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Abstract. A normal projective non-Gorenstein log-terminal surface S
is called a log del Pezzo surface of index three if the three-times of the anti-
canonical divisor —3Kg is an ample Cartier divisor. We classify all log del
Pezzo surfaces of index three. The technique for the classification is based on
the argument of Nakayama.

1. Introduction.

A normal projective surface S is called a log del Pezzo surface if S is log-terminal
and the anti-canonical divisor —Kg is ample (Q-Cartier divisor). Log del Pezzo surfaces
constitute an interesting class of rational surfaces and naturally appear in the minimal
model program (MMP, for short). An important invariant of a log del Pezzo surface S is
the index, which is defined to be the minimum of the positive integer a such that —aKg
is Cartier. Log del Pezzo surfaces with small index have been studied by many authors.
The classification of log del Pezzo surfaces with index one (that is, with at most rational
double points) is well-known (see [Bre80], [Dem80], [HW81]).

The next case, the classification of log del Pezzo surfaces of index two, was also
studied by several authors. Alexeev and Nikulin specify all the deformation classes of
log del Pezzo surfaces of index two over the complex number field C by using K3 surface
theory [ANS&8], [AN89], [ANO06]. Recently, Ohashi and Taki proceed this method and
classify the deformation classes of log del Pezzo surfaces of index three under the condition
—3Kg ~ 2C where C' is a smooth curve which does not intersect the singularities. On
the other hand, Nakayama introduces the geometric argument for the study of log del
Pezzo surfaces of index two which is completely different from that of Alexeev—Nikulin,
and he gave the complete list of isomorphism classes of log del Pezzo surfaces of index
two in any characteristic [Nak07]. Nakayama’s argument is useful in the study of log
del Pezzo surfaces not only the case index is two but also the case index is arbitrary. In
fact, by using Nakayama’s idea, the first author classified some classes of log del Pezzo
surfaces in [Fujl4a] that include the classes treated in the study of Ohashi and Taki.

In this paper, we extend a part of Nakayama’s argument to work in arbitrary index.
Moreover, we give the classification of log del Pezzo surfaces of index three by using
this method. Our strategy to understand log del Pezzo surfaces is as follows. (Detail
is given in Section 3. See also [Fujl4b].) Let S be a log del Pezzo surface of index
a > 1. Take the minimal resolution a: M — S and set Ep := —aKjy/s. Then we
know that M is nonsingular rational and Ej; is nonzero effective. We can recover S
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from the pair (M, Ejs) by considering the morphism defined by a multiple of the divisor
Ly = —aKy — E)py. Hence we can reduce the study of S to the study of such (M, Eyp).
We remark that Ky + Ly is nef and (K + Las - L) > 0 holds (see Proposition 3.4).
We call such a pair (M, Ejs) an a-basic pair (see Definition 3.3).

( S : log del Pezzo surface of index a )

Take the minimal resolution M — S
Ey = —aKyys

A
( (M, En) @ a-basic pair >

Figure 1. Reduction to a-basic pairs.

From now on, let (M, Eps) be an a-basic pair. Since M is rational, we can get
a birational morphism from M to P? or a Hirzebruch surface F,, having a (—n)-curve.
However, it is hard to analyze the morphism in general. To evade this problem, we “de-
compose” the step contracting (—1)-curves into ((¢ + 1)K + L)-minimal model programs
(((i + 1)K + L)-MMPs, for short) for 1 < i < a — 1. More precisely, we give a sequence

M=M= My oo 2 M,

for some integer b such that 1 < b < a—1. The construction of each ; is done inductively
as follows. We assume that Ky, , + L;—1 is nef and F,_; is nonzero effective, where
L;—y (vesp. E;_1) is the strict transform of Ly; (resp. Eps) in M;_y. The morphism
m;: M;_1 — M; is obtained by the composition of all the morphisms in the step of an
((t + 1)Kpr,_, + Li—1)-MMP. More precisely, in each step, we contract a (—1)-curve
which intersects (the strict transform of) (¢ + 1)K, + Li—1 negatively. We continue
this process until we get a Mori fiber space or a minimal model with respect to ((i +
DK, + Li—1)-MMP. If this MMP induces a minimal model (with respect to the
((i + 1)Kpnr,_, + Li—1)-MMP), then we proceed to construct m;11: M; — M;1q. If
this MMP induces a Mori fiber space, then set b := i and stop the process. We can
show that FE; is also nonzero effective for each 7. We note that 1 < b < a — 1 since
aKyr, + Li = —E; cannot be nef for each 1 < i < b. The surface M, is either P? or F,,.
From the construction, we have iKy;, , +L;—1 = 7w/ (iKpy, + L;) for each 4. In particular,
—Kyy,_, is mi-nef. Let A, C M; be a closed zero-dimensional subscheme such that the
corresponding ideal sheaf 7x, is defined as Za, := ()« On,_, (=K, /ar,). The scheme
A; has a nice property (called the (v1)-condition in Definition 2.1). For example, the
morphism 7r; is recovered from A; (see Definition 2.4 and Proposition 2.5). The multiplet
(My, Ep; A1, ..., Ay) constructed as above is called an a-fundamental multiplet of length
b. The classification of a-basic pairs is reduced to the classification of a-fundamental
multiplets. This is our strategy. In the case where a = 2, this is nothing but Nakayama’s
argument. (In Section 3, we only consider the case a = 3. However, the program we
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mentioned works for arbitrary a. See [Fujl4b] for details.) We summarize our strategy
via flowcharts in Figures 1 and 2.

( (M, En) : f—basic pair )

Moy := M, Ey := Enm
Lo = —aKMO — Eo, 1:=1

Run ((Z + 1)K]\/1i71 =+ Lifl)-MMP;
T - Mi—l — Mz is the
output of the MMP, where
A; C M; : subscheme with
In, = (ﬂ-i)*OMi—l(_KAIi—l/Mi)
E; := (m)«Fi—1, Li := (mi)«Li—1

< (My, Ep; Aq, ..., Ap) : a-fundamental multiplet of length b )

Figure 2. Reduction to a-fundamental multiplets.

Our approach is useful from various viewpoints. For example, it is easy to handle a-
fundamental multiplets (My, Ep; A1, ..., Ap) since we can analyze each A; deeply and we
can study the multiplets by somewhat numerical and combinatorial ways. Furthermore,
the choice of the process m;: M;_1 — M; is less ambiguous. In fact, if 1 <7 < b—1, then
m; is uniquely determined since 1Ky, , + L;—1 is nef and big.

Next we consider the case where a = 3, which is the main subject treated in this
paper. In this case we treat the following four objects:

o A log del Pezzo surface S of index three.

e A 3-basic pair (M, Ejps) consisting of a kind of nonsingular projective rational
surface M and an effective divisor ;.

o A median triplet (Z,Ez; Az), which is a kind of 3-fundamental multiplet of length
one, consisting of a rational surface Z isomorphic to P2 or IF,,, of an effective divisor
Ez, and of a zero-dimensional subscheme Az C Z with the (v1)-condition.



166 K. Fuiita and K. YASUTAKE

e A bottom tetrad (X, Ex;Az,Ax), which is a kind of 3-fundamental multiplet of
length two, consisting of a rational surface X isomorphic to P? or F,,, of an effective
divisor Ex, of a zero-dimensional subscheme Ay C X, and of a zero-dimensional
subscheme Az C Z with the (v1)-condition, where Z — X is the elimination of
Ax (see Definition 2.4).

The classes of median triplets and bottom tetrads are introduced in order to get the list
of log del Pezzo surfaces of index three without duplication. In Sections 3 and 5, we show
that for any 3-fundamental multiplet of length one (resp. of length two) we have a median
triplet (resp. a bottom tetrad) such that the associated 3-basic pairs are isomorphic. By
virtue of these modifications we can obtain the list of log del Pezzo surfaces of index
three without overlap.

Now we summarize the contents of this paper. In Section 2, we review some basic
properties of zero-dimensional schemes which satisfies the (v1)-condition and we give the
list of (weighted) dual graphs associated with log-terminal singularities of index three. In
Section 3, we introduce the notions of 3-basic pairs, 3-(pseudo-)fundamental multiplets,
(pseudo-)median triplets and bottom tetrads associated with log del Pezzo surfaces of
index three. Moreover, we discuss relations among them. Precisely, we show that the
structure of log del Pezzo surfaces of index three is specified from that of 3-fundamental
multiplets of length one and of length two through the 3-basic pairs. Furthermore, we
see that the classification of 3-fundamental multiplets of length one (resp. 3-fundamental
multiplets of length two) can be reduced to that of median triplets (resp. bottom tetrads).
In Section 4, we discuss some local properties of 3-(pseudo-)fundamental multiplets which
are used in later sections. More precisely, we determine the possibility of the structure
of zero-dimensional subschemes Ay and Ax with (v1)-condition over a fixed point on
some effective divisor. Thanks to the arguments in this section, we can pare down the
candidates of zero-dimensional schemes of 3-fundamental multiplets. Section 5 is the
most technical part in this paper. In this section, we treat 3-fundamental multiplets of
length two with trivial 2K x + L x which give the same log del Pezzo surface of index three.
Thanks to the arguments in this section, the conditions of Definition 3.11 make sense. In
Section 6, we classify median triplets. There are exactly 77 types of median triplets (see
Theorem 6.1). From Section 7 to Section 9, we give the classification of bottom tetrads
(X,Ex;Az,Ax). In Section 7, we classify bottom tetrads with big 2K x + Lx. There
are exactly 45 types of such tetrads (see Theorem 7.1). In Section 8, we classify bottom
tetrads with non-big and nontrivial 2Kx + Lx. There are exactly 115 types of such
tetrads (see Theorem 8.1). In Section 9, we classify bottom tetrads such that 2K x + Ly
is trivial. There are exactly 63 types of such tetrads (see Theorem 9.1). In Section 10,
we see some structure properties of log del Pezzo surfaces of index three. In Proposition
10.2, we show that the lists in Sections 6-9 have no redundancy. In Proposition 10.3,
we tabulate the list of non-Gorenstein points for log del Pezzo surfaces of index three.
In Proposition 10.4, we tabulate the list of the anti-canonical volumes for log del Pezzo
surfaces of index three.
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NOTATION AND TERMINOLOGY. We work in the category of algebraic (separated
and of finite type) schemes over a fixed algebraically closed field k of arbitrary charac-
teristic. A wariety means a reduced and irreducible algebraic scheme. A surface means
a two-dimensional variety. For a proper variety X, let p(X) be the Picard number of X.

For a normal variety X, we say that D is a Q-divisor (resp. divisor or Z-divisor) if
D is a finite sum D = 3" a;D; where D; are prime divisors and a; € Q (resp. a; € Z). For
a Q-divisor D = 3" a;D;, the value a; is denoted by coeff p, D and set coeff D := {a;};.
A normal variety X is called log-terminal if the canonical divisor Kx is Q-Cartier and
the discrepancy discrep(X) of X is bigger than —1 (see [KM98, Section 2.3]). For a
proper birational morphism f: Y — X between normal varieties such that both Kx and
Ky are Q-Cartier, we set

Ky,x = > a(Eo, X)Eo,

EoCY f-exceptional

where a(Ey, X) is the discrepancy of Ey with respect to X (see [KM98, Section 2.3]).
(We note that if aKx and aKy are Cartier for a € Z~g, then aKy x is a Z-divisor.)

For a nonsingular surface S and a projective curve C' which is a closed subvariety of
S, the curve C'is called a (—n)-curve if C is a nonsingular rational curve and (C?) = —n.
For a birational map M --+ S between normal surfaces and a curve C' C S, the strict
transform of C on M is denoted by C'M .

For a zero-dimensional scheme A, let |A| be the support of A.

Let S be a nonsingular surface and let E = Y w;D; be an effective divisor on S
(w; > 0). The weighted dual graph of E is defined as follows. A vertex corresponding
to a component D;. Let v; be the vertex corresponding to D;. Assume that D; and D;
satisfy that |D; N D,| = {P,..., Py} such that the local intersection number of D, and
Dj at Py is s. For any 1 < h < m, v; and v; are joined by a line with the numbered
box if s, > 2. If 55, = 1, then v; and v; are joined by a line with no box. Moreover,
for each vertex v corresponding to D, we define the weight w of v as w := coeff p E and
denote it by v(,). In the dual graphs of divisors, a vertex corresponding to (—n)-curve
is expressed as (). On the other hand, an arbitrary irreducible curve is expressed by the
symbol @ when it is not necessarily a (—n)-curve.

Let F,, — P! be a Hirzebruch surface Pp: (O®O(n)) of degree n with the P!-fibration.
A section ¢ C F,, with 02 = —n is called a minimal section. If n > 0, then such o is
unique. A section oo, with 0 N oy = 0 is called a section at infinity. For a section at
infinity 0, we have oo, ~ o 4+ nl, where [ is a fiber of the fibration. For the projective
plane P?, we sometimes denote a line on P? by .

For two integers ¢ and d, we set s(c, d) := max{0, ¢+ d — 1}.
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2. Preliminaries.

2.1. Elimination of subschemes.
In this section, we recall the results in [Nak07]. Let X be a nonsingular surface and
A be a zero-dimensional subscheme of X. The ideal sheaf of A is denoted by Za.

DEFINITION 2.1. Let P be a point of A.

(1) Let vp(A) := max{v € Z-o|Za C m’%}, where mp is the maximal ideal sheaf in
Ox defining P. If vp(A) = 1 for any P € A, then we say that A satisfies the
(v1)-condition.

(2) The multiplicity multp A of A at P is given by the length of the Artinian local
ring Oa p.

(3) The degree deg A of A is given by 3 5., multp A.

DEFINITION 2.2. For an effective divisor D and a point P, we set multp D :=
max{v € Zso |Ox(—D) C m%}.

REMARK 2.3. Let7m: Y — X be the blowing up along P and let e be the exceptional
curve. Then multp D is equal to coeff, 7 D.

DEFINITION 2.4. Assume that A satisfies the (v1)-condition. Let V' — X be
the blowing up along A. The elimination of A is the birational projective morphism
Y: Z — X defined as the composition of the minimal resolution Z — V of V and
the morphism V' — X. For a divisor F on X and for a positive integer s, we set

Ajs *
EZ 221/) E—SKz/X.

ProposITION 2.5 ([Nak07, Proposition 2.9]). (1) We assume that the sub-
scheme A satisfies the (v1)-condition and let v: Z — X be the elimination of
A. Then the anti-canonical divisor —Kz is y-nef. More precisely, for any P € A
with multp A = k, the set-theoretic inverse image ~1(P) is the straight chain
Z?:l I'p; of nonsingular rational curves and the weighted dual graph of the divi-
sor Kz, x around over P is the following:

I'py I'po I'pr—1 Ipk
@ ® ® ®
(

(1) 2) (k —1) (k)

(2) Conversely, for a non-isomorphic proper birational morphism ¢: Z — X between
nonsingular surfaces such that —Ky is v-nef, the morphism 1 is the elimination
of A which satisfies the (v1)-condition defined by the ideal Ia := V. Oz(=Kz/x).

DEFINITION 2.6.  Under the assumption of Proposition 2.5 (1), we always denote
the exceptional curves of 1) over P by I'p1,...,I'p . The order is determined as Propo-
sition 2.5 (1). We set T'pg := 0.
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2.2. Curves in nonsingular surfaces.

LEMMA 2.7.  Letw: M — X be a birational morphism between nonsingular projec-
tive surfaces and let C' be a reduced and irreducible curve on X. Then (C?) — ((CM)?) =
(Knyx - CM) 4 2pa(C) — 2po (CM), where pa(e) is the arithmetic genus.

ProoOF. Follows from the genus formula. O

PROPOSITION 2.8 ([Fujl4a, Corollary 2.10]). Let X be a nonsingular complete
surface, A be a zero-dimensional subscheme of X which satisfies the (v1)-condition,
w: M — X be the elimination of A and Cy, Cy be distinct nonsingular curves on X. We
set k:=deg A and ky, :=deg(ANCy) for h =1, 2. Then (Cy-Cs) > ki + ko — k holds.

2.3. Dual exceptional graphs.

In this section, we see the classification result of the weighted dual graphs of the
exceptional divisors for non-Gorenstein log-terminal surface singularities of index three.
If k = C, Ohashi-Taki completed the classification in [OT12, Section 2]. We remark
that the following list is the same as the list in [OT12, Section 2].

PROPOSITION 2.9.  Let P € S be a non-Gorenstein log-terminal surface singularity
and let a: M — S be the minimal resolution of P € S. Assume that —3Kg is Cartier.
Then the weighted dual graph of the effective Z-divisor —3K /s is one of the list in
Table 1.

PrROOF. By [KM98, Chapter 4], all of the exceptional curves are nonsingular
rational curves and the weighted dual graph I' of —3K);,g is a tree and either a straight
chain or having exactly one fork. Assume that I' is a straight chain. Then I is of the
form:

E E, Ey_ L,

(w1) (wg) (wg_1) (we)

We note that ¢; > 2 and w; = 1 or 2. We only consider the case t > 4. (The case t <3
can be proven same way.) Since (3K /s - E;) = 3(Kyy - E;) = 3(c; — 2), we have

(6 —w2)/(3 —wi) if i=1,
C; = (6—wi_1—wi+1)/(3—wi) if QSiSt—l,
(6 — wi_1)/(3 — wy) it i=t.

Suppose that w; = 1 for some 2 <4 < ¢t — 1. We may assume that w; = 2 for any

2<j<i—1ifi>3. Ifi> 3, then ¢; = (6 —w;—1 — w;4+1)/2 < 2, a contradiction. If

1 = 2, then we have co = 2. However, we see that ¢; = 5/2, a contradiction. Thus w; = 2

for any 2 <4 <t — 1. Hence the form of T" is one of A;(1,1), A;(1,2) or A¢(2,2).
Assume that I" has one fork. Then I'" is of the form:
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(gu)

By

(f1)

Cy

(91)

Table 1. The list of the weighted dual graphs of —3Kj;/s.
’ Symbol ‘ Graph
Ai(1)
(1)
Ai(2)
(2)
A2(1a2) (:}““<)
(1) (2)
A2(21 2)
(2) (2)
As(1,1) @ O, ©)
(1) (2) (1)
A3(1,2) O ©, @
(1) (2) (2)
A3(2,2) ® @
(2) (2) (2)
ALY —0—0— 0 —0—0
(1) (2) (2) (2) (2) (1)
AL2) | @—O@——0B—--
(1) (2) (2) (2) (2) (2)
Ai(2,2)
(t > 4) (2) (2) (2) (2) (2) (2)
©,
D4(1) (1) (2) (1)
@
(1)
©
D4(2) (2) (2) (1)
®
(1)
D (1) 1) (2) (2) o (2) (1)
t
(1)
® O—-
Dt (2) (2) (2) (2) (2) (1)
(t>5) 1)

(The dual graph of A,,(I,m) (resp. D,,(m)) is of type A,, (resp. D,,).)
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Using the same argument, we have d = (6 —es — fi — g4)/(3 — h). Thus h = 2 and we
can assume that e; = f; = 1. Then we must have s=t=1and g; =2 forany 2 <i <
by the same argument. Therefore the assertion holds. O

3. Log del Pezzo surfaces and related objects.

In this section, we define the notion of log del Pezzo surfaces, the notion of 3-basic
pairs, the notion of 3-fundamental triplets, and the notion of bottom tetrads, and see
the correspondence between them.

3.1. Log del Pezzo surfaces.

DEFINITION 3.1. (1) A normal projective surface S is called a log del Pezzo sur-
face if S is log-terminal and the anti-canonical divisor —Kg is an ample Q-Cartier
divisor.

(2) Fix a > 2. A log del Pezzo surface is called a log del Pezzo surface of index a if
—aKg is Cartier and —a’Kg is not Cartier for any positive integer a’ < a.

REMARK 3.2.  Any log del Pezzo surface is a rational surface by [Nak07, Proposi-
tion 3.6]. In particular, the Picard group Pic(S) of S is a finitely generated and torsion-
free Abelian group.

3.2. a-basic pairs.
We introduce the following notion which is a kind of modification of the notion of
basic pairs in the sense of [Nak07, Section 3].

DEFINITION 3.3. Fix a > 2. A pair (M, E)y) is called an a-basic pair if the
following conditions are satisfied:

(C1) M is a nonsingular projective rational surface.

(C2) Ejs is a nonzero effective divisor on M such that coeff Eyy € {1,...,a — 1} and
Supp E)s is simple normal crossing.

(C3) A Cartier divisor Ly; ~ —aK ) — Epy (called the fundamental divisor of (M, Epr))
satisfies that Kp; + Lyps is nef and (Kps + Las - Lag) > 0.

(C4) For any component Ey < Ejr, we have (Lys - Ep) = 0.

Now we see the correspondence between log del Pezzo surfaces of index a and a-basic
pairs. The proof is essentially the same as the proof in [Fujl4a, Proposition 3.7].

PROPOSITION 3.4. Fiza > 2.

(1) Let S be a non-Gorenstein log del Pezzo surface such that —aKg is Cartier. Let
a: M — S be the minimal resolution of S and let Eny := —aKys. Then (M, Ey)
is an a-basic pair and the divisor a*(—aKyg) is the fundamental divisor of (M, Eny).

(2) Let (M, Ey) be an a-basic pair and Ly; be the fundamental divisor of (M, Ey).
Then there exists a projective and birational morphism o: M — S such that S is
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a non-Gorenstein log del Pezzo surface with —aKg Cartier and Ly ~ a*(—aKg)
holds. Moreover, the morphism « is the minimal resolution of S.

In particular, there is a one-to-one correspondence between the set of isomorphism classes
of log del Pezzo surfaces of index three and the set of isomorphism classes of 3-basic pairs.

ProOF. The proof of (2) is essentially the same as the proof in [Fujl4a, Propo-
sition 3.7]. We only prove (1). The conditions (C1), (C2) and (C4) follow immediately.
We check the condition (C3). Assume that Kps + Ljs is not nef. If there exists a (—1)-
curve v on M such that (K + Las - y) < 0, then (Lps -v) = 0. However, this implies
that ~ is a-exceptional. This leads to a contradiction since « is the minimal resolution.
Hence M ~ P? or F,, by [Mor82, Theorem 2.1] and the fact M is a nonsingular rational
surface. Since « is not an isomorphism, M ~ F, and S is isomorphic to the weighted
projective plane P(1,1,n) for some n > 2. This implies that Ey; = (a(n — 2)/n)o and
Ky + Ly ~ (=24 a(n+2)/n)o + (a — 1)(n + 2)I. However, this leads to a contra-
diction since we assume that Kp; + Ljs is not nef. Thus Kjp; + Lj; must be nef. If
(Kp + Las - Lag) = 0, then — Ky is numerically equivalent to Ly, by the Hodge index
theorem. In particular, —K); is nef and big. This implies that S has at most du Val
singularities. This leads to a contradiction. Thus (Kps + Lps - Las) > 0. O

As a corollary of Proposition 3.4, we have the following result. The proof is the same
as the proof in [Fujl4a, Lemma 3.8]. We omit the proof.

COROLLARY 3.5.  Let (M, Eyr) be a 3-basic pair and Ly be the fundamental divi-
sor. Then the following hold.

(1) Any connected component of the weighted dual graph of Eyf is of the form in Table
1.

(2) If a curve C on M satisfies that C N Ep # 0 and (Lpys - C) = 0, then C < Epy
holds.

(3) The anti-canonical divisor —Kys is big and non-nef. In particular, M is a Mori
dream space (for the definition, see [TVAV11]).

3.3. Median triplets.

In order to classify 3-basic pairs, we define the notion of median triplets which is
a kind of modification of the notion of fundamental triplets in the sense of Nakayama
[Nak07]. The correspondence between 3-basic pairs and (pseudo-)median triplets will
be given in Theorem 3.12.

DEFINITION 3.6. A triplet (Z, Ez; Ay) is called a 3-pseudo-fundamental multiplet
of length one if the following conditions are satisfied:

(F1) Z is a nonsingular projective surface.
(F2) Ay is a zero-dimensional subscheme of Z which satisfies the (v1)-condition.

(F3) Ez is a nonzero effective divisor on Z.
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(F4) A divisor Lz ~ —3Kz — Ez (called the fundamental divisor of (Z, E, Az)) satisfies
that (2Kz + Lz -7) > 0 for any (—1)-curve v on Z.

F5) Let ¢: M — Z be the elimination of Ay and let Fy; := (Ey 822 Then the pair
M
(M, Eyy) is a 3-basic pair (called the associated 3-basic pair).

Moreover, if 2Kz 4+ Ly is not nef, then we call such triplet (Z, Ez; Az) a 3-fundamental
multiplet of length one.

LEMMA 3.7. Let (Z,Ez;Ayz) be a 3-pseudo-fundamental multiplet of length one,
Ly be the fundamental divisor of (Z, Ez; Az) and (M, Epr) be the associated 3-basic pair.

(1) The divisor Lys := (Lz)ff’ U is the fundamental divisor of the 3-basic pair (M, Eyr).
We have Lz is nef and big, Kz + Lz is nef and (Kz + Lz - Lz) > 0.

(2) If 2Kz + Ly is not nef, then Z ~P? or F,,. Moreover, (2Kz + Lz -1) < 0 holds.
(3) If 2Kz + Lz is nef, then Kz + Ly is big.

(4) We have (Lz - Ez) = 2deg Ay. Moreover, for any nonsingular component Ey <
Ez, we have (Lz - Ey) = deg(Az N Ep).

5) For any point Q € Az, 2 < multg Ez < 4 holds.
Q

PROOF. (1) We know that —3Kjy; — Ep = ¢*(—3KZ — Ez) — K]VI/Z ~ ¢*Ly —
Kyp/z, where ¢ is the elimination of Az. Since Ky + Ly = " (Kz+ Lz) and Ly =
¢* Ly — Kz, the assertions hold.

(2) Since (2K z+Lz-7) > 0 for any (—1)-curve, Z ~ P2 or F,,, and (2Kz+Lz-1) <0
holds by [Mor82, Theorem 2.1].

(3) Follows from the equality 2(Kz + Lz) = (2Kz+ Lz) + Lz.

(4) Since 0 = (LM . EM) = (LZ . Ez) + 2(K12\/I/Z)’ we have (LZ . Ez) = 2degAZ.
Similarly, for any nonsingular component Ey < Ez, we have 0 = (Lys - E}) = (Lz -
Eo) — (Kuyz - Ey").

(5) Follows from the equality coeffr,, , Ey = multg Ez — 2. O

DEFINITION 3.8.  Let (Z, Ez; Az) be a 3-pseudo-fundamental multiplet of length
one. Such (Z, Ez; Ay) is called a pseudo-median triplet if one of the following holds:

(A) Kz + Lz is big.

(B) Kz+ Ly is not big, Z ~ F,, (Kz + Ly is trivial with respect to F,, — P!), and the
following conditions are satisfied:

(F6) Az No =0 holds, where 0 C Z is a minimal section. In particular, if n = 0,
then AZ = (D

(F7) Assume that Ez contains a section D of F,, /P!, then 0 < Ez and coeff, Ez
coeffp E7 holds. Moreover, if coeff, E; = coeffp Ez, then n + (D?)
deg(Az N D) holds.

AVARRY,

If 2K + Lz is not nef in addition, then we call such a triplet (Z, Ez; Az) a median
triplet.
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3.4. Bottom tetrads.

In this section, we define the notion of bottom tetrads which is also a kind of mod-
ification of the notion of fundamental triplets in the sense of Nakayama [Nak07]. The
correspondence between (special) pseudo-median triplets and bottom tetrads will be
given in Theorems 3.12 and 5.4.

DEFINITION 3.9. A tetrad (X, Ex; Az, Ax) is called a 3-fundamental multiplet of
length two if the following conditions are satisfied:

(B1) X is a nonsingular projective surface.

(B2) Ax is a zero-dimensional subscheme of X which satisfies the (v1)-condition.
(B3) Ex is a nonzero effective divisor on X.
(B4)

B4) A divisor Lx ~ —3Kx — Ex (called the fundamental divisor of (X, Ex; Az, Ax))
satisfies that 2K x + Ly is nef and (3Kx + Lx -7) > 0 for any (—1)-curve v on X.

(B5) Let ¢: Z — X be the elimination of Ax and let Ez := (Ex)éx’l. Then the
triplet (Z, Ez; Az) is a 3-pseudo-fundamental multiplet of length one. (The triplet
is in fact a pseudo-median triplet (Lemma 3.10). We call the triplet the associated
pseudo-median triplet.)

LEMMA 3.10.  Let (X,Ex;Az,Ax) be a 3-fundamental multiplet of length two,
let Lx be the fundamental divisor, let ¢: Z — X be the elimination of Ax and let
o Ax, 1
Eyz = (Ex);>".

(1) X is isomorphic to either P2 or F,. Moreover, (Ex -1) > 0 holds.

(2) Ly = (LX)§X’2 is the fundamental divisor of (Z,Ez;Az), Ly is nef and big, and
Ky + Ly is big. In particular, the triplet (Z, Ez; Az) is a pseudo-median triplet.

(3) We have (Lx - Ex) = 2(deg Az 4+ deg Ax). Moreover, for any nonsingular com-
ponent By < Ex, we have (Lx - Ey) = deg(Az N EZ) + 2deg(Ax N Ey).

(4) For any point P € Ax, 1 <multp Ex < 3 holds.
(5) We have (Kx + Lx - Lx) > 2degAx.

PrOOF. (1) Since Ex is nonzero effective, the divisor 3K x + Lx is not nef. Then
the assertion follows from [Mor82, Theorem 2.1].

(2) Follows from Ly ~ —3Ky — (Ex)éx’ 1, 2Ky + Ly =¢*(2Kx + Lx) and Lemma
3.7, where v is the elimination of Ay.

(3) We have (Lx - Ex) = (Lz - Ez) — 2(K%/X). Similarly, we have (Lx - Eg) =
(Lz - Ef)+2(Kz/x - Ef). Thus the assertion holds by Lemma 3.7.

(4) Follows from the equality coeffr,, Ez = multp Ex — 1.

(5) Follows from (K7 + Lz -Lz) = (Kx + Lx - Lx)—2degAx. O

DEFINITION 3.11.  Let (X,Ex;Az,Ax) be a 3-fundamental multiplet of length
two and Lx be a fundamental divisor. Such (X, Ex; Az, Ax) is called a bottom tetrad
if one of the following holds:



(A)
(B)

(©)
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2K x + Lx is big.

2K x + Ly is non-big and nontrivial, X ~ F,, (2K x + Lx is trivial with respect to
F,, — P!) and the following conditions are satisfied:

(B6) Ax No =0 holds, where 0 C X is a minimal section. In particular, if n = 0,
then Ay = (.

(B7) Assume that ¢ £ Ex or n = 0, then any section D < Ex of F,, /P! satisfies
that (D?) > deg(Ax N D).

(B8) Assume that o < Ex and n > 1. Then any section D < Ex of F,, /P! satisfies
that n + (D?) > deg(Ax N D).

2K x + Lx is trivial. In this case, we require that either X ~ P2 or Ax = () and
X ~ P! x P!, Fy. Moreover, if X ~ P2, then the following conditions are satisfied:

(B9) Assume that Ex = C'+1, where C' is a nonsingular conic and [ is a line. Then
AxNCNI # (. If we further assume that |CNI| = {P} and deg(Ax \{P}) > 4,
then Az NI\ {P} # 0.

(B10) Assume that Ex = lj + lo + I3, where Iy, ls, I3 are distinct lines. Then

I1 Ny Nz = 0. Moreover, #lAX N ((11 N lg) U (ll N 13) U (12 N 13))| > 2.

(B11) Assume that Ex = 2ly + ls, where [y, o are distinct lines. Set P := 13 N ls.

Then the following conditions are satisfied:

(a) #|Ax Ny \ {P} < 1. Moreover, if {P;} = |Ax Nl \ {P}|, then
multp, Ax <2 and multp Ax = multp(Ax Nlis).

(b) If deg Ax =4, then deg(Ax Nli3) = 3.

(c) fdegAx >5and {P1} = |AxNily \{P}], then either multp, (AxNly) =2
or deg(Ax Nl;) =1 holds.

Now we see the correspondence between 3-basic pairs, pseudo-median triplets and

bottom tetrads. The relationship between pseudo-median triplets (Z, Ez; Ay) with

2K,

+ Ly trivial and bottom tetrads (X, Ex; Az, Ax) with 2Ky + Ly trivial will

be treaded in Section 5.

THEOREM 3.12. (1) Let (M, Ey) be a 3-basic pair and Ly be the fundamental
divisor. Then there exists a projective birational morphism ¢: M — Z onto a
nonsingular surface and a zero-dimensional subscheme Ay C Z satisfying the (v1)-
condition such that the morphism ¢ is the elimination of Ay, the triplet (Z, Ez; Ayz)
is a pseudo-median triplet and the associated 3-basic pair is equal to (M, Eyr),
where By = ¢.Ep. Moreover, the divisor ¢.Ly; is the fundamental divisor of
(Z, Ez; Az) .

Let (Z, Ez; Ay) be a pseudo-median triplet such that 2K 7 + Ly is nef and nontriv-
tal, where Ly is the fundamental divisor. Then there exists a projective birational
morphism: Z — X onto a nonsingular surface and a zero-dimensional subscheme
Ax C X satisfying the (v1)-condition such that the morphism 1 is the elimination
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of Ax, the tetrad (X, Ex; Az, Ax) is a bottom tetrad and the associated pseudo-
median triplet is equal to (Z, Ez; Ay), where Ex := . Ey. Moreover, the divisor
Uy Lyz is the fundamental divisor of (X, Ex; Az, Ax).

PrOOF. The idea of the proof is based on the technique in [Nak07, Proposition
4.5]. Tt is easy to get a 3-pseudo-fundamental multiplet of length one from a 3-basic
pair (resp. to get a 3-fundamental multiplet of length two from a pseudo-median triplet).
Indeed, if there exists a (—1)-curve y such that (2K +Las-y) < 0 (resp. BKz+Lz7y) <
0), then we contract the curve . We note that (Lys - v) = 1 since Ky + Ly is nef.
(resp. (Lz-v) = 2 since 2Kz + Ly is nef). By continuing this process, we get a 3-pseudo-
fundamental multiplet of length one (resp. 3-fundamental multiplet of length two).

From now on, we assume that Kp; + Las (resp. 2Kz + Lyz) is non-big (resp. non-big
and nontrivial). Then Z (resp. X) is isomorphic to F,,. We will replace the triplet (resp.
the tetrad) if necessary. The condition (FB6) (resp. the condition (56)) follows easily
(see [Nak07, Proposition 4.5 Step 1]).

(1) We check the condition (FB7). Assume that E); contains a section of M /P!
We pick a section D < Ej; of M/P! such that the value ¢ := coeffp Ej; is the largest
among sections of M/P'. Moreover, we replace D such that the value —n' := (D?) is
the smallest among sections with ¢ = coeff p Ej;. Note that n’ > 2 by Corollary 3.5. By
[Nak07, Lemma 4.4], there exists a morphism ¢': M — Z’ = F,» over P! such that D
is the total transform of the minimal section o’ C F,,. Then the triplet (Z’, ¢\ Enr; Ay/)
satisfies the conditions (FB6) and (FBT7), where Az corresponds to the morphism ¢’

(2) We check the conditions (B7) and (B8). Assume that F; contains a section of
Z/PL. If all sections D < Ey satisfy that (D?) > 0, then the condition (B7) is satisfied.
We assume that there exists a section D < Ez such that (DQ) < 0. We replace D < Ey
such that the value —n' := (D?) is the smallest. By [Nak07, Lemma 4.4], there exists a
morphism v¢': Z — X' = F,, over P! such that D is the total transform of the minimal
section ¢’ C F,,. Then the tetrad (X', v, Ez; Ay, Ax/) satisfies the conditions (B7) and
(B8), where Ax corresponds to the morphism . O

ProprosITION 3.13. (1) Let Z be a nonsingular projective rational surface, Ez
be a nonzero effective divisor on Z, Ly be a divisor with Ly ~ —3K; — Ez, Ay
be a zero-dimensional closed subscheme of Z which satisfies the (v1)-condition,
¢: M — Z be the elimination of Ay, Ey := (EZ)AA/[Z’2 and Ly = (Lz)ﬁf’l.
Assume that Kz + Ly is nef and (Kz + Lz - Lz) > 0, Supp Epy is simple normal
crossing, coeff Eyr C {1,2} and (Lys - Eo) = 0 for any component Eg < Eyr. Then
the pair (M, Enr) is a 3-basic pair.

(2) Let X be a nonsingular projective rational surface, Ex be a nonzero effective di-
visor on X, Lx be a divisor with Ly ~ —3Kx — Ex, Ax be a zero-dimensional
closed subscheme of X which satisfies the (v1)-condition, ¥: Z — X be the elimi-
nation of Ax, Ez = (Ex)éx’l, Ly = (Lx)éx’z, Az be a zero-dimensional closed
subscheme of Z which satisfies the (v1)-condition, ¢: M — Z be the elimination
of Az, Ep = (Ez)ﬁ,z’2 and Ly = (Lz)ﬁf’l. Assume that 2K x + Lx 1is nef,
(Kx+Lx-Lx) > 2degAx, Supp Ey is simple normal crossing, coeft Epy C {1,2}
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and (Lyr-Eg) = 0 for any component Ey < Ezr. Then the pair (M, Epy) is a 3-basic
pair.

PrOOF. (1) Since Ky + Ly = ¢*(Kz + Lyz), the divisor Ky + Ly is nef and
(Kp 4 Ly - Lyg) > 0. Thus the assertion holds.

(2) We know that (Kz + Lz -Lz) = (Kx + Lx - Lx) —2degAx. By (1), it is
enough to show that Kz + Ly is nef. Assume that there exists a curve C' C Z such that
(Kz+Lyz-C)<0. Since 2Ky + Ly =¢*(2Kx + Lx) is nef, we have

0>(K2+LZC):Q(2Kz+ch)+(Ezc)2 (Ezc)
Thus C' < Ey. In particular, CM < E,;. However, we have
0>2(Kz+Ly-C)=(2Kz+ Lz -C)+(Lz-C)
>(Lz-C)=(Lay + Kniyz - CM) > (Las - CM).

This contradicts to the assumption. Thus Kz + Ly is nef. O

4. Local properties.

In this section, we analyze the local properties of pseudo-median triplets and bottom
tetrads.

4.1. Local properties of pseudo-median triplets.
Let (Z,Ez; Az) be a 3-pseudo-fundamental multiplet of length one, @ € Ay be a
point, ¢: M — Z be the elimination of Ay and (M, Eys) be the associated 3-basic pair.

LEMMA 4.1.  Assume that Ez = sl around Q, where @ € 1 is nonsingular and
s > 0. Herel is not necessarily a line on P? or a fiber of F,,/PL. Then s =2 and Ay C 1
around Q. Moreover, Ep = 2™ around over Q.

PRrROOF.  Since By = ¢*Ez—2K /7 is effective and does not contain a (—1)-curve,
the assertion follows from [Fujl4a, Example 2.5]. O

LEMMA 4.2.  Assume that Ez = s1ly + s2ls around Q, where Q € I; is nonsingular,
s$1 > 89 > 1, and 1y and ls intersect transversally at Q.

(1) If (s1,82) = (1,1), then multg Az = 1 and Ep = 1M + 137 around over Q. The
weighted dual graph of Eyr around over Q) is the following:

ntooon
%)

U
(1) (1)

(2) If (s1,82) = (2,1), then multg Az = multg(Az Nilp) =2, multg(AzNh) =1 and
Ey = 2l{w +Tg1 + léw around over Q). The weighted dual graph of Ep; around
over @ is the following:
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Z{VI lM

FQ,l 2

o——~

2) [5) (1)

(3) If (s1,82) = (2,2), we can assume that multg(Az Nly) = 1. Let k := multg Ay.
Then k = multg(AzNla)+1 and Ey = 21M +2L'g 1+ +2lg p—1 +213 around
over Q. The weighted dual graph of Ey; around over Q) is the following:

n Toa Tor B
@) @) ) @)
PRrOOF. Follows immediately from [Fujl4a, Example 2.6]. O

LEMMA 4.3. (1) The divisor Ey is not of the form Eyz =11 + 1o + I3 around @,
where 1y, lo, I3 are distinct and Q € l; is nonsingular for 1 < i < 3.

(2) Assume that Ez = 2l + ls + I3 around Q, where 1y, la, l3 are distinct and Q € I;
is nonsingular for 1 < i < 3. Then either 131 or 1} is not a connected component

OfE]\/[.

PRrROOF. (1) Assume the contrary. Set m;; := multg(l;Ni;) for 1 <i < j < 3. We
can assume that mia > miz > mos > 1. Then multg Az > mo3 and coeﬂ“pQM23 Ey =
ma3. Thus mo3 < 2. Assume that ma3 = 1. Then coeffr, , By = coeffléw Ey =1 and
Lo.1Ni3! # 0. This contradicts to Corollary 3.5. Thus mag = 2. Set m := multg (A zNlz).
Then coefqum Ey = 2, and I'g,,, intersects lé\/[. Moreover, I'g ,, intersects l{” or
L'Qm+1, and coeffr, ., Ey > 1 (if m +1 < multg Az). Thus the vertex of the dual
graph of E)y; corresponding to I'g ., is a fork. On the other hand, I'g » intersects 131
and I'g ;. Thus the vertex of the dual graph of E; corresponding to I'g o is also a fork.
However, I'g 2 and I'g ,,, belong to a same connected component of Ey;. This contradicts
to Corollary 3.5.

(2) Assume the contrary. The morphism ¢: M — Z factors through the monoidal
transform Z; — Z at Q. Then Ez, := EZ} is equal to 217" + ZFCng1 +i1 + i 1
Fgl,1 N7 N2 =0, then either T NI # 0 or T'g 1 NI # 0 holds, which leads to a
contradiction. Thus we can take @1 € Fgfl N2 N1Z* and the morphism M — Z; factors
through the monoidal transform Zy — Z; at ;. We note that Q1 ¢ llz1 by Lemma 3.7
(5). We must continue this process infinitely many times. This leads to a contradiction.

O

LEMMA 4.4.  Assume that E; = Iy + o around Q, where QQ € l; is nonsingular,
{Q} = |li Nly|, and multg(ly Nl) = m > 2. Then multg Az = multg(Az NlhL) =
multg(A Nls) = m holds. In other words, Ay is equal to Iy Ny around Q. Moreover,
Ey = 1M +1 and the weighted dual graph of Ey around over Q is the following:
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1 13"
@ u
ey e}

PrROOF. The morphism ¢: M — Z factors through the monoidal transform
m: Z1 — Z at Q. Then Eyz := Ef/} is equal to llz1 + ZQZl around over () such that
{Q1} == 17" niZ| and multg, (17 N1Z) = m —1 hold. If m —1 > 2, then ¢;: M — Z,
factors through the monoidal transform mo: Zy — Z; at Q1. By repeating the same
argument, we get the following sequence:

M dm—1 7. Tn—1 7. Tmo2 T

If ¢,,—1 is an isomorphism around over @), then the weighted dual graph of Ej; over @
is the following:
M 1M

This contradicts to Corollary 3.5. Indeed, two curves in Ejs such that both coefficients
are equal to one does not meet together. Thus ¢,,_1 around over @ is equal to the
monoidal transform at @,,,—1 by Lemmas 4.1 and 4.2. [

LEMMA 4.5.  Assume that Ez = 211 + Iy around Q, where @QQ € l; is nonsingular,
{Q} = |ll N 12|, muth(11 N lg) = 2.

(1) Assume that multg(Az Nle) > 3. Then multg Ay = multg(Az Nily) = 4,
multg(AzNly) =2 and Epy = 21 +Tg 1+ 2Tg 2+ o3+ 1. The weighted dual
graph of Eny around over Q is the following:

W Tz Tas
O—0

U @
@) &) &) &)

M
! 2

(2) Assume that multg(AzNly) = 2. Set k := multg Az. Thenmultg(AzNlh) =k—1
and Epp = 21 +Tg1 +20ga + -+ + 20 g x—1 + 1. The weighted dual graph of
En around over Q is the following:

M M
ll l2

(2) (2) (2) (2) (1)
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ProOOF. The morphism ¢: M — Z factors through the monoidal transform
m: Z1 — Z at Q. Then Ey := Ef/} around over @ is equal to 211Zl + 1221 + th
such that Q; := llz1 N 1221 (meet transversally) and Q; € Fgl,r Thus ¢1: M — Z; factors
through the monoidal transform my: Zo — Z; at Q1. Then Ey, := E]\Z/f around over @ is
equal to 2172 4122 +Fgf1 +2F5272. For the case (1), the morphism M — Z is not isomor-
phic over Qs := l2Z
the local property around Qa2; multg Az = multg(AzNle) = 4 and multg(AzNl) = 2.
For the case (2), if multg(Az Niy) > 3, then the morphism M — Z; is not isomorphic
over Qo1 1= 1122 N Fng. Then we can apply Lemma 4.2 to the local property around Qo1;
we obtain that multg(A Niy) = k — 1. The remaining parts follow easily. O

N Fgfz since multg(Az Niz) > 3. Then we can apply Lemma 4.2 to

4.2. Local properties of bottom tetrads.

Let (X, Ex;Az,Ax) be a 3-fundamental multiplet of length two, P € Ax be a
point, ¥: Z — X be the elimination of Ay, (Z,Ez;Az) be the associated pseudo-
median triplet, ¢: M — Z be the elimination of Ay and (M, Ej;) be the associated
3-basic pair.

LEMMA 4.6.  Assume that Ex = sl around P, where P € 1 is nonsingular and
s > 0. Here l is not necessarily a line on P? or a fiber of F,,/PL. Then s =1 or 2 holds.
If s =1, then Ax C 1 and Ay = 0 around over P. In this case, E; = 1% and Ep =M
around over P. Assume that s = 2. Set k := multp Ax and j := multp(Ax N1). Then
one of the following holds:

(1) (kj,j) = (4, 2) In this case, AZ = (Z) and Ez(: E]V[) = 2lZ + Fp,l + QFP,Q + Fp’g
around over P. The weighted dual graph of Ez around over P is the following:
1% I'po I'p1
&) 2
@ @ (&3]

Ips
™

(2) (k,7) = (2,2). In this case, Ez = 21 + Tpy + 2T'pa, |Az| C Tpa around over
P and deg(Az NT'pa) = 2. The weighted dual graph of Ez around over P is the
following:

1# Cpo Ipa
© ©)

(2) (2) (1)

(3) (k,7) = (2,1). In this case, Ay = ) and Ez(= Eyr) = 217 + I'p1 around over P.
The weighted dual graph of Ez around over P is the following:

% I'ps

s

o—©

(2) (1)
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(4) (k,j) = (1,1). In this case, |Az| = {Q} around over P, where Q := 1% NT'p;.
Moreover, we have multg Az = multg(Az NT'p1) = 2 and multg(Az N %) =1
hold. The weighted dual graph of Ez around over P is the following:

1% I'p1

o——~Q®

(2) (1)

The weighted dual graph of Epy around over P is the following:

™M rQ,l FJJ\-4,1

(2) ( - @

1) (1)

PrOOF. 1If s = 1, then the assertion is trivial by [Fujl4a, Example 2.5] and Lemma
4.1. We assume that s = 2. If j > 3, then coeffr, , £z = 3. This leads to a contradiction.
Thus j =1or 2. If j =1 and k > 3, then coeffr,, , Fz = —1, which is a contradiction. If
j=2and k > 5, then coeffr,, , £z = —1, which is a contradiction. If (k, j) = (3,2) then
Fp’gﬂAZ 7é () and FP’QHAZ = 0. Indeed, (Lz-rgg) = 2 and (Lz-l—‘p’g) = 0 hold, where
Lz is the fundamental divisor of (Z, Ez, Az). However, we know that coeffr,, Ez =1
and the curve I'ps is the only component of £z which meets I'p3. Thus Az NI'p3 = 0,
which is a contradiction. Therefore (k,j) = (4,2), (2,2), (2,1) or (1,1). The remaining
parts follow easily from Lemmas 4.1 and 4.2. O

LEMMA 4.7.  Assume that Ex = s1l1 + s2ls around P, where P € l; is nonsingular,
s1 > 89 > 1, and 1y and ly intersect transversally at P. Then (s1,s2) = (1,1) or (2,1).
Moreover, we have the following:

(1) Assume that (s1,s2) = (1,1). Then multp Ax = 1. Set Q; = 1Z N I'pi1. Then
|Az| = {Q1,Q2} around over P and multg, Az = 1. In this case, Ey = I¥ +
I'pi1 + 12 and Ey = 131 + Fﬁ‘;{l + 13 around over P. The weighted dual graph of
Ez around over P is the following:

if I'pa I3

(1) (1) (1)

The weighted dual graph of Epy around over P is the following:

M r'¥, 1M

u ® u

(1) (1) (1)

(2) Assume that (s1,$2) = (2,1). Then multp(Ax Niy) = 1. Set k := multp Ax and
j:=multp(Ax Niy). Then one of the following holds:
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(a) k =j > 1 holds. In this case, |Az| C I'py, deg(Az NTpr) =2 and Ez =
211Z +2I'p1+---+2'py + lQZ around over P. The weighted dual graph of Ez
around over P is the following:

7z 7z
Iy I'pi I'pr—1  Tpi I3
@ @ &) &) W

(b) k=37 +2 >3 holds. In this case, Az =0 and Ez(= Ep) = 217 +2T'p; +
o+ 2lpp2+Tpr_1+ ZQZ around over P. The weighted dual graph of E4
around over P is the following:

17 I'pa Ipr—2 TI'pr_1
@ @ 1;(2) e}
z
I3 (1)

PrROOF. If (s1,52) = (2,2), then coeffr ., Ez = 3, a contradiction. Thus (s1, s2) =
(1,1) or (2,1).

(1) Assume that (s1,s2) = (1,1). Set k:=multp Ax. If £ > 2, then Tp1 NAZ =0,
coeffr, , Ez =1, coeff;z Ez =1 and the curve I is the unique component of E; which
meets I'p1. This contradicts to Corollary 3.5. Thus k& = 1. Then deg(I'p1 NAz) = 2.
By Lemma 4.2, we have Ay = {Q1, Q2} and multg, Ez = 1 around over P.

(2) Assume that (s1,52) = (2,1). f multp(AxNiy) > 2, then coeffr, , £z = 3. This
leads to a contradiction. Thus multp(Ax Niy) = 1. If & > j + 3, then coeffr,, ., Bz =
—1, a contradiction. If k = j + 1, then coeffr,, Ez = 1, deg(Az NT'py) = 2 and
deg(AzNI'pi—1) = 0. Note that the curve I'p ;1 is the unique component of Ez which
meets I'p . Thus Ax NI'py = 0, a contradiction. Thus either k = j or j + 2 holds. The
remaining assertions follow from Lemmas 4.1 and 4.2. 0

LEMMA 4.8.  Assume that Ex =l + 1>+ 13 around P, where P € l; is nonsingular,
and l; and l; intersect transversally at P for any 1 <i < j < 3. Then we can assume that
multp(Ax Niy) = multp(Ax Niz) = 1. Set k:= multp Ax and j := multp(Ax Nly).
Then k = 7, ‘Az| C Fp)]g, deg(AzﬂFp)k) =2and Ez = ZQZ—FZ??-FQFPJ—F- . '+2FP)]€+Z]_Z
around over P. The weighted dual graph of Ez around over P is the following (if k =1,
then Upy is a (—1)-curve and meets ¥, 1Z and 1Z):
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PROOF. Assume that £ > j+3. Then coeffppﬁk Ez < —1, which is a contradiction.
Assume that k£ = j + 1. Then coeffr,, Ez =1, deg(Az NTpy) =2, Az NTpp_1 =10,
and the curve I'p ;1 is the unique component of £z which meets I'p . This leads to a
contradiction. Assume that & = j + 2. Then Az = () around over P and the weighted
dual graph of Ez(= E)s) around over P is the following:

lZ

I'pi—1 T'pr—2 I'p1 5

0

©) %
(1) g@ gz) (1)
if 1§

(1) (1)

This leads to a contradiction to Corollary 3.5. The remaining assertions follow from
Lemmas 4.1 and 4.2. (]

LEMMA 4.9.  Assume that Ex = 1y + ly around P, where P € l; is nonsingular,
{P} = |[l1 Nly], and multp(ly Nly) = 2. Set k := multp Ax, j; := multp(Ax N;)
and assume that j1 > jo. Then k = j1, jo = 2, |[Az| C Tpy, deg(AzNTpk) = 2 and
E; = 12Z +Tp1+2lpo+---+2I'py + llz around over P. The weighted dual graph of
Ez around over P is the following:

z
Tp1 Tpo Ipr—1  Tpyi If
e l(z) ) @ e
ZZ
2 Tw

PrOOF. The morphism ¢: Z — X factors though the monoidal transform
m: X; = X at P. Set Ex, := E?. Then Ex, = lf(l + l;ﬁ + ng’ll around over P.
We note that any two curves intersect transversally at P, := lf1 N lé(l. Ify: 7 —- Xy
is isomorphic around P, then contradicts to Lemma 4.3. Thus v factors through the
monoidal transform at P;. Then we can apply the argument of Lemma 4.8 and we can
get the assertion. O

LEMMA 4.10. Assume that Ex = C around P, where C is defined by x*> = 33,
where {x, y} is a reqular parameter system at P. Then multp Ax = 1, |[Az| = {Q},
multg Az = multg(Az N C?) = multg(Az NT'p1) = 2 around over P, where Q =
CZNTp. The weighted dual graph of Ep around over P is the following:

oM r¥,

U
(1) (1)

ProOOF. The morphism ¢: Z — X factors though the monoidal transform
m Xy — X at P. Set Ex, = E?l. Then Ex, = CXt + ng}l and both compo-
nents are nonsingular around over P. Moreover, {Q} = [C¥' N Fgll\ satisfies that
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multg (C¥1 N I‘ﬁll) =2. If Z — X, is not an isomorphism around (), then —K is not
1-nef by Lemma 4.9, which leads to a contradiction. Thus Z — X; is an isomorphism
around ). The remaining assertions follows from Lemma 4.4. 0

5. On bottom tetrads.

In this section, we consider the relationship between pseudo-median triplets
(Z,Ez;Az) (Lz: the fundamental divisor) with 2Kz + Ly trivial and bottom tetrads
(X,Ex; Az, Ax) (Lx: the fundamental divisor) with 2K x + L trivial. Since —K is
nef and big, there exists a birational morphism Z — X = P? unless Z = P! x P! or Fy
by [HW81, Corollary 3.6]. Moreover, for any birational morphism Z — X = P2, there
exists a zero-dimensional subscheme Ax C X which satisfies the (v1)-condition and the
morphism Z — X is the elimination of Ax. By this way, we obtain a 3-fundamental mul-
tiplet (X, Ex; Az, Ax) of length two. The following lemmas show that we can replace
the tetrad with a “suitable” one.

LEMMA 5.1.  Let (X =P% Ex; Az, Ax) be a 3-fundamental multiplet of length two
with Ex = 2l + lo, where ly, I are distinct lines. Set P := 11 Nly. Assume that one of
the following holds:

(1) There ezists a point Py € Ax NIy \ {P} such that one of the following holds:

(a) Inultp1 Ax > 2.
(b) degAx > 5, multp, (Ax Nly) =1 and deg(Ax Nliy) > 2.

(2) #lAx NI \{P} >2.
(3) #|Ax Ni1H \ {P} =1 and multp Ax > multp(Ax Nlis).
(4) degAx =4 and deg(Ax Nlz) = 2.

Then there exists a 3-fundamental multiplet (X' = P2, Ex/; Az, Ax:) of length two
such that both (X, Ex; Az, Ax) and (X', Ex/; Az, Ax/) induce the same pseudo-median
triplet, and either holds:

(i) Ex: is reduced, or

(ii) Ex, = 2ly + 14 such that I}, Iy are distinct lines and none of the conditions (1),

(2), (3), (4) hold.

PROOF. Set d¥ := deg(Ax N;), dZ = deg(Az NI1Z) for i = 1, 2, and b :=
multp Ax. Note that 2d;X +dZ = 6 and d¥ +dZ =1 — ((IM)?). Thus (di%,d?) = (3,0),
(2,2), (1,4), (0,6), and (d5,d%) = (3,0), (2,2). By Lemma 4.7, multp(Ax Nl) =
1ifb > 1. Let (Z,Ez;Az) be the associated pseudo-median triplet and Lz be the
fundamental divisor. We note that E; ~ —K.

Step 1: Assume that (1a), (2) or (3). We will show that we can replace with another
tetrad such that the condition (i) holds.

(la) By Lemma 4.1, (multp, Ax, multp, (Ax Niy)) = (4,2). Let X3 — X be the
elimination of Ay around P;. Then p(X;) = 5, Z — X factors through X; — X
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and EX' = I3 + 218" 4 203!, + T3, + T35 Since (I77)? = —1, (T3!,)? = —2
and p(X;) = 5, there exists a birational morphism ¢': Z — X; — X’ = P? such that
YL +Tp,2) =0. Thus Ex: := . Ez = . (1 +Tp, 1 +Tp, 3) is reduced.

(2) Set {P1,...,P;} = |Aznli \{P}| (j > 2). Assume that j > 3. Then (d¥,d?) =
(3,0), 5 = 3 and P ¢ Ax. Moreover, (multp, Ax,multp,(Ax N{;)) = (2,1) for any
1 <i < 3. This implies that If intersects with I'} |, Ty ;, T} | and 137, which leads
to a contradiction. Thus j = 2. Assume that P € Ayx. Then (dy,d?) = (3,0) and
(multp, Ax,multp,(Ax N;)) = (2,1) for i = 1, 2. Let X; — X be the elimination of
Ax around P, P,. Then p(X;) = 5, Z — X factors through X; — X and E?l =
B4 2 + F;f;l + Fg;,y Since (I;')2 = —1, there exists a birational morphism
V' Z — X; — X' = P? such that ¢/1# = 0. Thus Ex: := ¢/ Ez = ¢/ (1 +Tp, 1+Tp,1)
is reduced. Assume that P ¢ Ax. Let X; — X be the composition of the elimination
of Ax around Iy and the monoidal transform at P;, P,. Then p(Xy) > 4, Z — X
factors through X; — X and Ey' = 5 + 21" + I‘féll,l + Fﬁ:,r Since (I5)? = —1,
there exists a birational morphism v¢’: Z — X; — X’ = P? such that ¢.I¢ = 0. Thus
Ex :=¢.Ez =¢,(1 +Tp, 1+ p,1) is reduced.

(3) Set {P1} = |Az NI \ {P}|. By Lemma 4.7, b = multp(Ax Niz) +2 > 3.
Let X7 — X be the composition of the elimination of Ay around P and the monoidal
transform at P;. Then p(X;) = b+ 2, Z — X factors through X; — X and E?l =
I3 4203 + 20, 4+ 208, + T34 + T35, Since (151)? = =1 and (I'31)? = —2
for 1 < i < b— 2, there exists a birational morphism ¢': Z — X; — X’ = P? such
that ¥, (I +Tp1+ -+ LTpp_2) =0. Thus Ex := Y, Ez = ,(1f +Tp 1+ Tpp-1) is
reduced.

Step 2: We assume the case (1b). We can assume that {P1} = |[Ax Ny \ {P},
d¥ =2 and b = multp(Ax Nlz). Assume that multp, Ax = 1. Set @, =1 NTp, ;.
Since multg, Az = 2 and multg, (Az N1¥) = 1, we have deg Az > deg(Az NIF) +
deg(AzNTpp)+(2—1) =5. However, deg Ax +deg Az = (Lx - Ex)/2 =9. This leads
to a contradiction. Thus multp, Ax = 2, ((1#)?) = —1 and ((I'p, 1)?) = —2. There exists
a birational morphism x: Z — Xy such that p(Z) — p(Xo) = 2 and x(IZ UTp, 1) = {R}.
Moreover, there exists a birational morphism 7: Xy — X’ = P2. Set ¢/ := 7 0 x. Since
Exi :=Y,Ez =¢,(1% +2(Tp1 +---+py)), unless Ex is reduced, we can write that
Ex: = 2ly + I, with I}, I} distinct lines, where I{ = ¢.I'p; and Iy = .1%. Indeed,
Y Tpy # 0 since ((x.['p1)?) > 0. Let P| be the image of R. Since Ey ~ —Kgz, T
is an isomorphism around R. Thus multp; Ay, = multp (Ax: N1}) = 2, where Ay,
corresponds to the morphism 1’. Moreover, deg Ax: = deg Ax > 5. Therefore, by
combining with the argument in Step 1, we can get another tetrad which satisfies that
none of the conditions (1), (2), (3), (4) are satisfied and deg Ax, > 5.

We assume the case (4). We can assume that b = multp(AxNly). f AxNi \{P} =
(), then Ay C ly. This implies that deg Ax = 2, which leads to a contradiction. Thus
we can assume that {P;} = |[Ax Nl \ {P}| and multp, Ax = 2. Then we can write
that Ez = I'p, 1 + 2D + 1%, where D is an effective divisor on Z. Moreover, p(Z) > 5.
There exists a birational morphism ¢': Z — X; — X’ = P? such that ¥l = 0. Unless
Ex/ =Y. Ez =, (I'p 1+ 2D) is not reduced, we can write Ex, = 2] + I5 with {7, [}
distinct lines, where I, = ¢,I'p, 1. Note that deg(Ax: Nl5) = 3. By combining with the
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previous arguments, we can get another tetrad satisfying the condition (i) or (ii). O

LEMMA 5.2. Let (X = P2, Ex;Az,Ax) be a 3-fundamental multiplet of length
two with Ex = 11 + lo + I3, where Iy, ls, I3 are distinct lines. Assume that one of the
following holds:

(].) llmlgﬂl(}?é@.
(2) l1 mlg ﬂl3 :@ and #|AX ﬂ((ll ﬁlg)U (ll ﬂl3) U (l20l3))| S 1.

Then there exists a 3-fundamental multiplet (X' = P2 Ex/; Az, Ax:) of length two
such that both (X, Ex; Az, Ax) and (X', Ex/; Az, Ax/) induce the same pseudo-median
triplet, Ex: is reduced and the number of the component of Ex: is less than three.

PrOOF. Set d¥ := deg(Ax N;), d? := deg(Az N1Z) for 1 < i < 3. Then, we
have (dX,d?) = (2,2) or (3,0).

Assume the case (1). Set P :=1;NIlyNl3. By Lemma 4.3, P € Ax. If deg(Ax N\
{P})=1forall1<i<3, then multp Ax =1 and (dX,d?) = (2,2) forall 1 <i < 3 by
Lemma 4.8. However, this implies that deg(AzNI'p 1) > 3. This leads to a contradiction.
Thus we can assume that deg(Ax Nl \ {P}) = 2. Let X; — X be the elimination of
Ax\{P}. Then p(X;) > 5, Z — X factors through X; — X and E5* = ;"' +15" +157.
Since ((I;")?) = —1, there exists a birational morphism ¢': Z — X; — X’ = P? such
that 1/};Z1Z =0. Thus Ex: := d);EZ = w;(ZQZ + l??)

Assume the case (2). Set P;; :={; Nl; for 1 < i < j < 3. We can assume that
Pi5, P13 € Ax. By Lemmas 4.2 and 4.7, dZX =2forany 1 <i < 3. Let X1 — X
be the elimination of Ax \ {P23}. Then p(X;) > 5, Z — X factors through X; — X
and Ey' = I3 + 15" + 13", Since ((I5*)?) = —1, there exists a birational morphism
W' Z — X1 — X' = P? such that ¢.1Z = 0. Thus Ex, = ¢,Ez = ¢,(1Z +17). O

LEMMA 5.3.  Let (X = P2 Ex; Az, Ax) be a 3-fundamental multiplet of length two
with Ex = C + 1, where C' is a nonsingular conic and | is a line. Assume that one of
the following holds:

(1) AxnCNil=0.
(2) |[CNl| ={P}, deg(Ax \ {P}) >4 and Ax NI\ {P} =0.

Then there exists a 3-fundamental multiplet (X' = P? Ex/; Az, Ax:) of length two
such that both (X, Ex; Az, Ax) and (X', Ex/; Az, Ax/) induce the same 3-fundamental
triplet, Ex/ is the union of a nonsingular conic and a line and neither the conditions (1)
nor (2) holds unless Ex: is reduced and irreducible.

PROOF. Assume the case (1). Then Ez = C% + (4. By Lemmas 4.2 and 4.9,
deg(Az NC%) =deg(AzN1?) = 2. Thus ((1%)?) = —1 and p(Z) = 8. Then there exists
a birational morphism v’: Z — X’ = P? such that Ex := 9. E; = ¢.C? is reduced and
irreducible.

Assume the case (2). We can assume that P € Ax. By the assumption, deg(Ax N
C'\ {P}) > 4. There exists a line [y C X such that P ¢ [, and deg(Ax Niy) = 2 since
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Ax \{P} C C. Let X; — X be the elimination of Ax \ {P}. Then p(X;) >5,Z = X
factors through X; — X and Eé{l = CX1 4+1X1. We note that there exists a (—1)-curve I’
on X; over X such that X' NT # () and ;" NT = @ since deg(Ax NC\{P}) > 4. There
exists a birational morphism ¢’: Z — X; — X’ = P? such that the strict transforms of
lp and T' are mapped by ¢’ to points. In this case, Ex: = 1.(C% +1%). We can assume
that Ex, = C’ + ', where C’ is a nonsingular conic and !’ is a line. By construction,
|C'NU| ={P'}, Ax, NC'\{P'} # 0 and Ax NI'\ {P’} # 0. Thus the assertion holds.
d

As an immediate consequence of Lemmas 5.1, 5.2 and 5.3, we have the following
theorem.

THEOREM 5.4. Let (Z,Ez;Az) be a pseudo-median triplet such that 2Kz + Lz
is trivial, where Ly is the fundamental divisor. Then there exists a projective birational
morphism ¢: Z — X onto a nonsingular surface and a zero-dimensional subscheme
Ax C X satisfying the (v1)-condition such that the morphism 1 is the elimination of
Ax, the tetrad (X,Ex; Az, Ax) is a bottom tetrad and the associated pseudo-median
triplet is equal to (Z,Ez; Ay), where Ex := v¥.Ey. Moreover, the divisor ¢.Ly is the
fundamental divisor of (X, Ex; Az, Ax).

6. Classification of median triplets.
We classify median triplets (Z, Ez; Az).

THEOREM 6.1.  The median triplets (Z, Ez; Ayz) are classified by the types defined
as follows:

The case 7 = P? :

[4]o Ez =2C (C: nonsingular conic), deg Az =10 and Az C C.

[4]2(c,d) ((e,d) =(0,0),(1,1),...,(5,1)) Ez =201+2ls (I1, lo: distinct lines), deg Ay =
10, deg(AzNl) = deg(AzNly) =5, multg(AzNL) = ¢, multg(AzNle) =d and
multg Az = c+d, where Q =1, Nls.

5]k Ez =2C+1 (C: nonsingular conic, l: line), |CNI| = {Q}, deg Az = 10, deg(AzN
C) =8, multg Az =multg(Az N1) =4 and multg(AzNC) = 2.

[6la Ez = 2C +1 (C: nonsingular conic, I: line), |C NI = {Q1,Q2}, deg Az = 10,
deg(Az NC) =8 and multg, Az = multg,(AzNI) =2 fori=1, 2.

[5]5(¢c,d) ((¢,d) =(0,0),(1,1),(2,1),(3,1)) Ez =2l1+2la+13 (I1, l2, l3: distinct lines),
Linlanly =0, deg Az = 10, deg(AzN1;) =4, multg,, Az = multg,, (AzNl3) =2
fori=1, 2, multg,,(AzNlL)=c, multy,,(AzNl) =d and multg,, Az =c+d,
where Qi; = ;N1 for 1 <i < j < 3.

Bla Ez = 2l +lo+ 13+ 1y (lh,...,la: distinct lines), Q;; are distinct for 1 < i <

j <4

)
J <4, degAz = 10, deg(Az Nly) = 4, multg,, Ay =1 for 2 < i < j <
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and multg,; Az = multg,,(Az Nl;) = 2 for 2 < j < 4, where Qi = ;N 1; for
1<i<j<d4.

55 Ez =li+la+l3+1a+15 (i, ..., I5: distinct lines), Q;; are distinct for 1 <1 < j <5,
deg Az = 10 and multg,, Az =1 for 1 < i < j <5, where Qi = l; N1; for
1<i<j<5.

The case Z = P! x P! ;

[0;3,3]p Ez =2C+o0+1 (C ~ o+1 nonsingular), CNoNl =10, degAz =9, deg(Az N
C) =6, multg Ay = 1, multg, Az = multg (Az No) = 2 and multg, Ay =
multg,(AzN1) =2, where Q =0 NI, Qo =CNland @ =CNL

[0;3,3]22(0,(1) ((C, d) = (0,0), (]., 1), (27 1)) EZ = 20’1 + o2 + 211 + l2 (0’1, 09! distinct
minimal sections, 1y, ly: distinct fibers), deg Ay = 9, deg(Az Noy) = deg(Az N
ll) = 3, muthll(AZ n 0'1) = c, muthn(AZ n ll) = d, muthu Ay = c+d,
multg,, Az = multg,,(Az Nly) = 2, multg,, Az = multg,, (Az Noz) = 2 and
multg,, Az =1, where Q;; = o; N1 for1 <4i,57 <2.

[0;3,3)23 Ez = 201+02+11+1la+13 (01, 09: distinct minimal sections, 1, la, l3: distinct
fibers), deg Az =9, multg,; Ay = multg,,(Az Ni;) =2 and multg,, Az =1 for
1<7 <3, where Qi =o;Nlj for1<i<2andl<j <3,

[0:3,3]33 Ez = 01+ 02+ 03+ 11 +1s+ 13 (01, 02, 03: distinct minimal sections, 1y,
lo, I3: distinct fibers), deg Az = 9 and multg,, Az = 1, where Qi = o3 N 1; for
1<4,5<3.

The case Z =TFy :

[1;3,4]p Ez = 2C + 0 (C ~ o + 21 nonsingular), deg Ay =9, deg(Az N C) = 8 and
multg Az = multg(Az No) =2, where @ =CnNo.

[1;3,4]1(¢,d) ((¢,d) = (0,0),(1,1),...,(5,1),(1,2)) Ez = 200 + 0 + 2l, degAyz =9,
deg(AzNo) =multg Ay =2, deg(AzN1) =3, deg(AzNos) =5, multg_ (AzN
0x) = ¢, multg (Az N1) = d and multg, Az = ¢+ d, where Q@ = o N1 and
Qoo =050 NI

[1;3,4]s Ez =200 +0+11+1a (I1, lo: distinct fibers), deg Az =9, deg(Az Now) = 5,
multg, Az = multg, Az =1, multg_, Az =multg_, (AzNl) = multg_, Az =
multg_,(Az Nly) =2, where Q; = o Nl; and Qooi = 0oo NI; fori =1, 2.

[1;4,4] Ez =2C (C ~ 20 + 21 nonsingular), deg Az =10 and Az C C.

[1;4,5]k(c) 3<¢<9) Ez =2C+1 (C ~ 20+ 2l nonsingular, CNl = {Q}), deg Az =
9, deg(AzNC) =8, multg Ay = ¢, multg(AzNC) = c—1 and multg(AzNI) = 2.

[134,5]4 Ez = 2C +1 (C ~ 20 + 2l nonsingular, C N1l = {Q1,Q2}), degAy =9,
deg(AZ N O) =38, |Az‘ Nnil= {Ql} and muthl Ay = Illuth1 (AZ n l) = 2.
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The case Z = Fy :

[2;3,5]1 Ez = 2000 +0 + 1, degAyz = 9, deg(Az No) = 7, multg Az = 1 and
multg_ Az =multg_ (AzN1) =2, where Q =0 N1 and Qoo = 0o N 1.

[2;3,6]0 Ez = 2C 4+ o (C ~ o + 3l nonsingular), deg Ay = 9, deg(Az NC) =9 and
AZ No = @

[2;376]1(C7d) ((Cv d) = (050)7 (]-a 1)7 ) (671)a (25 1)7 (3a 1)) Ez =204 +U+217 degAZ =
9, AznNo =0, deg(Az Nox) = 6, deg(Az N1) = 3, multg(Az Now) = ¢,
multg(Az N1) =d and multg Az = c+d, where Q = ooo N 1.

The case Z =Ty :
[3;3,6] Ez =200 +0,degAz =9 and Ay C 0.

[3;4,9]4 Ez = 2C+20+1 (C ~ o+4l nonsingular, cNCNl = 0), deg Az =9, AzNo =0,
deg(AzNC) =8 and multg Ay = multg(Az N1) =2, where Q@ = C NI

[354,9]5 Ez = 001 + 0002+ 0003+ 0 (0oo1, Oco,2; Oo,3: distinct sections at infinity),
Ooo1 N0Ooo2N0sos =0, deg Ay =9 such that Ay is the disjoint union of 0o 1 N
00,2, 000,11 00,3 and 00,2 00,3

[3;4,9]c(c,d) ((¢,d) =(0,0),(1,1),...,(5,1),(1,2)) Ez = 200 + 20 + 211 + 12 (l1, l2:
distinct fibers), deg Az =9, Az No =0, deg(Az Noy) = 6, deg(Az Niy) = 2,
multg, (Az Now) = ¢, multg, (AzNl) =d, multg, Az = c+d and multg, Az =
multg, (Az Nily) =2, where Q; = 0oc N, fori=1, 2.

[354,9]p Ez =200 +20+11 +1a+13 (l1, l2, l3: distinct fibers), deg Az =9, deg(Az N
Oco) = 6 and multg, Ay =multg,(Az Nl;) =2 for 1 <i <3, where Q; = 000 N;
for1<i<3.

[34,9] Ez = 0001+ 0002+20+2l1+12 (0001, Oco,2: distinct sections at infinity, 1y, la:
distinct fibers), 0001MN0002N(l1Ul2) =0, deg Az =9, multg,, Az = multg,, (AzN
0'007,') = 2, muthm AZ =1 fO’I’i = ]., 2, and AZ \ {Qll;Q127Q21aQ22} = 00,1 n
Ooo,2, Where Qij = 000 N1 for 1 <i,7 < 2.

[354,9]p Ez = 0001+ 0002+20+1l1+1lo+13 (0501, 0co,2: distinct sections at infinity, 11,
lg, lg: distinct ﬁbETS), 00,1 ﬂO'OOQ n (ll Ulg Ulg) = @, deg AZ = 9, muthU AZ =1
fO’f’ 1 S ) S 2, 1 S j S 3, and AZ \ {Q”}” = O0c0,1 n 050,25 where Qij = Oc0,i N lj
for1<i<2,1<j<3.

The case Z =y :

[4;4,10]g Ez = 2C + 20 (C ~ o + 5l nonsingular), degAz = 10, Az No = 0 and
AZ c C.
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[4;4,10]1(c,d) ((c,d) =
10, Az No = 0,
muth(AZ n l) =

(0,0), (1,1),...,(1,8),(2,1)) Ez = 20 + 200 + 21, deg Ay =
deg(Az Noso) = 8, deg(Az N1) = 2, multg(Az Now) = ¢,
d and multg Az = c+d, where Q = 0o N 1.

[4;4,10]2 Ez = 2000+20+11+1s (11, lo: distinct fibers), deg Az = 10, deg(AzNos) = 8
and multg, Az = multg, (Az N1;) =2, where Q; = 0oc NI, fori=1, 2.

The case Z =Ty :

[5;4,11]y Ez = 200 + 20 + 1, degAyz = 11, deg(Az N0s) = 10 and multg Ay =
multg(Az N1) =2, where Q = 05 N 1.

The case Z = Fg :
[654,12]g Ez =204 + 20, deg Az =12 and Az C 00

We start to prove Theorem 6.1. Any of the triplet in Theorem 6.1 is a median triplet
by Proposition 3.13. We show the converse. Let (Z, Ez; Az) be a median triplet, L
be the fundamental divisor, ¢: M — Z be the elimination of Ay, Eys := (EZ)]AV[Z’2 and

kz :=deg Az. By Lemma 3.7, Z =P? or F,, and (2Kz + Lz -1) < 0.

6.1. The case Z = P2.

We consider the case Z = P?. Set Ly ~ hl and E; ~ el. Then e = 9 — h and
4 < h <5 hold since By ~ -3Kz — Ly, (Kz+ Lz -Lz) >0 and 2Kz + Ly is not nef.
Thus (h,e) = (5,4) or (4,5). Moreover, kz = (Lz - Ez)/2 = 10.

CrLAamM 6.2.  Any component C < Eyz is either a nonsingular conic or a line. More-
over, coeff¢ £z = 2 holds unless C' is a line and h = 4.

PROOF. Set m := degC. By Lemma 2.7, m? — ((CM)2?) = (Lz - C) + 2p,(C) =
m? + (h—3)m +2. Thus —2 — ((C*)2) = (h — 3)m. Hence ((CM)?) < —4 (this implies
that coeffc Ez = 2) unless (h,m) = (4, 1). Therefore m < 2 since e < 5. O

6.1.1. The case (h,e) = (5,4).

By Claim 6.2, we have either £z = 2C for a nonsingular conic C, or Ez = 211 + 2l
for distinct lines Iy, ls.

The case Ez = 2C": In this case, deg(Az N C) = 10. Thus Az C C. This triplet
is nothing but the type [4]o.

The case Ez = 2l; + 2l2: We know that deg(Az Ni;) =5 for i = 1, 2. Set
Q=11 Ny, c:=multg(AzNl) and d := multg(Az Nly). We may assume that ¢ > d.
By Lemma 4.2, multg Az = ¢+ d. This triplet is nothing but the type [4]2(c,d).

6.1.2. The case (h,e) = (4, 5).

By Claim 6.2, any component of Ey is either a nonsingular conic or a line.
The case Ez = 2C +1: We consider the case EF7 contains a nonsingular conic C'. Then
E; =2C+1, where [ is a line. We know that deg(AzNC) =8 and deg(AzNI) = 4. We
assume that C' is tangent to [ at one point Q. Note that multg(AzNI) = deg(AzNI) = 4.
By Lemma 4.5, we have multg Az =4 and multg(Az N C) = 2. This triplet is nothing
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but the type [5]x. We assume that C' and [ meet at two points @1 and Q3. By Lemma
4.2, we have multg, Az = multg, (Az N{) = 2 for ¢ = 1, 2. This triplet is nothing but
the type [5] 4.

The case Ez = 2l; + 2l3 + l3: We consider the case Ez = 2l + 2l + I3, where [y,
la, I3 are distinct lines. Set Q; :=1; NI, for 1 <i < j <3, ¢:=multy,,(AzNl) and
d := multg,,(Az Nly). We may assume that ¢ > d. By Lemma 3.7, Q;; are distinct
points. By Lemma 4.2, multg,, Az = multg,,(Az Nli3) = 2 for i = 1, 2. Moreover,
multg,, Az = ¢+ d. This triplet is nothing but the type [5]3(c,d).

The case Ez = 211 + Iy + I3 + l4: We assume that E; = 2ly + l5 + I3 + l4, where
li,...,1ls are distinct lines. Set Q;; :={; NI; for 1 < ¢ < j < 4. By Lemmas 3.7 and 4.3,
Qqj are distinct for 1 <7 < j < 4. By Lemma 4.2, multg,, Az = multg, , (Az Nij) =2
for 2 < j <4 and multg,;, Az =1 for 2 <i < j < 4. This triplet is nothing but the type
[5]4.

The case Ez = 1 +1ls+13+14+15: We assume that E; = 11+ --+15, where lq,...,l5
are distinct lines. Set @Q; := l; N{; for 1 <4 < j < 5. Assume that Q12 = Q13. By
Lemmas 3.7 and 4.3, we can assume that Q12 = Q14 and Q12 # @Q15. Then we can assume
that multg,,(Az Nl) < 1. Since |[Az| Nl C {Q12,Q15} and multg,, (Az Nl) < 1,
we have deg(Az Nly) < 2. This leads to a contradiction. Therefore @;; are distinct
for 1 S ) <j S 5. We know that #{Qij}ij = 107 degAZ = 10, ‘Az‘ C {Qij}ij and
multg, ; Ay < 1. Thus multg, Az =1for 1<i<j<5. This triplet is nothing but the
type [5]5.

6.2. The case Z = F,, with Kz + Lz big.

We consider the case Z = F,, such that K, + Ly is big. Set Ly ~ hgo + hl,
Ez ~ eyo + el and kyz := deg Ayz. Then eg = 6 — hg and e = 3(n + 2) — h hold since
EZ ~ *SKZ *LZ and KZ ~ —20 — (n+2)l

CLAM 6.3.  We have hg = 3 (hence ey = 3), kz = 9 and max{2n + 2, 3n}
2n + 6. In particular, n < 6. Furthermore, we have 3 < h <6 ifn =20, and 5 <
ifn=1.

<h<
h <8

h
<

PrOOF. Since Kz + Ly is nef and big and (2K + Lz - 1) < 0, we have hg = 3
and h > 2n + 2. Since Lz is nef, we have h > 3n. Moreover, if n = 0 then h > 3 since
Kz + Ly is big; if n = 1 then h > 5 since (2Kz + Lz - o) > 0. We know that Fy % 30.
Thus e = 3(n 4+ 2) — h > n. Finally, we have kz = (Lz - Ez)/2 = 9. O

CLAM 6.4. (1) We have (n,h) = (0,3), (1,5), (2,6), (2,7), (3,9).

(2) Any irreducible component C < Egz apart from o, | is a section of F,/P* and
coeff¢ E; = 2. Moreover, either (i) or (ii) holds:
(i) C =00 withn>1 and (n,h) = (1,5), (2,6), (2,7), (3,9).
(ii)) C ~o+ (n+ 1)l and (n,h) = (0,3), (1,5), (2,6).
PROOF.  Assume that there exists an irreducible component C' < Ez apart from o,

I. (It n > 1, then such a component always exists since 30 £ Ez.) Set C' ~ mo+(nm-+u)l
with 1 <m <3 and u > 0. If n = 0, then we assume further that « > 1. Furthermore,
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if (n,h) = (0,3), then we can further assume that u > m. By Lemma 2.7, nm? + 2um —
(CM)2) = (C?)— ((CM)?) = (Lz-C) +2po(C) = nm?+ (2u+h—n—2)m+u+2. Thus
—((CM)2) = (h —n — 2)m +u+ 2 > 4. This implies that coeffc Ez = 2. Thus m = 1
(i.e., C is a section) since 2C' < E;. We have deg(Az NC) = (Lz - C) = h + 3u. Since
deg(AzNC) < kz =9, we have u < 3 — h/3(< 2). In particular, n < 3 since h < 9.
Since 0+ (n+6 —h —2u)l ~ Ez —2C > 0, we have n 4+ 6 — h — 2u > 0. If u = 2 then
n+ 2 > h, a contradiction. If u = 1, then (n, h) = (0, 3), (0,4), (1,5) or (2,6). If u =0,
then (n,h) = (1,5), (1,6), (1,7), (2,6), (2,7), (2,8) or (3,9).

We assume that n = 0. If 0 < Ey, then ((6™)?) = —h since deg(AzNo) = h. Thus
coeff, Fz = 2 unless h = 3. From the above claim, we must have h = 3 if n = 0.

We assume that (n, h) = (1,6), (1,7) or (2,8). By the above claim, E; = 0+ 20 if
(n,h) = (1,7) or (2,8); Ez = 0 +20+1if (n,h) = (1,6). However, by Lemmas 4.1 and
4.2, deg(Az No) < 1. This contradicts to the fact deg(AzNo) = (Lz-0) =h—3n > 2.
Therefore (n,h) = (0,3), (1,5), (2,6), (2,7) or (3,9). O

6.2.1. The case (n,h) = (0,3).

In this case, we know that F; ~ 30 + 3l. Assume that there exists an irreducible
component C' < Ez such that C' ~ o +1. Then E; = 2C + o +1. Set ) := ocNIl. Assume
that @) € C. We can assume that multg(Az N1) = 1. However, by Lemmas 4.1 and 4.2,
3 = deg(Az N1) = multg(Az N1). This is a contradiction. Thus CNo Nl = (. Set
Qs :=CnNoand Q; := CNI. Then multg Az =1, multg, Az = multg, (Az No) =2
and multg, Az = multg,(Az N1l) = 2 by Lemma 4.2. This is nothing but the type
[0;3,3] p. Assume that any irreducible component of Ey is either o or [. We consider the
case Bz = 201 + 02 + 21 + 12 (01, 09: distinct minimal sections, I, lo: distinct fibers).
Set ¢ := multg,, (Az No1) and d := multg,, (Az Nl1), where Q11 := o1 Nl1. Then
multg,, Az = c¢+d. We may assume that ¢ > d. This induces the type [033,3]22(c,d). If
Eyz =201+ 09+ 11+ 1o+ 13 (01, 09 distinct minimal sections, 1, lo, l3: distinct fibers),
then this induces the type [0;3,3]23 If EZ = 01+ 09 + 03 + ll -+ lQ + 13 (O’l, g2, 03:
distinct minimal sections, Iy, lo, l3: distinct fibers), then this induces the type [0;3,3]33.

6.2.2. The case (n,h) = (1,5).

In this case, we know that Ez ~ 30 + 4l. Assume that there exists an irreducible
component C < Ey with C ~ o + 2l. Then E; = 2C' + o and deg(Az N C) = 8. Set
Q@ := CnNo. By Lemma 4.2, multg Az = multg(AzNe) = 2. This is nothing but the type
[1;3,4]o. Assume that E; = 200 +0+42l. Set Qoo := 00cNl, ¢ := multg_ (AzNos) and
d :=multg_(Az N1). Then multg Az = ¢+ d. This induces the type [1;3,4]1(c,d).
Assume that F; = 20, + 0 + 11 + I3 (I3, l3: distinct fibers). This induces the type
(1;3,4]2.

6.2.3. The case (n,h) = (2,6).

In this case, we know that E; ~ 30 4+ 61. Assume that there exists an irreducible
component C' < Ey such that C' ~ o 4+ 3l. Then E; = 2C + o and deg(Az NC) = 8.
Set @@ := CNo. By Lemma 4.2, multg Az = multg(Az No) = 2. This is nothing
but the type [2;3,6]g. Assume that F; = 20 + 0 + 11 + I3 (I1, l3: distinct fibers).
Since Az No = 0, we have |Az| Nl C {Q1}, where Q1 := 05 NI;. By Lemma 4.2,
multg, (Az Nly) < 2. However, deg(Az Nly) = 3, which leads to the contradiction.
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Assume that Ez = 20, + 0+ 2l. Set Q := 05 NI, ¢ := multg(Az Nos) and d =
multg(Az N1). Then multg Az = ¢+ d. This induces the type [2;3,6]1(c,d).

6.2.4. The case (n,h) = (2,7).
In this case, we know that F; = 20, + 0 + [ by Claim 6.4. This case induces the
type [2;3,5]:.

6.2.5. The case (n,h) = (3,9).
In this case, we know that Ez = 20, + ¢ by Claim 6.4. This case induces the type
3;3,6].

6.3. The case Z =F,, with Kz 4+ Lz non-big.

We consider the case Z = F,, such that Kz + Lz is not big. Set Ly ~ hgo + hl,
Ez ~ eyo + el and kyz := deg Ay. Then eg = 6 — hg and e = 3(n + 2) — h hold since
E; ~ —3K; — Lyz. We remark that n > 1 by the condition (FB6).

CLAIM 6.5.  We have hg = 2 (hence eg = 4) and max{n +3,2n} <h <n+6. (In
particular, n < 6.) Moreover, kz = h —n+ 6.

PrOOF. Since Kz + Ly is nef, nontrivial, non-big and (2Kz + Ly -1) <0, hg = 2
and h > n 4+ 3 hold. Since Lz is nef, we have h > 2n. We know that Ez # 30. Thus
e =3(n+2)—h > 2n. Finally, we have kz = (Lz - Ez)/2=h—n+6. O

CLAIM 6.6. (1) The pair (n,h) is one of (1,4), (1,5), (3,6), (4,8), (5,10) or
(6,12).

(2) (i) If n =1, then there exists a nonsingular curve C with C' ~ 20 + 2l such that
2C < Egz.

(ii) If n > 3, then any irreducible component C < Ez apart from o, | is a section
of F,, /P and either C ~ o +nl or C ~ o + (n + 1)l holds. Furthermore, if
n > 4, then such C satisfies that coeffc E; = 2.

PRrROOF. Since 30 £ Ez, there exists an irreducible component C' < Ez apart from
o, 1. Set C' ~mo + (nm + w)l with m > 1, u > 0. Assume that m > 2. By Lemma 2.7,
nm?+2um—((CM)?%) = (C?)— ((CM)2) = (Lz-C)+2pa(C) = nm?+(2u+h—n—2)m+2.
Thus —((CM)?2) = (h—n—2)m+2 > 4. This implies that coeffc E; = 2. Since 2C < E,
m=2and 3n+6 — h > 2(2n + u). Hence (n, h,u) = (1,4,0) or (1,5,0).

Assume that m = 1, that is, C' is a section. By the condition (FB7), ¢ < Ey.
By the condition (FB6), Az No = @. Thus h = 2n. In particular, n > 3. We
know that deg(Az NC) = 2n+2u < kz = n+ 6. Thus u = 0 or 1. Moreover,
(CM)2) = (C?) — deg(Az N C) = —n. Thus if n > 4, then coeffc E; = 2. O

6.3.1. The case (n,h) = (1,4).

In this case, we know that Ey = 2C' 41 (C' ~ 20 + 2l nonsingular), deg(AzNC) =8
and kz = 9. Assume that [C NI| = {Q}. Then multg(Az N1) = deg(Az N1I) = 2.
Set ¢ := multg Az. By Lemma 4.5, we have multg(Az N C) = ¢ — 1. This is nothing
but the type [1;4,5]k(¢). Assume that |C' NI| = {Q1,Q2}. By Lemma 4.2 and the fact
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deg(AzNl) = 2, we can assume that |[Az|Nl = {Q1} and multgy, Az = multg, (AzNI) =
2. This is nothing but the type [1;4,5]4.

6.3.2. The case (n,h) = (1,5).
In this case, we know that Ez = 2C (C' ~ 20 + 2[ nonsingular), deg(Az NC) = 10
and kz = 10. This is nothing but the type [1;4,4].

6.3.3. The case (n,h) = (3,6).

In this case, we know that £z ~ 40 + 9] and kz = 9.

Assume that there exists an irreducible component C' < Ey with C' ~ o + 4l. Then
deg(AzNC) = 8. Since 30 £ Ey, there exists an irreducible component C’ < E;—C' such
that C” is a section apart from o. Assume that C' # C’. We can write C' ~ o + (3 + u)l
with u = 0 or 1 and deg(AzNC") = 6+2u. Thus deg(AzNCNC") > 5+2u by Proposition
2.8. However, (C - C") = 44 u. This leads to a contradiction. Thus coeffc Ez = 2. By
the condition (FBT), we have Ez = 2C' + 20 +1. Since Az No =0, CNonNl=40. This
case induces the type [3;4,9]4.

From now on, we can assume that any component of E is one of 0, o or [. Assume
that coeff, Ez = 1. By the condition (FB7), Ez = 001 + 0c0,2 + 00,3 + 0, Where 0o ;
are distinct sections at infinity. By Lemma 4.3, 0o.1 N 0002 N 00,3 = . Moreover, by
Lemma 4.4, for any @ € 0o0,i N 0o j, Az is equal to 00 i N0, j around (). This case is
nothing but the type [3;4,9]5.

Assume that coeff, 7 = 2 and 20, < Ez. Consider the case Fz = 20, +
20 4+ 201 + 1y (11, lo: distinct fibers). Set Q1 := 0 N1, ¢ := multg, (Az N o) and
d := multg, (Az Nl1). This case induces the type [3;4,9]c(c,d). Consider the case
Ey =204 +20 + 11 + 1o+ 13 (I3, Iz, l3: distinct fibers). This case induces the type
[3;4’9]D-

Assume that coeff, E7 = 2 and any other section C' satisfies that coeff¢ £z < 1.
Consider the case Ez = 0oo,1 + 0co,2 + 20 + 211 + l2 (0001, 0co,2: distinct sections
at infinity, I, lo: distinct fibers). We know that ((0e0,)?) = —3. Thus ol is a
connected component of Ejys for i = 1, 2. By Lemma 4.3, 00,1 N 002 N (I3 Uls) = 0.
By Lemmas 4.2 and 4.4, this case induces the type [3;4,9]g. Consider the case E; =
Oool +0002+20+11 +1la+13 (00,1, 0no,2: distinct sections at infinity, Iy, lo, I3: distinct
fibers). By Lemma 4.3, 0061 N 0so2 N (1 Ulo Uls) = 0. By Lemmas 4.2 and 4.4, this
case induces the type [3;4,9]F.

6.3.4. The case (n,h) = (4,8).

In this case, we know that Ey ~ 40 + 10l and kz = 10. Assume that there exists an
irreducible component C' < Ez with C' ~ o+5l. Then Ez = 2C +20 and deg(AzNC) =
10. This case is nothing but the type [4;4,10]p. Assume that oo, < Ez. Then 20,420 <
Ez. Consider the case Ez = 20 + 20 + 2. Set Q 1= 00c NI, ¢ := multg(Az N o)
and d := multg(Az N{). This case induces the type [4;4,10];(c,d). Consider the case
Ey; =204 + 20 + 11 + I3 (11, lo: distinct fibers). This case induces the type [4;4,10]5.

6.3.5. The case (n,h) = (5,10).
In this case, we know that Fy = 20, + 20 + 1 and kz = 11. This case induces the
type [5;4,11];.
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6.3.6. The case (n,h) = (6,12).

In this case, we know that Ey = 20, + 20 and kz = 12. Since deg(Az NC) = 12,
this case is nothing but the type [6;4,12].

As a consequence, we have completed the proof of Theorem 6.1.

7. Classification of bottom tetrads, I

We classify bottom tetrads (X, Ex; Az, Ax) with big 2Ky + Lx.

THEOREM 7.1.  The bottom tetrads (X, Ex; Az, Ax) with big 2K x + Lx are clas-
sified by the types defined as follows (We assume that any of them satisfies that both Ax
and Ay satisfy the (v1)-condition.):

The case X =P? and Ex =1 (L is a line) :

[1]o Ax C 1 with degAx =4 and Ay = ).

The case X =P? and Ex = C (C is a nonsingular conic) :

2] Ax C C with degAx =7 and Ay = (.
The case Ex =2l (I is a line) :

[2]14 |Ax]| = {P1, P2, Ps} such that (multp, Ax,multp,(Ax N1)) = (2,1) for any i =1,
2, 3. |Az] ={Q} with Q € 1?\ (Tp,1 UTp,1 UTp, 1) such that multg Ay = 1.

2]ip |Ax| = {P1, Py, P3} such that (multp, Ax, multp,(Ax N1)) = (2,1) for i = 1,
2 and (multp3 Ax,multPS(AX ﬁl)) = (1,1). |Az| = {Q} with Q = lZ mFP3717
Az CI'p1 and deg Ay = 2.

2lic |Ax| = {P1,P} such that (multp, Ax,multp, (Ax N 1)) = (4,2) and
(multh Ax,multpz(AX N l)) = (2, 1) |Az| = {Q} with Q S ZZ \ (thg U Fp271)
such that multg Az = 1.

2lip |Ax| = {Pi, P2} such that (multp, Ax,multp,(Ax N1) = (4,2) and
(multh AX,multpz(AXﬂl)) = (1, 1). |Az| = {Q} with Q) = lZﬁszyl, Ay C I'p, 1
and deg Ay = 2.

[2]1e(c,d) ((¢,d) = (0,0), (1,1) or (1,2)) |Ax| = {P1,P} such that (multp, Ax,
multp, (Ax N1)) = (2,2) and (multp, Ax, multp,(Ax N1)) =(2,1). degAy = 3,
deg(Az NTp o) = 2, deg(Az N1Z) = 1 such that Az N (Tp,1 UTlp, 1) = 0,
multg(Az N1%) = ¢, multg(Az NTp 2) = d and multg Az = ¢ + d, where
Q:lZﬁth

2]ir |Ax| = {P1, P} such that (multp, Ax,multp,(Ax N 1) = (2,2) and
(multp2 AX,multpz(AX N l)) = (1,].) degAz = 4, muth Ay = muth(A N
Ip,1)=2,deg(AzNTp 2) =2 and |Ag] ﬂ(lZUFle) = (), where Q := lZﬁFp%l.
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[2li¢ |Ax| = {P1, P2} such that (multp, Ax,multp,(Ax N1)) = (1,1) for any i =1, 2.
deg Az =5, deg(Az N1%) = 3 and multg, Az = multg,(Az NTp, 1) = 2 hold,
where Q; =12 N Tp 1.

2lig |Ax| = {P1, P} such that (multp, Ax,multp (Ax N 1)) = (2,1) and
(multp2 Ax,multpz(AX ﬂl)) = (]., 1) degAZ =4, deg(AZﬁlZ) =3, muth Ay =
multg(Az NTp,1) =2 and Az NTp, 1 =0 hold, where Q :==1Z NTp, ;.

[2]11 |AX| = {Pl,PQ} such that (multpi Ax,multpt(AX N l)) = (271) for any i =1, 2.
degAz =3, Ay C 12 and Az N (thl UFPQ,l) = 0.

[2]1J(c1d) ((C, d) = (070)7(131)7(271)7(371)3(172)) |AX| - {P} such that
(multp Ax,multp(AX N l)) = (2,2) degAZ = 5, deg(AZ n ZZ) = 3,
deg(AZ n Fpg) =2,AzN I'p1 = 0, c= muth(AZ n ZZ), d= muth(AZ N FRQ)
and multg Az = c+d, where Q = %N I'po.

21k |Ax|= {P} such that (multp Ax, multp(Ax NI)) = (4,2). degAy =3, Ay C 1%
and AZ OFRQ = @

[2lir |Ax| = {P} such that (multp Ax, multp(Ax NI)) = (2,1). degAz =5, Ay C I1?
and Az mFP,l = @

[2liar |Ax| = {P} such that multp Ax = 1. degAyz = 6, deg(Az NI?) =5 and
muth Ay = muth(AZ ﬂFpJ) =2, where Q = 1% Nlp;.

[2]11\/ Ax = @, degAZ =T and Az C Z.
The case X =P? and Ex =1y + o (I; are distinct lines. Set P =1y Nly.) :

[2]o4 degAx =5, deg(Ax Nl;) = 3 and multp Ax = 1. |Az| = {Q1,Q2} such that
multg, Az =1, where Q; = 17N I'pa.

[2]2p deg Ax =6, deg(AxNl;) =3 and P ¢ Ax. |Az| = {Q} such that multg Ay =1,
where Q =1 N1%.

The case X =Pl x P! :
[051,0] Ex =0, degAx =3, Ax Co and Ay = 0.

[0;1,1]p Ex = C such that C is nonsingular, C € |o + 1|, degAx =5, Ax C C and
Ay =0.

[0;1,1],(0) Ex = o + 1, degAx = 4, deg(Ax No) = deg(Ax Nl) = 2, P ¢ Ax,
degAz =1 and Q € Ay, where P=0Nl and Q =% N1%.

[0;1,1]1(1) Ex =0 +1, degAx =3, deg(Ax No) = deg(Ax NI) =2, multp Ax =1,
deg Ay =2 and Q,, Q; € Ay, where P =0Nl, Qs = UZﬂFp,l and Q; = lZme)l.
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The case X =Ty :
[1;1,0] Ex =0,degAx =2, Ax Co and Az =1).
[1;1,1]0 Ex =0, degAX =4, Ax C oy and Ay = 0.

[151,11,(0) Ex = o+, degAx =3, P € Ax, deg(Ax No) =1, deg(Ax Nl) = 2,
deg Ay =1 and Q € Ay, where P=0N1l and Q =% NI%.

[1;1,1);(1) Ex =0+, degAx =2, multp Ax =1, deg(Ax Nil) =2, deg Ay =2 and
Qs, Q€ Ay, where P=0Nl, Q, = O'ZﬂFPJ and Q; =17 NIp;.

The case X =Ty :
(2;1,0] Ex =0, degAx =1, Ax Co and Az = 0.
[2;1,1] Ex =o+l,degAx =2, Ax Cl\o,degAz =1 and Q € Ay, where Q = o?NI%.
(251,2]g Ex = 000, degAx =5, Ax C 0o and Ay = 0.

[2;1,2]14 Ex = o + 2, degAx = 4, |Ax| = {P1, P>} such that P, ¢ o and
(multp, Ax,multp,(Ax N1)) = (2,1) fori = 1, 2. degAz = 1 and Az C
lZ\(UZUFP171UFp271).

(251,215 Ex = o + 2], degAx = 3, |Ax| = {P1, P2} such that P, P, € 1\ o,
(multpl Ax,multpl(AX ﬁl)) = (2,1) and IIlul'Ep2 Ax = 1. degAZ = 2 and
muth Ay = muth(AZ ﬁFp%l) =2, where Q = 1% Nlp, 1.

[2;1,2]1¢c Ex = o + 2l, degAx = 4, |Ax| = {P} such that P ¢ o and
(multp Ax,multP(Axﬂl)) = (4,2) degAZ =1 and Ay CZZ\(O'ZUFRQ).

[2;1,2]1p(c,d) ((¢,d) = (0,0),(1,1),(1,2)) Ex = o+ 2, |Ax| = {P}, degAx = 2,
Ax C l\(f, deg Ay =3, deg(AZOlZ) =1, deg(AZOFP’Q) =2, Azﬂ(CTZUFPJ) = @,
muth(AZﬂlZ) =c, multg(AzNTp2) =d, multg Ay = c+d, where Q = ZZQFRQ.

251,21 Ex = o + 2, degAx = 2, |Ax| = {P} such that P ¢ o and
(multp Ax, multp(Ax N1)) = (2,1). degAz =3 and Az C1?\ (6?2 UTp,y).

[2;1,2]1p Ex =0+2l,degAx =1, |Ax| = {P} such that P € [\ o and multp Ax = 1.
deg Az =4, multg Az = multqg(Az NTp1) =2 and Az \ {Q} C 17\ 07, where
Q:lzﬁl—‘pyl.

[251,2)1¢ Ex =0 +2], Ax =0, deg Az =5 and Az C 17\ o%.
The case X =3 :
[3;1,0]0 Ex =0, Ax =0 and Az = 0.

We start to prove Theorem 7.1. Any tetrad in Theorem 7.1 is a bottom tetrad by
Proposition 3.13. We show the converse.
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7.1. The case X = P2,

Let (X = P?,Ex;Az, Ax) be a bottom tetrad, Lx be the fundamental divisor,
¢: Z — X be the elimination of Ax, ¢: M — Z be the elimination of Ay, E; =
(BEx)3¥" and Ey = (Ez)572 Set Lx ~ hl, Ex ~ el, kx := degAx and ky :=
deg Az. Thene=9—h, h > 6 and kx +kz = he/2 hold. Thus (h,e,kx +kz) = (6,3,9),
(7,2,7) or (8,1,4). Moreover, if h = 6 then kx < 8 holds since (Kx + Lx - Lx) > 2kx.

CLAM 7.2.  Pick any nonsingular component C < Ex.

(1) If C is a conic, then (h,((CM)?),deg(Ax N C),deg(Az N C?)) = (6,-2,6,0),
(6,-3,5,2) or (7,—3,7,0).

(2) If C is a line, then (h,((CM)?),deg(Ax N C),deg(Az N C%)) = (6,-2,3,0),
(63 737 27 2)7 (63 747 ]-7 4)7 (63 757 07 6)7 (73 737 37 ]-); (73 747 27 3)) (73 757 ]-7 5);
(7,-6,0,7) or (8,—3,4,0).

PROOF. Set m :=degC (m =1 or 2). We note that if m = 2 then h < 7. We
also note that if m = 1 and h = 8 then ((C™)?) = —2 or —3 by Corollary 3.5. We have
hm = 2deg(AxNC)+deg(AzNC%) and ((CM)?) = m? —deg(Ax NC) —deg(AzNC%).
Thus the assertion holds. O

If 2K x + Lx is big, then h = 7 or 8. We consider the case Ex =1, i.e., h = 8. Then
kx = deg(Ax Nl) =4 and kz = 0. This is nothing but the type [1]o. Now we consider
the case Ex ~ 2, ie, h=717.

7.1.1. The case Ex = C (C : nonsingular conic).
In this case, we have kx = deg(Ax NC) =7 and kz = 0. This is nothing but the
type [2]o.

7.1.2. The case Ex = 2l (I : line).

Set dx := deg(Ax NI) and dz := deg(Az N1?). By Claim 7.2, we have
(dx,dz, ((I"M)?)) = (3,1,-3), (2,3,—4), (1,5,-5) or (0,7, —6).
The case (dx,dz) = (3,1): By Lemma 4.6, one of the following holds:

(A) |Ax| = {P1, Py, Ps} such that (multp, Ax, multp,(Ax N1)) = (2,1) for any i = 1,
2, 3.

(B) |Ax| = {P1, P2, P3} such that (multp, Ax, multp,(Ax NI)) = (2,1) fori =1, 2
and (multp3 Ax,multPB(Ax n l)) = (]., 1)

(C) |Ax| = {P1,P2} such that (multp, Ax,multp (Ax N 1) = (4,2) and
(multp2 Ax, multp2 (AX N l)) = (2, 1).

(D) |Ax|] = {P1, P} such that (multp, Ax,multp (Ax N 1)) = (4,2) and
(multp2 Ax, multp2 (AX N l)) = (1, 1)

(E) |Ax|] = {P1, Py} such that (multp, Ax,multp, (Ax N 1)) = (2,2) and

(multp2 Ax, multp2 (AX N l)) = (2, 1).



Classification of log del Pezzo surfaces of index three 199

(F) |Ax] = {P1, P2} such that (multp, Ax,multp (Ax N 1)) = (2,2) and
(multh Ax,multp,z(AX n l)) = (]., 1)

Indeed, if there exist two points P, P» € Ax such that multp, Ax =1 for i =1, 2, then
deg Ay > 2. This is a contradiction.

We consider the case (A). Then kz =1 and Az NTp 1 =0 for i = 1, 2, 3. This is
nothing but the type [2]14.

We consider the case (B). Then kz = 2. Moreover, multg Az = multg(Az N
Ip,1) =2 and multg(Ayz N1%) = 1, where Q := 1% NI'p, 1. This is nothing but the type
2]15-

We consider the case (C). Then kz = 1 and Az C 1Z\ (Tp, 2 UTp,1). This is
nothing but the type [2];¢.

We consider the case (D). Then kz; = 2. Moreover, multg Az = multg(Az N
I'p, 1) =2, where Q := “n I'p, 1. This is nothing but the type [2]1p.

We consider the case (E). Then kz = 3, deg(AzNTp, 2) =2 and deg(AzNI%) = 1.
Set Q := lZﬁthQ, c:= muth(AZﬂlz) and d := multg(AzNCp, 2). Then multg Ay =
¢+ d. This is nothing but the type [2]1g(c,d).

We consider the case (F). Then kz = 4. Moreover, deg Az = 4, multg Az =
multg(Az NTp,1) = 2 and deg(Az NTp, o) = 2 hold, where Q := 12 NTp, ;. This is
nothing but the type [2]1 5.

The case (dx,dz) = (2,3): By Lemma 4.6, one of the following holds:

(G) |Ax| ={P1, Po} such that (multp, Ax,multp, (Ax N1)) =(1,1) for any i =1, 2.

(H) |[Ax| = {P,P>} such that (multp, Ax,multp (Ax N 1) = (2,1) and
(multp2 Ax,multp2 (AX N l)) = (1, 1)

(I) |Ax|={Py, P>} such that (multp, Ax, multp,(Ax NI)) = (2,1) for any i = 1, 2.
(J) |Ax| = {P} such that (multp Ax, multp(Ax N1)) = (2,2).
(K) |Ax| = {P} such that (multp Ax, multp(Ax N1)) = (4,2).

We consider the case (G). Then kz = 5. Set Q; := [ N I'p,.1. Then multg, Az =
multg,(Az NTp, 1) = 2 and multg,(Az N1Z) =1 hold. Moreover, there exists a point
Q € 1%\ {Q1,Q2} such that multg Az = 1 since dz = 3. This is nothing but the type
216

We consider the case (H). Then kz = 4. Set @ := 12 NT'p, ;. Then multg Ay =
multg(Az NT'p, 1) =2 and multg(Az N 1) =1 hold. Moreover, Az NT'p, 1 = 0. This
is nothing but the type [2]14.

We consider the case (I). Then kz = dz = 3. Moreover, Az N (I'p, 1 Ul'p, 1) = 0.
This is nothing but the type [2]1;.

We consider the case (J). Then kz = 5. Set Q := 12 NTpa, ¢ = multg(Az Ni%)
and d := multg(Az NTps). Then multg Az = ¢+ d. Moreover, (c,d) = (0,0), (1,1),
(2,1), (3,1) or (1,2) since kz = 3 and deg(Az NT'p2) = 2. This is nothing but the type
2], (c,d).

We consider the case (K). Then kz = dz =3, Az NT'py = (). This is nothing but
the type [2]1k-
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The case (dx,dz) = (1,5): By Lemma 4.6, one of the following holds:
(L) |Ax‘ = {P} such that (multp Ax,multp(AX n l)) = (2, ].)
(M) |Ax| = {P} such that (multp Ax, multp(Ax Ni)) = (1,1).

We consider the case (L). Then kz = dz =5, Az NI'py = . This is nothing but
the type [2]1r.

We consider the case (M). Then kz = 6. Set Q := 1% N I'pi. Then multg Ay =
multg(Az NTp) =2 and multg(Az NiZ) = 1. This is nothing but the type [2]1..
The case (dx,dz) = (0,7): In this case, Ay = 0, Az C [?. This is nothing but the
type [2]1n-

7.1.3. The case Ex = l; + I3 (I; : distinct lines).

Set P := Iy Nly. By Claim 7.2, ((IM)?) = ((13")2) = —3. Thus (deg(Ax N
l;),deg(Az N1Z)) = (3,1). Assume that P € Ax. Then multp Ay = 1 by Lemma
4.7. This case induces the type [2]o4. Assume that P ¢ Ax. Then multg Az = 1 by
Lemma 4.2, where @ :=[# N1Z. This case induces the type [2]25.

7.2. The case X =TF,.

Let (X =F,, Ex; Az, Ax) be a bottom tetrad such that 2K x + Ly is big, where
Lx is the fundamental divisor, ©¥: Z — X be the elimination of Ax, ¢: M — Z be
the elimination of Ay, Ey := (Ex)éx’1 and Eyy = (Ez)ff’z. Set Lx ~ hgoo + hl,
Ex ~ego+el, kx :=degAx and kz :=degAz. Then eg = 6 —hy and e = 3(n+2) —h.
Since 2K x 4+ Lx is nef and big, we have hg = 5. Thus ey = 1. We know that kx + kz =
(Lx - Ex)/2 =5n — 2h + 15.

CLAIM 7.3.  We have (n, h, kx+kz) = (0,5,5), (0,6,3), (1,8,4), (1,9,2), (2,10,5),
(2,11,3), (2,12,1) or (3,15,0).

PrOOF. We have max{5n,3n+4} < h < 3n+ 6 since Lx and 2K x + Lx are nef
and big and FEx is effective. In particular, n < 3. Moreover, if n = 0, then h > 5. If
n =1, then h > 8 since (Ex - o) <0. O

7.2.1. The case (n,h) = (0,5).

In this case, Ex ~ o 4+ 1. Assume that Ex = C, where C is nonsingular. Then
Az =0and Ax C C. This is nothing but the type [0;1,1]p. Assume that Ex = o+1[. Set
P :=onNl. Then 2deg(AxNo)+deg(AzNo?) =5 and 2deg(Ax Ni)+deg(AzNIZ) = 5.
By Lemmas 4.2 and 4.7, if P ¢ Ax then this induces the type [0;1,1];(0); if P € Ax
then this induces the type [0;1,1];(1).

7.2.2. The case (n,h) = (0,6).
In this case, Ex = 0. Thus Az = ) and Ax C o. This is nothing but the type
[0;1,0].

7.2.3. The case (n,h) = (1,8).

In this case, Ex ~ o + . Assume that Ex = 0o. Then Az = () and Ax C 0.
This is nothing but the type [1351,1]p. Assume that Ex = o + 1. Set P := o Nl. Then
2deg(AxNo)+deg(AzNo?) =3 and 2deg(AxNI)+deg(AzNI?) = 5. By Lemmas 4.2
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and 4.7, we can show that if P & Ax then this induces the type [1;1,1];(0); if P € Ax
then this induces the type [1;1,1];(1).

7.2.4. The case (n,h) = (1,9).
In this case, Ex = 0. Thus Az = () and Ax C o. This is nothing but the type
[1;1,0].

7.2.5. The case (n,h) = (2,10).

In this case, Ex ~ o + 2l.
The case Ex = 0o: Then Ay = () and Ay C 0. This is nothing but the type
2;1,2]o.
The case Ex = o + l; + Iz (I1, l2 are distinct): In this case, Ax No = () and
AzNo? =0. Thus o™, l{w < FEj; meet together. This contradicts to Corollary 3.5.
The case Ex = o+2l: In this case, AxNo = ) and AzNo? = . Set dx := deg(AxNI)
and dy := deg(Az N1?). Since 2dx + dz = 5, we have (dx,dz) = (2,1), (1,3) or (0,5).

We consider the case (dx,dz) = (2,1). One of the following holds:

(A) ‘Ax| Nl = {PI,PQ} such that (Inultpi Ax,multpi(AX N l)) = (2, 1) fori=1, 2.

(B) |[Ax| Nl = {P, P} such that (multp, Ax,multp, (Ax N1)) = (2,1) and
(mlﬂtp2 Ax,multp2 (AX n l)) = (]., 1)

(C) ‘Ax| ni= {P} such that (Hlultp AX,multp(AX n l)) = (4,2)
(D) |Ax|Ni={P} such that (multp Ax, multp(Ax N1)) = (2,2).

We can show that the case (X) (X € {A, B, C}) corresponds to the type [2;1,2]1x. We
consider the case (D). Set Q :=1ZNlpa, ¢ := multg(AzNIZ) and d := multg(AzNTpa).
Then we can show that this case corresponds to the type [2;1,2]1p.

We consider the case (dx,dz) = (1,3). One of the following holds:

(E) |Ax| Nl ={P} such that (multp Ax, multp(Ax NI)) = (2,1).
(F) |[Ax|Nnl={P} such that (multp Ax,multp(Ax N1)) = (1,1).

The case (X) (X € {E, F}) corresponds to the type [2;1,2]1x.
We consider the case (dx,dz) = (0,5). Then Ay = () and Az C [#. This is nothing
but the type [2;1,2]16.

7.2.6. The case (n,h) = (2,11).

In this case, Ex = o+1. Then AxNo = () and deg(AzNo?) = 1. Thus deg Az = 1,
|Az| = {Q}, where Q := 0% N1%. Moreover, we have deg(Ax N1) = 2. This is nothing
but the type [2;1,1].

7.2.7. The case (n,h) = (2,12).
In this case, Ex = 0. Thus Ay = () and Ax C o. This is nothing but the type
[2;1’0]'

7.2.8. The case (n,h) = (3,15).
In this case, Ex = 0, Ax = () and Az = (). This is nothing but the type [3;1,0].
As a consequence, we have completed the proof of Theorem 7.1.
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8. Classification of bottom tetrads, II.

We classify bottom tetrads (X, Fx; Az, Ax) such that X = F,,, 2K x+Lx is non-big
and nontrivial.

THEOREM 8.1.  The bottom tetrads (X, Ex; Az, Ax) such that X = F,, and non-
big, nontrivial 2K x + Lx are classified by the types defined as follows (We assume that
any of them satisfies that both Ax and Ay satisfy the (v1)-condition.):

The case X = P! x P! :
[0;2,0] Ex =20, Ax =0, degAy =6 and Ay C o%.
The case X =Ty :
[152,0] Ex =20, Ax =0, deg Ay =5 and Ay C d%.
(152,114 Ex =20 +1,degAx =2, Ax Cl\o,degAyz =4 and Ay C 0%\ 1.

152,11 Ex =20+, degAx =1, Ax Cl\ o, degAz =5, multg Az = multg(AzN
12y =2 and Az \ {Q} C 0%, where Q = c? NI%.

[1;2,2]y Ex = C with C : nonsingular and C' ~ 20 + 21, degAx =7, Ax C C and
Az =10.

[1;2,2]0,4 Ex =204, degAX =2, |Ax| = {P}, multp(AX ﬂaoc) =1, degAZ =5 and
Ay C O'OZO \FPJ.

[1;2,2]03 Ex =20, degAX =1, ‘Ax| = {P} with P € 04, degAZ =0, muth Ay =
multg(Az NTp1) =2, Az \{Q} C 0Z, where Q = 0o NT'p;.

[1;2,2]00 Ex =204, Ax =0, degAz =7 and Az C (TOZO.

[1;2,2]1,4 Ex = 20 + 2, degAx = 4, Ax no = 0, ‘Ax| = {Pl,PQ},
(multp, Ax, multp, (Ax NI;)) = (2,1) fori=1, 2, deg Az =3 and Ay C oZ \ 1.

[13272]1B Ex =20+2l, degAX =4, AxNo = (Z), ‘AX| = {P}’ (multp AX,multP(AXﬁ
D) = (4,2), deg Ay =3, Ay C 07\ 17,

[1;272]16' Ex =20+42l,degAx =2, Ax No = (Z), |Ax| = {P}, Ax Cl, degAy =5,
deg(AZ ﬂO’Z) =3, deg(AZ ﬂ].—‘p,g) =2and Az C (UZ U].—‘P,Q) \ (ZZ U].—‘p,l).

(1;2,2]1p(c,d) ((c,d) = (0,0), (1,1), (2,1), (3,1), (1,2)) Ex = 20 +2I, degAx = 2,
|Ax‘ = {P}, (multpAX,multp(AX ﬂl)) = (2,1), Ax No = @, deg Ay = 5,
AyzNTp; = 0, deg(Az N O’Z) = 3, deg(Az N lZ) = 2, muth(AZ N O’Z) = c,
multg (A Ni?)=d and multg Az = c+d, where Q = cZNi<.
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[1;272]1E(C’d) ((Cv d) = (0’0)7(171)7(271)1(3’1)) Ex =20+ 2, degAx =1, ‘AX| =
{P}, Pel\o,degAz =6, deg(Az No?) =3, deg(Az N1%) =2, multg, Ay =
muthl(AZ n FP,l) = 2, muthO(AZ n O'Z) = ¢ mutho(AZ N ZZ) = d and
multg, Az = c+d, where Qo = c?Nil% and Q1 =17 Nlpq.

[1;272]1F(c7d) ((C7d) = (070)3(171)7-'~7(331)7(172)a---a(1a4)) Ex =20 +2], Ax = 9;
degAyz = 7, deg(Az No?) = 3, deg(Az N1?) = 4, multg(Az No?) = ¢
multg(Az N 1) =d and multg Az = c+d, where Q = cZNi<.

)

[152,2]04 Ex =20+ + 1o (I3, ls : distinct fibers), deg Ax =4, AxNo =0, deg(Ax N
I1) =deg(Ax Nly) =2, deg Ay =3 and Ay C o? \ (If UI%).

[1;2,2]op Ex =20 +11 + 13 (I1, lo : distinct fibers), deg Ax =3, Ax No =0, deg(Ax N
ll) = 1, deg(AX mlg) = 2, degAZ = 47 muthAZ — muth(AZ m11Z) — 92 and
AZ\{Q} € 07 \iZ, where @ = o7 17,

[152,2]oc Ex =20+ + 1o (I1, ls : distinct fibers), degAx =2, AxNo =0, deg(Ax N
ll) = deg(AX ﬂlQ) =1, degAZ =5, muthi Ay = muthi(AZ OZZZ) =2 fO?” 1=1,
2 and Az \ {Q1,Q2} C 0%, where Q; = cZ NIZ.

The case X =Ty :

[2;2,0] Ex =20, Ax =0, deg Az =4 and Ay C oZ.
[252,1]14 Ex =20 +1,degAx =2, Ax Cl\o,degAyz =3 and Ay C 0?2\ I%.

[2;2,1]ip Ex =20+1,degAx =1, Ax Cl\ o, degAz =4, multg Az = multg(AzN
12y =2 and Az \ {Q} C 0Z, where Q = cZ NI%.

[2;292]1A Ex = 20 + 2], degAx = 4, Ax No = @, |Ax| = {Pl,PQ},
(multp, Ax, multp, (Ax N1)) = (2,1) fori=1,2, degAz =2 and Ay C %\ 1%.

252,215 Ex =20+2l, deg Ax =4, AxNo =0, [Ax[ = {P}, (multp Ax, multp(AxN
) =(4,2), degAz =2, Ay CoZ\ 7.

[2;2,2]10 EX = 20+2l, degAX = 2, AX No = [Z), |Ax‘ = {P}, AX C l, degAZ = 4,
deg(AZ ﬂO'Z) =2, deg(AZ ﬂrp’g) =2 and Az C (O’Z UFP’Q) \ (lZ Urp’l).

2;2,2]1p(c,d) ((c,d) = (0,0), (1,1), (2,1), (1,2)) Ex =20 +2l, degAx =2, |Ax| =
{P}, (multp AX7multp(AXﬁl1)) = (2,1), AxNo = @, deg Ay =4, AzﬂFpJ = (Z),
deg(AzNo?) =deg(AzNI%) =2, multg(AzNo?) =c, multg(AzNIZ) =d and
multg Az = ¢+ d, where Q = aZ NIZ.

[2;2,2]1r(c,d) ((¢,d) =(0,0),(1,1), or(2,1)) Ex =20 +2l, |Ax|={P}, degAx =1,
P e l\o, degAy = 5, deg(Az No?) = deg(Az N1%) = 2, multg, Ay =
multg, (Az NTp1) = 2, multg,(Az No?) = ¢, multg,(Az N1%) = d and
multg, Az = c+d, where Qo = c?Nil% and Q1 =17 Nlpy.
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[2;2,2]17(c,d) ((¢,d) =(0,0),(1,1),...,(1,4), or(2,1)) Ex = 20 + 2I, Ax = 0,
degAyz = 6, deg(Az No?) = 2, deg(Az N1?) = 4, multg(Az No?) = ¢
multg(Az NiZ) =d and multg Ay = ¢+ d, where Q = aZ N1%.

K

[252,2]o04 Ex =20+11 + 1y (I1, lo : distinct fibers), degAx =4, AxNo =0, deg(Ax N
1) =deg(Ax Nlz) =2,deg Az =2 and Az C o? \ (IZ U1Z).

[252,2]o5 Ex =20 +11 + 12 (11, Iy : distinct fibers), degAx =3, AxNo =0, deg(Ax N
lh) =1, deg(Ax Nl) = 2, deg Az = 3, multg Az = multg(Az NIF) = 2 and
Az \{QY C 0%\ 1Z, where Q = cZ NI¥.

[252,2]oc Ex =20+ +1s (11, I3 : distinct fibers), degAx =2, AxNo =0, deg(Ax N
ll) = deg(AX n lg) =1, degAZ =4 and muthi Ay = muthi(AZ n ZZZ) =2 fOT
i=1,2, where Q; = cZ NIZ.

[2;2,3]y Ex = o+ C with C : nonsingular, C ~ o + 3l, degAx =6, Ax C C\ o,
deg Ay =1 and Q € Ay, where Q =% NC?.

[2;2,3]H<0> Ex =0+0s +1, degAX =5 P ¢ Ax, AxNo = @, deg(AX ﬂooo) =4
and deg(Ax N1) =1, where P = 0o, NI. deg Ay =2 and |Az| = {Q, Qo }, where
Q=0%n1% and Qo = 0cZ NI%.

[2:2,3|g (1) Ex =0+400+!l,degAx =4, multp Ax =1, Ax C 00, where P = o5Nl.
deg Az = 3 and Q1, Q2, Q3 € Ay, where Q1 = 02 NI%, Qy = 0% NI'py1 and
Qs =1NTp;.

[2;2,3]241 Ex = 20+2l1+ls (11, l2 : distinct fibers), deg Ax = 6, AxNo =0, |Ax|Nl; =
{Pl,PQ}, (multp,i Ax,multpi(AX n lz)) = (2, 1) fOT’i = 1, 2, deg(AX N lg) = 2,
deg Ay =1 and Ay C 0%\ (17 UIF).

[252,3]o42 Ex = 20+2l1+1s (I, lo : distinct fibers), deg Ax =5, AxNo =0, |[Ax|Nl; =
{Pl,PQ}, (multpi AX71'I1ultpi(AX n lz)) = (2, 1) fO’f’i = 1, 2, deg(AX ﬂlg) = 1,
deg Az =2 and multg Az = multg(Az N1F) =2, where Q = oZ N1F.

[2;2,3]2p1 Ex = 20 + 211 + Iy (I1, lo : distinct fibers), degAx = 6, Ax No = 0,
|Ax‘ﬂl1 = {P}, (multp AX7multp(AXﬁl1)) = (4,2), deg(AXﬁlg) =2, degAZ =
Land Az Ca?\ (I UlF).

[2;2,3]232 Ex = 20 + 201 + 15 (ll, lo : distinct ﬁbers), degAx =5, Ax No = (Z),
[Ax|Nly = {P}, (multp Ax,multp(AxNi1)) = (4,2), deg(AxNlz) =1, deg Ay =
2 and multg Az = multg(Az N1F) =2, where @ =0 N15.

[2;2,3]oc1 Ex = 20 4 21 + 1 (14, Iz : distinct fibers), degAx = 4, Ax No = {,
[Ax|Nly = {P}, (multp Ax, multp(AxNly)) = (2,2), deg(AxNlz) =2, deg Az =
3, deg(AzNo?)=1,deg(AzNTpa)=2and Az N(ZUIZUTp;) =0.
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[252,3]oc2 Ex = 20 4 21 + Iz (Iy, ls : distinct fibers), degAx = 3, Ax No = (),
|Ax|Niy = {P}, (multp Ax, multp(AxNly)) = (2,2), deg(AxNilz) =1, deg Az =
4, muth Ay = muth(AZQZQZ) =2, deg(AZ OFRQ) =2 and Azﬂ(lleFPJ) = @,
where Q = o? N13.

[2;2,3]2p1(c,d) ((¢,d) = (0,0),(1,1),(1,2)) Ex =20+ 2ly + 1z (I1, l2 : distinct fibers),
degAX =4, AxNo = @, |Ax‘ Nl = {P}, (multpAX,multp(AX ﬂll)) = (2,1),
deg(Ax Nly) =2, deg Az =3, deg(AzNo?) =1, deg(AzNI¥) =2, multg(AzN
0?) =c, multg(AzNI%) =d, multg Az = c+d, and Az N (1 UTpy) =0, where
Q=0?nI%.

[2;2,3]ap2 Ex = 20 + 2y + 1o (1, lo : distinct fibers), degAx = 3, Ax No = 0,
‘Ax|ﬂll = {P}, (multp Ax,muh]p(Axﬂll)) = (2, 1), deg(Axﬂlg) =1,deg Ay =
4, multg Az = multg(AzNiF) = 2, deg(AzNIY) =2 and AzNIEN(c? Ul py) = 0,
where Q = a? N15.

[2;2,3]251(c,d) ((¢,d) =(0,0),(1,1)) Ex = 20 + 2l1 + l2 (I, lo : distinct fibers),
degAx =3, AxNo =0, |Ax| Nl = {P}, deg(Ax Nly) = 2, deg Ay = 4,
deg(Az N (TZ) =1, deg(Az N llz) =2, AznN ZQZ = {, multg, Ay = muthl(AZ N
Lp1) =2, multg,(Az No?) = ¢, multg,(Az NIZ) =d and multg, Az = c+d,
where Q1 = ZIZ NI'p1 and Q2 = aZ N llz.

[252,3]om2 Ex = 20 + 2ly + Iz (Iy, ls : distinct fibers), degAx = 2, Ax No = {,
‘Ax|ﬂl1 = {P}, deg(Axﬂlz) =1, degAZ =9, Hluth1 Ay = muthl (Azﬁral) =
2, multg, Az = multg,(AzNIZ) =2, deg(AzNIZ) =2 and Az No? NIZ =0,
where Q1 = llz NIpy and Q2 = aZnN lQZ.

[2;2,3]2r1(c,d) ((e,d) = (0,0),(1,1),...,(1,4)) Ex = 20 + 2l1 + lo (lh, lo : distinct
fibers), deg Ax =2, Ax Cly\o, deg Az =5, deg(AzNo?) =1, deg(AzNIF) = 4,
AzNld =0, multg(AzNo?) =c, multg(Az NIZ) =d and multg Az = ¢ +d,
where Q = aZ NIZ.

[2;2,3]2F2 Ex =20+2l1+1s (ll, lo : distinctﬁbers), degAx =1, Ax C 12\0', deg Ay =
6, multg Az = multg(Az N1Z) =2, deg(Az NIF) =4 and Az No?NIf =1,
where Q = aZ N15.

[252,3]54 Ex =20+ 11 +1la+ 13 (I1, la, I3 : distinct fibers), deg Ax = 6, Ax No = (),
deg(Ax Nl)=2fori=1,2,3,degAz =1 and Ay Co?\ (£ UIZ UI?).

[2;2,3]33 Ex =20+ +1:+ 13 (ll, lo, I3 : distinct ﬁbers), degAx =5, AxNo = (Z),
deg(Ax Nl;) =2 fori =1, 2, deg(Ax Ni3) =1, degAz = 2 and multg Ay =
multg(Az NiF) =2, where Q = a? Ni%.

The case X =g :

[3;2,0] Ex =20, Ax =0, deg Az =3 and Az C o%.
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[3;52,1]14 Ex =20 +1,degAx =2, Ax Cl\o,degAz =2 and Az C oZ \ I%.

[3;2,11 Ex =20+1,degAx =1, Ax Cl\ o, degAyz =3, multg Az = multg(AzN
17y =2 and Az \ {Q} C o, where Q = oZ N1?.

[3;2,2]1A EX = 20 + 21, degAX = 4, AX Nno = (Z), ‘Ax| - {Pl,PQ},
(multp, Ax, multp, (Ax N1)) = (2,1) fori=1,2,degAz =1 and Ay C cZ \1%.

(32,215 Ex =20+21, deg Ax =4, AxNo =0, [Ax| = {P}, (multp Ax, multp(Axn
1) = (4,2), deg Az =1 and Az C oZ \ 1%,

[3;2,2]1c Ex =20+ 2], degAx =2, AxNo = 0, |Ax| = {P}, Ax Cl, degAyz =3,
deg(AzNo?)=1,deg(AzNTpa) =2 and Az C (62 UTpo) \ (1ZUTp1).

[3;2,2]1p(c,d) ((¢,d) = (0,0),(1,1), or(1,2)) Ex =20 +2l, |Ax| = {P}, degAx =2,
(multpAX,multp(AX ﬁl)) = (2,1), Ax No = @, degAZ =3, Ay ﬁFPJ = @,
deg(AzNo?) =1, deg(Az N1%?) =2, multg(Az No?) =c, multg(AzNI%) =d
and multg Az = ¢+ d, where Q = cZ N1%.

[3;272]1E(cad) ((C7 d) = (070)’ (171)) Ex = 2U+2l7 |AX| = {P}7 deg AX =1, P e l\O’,
deg Az = 4, deg(Az No?) =1, deg(Az N1%) = 2, multg, Az = multg, (Az N
Ip1) =2, multg,(Az No?) = ¢, multg,(Az NI?) = d and multg, Az = ¢ +d,
where Q1 = 1% NIp 1 and Q2 = aZnli%.

[3;2,2]1F(C,d) ((C,d) = (0,0),(1,1),...,(1,4)) Ex = 20+ 2, Ax = (Z), deg Ay = 5,
deg(AzNo?) =1, deg(Az N1?) =4, multg(Az No?) = ¢, multg(AzNIZ) =
and multg Az = ¢+ d, where Q = aZ NIZ.

[3;2,2]o04 Ex =20+1; + 13 (I1, lo : distinct fibers), degAx =4, AxNo =0, deg(Ax N
i) =deg(Ax Nlz) =2,deg Az =1 and Az Co? \ (If UIZ).

[3;2,2]op Ex =20 +11 + 13 (l1, Iz : distinct fibers), deg Ax =3, Ax No =0, deg(Ax N
li) = 1, deg(Ax Nlz) = 2, deg Ay = 2 and multg Ay = multg(Ayz NIF) = 2,
where Q = oZ N1Z.

[3;2,3]0 Ex =0+ 0s,degAx =6, Ax C0s and Ay = 0.

[3;2,3]o4 Ex = 20+2l1+1s (I1, l2 : distinct fibers), deg Ax =6, AxNo =0, |Ax|Nl; =
{Pl,PQ}, (multpi Ax,multpi(AX ﬂll)) = (2,1) fO?“i = 1, 2, deg(AXﬂlg) =2 and
Ay =0.

[3;2,3]2 Ex = 20 + 2l1 + Iy (I1, lo : distinct fibers), degAx = 6, Ax No = 0,
|Ax‘ Nl = {P}, (multpAX,multp(AX n ll)) = (4,2), deg(AX ﬁlg) = 2 and
Ay =0.

[3;2,3|2c Ex = 20+2l1 -+l (I1, I3 : distinct fibers), deg Ax =4, AxNo =0, [Ax|Nl; =
{P}, (multp Ax,multp(Ax Ni1)) = (2,2), deg(Ax Nls) = 2, degAy = 2 and
Ay C ].—‘p72 \ (llz @] ].—‘pﬁl).
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[3;2,3]ap Ex =20+2l1+1s (I1, lo : distinct fibers), deg Ax =4, AxNo =0, |Ax|Nl; =
{P}, (multp Ax,multp(Ax Niy)) = (2,1), deg(Ax Nilz) = 2, degAz = 2 and
Az CIZ\ (0?2 UTpy).

[3;2,3]or Ex = 20 + 211 + Iz (I1, Iy : distinct fibers), degAx = 3, Ax No = {,
‘A)dﬁll = {P}, deg(AXﬂlg) =2, deg Ay =3, muth Ay = muth(AZﬂI‘p,l) =2
and Az \{Q} C1#\ oZ, where Q =12 NTp;.

[3;2,3|or Ex = 20+2l1+1s (11, lo : distinct fibers), deg Ax =2, Ax Clo\o,deg Ay =4
and Ay C 17\ oZ.

[3;2,3]5 Ex =20+ 11 + s+ 13 (I1, lo, I3 : distinct fibers), degAx =6, Ax No = (),
deg(Ax Nl) =2 fori=1,2,3 and Az = 0.

The case X =Fy :
[4;2,0] Ex =20, Ax =0, deg Az =2 and Az C o%.
[4;2,1]14 Ex =20 +1,degAx =2, Ax Cl\o,degAz =1 and Az C oZ \ I%.

452,11 Ex = 20+ 1, degAx =1, Ax C I\ o, degAz = 2 and multg Ay =
multg(Az NiZ) =2, where Q = o? NIZ.

[4;2,2]1A Ex = 20’—|—21, degAX = 4, Ax No = [Z), |Ax| = {Pl,PQ},
(multp, Ax,multp, (Ax N1)) = (2,1) fori=1, 2 and Az = 0.

[4;2,2]13 Ex =20+2l,degAx =4, AxNo = @, |Ax| = {P}, (multp Ax,multp(Axﬂ
1)) =(4,2) and Ay = 0.

[4;2,2]1c Ex =20+ 21, degAx =2, AxNo = 0, |[Ax| ={P}, Ax Cl, degAy =2
and Az CFRQ\(ZZUFPJ).

[4;2,2]10 Ex =20+2I, |Ax‘ = {P}, degAx =2, AxNo = @, (multp Ax,multp(Axﬂ
1)) =(2,1), deg Az =2 and Az C 1% \ (O'Z UFPJ),

[4;2,2]15 Ex =20 +2l, |Ax|={P}, degAx =1, Pel\o, degAyz =3, multg Ay =
multg(Az NTp1) =2 and Az \{Q} C 17\ o7, where @ =17 NTp;.

[4,2,2]11:' EX = 20+217 AX = (Z), degAZ =4 and AZ C lZ\O'Z.

[4;2,2] Ex =20 + 11 + s (l1, Iz : distinct fibers), deg Ax =4, Ax No =10, deg(Ax N
ll) = deg(AX N 12) =2 and AZ = @

The case X =Ty :

[5;2,0] Ex =20, Ax =0, deg Az =1 and Ay C 0Z.

[652,1]y Ex =20 +1,degAx =2, Ax Cl\ o and Az = 0.
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The case X =Fg :
[6;2,0] Ex =20, Ax =0 and deg Az = ().

We start to prove Theorem 8.1. Any tetrad in Theorem 8.1 is a bottom tetrad
by Proposition 3.13. We show the converse. Let (X = F,, Fx;Az,Ax) be a bottom
tetrad such that 2Kx + Lx is non-big and nontrivial, where Lx is the fundamental
divisor, ¥: Z — X be the elimination of Ax, ¢: M — Z be the elimination of A,
Ez = (Ex)3% " and Ey := (Ez)57 2 Set Lx ~ hoo+hl, Ex ~ ego+el, kx := deg Ax
and ky := degAy. Then ey = 6 — hg and e = 3(n + 2) — h. Since 2K x + Lx is nef
and non-big, we can assume that hyg = 4. Thus ¢y = 2. We know that kx + kz =
(Lx - Ex)/2=2n—h+12.

Cramm 8.2.  We have (n,h) = (0,5), (0,6), (1,7), (1,8), (1,9), ( ,9), (2,10),
(2,11), (2,12), (3,12), (3,13), (3,14), (3,15), (4,16), (4,17), (4,18), (5,20), (5,21) or
(6,24).

PROOF. Since 2Kx + Lx ~ (h—2n—4)l is nef and nontrivial, we have h > 2n+5.
Moreover, 4n < h < 3n 4 6 holds since Lx is nef and Ex is effective. In particular,
n < 6. O

We consider the case that Fx contains an irreducible component C' which is neither
o nor [. Then one of the following holds:

(1) (n,h) = (0,5) and C ~ o + L.
(2) (n,h) = (0,5) and C ~ 20 + .
(3) (n,h) = (1,7) and C = 0.
(4) (n,h) = (1,7) and C ~ o + 2.
(5) (n,h) = (1,7) and C ~ 20 + 2L.
(6) (n,h) = (1,8) and C = oec.
(7) (n,h) = (2,9) and C = 0.
(8) (n,h) = (2,9) and C ~ o + 3.
(9) (n,h) = (2,10) and C' = 0.

(10) (n,h) = (3,12) and C = oo

We consider the case (1). Then Ex = o0+ C and Ax = (). Thus kz < 1. This
leads to a contradiction. We consider the case (2). Then Ex = C and Ay = (. Thus
kz = 0. This leads to a contradiction. We consider the case (3). If coeff, Ex = 1, then
deg(Az NoZ) <1 by Lemma 4.7. Since 2deg(Ax Nos) +deg(AzNo ) =7, we have
deg(Ax Noo) = 3. This contradicts to the conditions (B7) and (B8). Thus Ex = 20.
By (B7) and (B8), we have deg(Ax Nos) < 1. Assume that deg(Ax No) = 1. Then
deg(Az NoZ) =5, |Ax| = {P}, and either (multp Ax, multp(Ax Now)) = (2,1) or
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(1,1). We can show that these cases correspond to the types [1;2,2]p4 and [1;2,2]pp
respectively. Assume that deg(Ax Nos) = 0. Then Ax = (), deg(Az NoZ) =7 and
Az C oZ. This is nothing but the type [1;2,2]oc. We consider the case (4). Then
Ex = 0+ C and deg(Az N C?%) < 2 by Lemmas 4.7 and 4.9. Since 2deg(Ax N C) +
deg(Az N C%) = 11, we have deg(Ax Nos) = 5. This contradicts to the conditions
(B7) and (B8). We consider the case (5). Then Ex = C, C' is nonsingular, Ax C C
and Az = (. This is nothing but the type [1;2,2]y. We consider the case (6). Then
Ex =0+ 00, Ax No =0 and Az No? = 0, which leads to a contradiction. Indeed,
Ejr does not contain any (—1)-curve. We consider the case (7). Then Ex = 0 + 0o +1
and 2deg(Ax Now) +deg(Az NoZ) = 9. By Lemma 4.7, we have deg(Az NoZ) =1
and deg(Az No?) = 1. Set P := 0., NI. If P ¢ Ax, then the case corresponds to the
type [2;2,3]5(0). If P € Ax, then the case corresponds to the type [2;2,3]5(1). We
consider the case (8). Then Ex = ¢ + C and 2deg(Ax N C) +deg(Az N C%) = 13. By
Lemma 4.7, we have deg(Az N C%) = 1. This corresponds to the type [2;2,3]y. We
consider the case (9). Then Ex = 0 + 0w, Ax No =0 and Az No? = 0, which leads to
a contradiction. Indeed, any irreducible connected component of Ej; is not a (—2)-curve
by Corollary 3.5. We consider the case (10). Then Ex = 0+ 04, Ax C 0o and Ay = ().
This is nothing but the type [3;2,3].

From now on, we can assume that Fx = 20 + Zgzl ¢;l;, where [; are distinct fibers
and ¢; > 0 with Zzzl ¢; = e. Indeed, if (n,h) = (0,5) and Ez = o+ o' +1, or
(n,h) = (0,6) and Ez = o + ¢’ (0, o’ are distinct minimal sections), then Ax = ) and
kz < 2. This leads to a contradiction. Set dX := deg(Ax N1;) and d? := deg(Az N1Z).
We know that 2dX + d? = 4. Thus (d¥ dZ) (2,0), (1,2) or (0,4).

()

Assume the case ¢; = 2 for some 7. Then one of the following holds:

(A) (d¥,d?) = (2,0), |Ax| = {P1, P2} and (multp, Ax, multp,(Ax NI;)) = (2,1) for

(22

t=1,2.

(B) (&, d7?) = (2,0), [Ax| = {P} and (multp Ax,multp(Ax N)) = (4,2).
(C) (d¥,d7) = (2,0), [Ax| = {P} and (multp Ax,multp(Ax N)) = (2,2).
(D) (dX,d?) = (1,2), |Ax| = {P} and (multp Ax,multp(Ax Ni;)) = (2,1).
(E) (d¥,d?) = (1,2), |Ax| = {P} and (multp Ax, multp(Ax N1;)) = (1,1).
(F) (@, df) = (0,4).

Assume the case ¢; = 1 for some i. By Lemma 4.2, one of the following holds:

(1) (d¥.d7) = (2,0).

(i)

(2) (d¥,d7) =(1,2).

(22

We note that multg Az = multg(Az N1Z) = 2 and multg(Az No?) = 1 for the
case (2) since Ax No = (), where Q :=ocZ NIZ.

8.1. The case (n,h) = (0,5).
In this case, kx = 0, j = 1 and ¢; = 1, which leads to a contradiction; neither the
case (1) nor (2) occurs.
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8.2. The case (n,h) = (0,6).
In this case, kx =0, kz = 6, Ex = 20 and deg(Az No?) = 6. This case is nothing
but the type [0;2,0].

8.3. The case (n,h) = (1,7).

Assume that j = 1. Then ¢; = 2. We can show that the case (X) (X € {A,...,F})
corresponds to the type [1;2,2]1x. More precisely, the case (X) (X € {D, E, F}) with
c:=multg(Az No?) and d := multg(Az N1#) corresponds to the type [1;2,2]1x(c,d),
where Q :=ocZ NI%.

Assume that j = 2. Then ¢; = ¢o = 1. If both I3 and [y satisfy the condition (1),
then this corresponds to the type [1;2,2]54. If [; satisfies the condition (1) and I, satisfies
the condition (2), then this corresponds to the type [1;2,2]5. If both Iy and Iy satisfy
the condition (2), then this corresponds to the type [1;2,2]s¢.

8.4. The case (n,h) = (1,8).

In this case, j = 1 and ¢; = 1. If [; satisfies the condition (1), then this corresponds
to the type [1;2,1]14. If [; satisfies the condition (2), then this corresponds to the type
[1;2,1]15.

8.5. The case (n,h) = (1,9).
In this case, kx =0, kz = 5, Ex = 20 and deg(Az No?) = 5. This case is nothing
but the type [1;2,0].

8.6. The case (n,h) = (2,9).

Assume that j = 2. Then we can assume that ¢; = 2 and ¢o = 1. We can show
that the case (X), (y) (X € {A,...,F}, y € {1, 2}) corresponds to the type [2;2,3]axy.
More precisely, the case (X), (1) (X € {D, E, F}) with ¢ := multg(Az No?) and d =
multg(Az NI7) corresponds to the type [252,3]2x1 (¢, d), where Q := oZ NZ.

Assume that j = 3. Then ¢; = ¢3 = ¢5 = 1. Since deg(Ayz No?) =1, we can assume
that either (d?,d%,d%) = (0,0,0) or (0,0,2) holds. The case (d¥,d%,d?) = (0,0,0)
corresponds to the type [2;2,3]34 and the case (dZ,d%,d%) = (0,0,2) corresponds to the
type [2;2,3]35.

8.7. The case (n,h) = (2,10).

Assume that j = 1. Then ¢; = 2. We can show that the case (X) (X € {A,...,F})
corresponds to the type [2;2,2]1x. More precisely, the case (X) (X € {D, E, F}) with
c:=multg(Az No?) and d := multg(Az NI#) corresponds to the type [2;2,2]1x(c,d),
where Q := oc? NIf.

Assume that j = 2. Then ¢; = c3 = 1. We can assume that one of (d7,d%) = (0,0),
(2,0) or (2,2) holds. We can show that the case (d¥,d%) = (0,0) corresponds to the
type [2;2,2]24, the case (dZ,d%) = (2,0) corresponds to the type [2;2,2]25, and the case
(d?,d%) = (2,2) corresponds to the type [2;2,2]2¢.

8.8. The case (n,h) = (2,11).

In this case, j = 1 and ¢; = 1. If [; satisfies the condition (1), then this corresponds
to the type [2;2,1]14. If I satisfies the condition (2), then this corresponds to the type
[2;2,1]15.
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8.9. The case (n,h) = (2,12).
In this case, kxy =0, kz = 4, Ex = 20 and deg(Az No?) = 4. This case is nothing
but the type [2;2,0].

8.10. The case (n,h) = (3,12).

In this case, we have Az No? = (). Assume that j = 2. Then we can assume that
¢1 = 2 and ¢ = 1. We know that the curve [y satisfies the condition (1). We can show
that the case (X) (X € {A,...,F}) corresponds to the type [3;2,3]ox.

Assume that j = 3. Then ¢; = ¢3 = ¢3 = 1 and (d?,d%,d%) = (0,0,0) hold. This
corresponds to the type [3;2,3]s.

8.11. The case (n,h) = (3,13).

Assume that j = 1. Then ¢; = 2. We can show that the case (X) (X € {A,...,F})
corresponds to the type [3;2,2];x. More precisely, the case (X) (X € {D, E, F}) with
c:=multg(Az No?) and d := multg(Az NIZ) corresponds to the type [3;2,2]1x(c,d),
where Q :=oZ NIZ.

Assume that j = 2. Then ¢; = ¢3 = 1. Since deg(Az No?) = 1, we can assume
that either (dZ,d%) = (0,0) or (2,0) holds. We can show that the case (d¥,d%) = (0,0)
corresponds to the type [3;2,2]24 and the case (d¥,d%) = (2,0) corresponds to the type
[3;2a2]2B-

8.12. The case (n,h) = (3,14).

In this case, j = 1 and ¢; = 1. If [y satisfies the condition (1), then this corresponds
to the type [3;2,1]14. If Iy satisfies the condition (2), then this corresponds to the type
[3;2,1]13.

8.13. The case (n,h) = (3,15).
In this case, kx =0, kz = 3, Ex = 20 and deg(Az No?) = 3. This case is nothing
but the type [3;2,0].

8.14. The case (n,h) = (4, 16).

In this case, we have Ay NoZ = (). Assume that j = 1. Then ¢; = 2. We can show
that the case (X) (X € {A,...,F}) corresponds to the type [4;2,2]1x.

Assume that j = 2. Then ¢; = ¢3 = 1 and (d?,d%) = (0,0) hold. This corresponds
to the type [4;2,2]s.

8.15. The case (n,h) = (4,17).

In this case, j = 1 and ¢; = 1. If [; satisfies the condition (1), then this corresponds
to the type [4;2,1]14. If [y satisfies the condition (2), then this corresponds to the type
[4;2,1]13.

8.16. The case (n,h) = (4,18).
In this case, kx =0, kz = 2, Ex = 20 and deg(Az No?) = 2. This case is nothing
but the type [4;2,0].

8.17. The case (n,h) = (5, 20).
We note that Ay No? = (). In this case, j = 1, ¢; = 1 and the curve [; satisfies the
condition (1). This corresponds to the type [5;2,1];.
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8.18. The case (n,h) = (5,21).
In this case, kx =0, kz = 1, Ex = 20 and deg(Az No?) = 1. This case is nothing
but the type [5;2,0].

8.19. The case (n,h) = (6,24).

In this case, kx = kz = 0 and Ex = 20. This case is nothing but the type [6;2,0].
As a consequence, we have completed the proof of Theorem 8.1.

9. Classification of bottom tetrads, III.

We classify bottom tetrads (X, Fx; Az, Ax) with trivial 2K x + Lx.

THEOREM 9.1.  The bottom tetrads (X, Ex; Az, Ax) with trivial 2Kx + Lx are
classified by the types defined as follows (We assume that any of them satisfies that Ay
satisfies the (v1)-condition.):

The case X =P? and Ex = C (C is an irreducible nodal cubic curve. Let P be the
singular point of C.) :

[B]va Ax C C\{P} and degAx = 8. Az = {Q} and degAz = 1, where Q) is the
singular point of C%.

[Blng degAx = 7, multp Ax = 1 and Ax \ {P} C C. |Az| = {Q1,Q2} and
multg, Az =1, where {Q1,Q2} = c? NIp;.

The case X = P? and Ex = C (C is an irreducible cuspidal cubic curve. Let P be
the singular point of C'.) :

[Blca Ax C C\{P} and degAx = 8. Az = {Q} and deg Az = 1, where Q is the
singular point of CZ.

[3}03 degAX =7 multpAx = 1 and Ax\{P} c C. |Az| = {Q}, muthAZ =
multg(Az NC%) = multg(Az NTpy) =2, where {Q} =CZ NTp;.

The case X =P? and Ex = C +1 (C is a nonsingular conic and 1 is a line. C' and
I meet at two points Py, Py.) :

[3]aa degAx =5, deg(Ax NC) =5, deg(Ax Nl) =2 and multp, Ax =1 fori=1,
2. deg Ay =4 and |Az| = {Qic, Qu, Q20, Qu}, where Qic == C? NTp, 1 and
Qil =14nN FP1,1~

[B]ap deg Ax =6, deg(Ax NC) =5, deg(Ax NI) =2, P, & Ax and multp, Ax = 1.
deg Az =3 and |Az| = {Q2, Qic, Qu}, where Qs := CZNI%, Qic := CZﬂthl
and Q= 1% NCp, 1.

The case X =P? and Ex = C +1 (C is a nonsingular conic and l is a line. C and
I are tangent to each other at one point P.) :
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[B]ka degAx =5, deg(Ax NC) =5, deg(Ax N1) =2 and multp Ax = multp(Ax N
C)=multp(Ax NI) =2. deg Az = 4, multg, Az = multg, (Az NC?%) =2 and
muthl Ay = muthl (AZ n ZZ) =2, where Q¢ = c%n FRQ and Q; = 1% ﬂFRQ.

Blrkp(b) (2<b<6) degAx =7, deg(AxNC) =6, deg(AxNI) =3, b=multp Ax =
multp(AX ﬂC) and multp(AX ﬂl) = 2. degAZ =2, Az C FP,b and Az N (CZ U
lZUFp,b_l) = (.

[Blrc(b) (2<b<5) degAx =6, deg(AxNC) =5, deg(AxNI) =3, b=multp Ax =
multp(AX N C) and multp(AX n l) = 2. degAZ =3, muth Ay = muth(AZ n
CZ) =2and Az \{Q} CTpy\ (ZZ UTpp—1), where Q = c?n Ipy.

The case X =P? and Ex = 2l; + 1o (I; are distinct lines. Set P :=1; Nly.) :

[3]2A<b> (1 <b< 3) degAx =5, b=multp Ax = multP(Axﬂh), multp(AXﬂll) =1,
|Ax|Nl; ={P, P} with (multp, Ax, multp, (AxNly)) = (2,2) and deg(AxNly) =
3. degAZ =4, Ay C ].—‘p,b U thg, Az N (llz U l2Z U FPl,l U Fp’bfl) = 0 and
deg(AZ m].—‘p’b) = deg(AZ N ].—‘plyg) = 2.

[3]ap1(1)(c,d) ((¢,d) =(0,0),(1,1),(1,2)) degAx = 4, |[Ax| Nl = {P,P} with
multp, Ax =1, multp Ax = 1 and deg(AxNly) = 3. deg Az =5, deg(AzNIF) =
deg(AZ mFP,l) = 2, muth2 Ay = muthQ(AZ ﬂthl) =2, Az N IQZ = @,
multg, (Az N1Z) = ¢, multg, (Az NTpy) = d and multg, Az = ¢+ d, where
Ql = llz ﬂFPJ and QQ = llz ﬂrpl,l.

[3]231<b> (2 <b< 3) degAX =4, b=multp Ax = multP(Axﬂlg), |Ax|ﬂll = {P, Pl}
with multp, Ax = 1 and deg(Ax Nly) = 3. deg Az =5, deg(AzNI%) = deg(AzN
Fp,b) =2, muth Ay = muth(AZ ﬁthl) =2and Az N (ZQZ Ul'p UFp)b_l) =0,
where Q = 17 Nlp 1.

[3]ap2(1)(c,d) ((¢,d) =(0,0),(1,1)) degAx =3, multp Ax =1, |Ax| Nl = {P, P}
with multp, Ax = 1 and deg(Ax Nly) = 2. deg Az = 6, deg(AzNI¥) = deg(AzN
Lp1) =2, multg, Az = multg, (AzNIZ) =2, multg, Az = multg, (AzNTp, 1) =
2, multg, (Az NIY) = ¢, multg,(Az NTp1) = d and multg, Az = ¢+ d, where
Qi=15NTp1, Q=1 NTp 1 and Qs =1{ NTp;.

[3]232<2> degAx = 3, multp Ax = multp(AX ﬂlz) = 2, |Ax| Nl = {P,Pl} with
multp, Ax = 1. deg Az = 6, multg Az = multg(Az NIZ) =2, deg(AzNIE) =
deg‘(AZ n Fp,g) =2, Hluth1 Ay = muthl(AZ N FPl,l) =2 and Ay m].—‘p,l = @,
where Q = 1% NI'py and Q1 = 17N I'p.1-

[3]ac1(1)(c,d) ((¢,d) = (0,0),(1,1),...,(4,1),(1,2)) degAx=3, multp Ax = 1 and
Ax C . degAZ = 6, deg(AZ ﬁllz) =4, deg(AZ ﬁFp,l) =2, Ay ﬁl2Z = (Z),
multg(AzNIZ) = ¢, multg(AzNTpy) = d, multg Ay = c+d, where Q = 1ZNTp;.

[3]201<b> (2§b§3) degAX =3, b= multp Ax = multp(AX ﬂlg), multP(AX n
I1) =1 and Ax Cly. degAy = 6, deg(Az NIY) = 4, deg(Ay NCpp) =2 and
AZ N (FP,b—l Ul2Z> = @
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[3]2c2(1)(e,d) ((¢,d) = (0,0),(1,1),...,(4,1)) degAx =2 and Ax C lz, multp Ax =
1. degAyz =7, deg(Az NI¥) =4, deg(Az NT'p1) = 2, multg, (Az NIF) = ¢,
Hluth1 (Azﬁl—‘p,l) =d, muthl Ay = c+d and muth2 Ay = muth2 (Azﬂlzz) =2,
where Q1 = llz NI'py and Q2 = l2Z Nlpy.

[3]202<2> degAX = 2 and multp Ax = multP(AX ﬂlg) = 2. degAZ =1, deg(Az n
llz) =4, deg(AZﬂFp,Q) =2, Ay OFPJ =0 and muth Ay = muth(AZQZQZ) =2,
where Q) = lzz NIpa.

[3]2(;3<b> (3 <b< 5) degAx =5, b =multp Ax = Inultp(AX N lg) + 2, Inultp(AX N
1) =1 and deg(Ax Nly) =3. deg Ay =4, Ay C 17 and Ay NCpy1=0.

[8l2n(e,d) ((c;d) =(0,0),(1,1),(1,2),(2,1)) degAx =5, P ¢ Ax, [Ax|Nl = {P1},
(multp, Ax, multp, (AxNly)) = (2,2), deg(AxNly) = 3. deg Ay =4, muth(AZﬂ
17) = ¢, multg(Az NTp, o) = d, multg Az = ¢+ d, deg(Az NIF) = deg(Az N
Fpl,g) =2,AzN (lQZ UFle) = @, where () = lIZ ﬂrpl,g.

[3}2]5 degAX =5 P Ax, ‘Ax|ﬁl1 = {Pl} with (multpl Ax, multpl(AXﬂll)) = (2, 1)
and deg(Ax Nly) =3. degAz =4, Ay ClZ and Az N(1Z UTp, 1) = 0.

[3]21:‘1 degAX = 3, P ¢ Ax, |Ax|ﬁl1 = {Pl} with multpl AX =1 anddeg(AXﬁlg) = 2.
deg Az =6, multg, Az = multg, (AzNIZ) =2, deg(Az NIF) =2, multg, Ay =
multg, (AzNTp, 1) =2, deg(AzNIF) =4, where Q1 =1#N1F and Q2 =1 NT'p, 1.

[3]21:'2 degAX = 4, P € Ax, |Ax| ﬁll = {Pl}, multpl AX = 1, deg(AX ﬂlg) = 3.
deg Az =5, multg Az = multg(AzNTp 1) =2, deg(AzNIF) =4, AzNlE =0,
where Q@ =12 NTp, 1.

[3}2(;1 degAX =2, P ¢ AX, Ax Cly. degAZ =17, muth Ay = muth(AZ QZQZ) =2
and deg(Az NI7) =6, where Q =17 N15.

[3]2(;2 degAX =3, P ﬁAx, Ax Cls. degAZ =6, Ay C lIZ and AzﬂZQZ = 0.
The case X =P? and Ex =11 +1ls+ 13 (I; are distinct lines and 1y NIlaNils = 0. Set
f)ij ::liﬂlj(1§i<j§3).)l

[3]s4 degAx = 4, multp, Ax = multp, Ax = 1, Po3s &€ Ax and deg(Ax N1l;) = 2
fOT‘i = ]., 2, 3. degAZ =5 and ‘Az| = {ng, le, ng, le, Qgg}, where
Q2 =1 NTp,1, Q1 =14 NTp,1, Quz =1 NTp,1, Qs =1ZNTp,1, and
Qa3 =1ZN1IZ.

Blsp degAx = 3 and |Ax| = {Pi2, P13, Pas}. degAz = 6 and |Az| = {Q12, Q21,
Q13, Q31, Qa23, Q32}, where Q12 =1 NTp,1, Qa1 =15 NTp, 1, Qi3 =1ZNTp, 1,
Qa1 =1 NTp,1, Q3 =1ZNTpy1 and Qs2 =12 NTp,, 1.

The case X = P! x P! ;
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[052,2]g Ex = 2C such that C : nonsingular, C ~ o +1, Ax = (), degAz = 8 and
Ay C cZ,

[052,2]1(¢c,d) ((c,d) = (0,0),(1,1),...,(4,1)) Ex =20 +2l and Ax = 0. degAyz =38,
deg(AzNo?) =deg(AzNI%) =4, multg(AzNo?) =c, multg(AzNIZ) =d and
multg Az = ¢+ d, where Q = a? NIZ.

The case X = TFy :
[252,4]g Ex =204, Ax =0, deg Az =8 and Ay C 0Z,.

[252,4]; Ex = 20+2l1+2l5 (11, Iy : distinct fibers), Ax = (), deg Ay = 8, deg(AzNIf) =
deg(Az NiZ) =4 and Az No? = 0.

We start to prove Theorem 9.1. Any tetrad in Theorem 9.1 is a bottom tetrad by
Proposition 3.13. We show the converse.

9.1. The case X = P2.
We consider the case X = P2 and Ex ~ 3l. Set v: Z =+ X, ¢: M — Z, E;, Ex,
kz and kx as in the beginning of Section 7.1. We note that kx < 8 holds.

9.1.1. The case Ex = C (C': irreducible singular cubic).

Let P be the singular point of C. We note that multp C' = 2. By Lemmas 4.7 and
4.10, CM is a connected component of Eys. Thus ((C*)?) = —3. Assume that P ¢ Ax.
Then Ez = C% and C? has a unique singular point @ (the point over P). Thus kz = 1
and |Az| = {Q}. Since ((CM)?) = -3, kx =8 and Ax C C\ {P}. This case is nothing
but the type [3]ya (if C is nodal) or the type [3]ca (if C is cuspidal). Assume that P €
Ax. By Lemmas 4.7 and 4.10, multp Ax = 1, By = CZ—&—FPJ and C7 is nonsingular. If
C is nodal, then |CZ NTp;| = {Q1,Q2}. Thus kz =2 and |Az| = {Q1,Q2} by Lemma
4.2. Since ((CM)?) = =3, deg(Ax \ {P}) =6 and Ay \ {P} C C. This case is nothing
but the type [3]yp. If C is cuspidal, then |CZ NT'p1| = {Q} and multo(CZNTpy) = 2.
Thus kz = 2 and |Az| = {Q} by Lemma 4.4. Since ((C™)?) = -3, deg(Ax \ {P}) =6
and Ax \ {P} C C. This case is nothing but the type [3]cp.

9.1.2. The case Ex = C 41 (C : nonsingular conic and [ : line that meet
C at two points).

Set {P1, P2} := C'Nl. By Lemmas 4.2 and 4.7, both C™ and M are (—3)-curves
and multp, Ax < 1. Thus deg(Ax NC) =5, deg(Az NC%) =2, deg(Ax N1) = 2 and
deg(Az N1%) = 2. By the condition (B9), we can assume that P, € Ax. If P, € Ax,
then this induces the type [3]44. If P» € Ax, then this induces the type [3]a5.

9.1.3. The case Ex = C +1 (C : nonsingular conic and [ : line that are

tangent to each other).

Set P :=|C NI, d¥ := deg(Ax N C), d& := deg(Az N C?), d¥ := deg(Ax N1)
and df := deg(Az N1%). By Claim 7.2, (d¥,dZ, ((CM)?)) = (6,0,—2) or (5,2, —3), and
(d¥,d?, ((1")?)) = (3,0,—2) or (2,2,—3). By the condition (B9), P € Ay.

Assume that multp(Ax N1) > multp(Ax N C). Then multp(Ax NiI) = b and
multp(Ax N C) = 2 by Lemma 4.9. In this case, Az NT'ps = 0. Thus ((CM)?) =
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—2. In particular, deg(Ax N C \ {P}) = 4. Since b > 3, we have b = d = 3. In
particular, Ax N1\ {P} = (). This contradicts to the condition (B9). This implies that
b=multp(Ax NC) > multp(Ax NI) =2 by Lemma 4.9.

We consider the case ((I*)?) = —=3. Set Q; := 1 NTps and Q¢ := CZ NTpy,.
Since 1M N F%Q = ), we have b = 2. Moreover, multg, Az = multg,(Az N1%) = 2
and multg,(Az NTpp) = 1. Assume that Qo € Az. Then ((CM)2) = —2. In this
case, deg(Ax NC'\ {P}) =4 and Ax NI\ {P} = (. This contradicts to the condition
(B9). Thus Q¢ € Az, ((CM)?) = =3, multg, Az = multg.(Az N C?%) = 2 and
multg. (Az NT'pe) = 1. This case induces the type [3]x 4.

We consider the case ((I*)2) = —2. If ((C™)2?) = —2, then 2 < b < 6. Moreover,
Az C Tpyp. This case induces the type [3]xp(b). If ((CM)?) = —3, then 2 < b < 5.
Moreover, multg Az = multg(Az N C%) = 2 and multg(Az NTpy) = 1, where Q =
CZ% NTpy. This case induces the type [3]xc(b).

9.1.4. The case Ex = 2l; + Iz (I; : distinct lines) and P € Ax, where
P =1;Nl,.

Set d¥ = deg(Ax N), d? = deg(Az N1#) and b = multp Ax. Then
(dfvdlzv((l{wy)) =(3,0,-2), (2,2,-3) or (1,4,—4), and (d§7d227 ((lé\/[)Q)) = (3,0,-2)
or (2,2,—-3). By Lemma 4.7, we have multp(Ax Nly) = 1. Moreover, one of the following
holds:

1 b:multp Axﬂlg §3, lM2 =—2andAZﬂlZ=(Z).
2 2

(2) b = multp(Ax Nil) < 2, (IM)?) = =3, multg Az = multg(Az NIF) = 2,
muth(AZ Ol“pyb) =1, kx 7& 4 and deg(AZ N Fp’b) = 2, where Q := IQZ N FP,b«

(3) b:multp(AX ﬂlg)+2§5, ((léw)2):—2, AZHZQZ:(Dand Axﬂh\{P}:@.

The case d¥ = 3: In this case, [Ax|Nl; = {P, P} with (multp, Ax, multp, (AxNiy)) =
(2,2). Moreover, b = multp(Ax Nly) and kx = di¥ + d¥ — 1 = 4. Therefore only the
case (1) occurs. This case induces the type [3]24(b).

The case di¥ = 2: In this case, [Ax| Nl = {P, P} and multp (Ax Nl;) = 1.
Assume that multp, Ay = 2. Then di = 3. However, in this case, we must have
multp, (AxNiy) =2 or deg(Ax Niy) =1 by the condition (B11). This is a contradiction.
Thus multp, Ay = 1. In this case, kx = 1+ d¥. Assume that I, satisfies the case (y)
for y € {1,2}. If b > 2, then this case corresponds to the type [3]apy(b). Assume the
case b=1. Set Q :==1¥ NT'py, ¢ :=multo(AzNI¥) and d := multg(Az NTp1). Then
this case corresponds to the type [3]2py(1)(c,d).

The case df¥ = 1: We can show that the case (y) (y € {1, 2, 3}) corresponds to the
type [3]acy(b) unless y € {1, 2} and b = 1. Assume that b = 1. Set Q := ¥ NT'py,
c:=multg(AzNIZ) and d := multg(Az NTpy). If y € {1, 2}, then this corresponds to
the type [3]acy(1)(c,d).

9.1.5. The case Ex = 2l; + Iz (I; : distinct lines) and P ¢ Ax, where
P=1Nls.
Let Q € Z be the inverse image of P € X. In this case, @ € Ay if and only if
((137)?) = —3. We note that dif < 2.
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The case d¥ = 2: In this case, |[Ax|Nl; = {1} and (multp, Ax, multp, (Ax Niy)) =
(2,2). Set Q1 :=1ZNTp, 2, c:=multg, (AzNI{) and d := multg, (AzNTp, ). Assume
that Q € Az. Then dy = 2 and kx = 4. This is a contradiction. Thus Q ¢ Az. This
corresponds to the type [3]2p(c,d).

The case d¥ = 1: In this case, one of the following holds:

(A) ‘Ax| Nl = {Pl} with (multpl AX7mu1tpl(AX n ll)) = (271)
(B) ‘Ax| Nl = {Pl} with (multpl Ax,multpl (AX n ll)) = (1, ].)

We consider the case (A). Assume that Q € Az. Then dy = 2 and kx = 4, a
contradiction. Thus @ ¢ Az. This corresponds to the type [3]og. We consider the
case (B). If Q@ € Ay, then this corresponds to the type [3]api. If Q@ & Ay, then this
corresponds to the type [3]ap.

The case di¥ = 0: If Q € Ay, then this corresponds to the type [3]agi. If Q € Ay,
then this corresponds to the type [3]2g2.

9.1.6. The case Ex = l; + l2 + I3 (I; : distinct lines).

Set P :=1;N1l; for 1 <i < j < 3. By the condition (B10), l; Nz Nl3 = and we
can assume that Pjo, Pi3 € Ax. By Lemma 4.6, mult Pij Ax <1 and any component of
E)y is reduced. Thus ((IM)?) = =3 for i = 1, 2, 3. If Pa3 ¢ Ay, then this corresponds
to the type [3]34. If Po3 € Ax, then this corresponds to the type [3]35.

9.2. The case X = F,,.

Let (X =F,, Ex; Az, Ax) be a bottom tetrad such that 2K x + Lx is trivial, where
Lx is the fundamental divisor. We note that Ax = () and n = 0 or 2. In particular,
Z = X. Let ¢: M — Z be the elimination of Ay, Ey := (EX)ﬁIZ’Q. Since 2K x + Lx is
trivial, we have Lx ~ 40 + 2(n + 2)l, Ex ~ 20 + (n+ 2)l and deg Az = 8.

9.2.1. The case n = 0.

Take an irreducible component C' < Ex. Assume that C' is singular. Then Ex = C.
In this case, C' has a unique singular point which is locally isomorphic to a singularity of
a plane cubic since C'is a rational curve. Thus deg Az < 1, a contradiction. Assume that
C ~0o+2l. Then Ex = C + 0 and deg Az < 2 by Lemmas 4.2 and 4.4, a contradiction.
Assume that C' ~ o + 1. If coeffc Ex = 1, then deg Ay < 3 by Lemmas 4.2 and 4.3,
a contradiction. Thus Ex = 2C. In this case, Az C C. This is nothing but the type
052,2]o.

From now on, we can assume that any component of Ex is either o or [. By Lemma
4.2, we have Ex = 20 + 2. Set ¢ := multg(Az No) and d := multg(Az N1). We may
assume that ¢ > d. Then multg Az = ¢+ d by Lemma 4.2. Moreover, deg(Az No) =
deg(Az N1) =4. This is nothing but the type [0;2,2];(¢c,d).

9.2.2. The case n = 2.

By the argument in Section 9.2.1, we have Ex = 20, or 204211 +2l5. If Ex = 20,
then this corresponds to the type [2;2,4]p. If Ex = 20 + 2l; + 22, then this corresponds
to the type [2;2,4];.

Consequently, we have completed the proof of Theorem 9.1.
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10. Structure properties.

In this section, we treat some structure properties of bottom tetrads, median triplets
and 3-basic pairs.

DEFINITION 10.1.  For the type of the form [e]s(e) (resp. [o]s(o)(®), [¢]s(e)) Of a
bottom tetrad, the form [e]s (resp. [0]¢(®), [0]s(®)) is said to be the median part of the

type.

The next proposition ensures that there is no overlapping in bottom tetrads and in
median triplets. The proof is essentially the same as [Nak07, Theorem 4.9].

PROPOSITION 10.2. (1) Let (Z;,Ez,;Az,) (i =1, 2) be median triplets such that
both give the same 3-basic pair (M, Epr). Then the type of each triplet is same.

(2) Let (X;,Ex,;;Az,Ax,) (1 =1, 2) be bottom tetrads such that both give the same
pseudo-median triplet (Z,Ez; Ay). Then the median part of each tetrad is same.

(3) Let (X,Ex;Az,Ax) be a bottom tetrad, (Z,Ez;Az) be the associated pseudo-
median triplet and (Z',Ez;Az) be another pseudo-median triplet. If both
(Z,Ez;Az) and (Z',Ez; Ayg) give same 3-basic pair, then the two triplets are
isomorphic to each other. In particular, (Z', Ezi; Ayr) is not a median triplet.

PrOOF. (1) Let Ly be the fundamental divisor of a 3-basic pair (M, Eny). If Kp+
Ly is big, then the corresponding 3-fundamental triplet is unique up to isomorphism. If
Ky + Ly is non-big, then the compositions M — Z; — P! are same. Thus the assertion
follows from the conditions (F6) and (F7).

(2), (3) Let Lz be the fundamental divisor of a pseudo-median triplet (Z, Ez, Az).
If 2K 7+ Ly is big, then the corresponding bottom tetrad is unique up to isomorphism. If
2K ; + Lz is non-big and nontrivial, then the compositions Z — X; — P! are same. Thus
the assertion follows from the conditions (56), (B87) and (B88). From now on, assume that
2K, + Ly is trivial, that is, E; ~ —Kx. We can assume that X = P2. In this case,
the weighted dual graphs of E are different if the median part of the type of bottom
tetrads are different by Table 2. Therefore the assertion follows. 0

We can give the weighted dual graphs of all of the 3-basic pairs as an immediate
consequence of Theorems 6.1, 7.1, 8.1 and 9.1.

PROPOSITION 10.3. (1) Let (Z,Ez;Az) be a median triplet and (M, Epr) be the
associated 3-basic pair. Then the symbol of the weighted dual graph of Eys is char-
acterized by the type of the median triplet and is listed in Table 3.

(2) Let (X, Ex; Az, Ax) be a bottom tetrad and (M, Enr) be the associated 3-basic pair.
Then the symbol (see Table 1) of the weighted dual graph of Ep is characterized
by the type of the bottom tetrad and is listed in Tables 4, 5 and 6.



Classification of log del Pezzo surfaces of index three 219
Table 2. The weighted dual graphs of Ez for the bottom tetrads (X = P?,
Ex; Az,Ax) with Ex ~ —Kx.
part of the type Graph part of the type Graph
(nodal)
Blva Blvs 0®0)
(1) (1) (1)
(cuspidal)
Blca Blen
(1) (1) (1)
0 ;
(1)
(344 AN 355 69 .
1) @) (1)
O—0—0 O—0—0
3 (1) (2) (1) 3 b @ @ (2 @
3]k a © 3]k B(b) |
(1) (b + 2 vertices) (1)
OG- OO O OO0
[3] ko (b) W @@ & W [3]2.4(b) oHo@ @ @ @ M
(b + 2 vertices) 1 (b + 4 vertices)
—0—0-—-—0—0—-0
[3]2p1(b) o o@ @ @ @ | [3lap2(1) O—D—D—O
(b + 3 vertices) (1) (2) (2) (1)
O—0—0—"~0—0©
[3]2B2(2) O—D)—@O—O—0O [3]2c1(b) o @ @ @ @
o @ @ @ @ (b + 3 vertices)
[82c2(1) O—0—© [8]202(2) O—0——0©
1 @2 @ 1 (2 (2 (@
OO
(2 (@2 (2 @
[3]2c3(b) [3J2p O—0—0—0O
(b + 1 vertices) (1) (1) (2) (2) (1)
[3]2r 000G [3]21 O——0O
L @ @ 1 (2 @
[3]2r2 O—(0—0O [3l2c1 @—@
1) (2 (1 (1) (2)
O—@
(1) (1)
[3]2G2 @—@ [3]3A o o 1)
(1) (2)
(1) (1)
O—O—OW
(1)
3] O—0—0
(1) (1) (1)
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Table 3. The symbol of the weighted dual graph of Ej; for median
triplets.
’ Type ‘ Symbol H Type ‘ Symbol ‘
[4]0 A1(2) [4]2(C,d) As(c d)+2(2 2)
5] D4(2) + Ay (1) [5]4 As(1,1) + A1
[5]3(c,d) As(edyra(l, 1) + A1 (1) [5]4 Dy(1) +3A,(1
0;3,3]22(¢c,d) | Agcayrall, 1) +2A4(1) [0;3,3]23 D4( ) +4A,(1
053,353 6A1(1) [1;3,4]o As(1,2) + A4 (1
[1;3,4]1(C,d) AS(C d +3(1 2) + Al( ) [1;3,4]2 Ag(l 1) + 3A1( )
[1;434] Al( ) [1;4a5]K(c> Dc+1(2)
[134,5]4 As(1,1) 2:3,5]1 | Ax(1,2) + 2A(1)
[2;376}0 AZ(L 2) [2;376]1(6711) As(c,d)+3(17 2)
3:3,0) A+ A2 354,904 As(,1)
[3;4,9]5 4A4(1) [3;4,9]¢(c,d) Ageay+5(1,1)
[3;4,9][) 2D4(1) [3;4,9]E D5(1) + 2A1(1)
(354,97 Dy(1) + 2A:(1) [4;4,10], A5(2,2)
[4,4,10}1(C,d) As(c,d)+3(272) [4,4,10]2 2A3(1, 1)
[5:4,11]; 2 A(1,2) 64,12 2A.(2)

Table 4. The symbol of the weighted dual graph of E;; for bottom
tetrads with big 2Kx + Lx.

’ Type ‘ Symbol H Type ‘ Symbol ‘
[1]o A(1) [2]o Aq(1)
[2]14 Dy4(1) 2]iB D4(1) + Aq(1)
2]ic Ds(1) [2]ip Ds(1) + Aq4(1)

[2]1£(c,d) Age,ay+a(1,1) [2]1 Ay(1,1) + Ay(1)
2l Az(1,1) +2A,(1) [2]11 Az(1,1) + Ay (1)
[2]17 Az(1,1) 2]17(c,d) | Agcay+3(1,2)
21k Dy4(2) 2]1L As(1,2)
[2]10m As(L,2) + A (1) [2]1n A1(2)
[2]24 3A4(1) 2]25 2A:.(1)
[0;130} Al(l) [05111} Al(l)

[0;1,1],(0) 2A:(1) [0;1,1];(1) 3A1(1)
[1;1,0] A(1) [1;1,1] Ai(1)

[1;1,1]1<O> 2A1(1) [1;1,1}1<1> 3A1(1)
[2;170} Al(l) [2;131] 2A1(1)

2;1,2]o Ai(1) [2;1,2]1 4 Dy(1)

(251,25 Dy(1) +Aq(1) [2;1,2]:¢ D5(1)

[2;1a2]1D(C?d) Aa(cd +4( 1) [2;1’2}115 A3(1a 1)

[2;1,2}11? A3(1 1) +A1(1) [2;1,2]1G A2(1,2)

3;1,0]o Aq(1)
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Type ‘ Symbol H Type ‘ Symbol ‘
[052,0] Ai(2) [1;2,0] A1(2)
[1;2,1]1A A2(1,2) [1;2,1]13 A2(1,2) +A1(1)
[1,2,2][] Al(l) [1;2,2]&4 A2(172)
[1,2,2]03 A2(1,2) —|—A1(1) [1;2,2]00 A1(2)
[1;2,2]1A D4(2) [1;2,2]13 D5(2)
[1;2,2]1¢ A4(L,2) [1;2,2]1p(c,d) Agie,ay+3(1,2)
[1;2,2)1p(c,d) | Ageayt3(1,2) + Ai(1) || [152,2]1r(c,d) Ase12(2,2)
[1,2,2]2A Ag(l 1) [1,2,2]23 Ag(l,l) +A1(1)
[1;2,2]20 Ag(l, 1) —|— 2 Al(l) [2;2,0] A1 (2)
[2,2,1]1A A2(1,2) [2,2,1]13 A2(1,2) +A1(1)
[2;2,2]14 D4(2) [2;2,2]15 D5(2)
(252,21 Ay(1,2) [252,2]1p(c,d) Asea13(1,2)
(2;2,2]ip(c,d) | Ageay13(1,2) + Ai(1) || [252,2]1r(c,d) Age,a)+2(2,2)
[2,272]2A A3(1,1) [2,2,2]23 Ag(l,l) +A1(1)
2;2,2]>c As(1,1) +2A4(1) 252,3]v 2A:(1)
252,3] 1 (0) 3A.(1) 252,3] 1 (1) 4A,(1)
[252,3]241 Ds5(1) 2;2,3]242 D5 (1) + Aq(1)
22,3251 Dg(1) [2;2,3]252 Dg(1) + Ai(1)
2;2,3]2c1 As(1,1) 2;2,3]202 As(1,1) + Ay(1)
(252,3]2p1(c,d) Aseayra(l, 1) [252,3]2p2 | Ase,a)+4(1, 1) + As(1)
(252,3]2p1(c,d) | Ay, d)+4(1 1)+ Aq(1) [2;2,3]2m2 Ay (1,1)+2A4(1)
[2;2,3]2F1(C,d) s(c d)+ (172) [2;2,3]2F2 A3(1,2) +A1(1)
2;2,3]34 Dy(1) 2;2,3]35 Dy(1) + Ai(1)
[3;2,0] Aq(2) [3;2,1]14 As(1,2)
[3,2,1]13 A2(1,2) —|—A1(1) [3;2,2]1,4 D4(2)
352,215 D5(2) 352,2]1c A4(1,2)
[3;292]1D(c7d) As(c d)+3(17 2) [3;232]1E(c;d) As(c,d)+3(1» 2) + Al(l)
[3;2,2]1F(C,d) AS(C d)+2(272) [3;2,2]2,4 Ag(Ll)
[3,2,2]23 Ag(l 1) Al(l) [3,2,3]0 2A1(1)
[3;2,3]2A D5(1) [3;2,3]23 D6(1)
[3;2,3]20 A5(1, 1) [3;233]2D AA4(].7 ].)
[3;233]2E A4(1,1) +A1(1) [3;233]2F Ag(l,?)
352,3]3 Dy(1) 4;2,0] A1(2)
[4,2,1]1A A2(1,2) [4,2,1]13 A2<1,2) +A1(1>
[4;272]1A D4(2) [4;2,2]13 D5(2)
[4;2,2]10 A4(1,2) [4;2,2]1D A3(172)
[4;2,2]1E A3(1,2) +A1(1) [4;2,2]1F A2(2,2)
452,2] As(1,1) [552,0] A1(2)
[5;2a1]1 A2(1a2) [6;230] A1(2)
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Table 6. The symbol of the weighted dual graph of Fj; for bottom
tetrads with 2K x + Lx ~ 0.

] Type \ Symbol H Type \ Symbol ‘
[3lna Ai(1) Blns 2A:(1)
[3]ca A1) [Blcs 2A,(1)
[3]aa 4A,(1) 3]an 3A:(1)
[B]xca D,s(1) +2A:(1) 3] 5(b) Dy+2(1)

[Blkc(b Dyio(1) + As(1) [3]24(b) Apya(1,1)
[Bl2p1(1)(€,d) | Agcay+a(L 1) +A1(1) || [Bl2B1(b) | Apis(l) +Ai(1)
Blam2 (1) (€:d) | Auieyoa(L 1)+ 2A;(1) || [Blame(2) | As(L 1)+ 2A,(1)
[82c1(1)(¢,d) As(e,d)+3(1,2) [3]2c1(b) Apy2(1,2)
[8lac2(1)(€,d) | Ageay+3(1,2) +A1(1) || [Blaca(2) | A4(1,2) + Aq(1)

3J2c3(b) Dp+1(2) [Blan(c,d) | Ag(eay+a(l,1)
3lon As(1,1) Blar | As(L,1) £ 2A:(1)
3o As(L D)+ A(D) Blacr | Aa(1,2) + Ar(D)
[32c2 As(1,2) 334 5A4(1)
Bz 6 A (1) 0:2,2]5 e
052,2]1(c,d) As(ed)+2(2,2) 252,4]o A1(2)
[2’274]1 A3(27 2)

Finally, we consider the anti-canonical volumes (—Kg)? of log del Pezzo surfaces S
of index three.

PROPOSITION 10.4.  Let S be a log del Pezzo surface of index three and (M, Eyy)
be the 3-basic pair corresponding to S (see Proposition 3.4).

(1) Assume that a median triplet (Z, Ez; Az) satisfies that the associated 3-basic pair
is isomorphic to (M, Epr). Then the value 3 - (—Ks)? is characterized by the type
of the median triplet and is listed in Table 7.

(2) Assume that a bottom tetrad (X, Ex; Az, Ax) satisfies that the associated 3-basic
pair is isomorphic to (M, Ey). Then the value 3 - (—Kg)? is characterized by the
type of the bottom tetrad and is listed in Table 7.

PROOF. Let Ly be the fundamental divisor of (M, Ejs). Then we have 3 -
(—Ks)?>=(1/3) - (=3Ky — Epr - Lay) = (=Kar - Lag).

(1) Let Lz be the fundamental divisor of (Z, Ez; Az). Then (=K - L) = (—-Kz -
Lz) — deg Az.

(2) Let Lx be the fundamental divisor of (X, Ex; Az, Ax). Then (=K - L) =
(7KX . Lx) — QngAX — degAZ.

Thus the assertion immediately follows from Theorems 6.1, 7.1, 8.1 and 9.1. O

As a consequence, we have the following.

COROLLARY 10.5. The set
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{3-(=Ks)? | S: log del Pezzo surface of index three}

is equal to the set

{1,2,3,4,...,23,24,25,26,29, 32}

Table 7. The value 3- (—Kg)? for the associated median triplet or for
the bottom tetrad.

| 3(—Ks)? | Type
] [B]nva, [B]ca, [1:4,5]k(c), [134,5]4, [3;4,9]4, [3;4,9]5
[3;439]0(67‘1)’ [3;439]D7 [3§4>9]Ea [3;479]F
9 BInB, [Bles, [B]kp(b), 5]k, [5]a, [5]3(c,d), [5]4, [5]5,
[1;4,4], [4;4,10]0, [4;4,10]:(c,d), [4;4,10]>
3 [B]as, [3]kc(b), [053,3]p, [0;3,3]22(c,d), [0;3,3]3,
[033’3]3& [2;3,6}03 [27376] (C, )v [54 11]
4 [8]aa, [B]ka, [3l2a(b), [3lacs(b), [3]2n(c,d), [3]2k,
[1;232}U7 [1;3?4]0’ [1§3’4]1(c7d)a [1;374]2a [6§4312]0
5 [8251(1)(¢,d), [3]251(b), [3]2r2, [3]34, (4]0, [4]2(c,d),
[252,3]v, [232,3]241, [2;2,3]2B1, [2;2,3]34, [2;3,5]1
[8252(1)(¢,d), [3]252(2), [3lac1(1)(e,d),
6 [3}201<b>7 [3]2F17 [3]26'23 [3]337 [2;293]H<0>>
(252,3]242, [232,3]2p2, (252,335, [3;3,6]
. [2]o, [3]2c2(1)(€,d), [3]2c2(2), [Bl2c1, [152,2]14, [152,2]1B,
[1;232}2‘4, [2;273]H<1>7 [2§2a3]26‘17 [2;273]2D1(67d)
[2]1147 [2]16‘; [2}237 [0;272]07 [0;2,2]1(C,d), [1;2’2]233
8 (252,3]202, [2;2,3]2p2, [2;2,3]251(c,d), [252,4]0,
2;2,4]1, (352,30, [352,3]24, [3;2,3]25, [3;2,3]3
9 (2B, [2]iDs [2]24, [152,2]04, [152,2]ic,
(1;2,2]1p(c,d), [132,2]ac, [252,3]2p2, [252,3]2r1(c,d)
21e(c,d), [2]11, [2]ik, [051,1]0, [152,2]0B,
10 [152,2]1(c,d), [2;1,2]0, [2;2,2]14, [2;2,2]1B,
(252,2]24, [2;52,3]2r2, [3;2,3]20, [3;2,3]2p
1 (2]1ir, [21m, [051,1]1(0), [152,2]oc, [152,2]1r(c,d),
(251,2]14, [2;1,2]1c, [252,2]28, [3;2,3]2p
12 2l1ia; [215(c,d), [2]1, [051,1]1(1), [152,1]14, [251,2];B,
[2’2’2]103 [2;232}1D(03d)7 [2;272]207 [3§2>3]2F
13 [2]1M, [171?1]0> [1;271]133 [2;1’2]1D(Cyd)7 [2;132}1Ea
[2,2 2]1E(c,d), [3;2,2]1A, [3;2,2]13, [3;2,2]2A
14 [2]1n, [052,0], [151,1]:(0), [2;1,2];F,
[2;2a2]1F(c’d)a [3;2’2}2B
15 [1;1’1]1<1>7 [2;192]1G7 [2;231]1147 [3;292]1C7 [3;232]1D(c7d)
16 [1]07 [0;130]7 [2;2a1]137 [3§2?2]1E(C)d)7
[4;272]1A7 [4;272]137 [4;232]2
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17 [1;2,0], [251,1], [3;2,2]1r(c,d)
18 [3;231]1.4, [4;232]1C7 [4;2?2]1D
19 [1;1,0], [3;2,1]15, [4;2,2]ir
20 [2;2,0], [4;2a2]1F
21 [4;2’1]1A
22 (2;1,0], [452,1]:p
23 3;2,0]
24 5:2,1];
25 [3;1a0]0
26 [4;2,0]
29 [5;2,0]
32 [6;2,0]
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