ3 ∩ ΓP13,1, Q23 = lZ2 ∩ ΓP23,1 and Q32 = lZ3 ∩ ΓP23,1.

The case X = P1 × P1 :
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[0;2,2]0 EX = 2C such that C : nonsingular, C ∼ σ + l, ΔX = ∅, degΔZ = 8 and

ΔZ ⊂ CZ .

[0;2,2]1(c,d) ((c, d) = (0, 0), (1, 1), . . . , (4, 1)) EX = 2σ + 2l and ΔX = ∅. degΔZ = 8,

deg(ΔZ ∩σZ) = deg(ΔZ ∩ lZ) = 4, multQ(ΔZ ∩σZ) = c, multQ(ΔZ ∩ lZ) = d and

multQ ΔZ = c+ d, where Q = σZ ∩ lZ .

The case X = F2 :

[2;2,4]0 EX = 2σ∞, ΔX = ∅, degΔZ = 8 and ΔZ ⊂ σZ
∞.

[2;2,4]1 EX = 2σ+2l1+2l2 (l1, l2 : distinct fibers), ΔX = ∅, degΔZ = 8, deg(ΔZ∩lZ1 ) =
deg(ΔZ ∩ lZ2 ) = 4 and ΔZ ∩ σZ = ∅.

We start to prove Theorem 9.1. Any tetrad in Theorem 9.1 is a bottom tetrad by

Proposition 3.13. We show the converse.

9.1. The case X = P2.

We consider the case X = P2 and EX ∼ 3l. Set ψ : Z → X, φ : M → Z, EZ , EX ,

kZ and kX as in the beginning of Section 7.1. We note that kX ≤ 8 holds.

9.1.1. The case EX = C (C : irreducible singular cubic).

Let P be the singular point of C. We note that multP C = 2. By Lemmas 4.7 and

4.10, CM is a connected component of EM . Thus ((CM )2) = −3. Assume that P �∈ ΔX .

Then EZ = CZ and CZ has a unique singular point Q (the point over P ). Thus kZ = 1

and |ΔZ | = {Q}. Since ((CM )2) = −3, kX = 8 and ΔX ⊂ C \ {P}. This case is nothing

but the type [3]NA (if C is nodal) or the type [3]CA (if C is cuspidal). Assume that P ∈
ΔX . By Lemmas 4.7 and 4.10, multP ΔX = 1, EZ = CZ+ΓP,1 and CZ is nonsingular. If

C is nodal, then |CZ ∩ ΓP,1| = {Q1, Q2}. Thus kZ = 2 and |ΔZ | = {Q1, Q2} by Lemma

4.2. Since ((CM )2) = −3, deg(ΔX \ {P}) = 6 and ΔX \ {P} ⊂ C. This case is nothing

but the type [3]NB . If C is cuspidal, then |CZ ∩ΓP,1| = {Q} and multQ(C
Z ∩ΓP,1) = 2.

Thus kZ = 2 and |ΔZ | = {Q} by Lemma 4.4. Since ((CM )2) = −3, deg(ΔX \ {P}) = 6

and ΔX \ {P} ⊂ C. This case is nothing but the type [3]CB .

9.1.2. The case EX = C+ l (C : nonsingular conic and l : line that meet

C at two points).

Set {P1, P2} := C ∩ l. By Lemmas 4.2 and 4.7, both CM and lM are (−3)-curves
and multPi ΔX ≤ 1. Thus deg(ΔX ∩ C) = 5, deg(ΔZ ∩ CZ) = 2, deg(ΔX ∩ l) = 2 and

deg(ΔZ ∩ lZ) = 2. By the condition (B9), we can assume that P1 ∈ ΔX . If P2 ∈ ΔX ,

then this induces the type [3]AA. If P2 �∈ ΔX , then this induces the type [3]AB .

9.1.3. The case EX = C + l (C : nonsingular conic and l : line that are

tangent to each other).

Set P := |C ∩ l|, dXC := deg(ΔX ∩ C), dZC := deg(ΔZ ∩ CZ), dXl := deg(ΔX ∩ l)

and dZl := deg(ΔZ ∩ lZ). By Claim 7.2, (dXC , dZC , ((C
M )2)) = (6, 0,−2) or (5, 2,−3), and

(dXl , dZl , ((l
M )2)) = (3, 0,−2) or (2, 2,−3). By the condition (B9), P ∈ ΔX .

Assume that multP (ΔX ∩ l) > multP (ΔX ∩ C). Then multP (ΔX ∩ l) = b and

multP (ΔX ∩ C) = 2 by Lemma 4.9. In this case, ΔZ ∩ ΓP,2 = ∅. Thus ((CM )2) =
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−2. In particular, deg(ΔX ∩ C \ {P}) = 4. Since b ≥ 3, we have b = dlX = 3. In

particular, ΔX ∩ l \ {P} = ∅. This contradicts to the condition (B9). This implies that

b = multP (ΔX ∩ C) ≥ multP (ΔX ∩ l) = 2 by Lemma 4.9.

We consider the case ((lM )2) = −3. Set Ql := lZ ∩ ΓP,2 and QC := CZ ∩ ΓP,b.

Since lM ∩ ΓM
P,2 = ∅, we have b = 2. Moreover, multQl

ΔZ = multQl
(ΔZ ∩ lZ) = 2

and multQl
(ΔZ ∩ ΓP,2) = 1. Assume that QC �∈ ΔZ . Then ((CM )2) = −2. In this

case, deg(ΔX ∩ C \ {P}) = 4 and ΔX ∩ l \ {P} = ∅. This contradicts to the condition

(B9). Thus QC ∈ ΔZ , ((CM )2) = −3, multQC
ΔZ = multQC

(ΔZ ∩ CZ) = 2 and

multQC
(ΔZ ∩ ΓP,2) = 1. This case induces the type [3]KA.

We consider the case ((lM )2) = −2. If ((CM )2) = −2, then 2 ≤ b ≤ 6. Moreover,

ΔZ ⊂ ΓP,b. This case induces the type [3]KB〈b〉. If ((CM )2) = −3, then 2 ≤ b ≤ 5.

Moreover, multQ ΔZ = multQ(ΔZ ∩ CZ) = 2 and multQ(ΔZ ∩ ΓP,b) = 1, where Q :=

CZ ∩ ΓP,b. This case induces the type [3]KC〈b〉.
9.1.4. The case EX = 2l1 + l2 (li : distinct lines) and P ∈ ΔX , where

P = l1 ∩ l2.

Set dXi := deg(ΔX ∩ li), dZi := deg(ΔZ ∩ lZi ) and b := multP ΔX . Then

(dX1 , dZ1 , ((l
M
1 )2)) = (3, 0,−2), (2, 2,−3) or (1, 4,−4), and (dX2 , dZ2 , ((l

M
2 )2)) = (3, 0,−2)

or (2, 2,−3). By Lemma 4.7, we have multP (ΔX∩l1) = 1. Moreover, one of the following

holds:

(1) b = multP (ΔX ∩ l2) ≤ 3, ((lM2 )2) = −2 and ΔZ ∩ lZ2 = ∅.
(2) b = multP (ΔX ∩ l2) ≤ 2, ((lM2 )2) = −3, multQ ΔZ = multQ(ΔZ ∩ lZ2 ) = 2,

multQ(ΔZ ∩ ΓP,b) = 1, kX �= 4 and deg(ΔZ ∩ ΓP,b) = 2, where Q := lZ2 ∩ ΓP,b.

(3) b = multP (ΔX ∩ l2) + 2 ≤ 5, ((lM2 )2) = −2, ΔZ ∩ lZ2 = ∅ and ΔX ∩ l1 \ {P} = ∅.
The case dX

1 = 3: In this case, |ΔX |∩l1 = {P, P1} with (multP1
ΔX ,multP1

(ΔX∩l1)) =
(2, 2). Moreover, b = multP (ΔX ∩ l2) and kX = dX1 + dX2 − 1 = 4. Therefore only the

case (1) occurs. This case induces the type [3]2A〈b〉.
The case dX

1 = 2: In this case, |ΔX | ∩ l1 = {P, P1} and multP1
(ΔX ∩ l1) = 1.

Assume that multP1
ΔX = 2. Then dX2 = 3. However, in this case, we must have

multP1
(ΔX ∩ l1) = 2 or deg(ΔX ∩ l1) = 1 by the condition (B11). This is a contradiction.

Thus multP1 ΔX = 1. In this case, kX = 1 + dX2 . Assume that l2 satisfies the case (y)

for y ∈ {1, 2}. If b ≥ 2, then this case corresponds to the type [3]2By〈b〉. Assume the

case b = 1. Set Q := lZ1 ∩ ΓP,1, c := multQ(ΔZ ∩ lZ1 ) and d := multQ(ΔZ ∩ ΓP,1). Then

this case corresponds to the type [3]2By〈1〉(c,d).
The case dX

1 = 1: We can show that the case (y) (y ∈ {1, 2, 3}) corresponds to the

type [3]2Cy〈b〉 unless y ∈ {1, 2} and b = 1. Assume that b = 1. Set Q := lZ1 ∩ ΓP,1,

c := multQ(ΔZ ∩ lZ1 ) and d := multQ(ΔZ ∩ΓP,1). If y ∈ {1, 2}, then this corresponds to

the type [3]2Cy〈1〉(c,d).
9.1.5. The case EX = 2l1 + l2 (li : distinct lines) and P �∈ ΔX , where

P = l1 ∩ l2.

Let Q ∈ Z be the inverse image of P ∈ X. In this case, Q ∈ ΔZ if and only if

((lM2 )2) = −3. We note that dX1 ≤ 2.
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The case dX
1 = 2: In this case, |ΔX | ∩ l1 = {P1} and (multP1 ΔX ,multP1(ΔX ∩ l1)) =

(2, 2). Set Q1 := lZ1 ∩ΓP1,2, c := multQ1(ΔZ ∩ lZ1 ) and d := multQ1(ΔZ ∩ΓP1,2). Assume

that Q ∈ ΔZ . Then dX2 = 2 and kX = 4. This is a contradiction. Thus Q �∈ ΔZ . This

corresponds to the type [3]2D(c,d).

The case dX
1 = 1: In this case, one of the following holds:

(A) |ΔX | ∩ l1 = {P1} with (multP1
ΔX ,multP1

(ΔX ∩ l1)) = (2, 1).

(B) |ΔX | ∩ l1 = {P1} with (multP1
ΔX ,multP1

(ΔX ∩ l1)) = (1, 1).

We consider the case (A). Assume that Q ∈ ΔZ . Then dX2 = 2 and kX = 4, a

contradiction. Thus Q �∈ ΔZ . This corresponds to the type [3]2E . We consider the

case (B). If Q ∈ ΔZ , then this corresponds to the type [3]2F1. If Q �∈ ΔZ , then this

corresponds to the type [3]2F2.

The case dX
1 = 0: If Q ∈ ΔZ , then this corresponds to the type [3]2G1. If Q �∈ ΔZ ,

then this corresponds to the type [3]2G2.

9.1.6. The case EX = l1 + l2 + l3 (li : distinct lines).

Set Pij := li ∩ lj for 1 ≤ i < j ≤ 3. By the condition (B10), l1 ∩ l2 ∩ l3 = ∅ and we

can assume that P12, P13 ∈ ΔX . By Lemma 4.6, multPij
ΔX ≤ 1 and any component of

EM is reduced. Thus ((lMi )2) = −3 for i = 1, 2, 3. If P23 �∈ ΔX , then this corresponds

to the type [3]3A. If P23 ∈ ΔX , then this corresponds to the type [3]3B .

9.2. The case X = Fn.

Let (X = Fn, EX ; ΔZ ,ΔX) be a bottom tetrad such that 2KX+LX is trivial, where

LX is the fundamental divisor. We note that ΔX = ∅ and n = 0 or 2. In particular,

Z = X. Let φ : M → Z be the elimination of ΔZ , EM := (EX)ΔZ, 2
M . Since 2KX +LX is

trivial, we have LX ∼ 4σ + 2(n+ 2)l, EX ∼ 2σ + (n+ 2)l and degΔZ = 8.

9.2.1. The case n = 0.

Take an irreducible component C ≤ EX . Assume that C is singular. Then EX = C.

In this case, C has a unique singular point which is locally isomorphic to a singularity of

a plane cubic since C is a rational curve. Thus degΔZ ≤ 1, a contradiction. Assume that

C ∼ σ+2l. Then EX = C + σ and degΔZ ≤ 2 by Lemmas 4.2 and 4.4, a contradiction.

Assume that C ∼ σ + l. If coeffC EX = 1, then degΔZ ≤ 3 by Lemmas 4.2 and 4.3,

a contradiction. Thus EX = 2C. In this case, ΔZ ⊂ C. This is nothing but the type

[0;2,2]0.

From now on, we can assume that any component of EX is either σ or l. By Lemma

4.2, we have EX = 2σ + 2l. Set c := multQ(ΔZ ∩ σ) and d := multQ(ΔZ ∩ l). We may

assume that c ≥ d. Then multQ ΔZ = c + d by Lemma 4.2. Moreover, deg(ΔZ ∩ σ) =

deg(ΔZ ∩ l) = 4. This is nothing but the type [0;2,2]1(c,d).

9.2.2. The case n = 2.

By the argument in Section 9.2.1, we have EX = 2σ∞ or 2σ+2l1+2l2. If EX = 2σ∞,

then this corresponds to the type [2;2,4]0. If EX = 2σ+2l1 +2l2, then this corresponds

to the type [2;2,4]1.

Consequently, we have completed the proof of Theorem 9.1.



218 K. Fujita and K. Yasutake

10. Structure properties.

In this section, we treat some structure properties of bottom tetrads, median triplets

and 3-basic pairs.

Definition 10.1. For the type of the form [•]•(•) (resp. [•]•〈•〉(•), [•]•〈•〉) of a

bottom tetrad, the form [•]• (resp. [•]•〈•〉, [•]•〈•〉) is said to be the median part of the

type.

The next proposition ensures that there is no overlapping in bottom tetrads and in

median triplets. The proof is essentially the same as [Nak07, Theorem 4.9].

Proposition 10.2. (1) Let (Zi, EZi
; ΔZi

) (i = 1, 2) be median triplets such that

both give the same 3-basic pair (M,EM ). Then the type of each triplet is same.

(2) Let (Xi, EXi
; ΔZ ,ΔXi

) (i = 1, 2) be bottom tetrads such that both give the same

pseudo-median triplet (Z,EZ ; ΔZ). Then the median part of each tetrad is same.

(3) Let (X,EX ; ΔZ ,ΔX) be a bottom tetrad, (Z,EZ ; ΔZ) be the associated pseudo-

median triplet and (Z ′, EZ′ ; ΔZ′) be another pseudo-median triplet. If both

(Z,EZ ; ΔZ) and (Z ′, EZ′ ; ΔZ′) give same 3-basic pair, then the two triplets are

isomorphic to each other. In particular, (Z ′, EZ′ ; ΔZ′) is not a median triplet.

Proof. (1) Let LM be the fundamental divisor of a 3-basic pair (M,EM ). IfKM+

LM is big, then the corresponding 3-fundamental triplet is unique up to isomorphism. If

KM +LM is non-big, then the compositions M → Zi → P1 are same. Thus the assertion

follows from the conditions (F6) and (F7).
(2), (3) Let LZ be the fundamental divisor of a pseudo-median triplet (Z,EZ ,ΔZ).

If 2KZ+LZ is big, then the corresponding bottom tetrad is unique up to isomorphism. If

2KZ+LZ is non-big and nontrivial, then the compositions Z → Xi → P1 are same. Thus

the assertion follows from the conditions (B6), (B7) and (B8). From now on, assume that

2KZ + LZ is trivial, that is, EZ ∼ −KX . We can assume that X = P2. In this case,

the weighted dual graphs of EZ are different if the median part of the type of bottom

tetrads are different by Table 2. Therefore the assertion follows. �

We can give the weighted dual graphs of all of the 3-basic pairs as an immediate

consequence of Theorems 6.1, 7.1, 8.1 and 9.1.

Proposition 10.3. (1) Let (Z,EZ ; ΔZ) be a median triplet and (M,EM ) be the

associated 3-basic pair. Then the symbol of the weighted dual graph of EM is char-

acterized by the type of the median triplet and is listed in Table 3.

(2) Let (X,EX ; ΔZ ,ΔX) be a bottom tetrad and (M,EM ) be the associated 3-basic pair.

Then the symbol (see Table 1) of the weighted dual graph of EM is characterized

by the type of the bottom tetrad and is listed in Tables 4, 5 and 6.
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Table 2. The weighted dual graphs of EZ for the bottom tetrads (X = P2,
EX ; ΔZ ,ΔX) with EX ∼ −KX .

median
Graph

median
Graphpart of the type part of the type

[3]NA 

(1)

(nodal)

[3]NB 1©
(1)

1©
(1)

[3]CA 

(1)

(cuspidal)

[3]CB 1©
(1)

2 1©
(1)

[3]AA
1©
(1)

1©
(1)

1©
(1)

1©
(1)

[3]BB
1©
(1)

1©
(1)

		




1©
(1)

[3]KA

1©
(1)

1©
(2)

2©
(1)

1©
(1)

[3]KB〈b〉
2©
(1)

1©
(2)

2©
(2)

2©
(2)

2©
(1)

2©
(1)(b + 2 vertices)

[3]KC〈b〉
1©
(1)

1©
(2)

2©
(2)

2©
(2)

2©
(1)

2©
(1)(b + 2 vertices)

[3]2A〈b〉
2©
(1)

1©
(2)

2©
(2)

2©
(2)

1©
(2)

2©
(1)

(b + 4 vertices)

[3]2B1〈b〉
2©
(1)

1©
(2)

2©
(2)

2©
(2)

1©
(2)

1©
(1)

(b + 3 vertices)

[3]2B2〈1〉 1©
(1)

1©
(2)

1©
(2)

1©
(1)

[3]2B2〈2〉 1©
(1)

1©
(2)

2©
(2)

1©
(2)

1©
(1)

[3]2C1〈b〉
2©
(1)

1©
(2)

2©
(2)

2©
(2)

0©
(2)

(b + 3 vertices)

[3]2C2〈1〉 1©
(1)

1©
(2)

0©
(2)

[3]2C2〈2〉 1©
(1)

1©
(2)

2©
(2)

0©
(2)

[3]2C3〈b〉
0©
(2)

2©
(2)

2©
(2)

2©
(1)

2©
(1)(b + 1 vertices)

[3]2D 2©
(1)

1©
(2)

1©
(2)

2©
(1)

[3]2E 2©
(1)

1©
(2)

2©
(1)

[3]2F1 1©
(1)

0©
(2)

1©
(1)

[3]2F2 2©
(1)

0©
(2)

1©
(1)

[3]2G1 1�
(1)

−1�
(2)

[3]2G2 2�
(1)

−1�
(2)

[3]3A
1©
(1)

1©
(1)

1©
(1)

1©
(1)

		




1©
(1)

[3]3B
1©
(1)

1©
(1)

1©
(1)

1©
(1)

1©
(1)

1©
(1)
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Table 3. The symbol of the weighted dual graph of EM for median

triplets.

Type Symbol Type Symbol

[4]0 A1(2) [4]2(c,d) As(c,d)+2(2, 2)

[5]K D4(2) + A1(1) [5]A A3(1, 1) + A1(1)

[5]3(c,d) As(c,d)+4(1, 1) + A1(1) [5]4 D4(1) + 3A1(1)

[5]5 5A1(1) [0;3,3]D A3(1, 1) + 2A1(1)

[0;3,3]22(c,d) As(c,d)+4(1, 1) + 2A1(1) [0;3,3]23 D4(1) + 4A1(1)

[0;3,3]33 6A1(1) [1;3,4]0 A2(1, 2) + A1(1)

[1;3,4]1(c,d) As(c,d)+3(1, 2) + A1(1) [1;3,4]2 A3(1, 1) + 3A1(1)

[1;4,4] A1(2) [1;4,5]K(c) Dc+1(2)

[1;4,5]A A3(1, 1) [2;3,5]1 A2(1, 2) + 2A1(1)

[2;3,6]0 A2(1, 2) [2;3,6]1(c,d) As(c,d)+3(1, 2)

[3;3,6] A1(1) + A1(2) [3;4,9]A A4(1, 1)

[3;4,9]B 4A1(1) [3;4,9]C(c,d) As(c,d)+5(1, 1)

[3;4,9]D 2D4(1) [3;4,9]E D5(1) + 2A1(1)

[3;4,9]F D4(1) + 2A1(1) [4;4,10]0 A2(2, 2)

[4;4,10]1(c,d) As(c,d)+3(2, 2) [4;4,10]2 2A3(1, 1)

[5;4,11]1 2A2(1, 2) [6;4,12]0 2A1(2)

Table 4. The symbol of the weighted dual graph of EM for bottom

tetrads with big 2KX + LX .

Type Symbol Type Symbol

[1]0 A1(1) [2]0 A1(1)

[2]1A D4(1) [2]1B D4(1) + A1(1)

[2]1C D5(1) [2]1D D5(1) + A1(1)

[2]1E(c,d) As(c,d)+4(1, 1) [2]1F A4(1, 1) + A1(1)

[2]1G A3(1, 1) + 2A1(1) [2]1H A3(1, 1) + A1(1)

[2]1I A3(1, 1) [2]1J(c,d) As(c,d)+3(1, 2)

[2]1K D4(2) [2]1L A2(1, 2)

[2]1M A2(1, 2) + A1(1) [2]1N A1(2)

[2]2A 3A1(1) [2]2B 2A1(1)

[0;1,0] A1(1) [0;1,1]0 A1(1)

[0;1,1]1〈0〉 2A1(1) [0;1,1]1〈1〉 3A1(1)

[1;1,0] A1(1) [1;1,1]0 A1(1)

[1;1,1]1〈0〉 2A1(1) [1;1,1]1〈1〉 3A1(1)

[2;1,0] A1(1) [2;1,1] 2A1(1)

[2;1,2]0 A1(1) [2;1,2]1A D4(1)

[2;1,2]1B D4(1) + A1(1) [2;1,2]1C D5(1)

[2;1,2]1D(c,d) As(c,d)+4(1, 1) [2;1,2]1E A3(1, 1)

[2;1,2]1F A3(1, 1) + A1(1) [2;1,2]1G A2(1, 2)

[3;1,0]0 A1(1)
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Table 5. The symbol of the weighted dual graph of EM for bottom

tetrads with non-big, non-trivial 2KX + LX .

Type Symbol Type Symbol

[0;2,0] A1(2) [1;2,0] A1(2)

[1;2,1]1A A2(1, 2) [1;2,1]1B A2(1, 2) + A1(1)

[1;2,2]U A1(1) [1;2,2]0A A2(1, 2)

[1;2,2]0B A2(1, 2) + A1(1) [1;2,2]0C A1(2)

[1;2,2]1A D4(2) [1;2,2]1B D5(2)

[1;2,2]1C A4(1, 2) [1;2,2]1D(c,d) As(c,d)+3(1, 2)

[1;2,2]1E(c,d) As(c,d)+3(1, 2) + A1(1) [1;2,2]1F (c,d) As(c,d)+2(2, 2)

[1;2,2]2A A3(1, 1) [1;2,2]2B A3(1, 1) + A1(1)

[1;2,2]2C A3(1, 1) + 2A1(1) [2;2,0] A1(2)

[2;2,1]1A A2(1, 2) [2;2,1]1B A2(1, 2) + A1(1)

[2;2,2]1A D4(2) [2;2,2]1B D5(2)

[2;2,2]1C A4(1, 2) [2;2,2]1D(c,d) As(c,d)+3(1, 2)

[2;2,2]1E(c,d) As(c,d)+3(1, 2) + A1(1) [2;2,2]1F (c,d) As(c,d)+2(2, 2)

[2;2,2]2A A3(1, 1) [2;2,2]2B A3(1, 1) + A1(1)

[2;2,2]2C A3(1, 1) + 2A1(1) [2;2,3]V 2A1(1)

[2;2,3]H〈0〉 3A1(1) [2;2,3]H〈1〉 4A1(1)

[2;2,3]2A1 D5(1) [2;2,3]2A2 D5(1) + A1(1)

[2;2,3]2B1 D6(1) [2;2,3]2B2 D6(1) + A1(1)

[2;2,3]2C1 A5(1, 1) [2;2,3]2C2 A5(1, 1) + A1(1)

[2;2,3]2D1(c,d) As(c,d)+4(1, 1) [2;2,3]2D2 As(c,d)+4(1, 1) + A1(1)

[2;2,3]2E1(c,d) As(c,d)+4(1, 1) + A1(1) [2;2,3]2E2 A4(1, 1) + 2A1(1)

[2;2,3]2F1(c,d) As(c,d)+3(1, 2) [2;2,3]2F2 A3(1, 2) + A1(1)

[2;2,3]3A D4(1) [2;2,3]3B D4(1) + A1(1)

[3;2,0] A1(2) [3;2,1]1A A2(1, 2)

[3;2,1]1B A2(1, 2) + A1(1) [3;2,2]1A D4(2)

[3;2,2]1B D5(2) [3;2,2]1C A4(1, 2)

[3;2,2]1D(c,d) As(c,d)+3(1, 2) [3;2,2]1E(c,d) As(c,d)+3(1, 2) + A1(1)

[3;2,2]1F (c,d) As(c,d)+2(2, 2) [3;2,2]2A A3(1, 1)

[3;2,2]2B A3(1, 1) + A1(1) [3;2,3]0 2A1(1)

[3;2,3]2A D5(1) [3;2,3]2B D6(1)

[3;2,3]2C A5(1, 1) [3;2,3]2D A4(1, 1)

[3;2,3]2E A4(1, 1) + A1(1) [3;2,3]2F A3(1, 2)

[3;2,3]3 D4(1) [4;2,0] A1(2)

[4;2,1]1A A2(1, 2) [4;2,1]1B A2(1, 2) + A1(1)

[4;2,2]1A D4(2) [4;2,2]1B D5(2)

[4;2,2]1C A4(1, 2) [4;2,2]1D A3(1, 2)

[4;2,2]1E A3(1, 2) + A1(1) [4;2,2]1F A2(2, 2)

[4;2,2]2 A3(1, 1) [5;2,0] A1(2)

[5;2,1]1 A2(1, 2) [6;2,0] A1(2)
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Table 6. The symbol of the weighted dual graph of EM for bottom

tetrads with 2KX + LX ∼ 0.

Type Symbol Type Symbol

[3]NA A1(1) [3]NB 2A1(1)

[3]CA A1(1) [3]CB 2A1(1)

[3]AA 4A1(1) [3]AB 3A1(1)

[3]KA D4(1) + 2A1(1) [3]KB〈b〉 Db+2(1)

[3]KC〈b〉 Db+2(1) + A1(1) [3]2A〈b〉 Ab+4(1, 1)

[3]2B1〈1〉(c,d) As(c,d)+4(1, 1) + A1(1) [3]2B1〈b〉 Ab+3(1) + A1(1)

[3]2B2〈1〉(c,d) As(c,d)+4(1, 1) + 2A1(1) [3]2B2〈2〉 A5(1, 1) + 2A1(1)

[3]2C1〈1〉(c,d) As(c,d)+3(1, 2) [3]2C1〈b〉 Ab+2(1, 2)

[3]2C2〈1〉(c,d) As(c,d)+3(1, 2) + A1(1) [3]2C2〈2〉 A4(1, 2) + A1(1)

[3]2C3〈b〉 Db+1(2) [3]2D(c,d) As(c,d)+4(1, 1)

[3]2E A3(1, 1) [3]2F1 A3(1, 1) + 2A1(1)

[3]2F2 A3(1, 1) + A1(1) [3]2G1 A2(1, 2) + A1(1)

[3]2G2 A2(1, 2) [3]3A 5A1(1)

[3]3B 6A1(1) [0;2,2]0 A1(2)

[0;2,2]1(c,d) As(c,d)+2(2, 2) [2;2,4]0 A1(2)

[2;2,4]1 A3(2, 2)

Finally, we consider the anti-canonical volumes (−KS)
2 of log del Pezzo surfaces S

of index three.

Proposition 10.4. Let S be a log del Pezzo surface of index three and (M,EM )

be the 3-basic pair corresponding to S (see Proposition 3.4).

(1) Assume that a median triplet (Z,EZ ; ΔZ) satisfies that the associated 3-basic pair

is isomorphic to (M,EM ). Then the value 3 · (−KS)
2 is characterized by the type

of the median triplet and is listed in Table 7.

(2) Assume that a bottom tetrad (X,EX ; ΔZ ,ΔX) satisfies that the associated 3-basic

pair is isomorphic to (M,EM ). Then the value 3 · (−KS)
2 is characterized by the

type of the bottom tetrad and is listed in Table 7.

Proof. Let LM be the fundamental divisor of (M,EM ). Then we have 3 ·
(−KS)

2 = (1/3) · (−3KM − EM · LM ) = (−KM · LM ).

(1) Let LZ be the fundamental divisor of (Z,EZ ; ΔZ). Then (−KM ·LM ) = (−KZ ·
LZ)− degΔZ .

(2) Let LX be the fundamental divisor of (X,EX ; ΔZ ,ΔX). Then (−KM · LM ) =

(−KX · LX)− 2 degΔX − degΔZ .

Thus the assertion immediately follows from Theorems 6.1, 7.1, 8.1 and 9.1. �

As a consequence, we have the following.

Corollary 10.5. The set
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{3 · (−KS)
2 | S : log del Pezzo surface of index three}

is equal to the set

{1, 2, 3, 4, . . . , 23, 24, 25, 26, 29, 32}.

Table 7. The value 3 · (−KS)
2 for the associated median triplet or for

the bottom tetrad.

3(−KS)
2 Type

1
[3]NA, [3]CA, [1;4,5]K(c), [1;4,5]A, [3;4,9]A, [3;4,9]B ,

[3;4,9]C(c,d), [3;4,9]D, [3;4,9]E , [3;4,9]F

2
[3]NB , [3]CB , [3]KB〈b〉, [5]K , [5]A, [5]3(c,d), [5]4, [5]5,

[1;4,4], [4;4,10]0, [4;4,10]1(c,d), [4;4,10]2

3
[3]AB , [3]KC〈b〉, [0;3,3]D, [0;3,3]22(c,d), [0;3,3]23,

[0;3,3]33, [2;3,6]0, [2;3,6]1(c,d), [5;4,11]1

4
[3]AA, [3]KA, [3]2A〈b〉, [3]2C3〈b〉, [3]2D(c,d), [3]2E ,

[1;2,2]U , [1;3,4]0, [1;3,4]1(c,d), [1;3,4]2, [6;4,12]0

5
[3]2B1〈1〉(c,d), [3]2B1〈b〉, [3]2F2, [3]3A, [4]0, [4]2(c,d),

[2;2,3]V , [2;2,3]2A1, [2;2,3]2B1, [2;2,3]3A, [2;3,5]1
[3]2B2〈1〉(c,d), [3]2B2〈2〉, [3]2C1〈1〉(c,d),

6 [3]2C1〈b〉, [3]2F1, [3]2G2, [3]3B , [2;2,3]H〈0〉,
[2;2,3]2A2, [2;2,3]2B2, [2;2,3]3B , [3;3,6]

7
[2]0, [3]2C2〈1〉(c,d), [3]2C2〈2〉, [3]2G1, [1;2,2]1A, [1;2,2]1B ,

[1;2,2]2A, [2;2,3]H〈1〉, [2;2,3]2C1, [2;2,3]2D1(c,d)

[2]1A, [2]1C , [2]2B , [0;2,2]0, [0;2,2]1(c,d), [1;2,2]2B ,

8 [2;2,3]2C2, [2;2,3]2D2, [2;2,3]2E1(c,d), [2;2,4]0,

[2;2,4]1, [3;2,3]0, [3;2,3]2A, [3;2,3]2B , [3;2,3]3

9
[2]1B , [2]1D, [2]2A, [1;2,2]0A, [1;2,2]1C ,

[1;2,2]1D(c,d), [1;2,2]2C , [2;2,3]2E2, [2;2,3]2F1(c,d)

[2]1E(c,d), [2]1I , [2]1K , [0;1,1]0, [1;2,2]0B ,

10 [1;2,2]1E(c,d), [2;1,2]0, [2;2,2]1A, [2;2,2]1B ,

[2;2,2]2A, [2;2,3]2F2, [3;2,3]2C , [3;2,3]2D

11
[2]1F , [2]1H , [0;1,1]1〈0〉, [1;2,2]0C , [1;2,2]1F (c,d),

[2;1,2]1A, [2;1,2]1C , [2;2,2]2B , [3;2,3]2E

12
[2]1G, [2]1J(c,d), [2]1L, [0;1,1]1〈1〉, [1;2,1]1A, [2;1,2]1B ,

[2;2,2]1C , [2;2,2]1D(c,d), [2;2,2]2C , [3;2,3]2F

13
[2]1M , [1;1,1]0, [1;2,1]1B , [2;1,2]1D(c,d), [2;1,2]1E ,

[2;2,2]1E(c,d), [3;2,2]1A, [3;2,2]1B , [3;2,2]2A

14
[2]1N , [0;2,0], [1;1,1]1〈0〉, [2;1,2]1F ,

[2;2,2]1F (c,d), [3;2,2]2B
15 [1;1,1]1〈1〉, [2;1,2]1G, [2;2,1]1A, [3;2,2]1C , [3;2,2]1D(c,d)

16
[1]0, [0;1,0], [2;2,1]1B , [3;2,2]1E(c,d),

[4;2,2]1A, [4;2,2]1B , [4;2,2]2
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17 [1;2,0], [2;1,1], [3;2,2]1F (c,d)

18 [3;2,1]1A, [4;2,2]1C , [4;2,2]1D
19 [1;1,0], [3;2,1]1B , [4;2,2]1E
20 [2;2,0], [4;2,2]1F
21 [4;2,1]1A
22 [2;1,0], [4;2,1]1B
23 [3;2,0]

24 [5;2,1]1
25 [3;1,0]0
26 [4;2,0]

29 [5;2,0]

32 [6;2,0]
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(eds. M. Demazure, H. Pinkham and B. Teissier), Lecture Notes in Math., 777 (1980),

Springer, Berlin, 35–68.

[Fuj14a] K. Fujita, Log del Pezzo surfaces with not small fractional indices, Math. Nachr., 289

(2016), 34–59.

[Fuj14b] K. Fujita, Log del Pezzo surfaces with large volumes, Kyushu J. Math., 70 (2016), 131–147.

[HW81] F. Hidaka and K-i. Watanabe, Normal Gorenstein surfaces with ample anti-canonical divi-

sor, Tokyo J. Math., 4 (1981), 319–330.

[KM98] J. Kollár and S. Mori, Birational geometry of algebraic varieties, With the collaboration

of C. H. Clemens and A. Corti. Cambridge Tracts in Math., 134, Cambridge University

Press, Cambridge, 1998.

[Mor82] S. Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of Math.

(2), 116 (1982), 133–176.

[Nak07] N. Nakayama, Classification of log del Pezzo surfaces of index two, J. Math. Sci. Univ.

Tokyo, 14 (2007), 293–498.

[OT12] H. Ohashi and S. Taki, K3 surfaces and log del Pezzo surfaces of index three, Manuscripta

Math., 139 (2012), 443–471.

[TVAV11] D. Testa, A. Várilly-Alvarado and M. Velasco, Big rational surfaces, Math. Ann., 351

(2011), 95–107.

http://dx.doi.org/10.1007/BF01421952
http://dx.doi.org/10.1007/BF01421952
http://dx.doi.org/10.1002/mana.201400254
http://dx.doi.org/10.1002/mana.201400254
http://dx.doi.org/10.2206/kyushujm.70.131
http://dx.doi.org/10.3836/tjm/1270215157
http://dx.doi.org/10.2307/2007050
http://dx.doi.org/10.2307/2007050
http://dx.doi.org/10.1007/s00229-011-0524-z
http://dx.doi.org/10.1007/s00229-011-0524-z
http://dx.doi.org/10.1007/s00208-010-0590-7
http://dx.doi.org/10.1007/s00208-010-0590-7


Classification of log del Pezzo surfaces of index three 225

Kento Fujita

Research Institute for Mathematical Sciences

Kyoto University

Kyoto 606-8502 Japan

E-mail: fujita@kurims.kyoto-u.ac.jp

Kazunori Yasutake

E-mail: kazunori.yasutake@gmail.com


