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Abstract. We study a divisorial contraction π : Y → X such that π contracts
an irreducible divisor E to a point P and that the discrepancy of E is 1 when P ∈ X
is a 3-dimensional terminal singularity of type (cD/2) and (cE/2).

1. Introduction.

Let Y be a normal projective 3-fold with only Q-factorial terminal singularities.
If KY is not nef, then there is an extremal contraction π : Y → X which is either a
birational morphism or of fiber type. Extremal contractions of fiber type are called Mori
fiber spaces, and birational extremal contractions are divided into divisorial contractions
and flipping contractions. The aim of this article is to study divisorial contractions. Since
Mori completed the minimal model program for 3-folds in [10], it has been recognized
that one has to know divisorial contractions explicitly for further study of 3-folds. Recent
progress of Sarkisov program, which studies birational maps between Mori fiber spaces,
shows that it is indispensable to know divisorial contractions explicitly ([1], [2], [3]).

We study divisorial contractions π : Y → X starting from X and we regard π as
extractions. Since X has only terminal singularities, we define divisorial contractions
as follows: Let P ∈ X be a germ of a 3-dimensional terminal singularity. A projective
birational morphism π : Y → X is called a divisorial contraction if (i) Y has only terminal
singularities, (ii) −KY is π-ample and (iii) the exceptional set E of π is an irreducible
divisor. In this situation, we write KY = π∗KX + a(E, X)E with a(E, X) ∈ Q. The
coefficient a(E, X) of E is called the discrepancy of E over X. If we further assume that
π(E) = {P}, i.e., π|Y \E : Y \ E → X \ P is isomorphic, then we write π : (E ⊂ Y ) →
(P ∈ X) for the divisorial contraction π.

Let π : (E ⊂ Y ) → (P ∈ X) be a divisorial contraction. Then Kawakita ([7], [8])
showed that a general member of |−KY | has only rational double points as singularities.
If we further assume that P ∈ X is of index m ≥ 2, then we know the explicit description
of divisorial contractions π : (E ⊂ Y ) → (P ∈ X) when P ∈ X is of type (cA/m) ([8])
and when a(E, X) = 1/m ([4], [5]). Moreover if P ∈ X is not of type (cA/m) and
if a(E, X) ≥ 2/m, then π : (E ⊂ Y ) → (P ∈ X) satisfies one of the following Table 1.
(We reproduce the table in [8].)

Kawakita ([8]) also provided the explicit description of π in cases (d) and (e) of
Table 1. Our purpose here is to study divisorial contractions in cases (a), (b) and (f) of
Table 1, all of which satisfy a(E, X) = 1. We shall not treat the case (c) in Table 1 here.

2000 Mathematics Subject Classification. Primary 14E30, 14E05.

Key Words and Phrases. divisorial contraction, terminal singularity.



652 T. Hayakawa

Table 1.

P ∈ X a(E, X) singularities on Y at which E is not Cartier

(a) (cD/2) 1
1

4l + 2
(1,−1, 2l − 1), l ≥ 1

(b) (cD/2) 1 {xy + z4lk + u2 = 0}/ 1
4l

(1,−1, 2l − 1, 0), k, l ≥ 1

(c) (cD/2) 2
1

4l + 2
(1,−1, 2l − 1), l ≥ 1, l ≡ 0 or 3 (mod 4)

(d) (cD/2) a/2
1
r

(
1,−1,

a + r

2

)
,

1
r + 2

(
1,−1,

a + r + 2
2

)
, a, r odd

(e) (cD/2) a/2
1
r

(
1,−1,

a + r

2

)
,

1
r + 4

(
1,−1,

a + r + 4
2

)
, a + r even

(f) (cE/2) 1
1
6
(1, 5, 5),

1
2
(1, 1, 1)

Our strategy for classifying divisorial contractions with discrepancy one is very
simple. In [6], we determined the number of divisors E over P (∈ X) with a(E, X) = 1
for each terminal singularity P ∈ X, which is always finite. Hence we shall extract these
divisors E one by one. As in [4] and [5], we can do this by embedding X into 4 or
5-dimensional cyclic quotient singularities and constructing certain weighted blow ups of
X. Let π : Y → X be one of these weighted blow ups. Then the remaining task is to
study singularities of the variety Y . In general Y has only canonical singularities, and we
shall determine when Y has only terminal singularities. Since there are infinitely many
divisors with discrepancy two over P (∈ X), our method can not be applied to classify
divisorial contractions in case (c) of Table 1.

Our result shows that there are only a few divisorial contractions π : (E ⊂ Y ) →
(P ∈ X) with a(E, X) = 1. In fact, as shown in [8] by examples, P ∈ X has such
divisorial contractions only when the defining equation of X has some special terms. We
shall state our main results as follows:

Theorem 1.1. Let P ∈ X be a germ of a 3-dimensional terminal singularity of
type (cD/2). Then there is a divisorial contraction π : (E ⊂ Y ) → (P ∈ X) with
a(E, X) = 1 if and only if one of the following (i), (i′), (ii), (ii′) or (iii) holds:

(i) There is a positive integer l and an embedding of X into a 4-dimensional cyclic
quotient singularity (x, y, z, u)/ 1

2 (1, 1, 1, 0) such that

X = {x2 + y2u + s(z, u)yzu + r(z)y + p(z, u) = 0}/1
2
(1, 1, 1, 0),

where s(z, u) =
∑

2i+j=2l−2 sijz
2iuj, r(z) =

∑
i≥l riz

2i+1 and p(z, u) =
∑

2i+j≥4l

pijz
2iuj with p2l,0 6= 0.
(i′) There is an embedding of X into (x, y, z, u)/ 1

2 (1, 1, 1, 0) such that
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X = {x2 + yzu + y4 + z2b + uc = 0}/1
2
(1, 1, 1, 0)

with b ≥ 2, c ≥ 4.
(ii) There is a positive integer l and an embedding of X into a 5-dimensional cyclic

quotient singularity (x, y, z, u, t)/ 1
2 (1, 1, 1, 0, 0) such that

X =

{
x2 + ut + r(z)y + p(z, u) = 0,

y2 + s(z, u)zx + q(z, u)− t = 0

}/
1
2
(1, 1, 1, 0, 0),

where r(z) =
∑

i≥(l+1)/2 riz
2i+1, p(z, u) =

∑
2i+j≥2l+2 pijz

2iuj, s(z, u) =
∑

2i+j=l−2

sijz
2iuj and q(z, u) =

∑
2i+j=2l qijz

2iuj with either
(a) l ∈ 2Z, ql,0

2 + sl/2−1,0
2pl+1,0 6= 0,

(b) l ∈ 2Z + 1, s(z, u) 6= 0, pl+1,0
2 + ql,0r(l+1)/2

2 6= 0, or
(c) l ∈ 2Z + 1, s(z, u) = 0, pl+1,0

2 + ql,0r(l+1)/2
2 6= 0, and q(z, u) is nonzero and is

not a square of a polynomial in z, u with only odd degree terms in z.
(ii′) There is an embedding of X into (x, y, z, u, t)/ 1

2 (1, 1, 1, 0, 0) such that

X = {x2 + ut + y4 + z4 = 0, yz + u2 − t = 0}/1
2
(1, 1, 1, 0, 0).

(iii) There is a positive integer l and an embedding of X into (x, y, z, u, t)/
1
2 (1, 1, 1, 0, 1) such that

X = {x2 + yt + p(z, u) = 0, yu + s(z, u)zu + r(z)− t = 0}/1
2
(1, 1, 1, 0, 1),

where p(z, u) =
∑

2i+j≥4l+2 pijz
2iuj, s(z, u) =

∑
2i+j=2l−1 sijz

2iuj and r(z)
=

∑
i≥l riz

2i+1 with rl 6= 0.

In case (1.1)(i), the blow up π : Y → X with weight (2l, 2l, 1, 1) is a diviso-
rial contraction with discrepany 1. There is one non-Gorenstein point on Y at which
the exceptional divisor is not Cartier. The point is isomorphic to {xy + z4l + u2

= 0}/ 1
4l (1,−1, 2l − 1, 0), which is a terminal singularity of type (cA/4l) and deforms

to two cyclic quotient terminal singularities 1
4l (1,−1, 2l − 1).

Similarly, in case (1.1)(i′), the blow up π : Y → X with weight (2, 2, 1, 1) is a
divisorial contraction with discrepany 1. There is one non-Gorenstein point on Y at
which the exceptional divisor is not Cartier, which is isomorphic to {xy + z4(b−1) + u2

= 0}/ 1
4 (1,−1, 1, 0). A part of this case is contained in case (i).

In case (1.1)(ii), the blow up π : Y → X with weight (l + 1, l, 1, 1, 2l + 1) is a
divisorial contraction with discrepany 1. There is one non-Gorenstein point on Y at
which the exceptional divisor is not Cartier. The point is a cyclic quotient terminal
singularity 1

4l+2 (1,−1, 2l − 1). The case (1.1)(ii′) is a special case of (ii)(c) with l = 1.
In case (1.1)(iii), the blow up π : Y → X with weight (2l + 1, 2l, 1, 1, 2l + 2) is a

divisorial contraction with discrepany 1. There are exactly two non-Gorenstein points
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on Y at which the exceptional divisor is not Cartier. These points are cyclic quotient
terminal singularities 1

4l (1,−1, 2l − 1) and 1
4l+4 (1,−1, 2l + 1).

Theorem 1.2. Let P ∈ X be a germ of a 3-dimensional terminal singularity
of type (cE/2). Then there is a divisorial contraction π : (E ⊂ Y ) → (P ∈ X) with
a(E, X) = 1 if and only if there is an embedding of X into (x, y, z, u)/ 1

2 (0, 1, 1, 1) such
that

X =

{
u2 + x3 + 3νx2z2 +

∑
i+j≥4,even aijy

izjx

+
∑

i+j≥4,even bijy
izj = 0

}/
1
2
(0, 1, 1, 1),

with ν ∈ C, aij = 0 if 3i + j ≤ 4, bij = 0 if 3i + j ≤ 8 and b40 6= 0, b08 6= 0.

In (1.2), we embed X as in the theorem, then the blow up π : Y → X with weight
(3, 2, 1, 4) is in fact a divisorial contraction with discrepancy 1. There are two non-
Gorenstein points on Y , which are isomorphic to 1

6 (1, 1, 5) and 1
2 (1, 1, 1). The exceptional

divisor is not Cartier at these points.
As we mentioned above, we study divisorial contractions π : (E ⊂ Y ) → (P ∈ X)

with a(E, X) = 1 by extracting divisors from P ∈ X, and we shall use classification of
terminal singularities due to [9]. In sections 2 and 3, we shall deal with the case P ∈ X

is of type (cD/2). The case P ∈ X is of type (cE/2) will be treated in section 4.

2. Terminal singularities of type (cD/2-1).

Let P ∈ X be a germ of a 3-dimensional terminal singularity of type (cD/2). By
[9], there is an embedding of X into (x, y, z, u)/ 1

2 (1, 1, 1, 0) such that

X =





{x2 + yzu + y2a + z2b + uc = 0}/1
2
(1, 1, 1, 0) or

{x2 + y2u + h(z)y + g(z, u) = 0}/1
2
(1, 1, 1, 0),

where a, b ≥ 2, c ≥ 3, h(z) =
∑

i≥1 biz
2i+1 ∈ C{z}, g(z, u) =

∑
i,j aijz

2iuj ∈
(z4, z2u2, u3)C{z2, u}. In this section, we shall study the first half of terminal singu-
larities of type (cD/2). The remaining (cD/2) case will be treated in section 3.

Theorem 2.1. Let P ∈ X be a germ of a 3-dimensional terminal singularity of
type (cD/2), and assume that there is an embedding of X into (x, y, z, u)/ 1

2 (1, 1, 1, 0)
such that

X = {x2 + yzu + y2a + z2b + uc = 0}/1
2
(1, 1, 1, 0) (2.1.1)

with a, b ≥ 2 and c ≥ 3. Then there is a divisorial contraction π : (E ⊂ Y ) → (P ∈ X)
with a(E, X) = 1 if and only if one of the following holds:

(i) c ≥ 4, a = 2. (ii) c ≥ 4, b = 2. (iii) c = 3, a = b = 2.
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Proof. We embed X as in (2.1.1) and let π1 : Y1 → X be the blow up with weight
(2, 1, 1, 2). Then the exceptional set E1 of π1 is a Z2-quotient of

Ẽ1 = {x2 + yzu + δa,2y
2a + δb,2z

2b = 0} ⊆ P (2, 1, 1, 2),

hence E1 is an irreducible divisor over P (∈ X). (Here δij means the Kronecker’s symbol,
so that δij = 1 if i = j and δij = 0 if i 6= j.) It also satisfies a(E1, X) = 1. The y-chart
of Y1 is isomorphic to

{x2 + zu + y2a−4 + z2by2b−4 + ucy2c−4 = 0}/1
2
(1, 1, 0, 0),

which has one dimensional singular locus, hence Y1 is not terminal.
If c ≥ 4, then there are exactly three divisors with discrepancy 1 by [6, 8.3, 8.6,

8.7]. We again embed X as in (2.1.1) and let π2 : Y2 → X be the blow up with weight
(2, 2, 1, 1). The exceptional set E2 of π2 is a Z2-quotient of

Ẽ2 = {x2 + yzu + δb,2z
2b + δc,4u

c = 0} ⊆ P (2, 2, 1, 1),

hence E2 is an irreducible divisor over P (∈ X). It also satisfies a(E2, X) = 1. Since
(1 : 0 : 0 : 0) 6∈ Ẽ2, we see that Y2 is covered by the y-chart U2, the z-chart U3 and the
u-chart U4 as follows:

U2 = {x2 + zu + y4a−4 + z2by2b−4 + ucyc−4 = 0}/1
4
(0, 1, 1, 3),

U3 = {x2 + yu + y2az4a−4 + z2b−4 + uczc−4 = 0}/1
2
(1, 1, 1, 1),

U4 = {x2 + yz + y2au4a−4 + z2bu2b−4 + uc−4 = 0}/1
2
(1, 1, 1, 0).

Hence Y2 is terminal if and only if b = 2. Similarly the blow up π′2 : Y ′
2 → X with weight

(2, 1, 2, 1) has an irreducible exceptional divisor E′
2 over P (∈ X) with a(E′

2, X) = 1, and
Y ′

2 is terminal if and only if a = 2. Since Y1, Y2 and Y ′
2 are not mutually isomorphic over

X, we get the desired result when c ≥ 4.
If c = 3, then there are exactly two divisors with discrepancy 1 by [6, 8.3, 8.6, 8.7].

In this case, we can embed X into (x, y, z, u, t)/ 1
2 (1, 1, 1, 0, 0) such that

X = {x2 + ut + y2a + z2b = 0, yz + u2 − t = 0}/1
2
(1, 1, 1, 0, 0). (2.1.2)

Using this embedding, we denote the blow up with weight (2, 1, 1, 1, 3) by π3 : Y3 → X.
The exceptional set E3 of π3 is a Z2-quotient of

Ẽ3 = {x2 + ut + δa,2y
2a + δb,2z

2b = 0, yz + u2 = 0} ⊆ P (2, 1, 1, 1, 3),
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hence E3 is an irreducible divisor over P (∈ X). We also see that a(E3, X) = 1. Since
Ẽ3 ∩ {(∗ : 0 : 0 : ∗ : 0)} =∅, we see that Y3 is covered by the y-chart V2, the z-chart V3

and the t-chart V5 as follows:

V2 = {x2 + ut + y2a−4 + z2by2b−4 = 0, z + u2 − ty = 0}/1
2
(1, 1, 0, 1, 1),

V3 = {x2 + ut + y2az2a−4 + z2b−4 = 0, y + u2 − tz = 0}/1
2
(1, 0, 1, 1, 1),

V5 = {x2 + u + y2au2a−4 + z2bu2b−4 = 0, yz + u2 − t = 0}/1
6
(5, 1, 1, 4, 2).

Hence Y3 is terminal if and only if a = b = 2. Since Y1 and Y3 are not isomorphic over
X, we get the desired result when c = 3. ¤

Remark 2.2. (1) If c ≥ 4 and b = 2, then under the embedding of X as in
(2.1.1), the blow up π2 : (E2 ⊂ Y2) → (P ∈ X) with weight (2, 2, 1, 1) gives a divisorial
contraction with a(E2, X) = 1. In this case, the non-Gorenstein singularity on Y2 at
which E2 is not Cartier is unique and is isomorphic to the origin of {xy + z4a−4 + u2 =
0}/ 1

4 (1, 3, 1, 0), which is a terminal singularitiy of type (cA/4) and deforms to two cyclic
quotient terminal singularities 1

4 (1, 3, 1). Similarly, if c ≥ 4 and a = 2, then the blow up
π′2 : (E′

2 ⊂ Y ′
2) → (P ∈ X) with weight (2, 1, 2, 1) is also divisorial with a(E′

2, X) = 1.
We also see that these are all divisorial contractions with discrepancy 1 if c ≥ 4. In
particular, there are exactly two divisorial contractions with discrepancy 1 when c ≥ 4
and a = b = 2. Both of these are the case (i′) of (1.1).

(2) In the case c = 3, a = b = 2, we embed X as in (2.1.2), then the blow up
π3 : (E3 ⊂ Y3) → (P ∈ X) with weight (2, 1, 1, 1, 3) gives a divisorial contraction with
a(E3, X) = 1. The unique non-Gorenstein singularity on Y3 is a cyclic quotient terminal
singularity 1

6 (1, 5, 1). The exceptional divisor E3 is not Cartier at this point. We see
that this is the unique divisorial contraction with discrepancy 1 when c = 3. This is the
case (ii′) of (1.1).

3. Terminal singularities of type (cD/2-2).

In this section, we continue the study of terminal singularities of type (cD/2). We
shall complete the analysis of type (cD/2) in this section. Results in this section are
summarized in (3.9) and (3.22).

3.1. Let P ∈ X be a germ of a 3-dimensional terminal singularity of type (cD/2).
Here we shall assume that there is an embedding of X into (x, y, z, u)/ 1

2 (1, 1, 1, 0) such
that

X = {x2 + y2u + h(z)y + g(z, u) = 0}/1
2
(1, 1, 1, 0), (3.1.1)

where h(z) =
∑

i≥1 biz
2i+1 ∈ C{z} and g(z, u) =

∑
i,j aijz

2iuj ∈ (z4, z2u2, u3)C{z2, u}.
In order to study blow ups of X, we introduce some invariants of X and a condition
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on X. Let

w = min({2i | bi 6= 0} ∪ {i + j | aij 6= 0}),
w′1 = min{4i + 1 | bi 6= 0} and w′2 = min{2i + j | aij 6= 0}.

Furthermore we set w′ = min{w′1, w′2}.
Let F (z, u) be the lowest degree part of 1

4h(z)2 − g(z, u)u, and let χ(z) = F (z, 1).
We consider the following condition:

χ(z) =
( ∑

i≥0 βiz
2i+1

)2 for some βi ∈ C. (†)

If w′ is even, then this condition is equivalent to saying that the lowest degree part of
g(z, u) is a square of a polynomial in z and u with only odd degree terms in z. If w′

is odd, then the condition (†) says that the lowest degree part of 1
4h(z)2 − g(z, u)u is a

square of a polynomial in z and u with only odd degree terms in z.
We shall keep these notations throughout this section.

Proposition 3.2. Let k be a positive integer with k ≤ w−1. Under the embedding
of X as in (3.1.1), let πk : Yk → X be the blow up with weight (k + 1, k, 1, 2). Then the
exceptional set Ek of πk is an irreducible divisor over P (∈ X) with a(Ek, X) = 1 and Yk

is canonical. However πk : (Ek ⊂ Yk) → (P ∈ X) is not a divisorial contraction. These
Yk are not mutually isomorphic over X.

Proof. Since Ek is a Z2-quotient of

Ẽk = {x2 + y2u + b(k+1)/2z
k+2y +

∑
i+j=k+1 aijz

2iuj = 0} ⊆ P (k + 1, k, 1, 2),

we see that Ek is an irreducible divisor over P (∈ X). (Here the third term is assumed
to be zero if (k + 1)/2 is not an integer.) We also see that a(Ek, X) = 1. The z-chart of
Yk is isomorphic to

{x2 + y2u + h(z)/zk+2 · y + g(z, z2u)/z2k+2 = 0}/1
2
(k, k + 1, 1, 0),

which has one dimensional singular locus, hence Yk is not terminal. ¤

If the condition (†) does not hold, then there are exactly w divisors with discrepancy
1 over P ∈ X by [6, 9.21]. Hence we have to find one more blowing ups of X whose
exceptional divisor is irreducible and has discrepancy 1. This will be done by dividing
into several cases. First we study the case where w′ is even.

Proposition 3.3. Assume that the condition (†) does not hold and that w′ is
even. Under the embedding of X as in (3.1.1), let π : Y → X be the blow up with weight
(w′/2, w′/2, 1, 1). Then,

(1) The exceptional set E of π is an irreducible divisor over P (∈ X) with a(E, X) =
1 and Y is canonical.



658 T. Hayakawa

(2) The birational morphism π : (E ⊂ Y ) → (P ∈ X) is a divisorial contraction if
and only if w′ ∈ 4Z and aw′/2,0 6= 0.

Proof. Since the condition (†) does not hold and since E is a Z2-quotient of

Ẽ = {x2 +
∑

2i+j=w′ aijz
2iuj = 0} ⊆ P (w′/2, w′/2, 1, 1),

we see that E is an irreducible divisor over P (∈ X). We also see that a(E, X) = 1. Since
(1 : 0 : 0 : 0) 6∈ Ẽ, Y is covered by the y-chart U2, the z-chart U3 and the u-chart U4 as
follows:

U2 = {x2 + yu + h(yz)/yw′/2 + g(yz, yu)/yw′ = 0}/ 1
w′

(0, 1, w′/2− 1,−1),

U3 = {x2 + y2zu + h(z)/zw′/2 · y + g(z, zu)/zw′ = 0}/1
2
(w′/2− 1, w′/2− 1, 1, 1),

U4 = {x2 + y2u + h(zu)/uw′/2 · y + g(zu, u)/uw′ = 0}/1
2
(1, 1, 1, 0).

If w′ ∈ 4Z +2, then U3 has one dimensional singular locus. Hence, if Y is terminal, then
we have w′ ∈ 4Z and aw′/2,0 6= 0. Conversely, if w′ ∈ 4Z and aw′/2,0 6= 0, then w′ and
w′/2− 1 are coprime, hence Y is terminal. ¤

Remark 3.4. If π : (E ⊂ Y ) → (P ∈ X) is a divisorial contraction in (3.3), then
the non-Gorenstein singularity on Y at which E is not Cartier is unique and is isomorphic
to the origin of {xy + zw′ + u2 = 0}/ 1

w′ (1,−1, w′/2− 1, 0), which deforms to two cyclic
quotient terminal singularities 1

w′ (1,−1, w′/2− 1).

3.5. Next we consider the case where the condition (†) does not hold and w′

is odd. In this case, either w′1 > w′2 or w′1 = w′2 occurs. In the case w′1 > w′2, we
have u | ∑

2i+j=w′ aijz
2iuj since w′ is odd. Therefore there is an embedding of X into

(x, y, z, u, t)/ 1
2 (1, 1, 1, 0, 0) such that

X =

{
x2 + ut + h(z)y + g1(z, u) = 0,

y2 + g′0(z, u)− t = 0

}/
1
2
(1, 1, 1, 0, 0), (3.5.1)

where g′0(z, u) =
∑

2i+j=w′ aijz
2iuj−1 and g1(z, u) =

∑
2i+j≥w′+1 aijz

2iuj .

Proposition 3.6. Assume that the condition (†) does not hold, w′ is odd and
w′1 > w′2. Under the embedding of X as in (3.5.1), let π : Y → X be the blow up with
weight ((w′ + 1)/2, (w′ − 1)/2, 1, 1, w′). Then we have the following:

(1) The exceptional set E of π is an irreducible divisor over P (∈ X) with a(E, X) =
1 and Y is canonical.

(2) The birational morphism π : (E ⊂ Y ) → (P ∈ X) is a divisorial contraction if
and only if one of the following holds:

(i) w′ ∈ 4Z + 1 and a(w′−1)/2,1 6= 0.
(ii) w′ ∈ 4Z + 3 and a(w′−1)/2,1b(w′+1)/4

2 − a(w′+1)/2,0
2 6= 0.



Divisorial contractions 659

Proof. Since g′0(z, u) is not a square of a polynomial in z and u with only odd
degree terms in z and since E is a Z2-quotient of

Ẽ =

{
x2 + ut + b(w′+1)/4z

(w′+3)/2y +
∑

2i+j=w′+1 aijz
2iuj = 0,

y2 + g′0(z, u) = 0

}

⊆ P ((w′ + 1)/2, (w′ − 1)/2, 1, 1, w′),

we see that E is an irreducible divisor over P (∈ X). (Here the third term of the first
equation is assumed to be zero if (w′+1)/4 is not an integer.) We also see that a(E, X) =
1. Since Ẽ ∩ {(∗ : ∗ : 0 : 0 : 0)} = ∅, we see that Y is covered by the z-chart V3, the
u-chart V4 and the t-chart V5 as follows:

V3 =

{
x2 + ut + h(z)/z(w′+3)/2 · y + g1(z, zu)/zw′+1 = 0,

y2 + g′0(1, u)− tz = 0

}

/
1
2
((w′ − 1)/2, (w′ − 3)/2, 1, 1, 1),

V4 =

{
x2 + t + h(zu)/u(w′+3)/2 · y + g1(zu, u)/uw′+1 = 0,

y2 + g′0(z, 1)− tu = 0

}/
1
2
(1, 1, 1, 0, 0),

V5 =

{
x2 + u + h(zt)/t(w

′+3)/2 · y + g1(zt, ut)/tw
′+1 = 0,

y2 + g′0(z, u)− t = 0

}

/
1

2w′
(−1, 1, w′ − 2,−2, 2).

If w′ ∈ 4Z + 1, then the fixed points on V3 of the action of the cyclic group satisfy y =
z = u = 0 and x2 + a(w′+1)/2,0 = 0, a(w′−1)/2,1 = 0. Hence the condition a(w′−1)/2,1 6= 0
is necessary for Y to be terminal. Similarly if w′ ∈ 4Z +3, then the fixed points on V3 of
the action of the cyclic group satisfy x = z = u = 0 and y2 +a(w′−1)/2,1 = 0, b(w′+1)/4y+
a(w′+1)/2,0 = 0. Therefore we need the condition a(w′−1)/2,1b(w′+1)/4

2 − a(w′+1)/2,0
2 6= 0

for Y to be terminal. Conversely each of these conditions (i) or (ii) is sufficient for Y to
be terminal. ¤

Remark 3.7. If π : (E ⊂ Y ) → (P ∈ X) is a divisorial contraction in (3.6), then
the non-Gorenstein singularity on Y at which E is not Cartier is unique and the point
is isomorphic to the cyclic quotient terminal singularity 1

2w′ (1,−1, w′ − 2).

Proposition 3.8. Assume that the condition (†) does not hold, w′ is odd and
w′1 = w′2. Under the embedding of X as in (3.1.1), let π : Y → X be the blow up with
weight ((w′ + 1)/2, (w′ − 1)/2, 1, 1). Then the exceptional set E of π is an irreducible
divisor over P (∈ X) with a(E, X) = 1 and Y is canonical. However π : (E ⊂ Y ) →
(P ∈ X) is not a divisorial contraction.
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Proof. There is a positive integer i0 such that 4i0 + 1 = w′ and bi0 6= 0. Since
the condition (†) does not hold and since E is a Z2-quotient of

Ẽ = {y2u + bi0z
2i0+1y +

∑
2i+j=w′ aijz

2iuj = 0}
⊆ P ((w′ + 1)/2, (w′ − 1)/2, 1, 1),

we see that E is an irreducible divisor over P (∈ X). We also see that a(E, X) = 1. Since
w′ ≡ 1 (mod 4), the z-chart of Y is expressed as

{x2z + y2u + h(z)/z(w′+1)/2 · y + g(z, zu)/zw′ = 0}/1
2
(0, 1, 1, 1),

which is singular along x-axis. In particular Y is not terminal. ¤

Theorem 3.9. Let P ∈ X be as in (3.1) and assume that the condition (†) does not
hold. Then there is a divisorial contraction π : (E ⊂ Y ) → (P ∈ X) with a(E, X) = 1 if
and only if one of the following holds:

(i) w′1 > w′2 = w′ ∈ 4Z and aw′/2 6= 0.
(ii) w′1 > w′2 = w′ ∈ 4Z + 1 and a(w′−1)/2,1 6= 0.
(iii) w′1 > w′2 = w′ ∈ 4Z + 3 and a(w′−1)/2,1b(w′+1)/4

2 − a(w′+1)/2,0
2 6= 0.

Proof. By [6, 9.21], there are exactly w divisors with discrepancy 1 over X.
Among these divisors, we found w − 1 in (3.2). Since Y in (3.3), (3.6) or (3.8) is not
isomorphic to Yk in (3.2), we complete the proof. ¤

Remark 3.10. In each case of (3.9), there is exactly one divisorial contraction
with discrepancy 1. We see that (3.9)(i) is the case s(z, u) = 0 in (1.1)(i) (by setting
l = w′/4), and that (3.9)(ii), (iii) are contained in the case s(z, u) = 0 in (1.1)(ii)(a),
(ii)(c) respectively (by setting l = (w′ − 1)/2).

Now we turn to the case where the condition (†) holds. In this case we know that
there are exactly w + 1 divisors with discrepancy 1 over P (∈ X) by [6, 9.21]. Among
these divisors, we found w− 1 in (3.2), therefore we have to find two more divisors with
discrepancy 1.

3.11. If (†) holds and w′ is even, then we can write
∑

2i+j=w′ aijz
2iuj = −s(z, u)2

for some s(z, u) ∈ C[z, u] with only odd degree terms in z. There are two embeddings
X ' X± ⊆ (x, y, z, u)/ 1

2 (1, 1, 1, 0) such that

X± = {x2 ± 2s(z, u)x + y2u + h(z)y + g1(z, u) = 0}/1
2
(1, 1, 1, 0), (3.11.1)

where g1(z, u) =
∑

2i+j≥w′+1 aijz
2iuj . We first study the case where (a) w′ ∈ 4Z,

bw′/4 6= 0 or (b) w′ ∈ 4Z + 2, aw′/2,0 6= 0.

Proposition 3.12. Assume that the condition (†) holds and that w′ is even. We
further assume that (a) w′ ∈ 4Z, bw′/4 6= 0 or (b) w′ ∈ 4Z + 2, aw′/2,0 6= 0. Under
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the embeddings of X as in (3.11.1), let π± : Y± → X± ' X be the blow up with weight
(w′/2 + 1, w′/2, 1, 1). Then the exceptional set E± of π± is an irreducible divisor over
P (∈ X) with a(E±, X) = 1 and Y± is canonical. However π± : (E± ⊂ Y±) → (P ∈ X)
is not a divisorial contraction.

Proof. If aw′/2,0 6= 0, then we see that u 6 | s(z, u). By conditions (a) or (b), E±
is a Z2-quotient of

Ẽ± = {±2s(z, u)x + y2u + bw′/4z
w′/2+1y +

∑
2i+j=w′+1 aijz

2iuj = 0}
⊆ P (w′/2 + 1, w′/2, 1, 1).

(Here we assume that the third term is zero if w′/4 is not an integer.) Hence E± is an
irreducible divisor over P (∈ X). We also see that a(E±, X) = 1. The x-chart U1 and
the y-chart U2 of Y± are described as

U1 =
{
x± 2s(z, u) + y2u + h(xz)/xw′/2+1 · y + g1(xz, xu)/xw′+1 = 0

}
/

1
w′ + 2

(1, 1, w′/2,−1),

U2 =
{
x2y ± 2s(z, u)x + u + h(yz)/yw′/2+1 + g1(yz, yu)/yw′+1 = 0

}
/

1
w′

(−1, 1, w′/2− 1,−1)

respectively. Thus the origin of U1 is isomorphic to 1
w′+2 (1,−1, w′/2) and the origin of

U2 is isomorphic to 1
w′ (1,−1, w′/2 − 1). If Y± is terminal, then w′ + 2 and w′/2 are

coprime, w′ and w′/2 − 1 are coprime. Hence w′ ∈ 4Z + 2 and w′ ∈ 4Z, which is a
contradiction. ¤

3.13. We continue the study of the case that the condition (†) holds and w′ is
even. Here we further assume that (a) w′ ∈ 4Z, bw′/4 = 0 or (b) w′ ∈ 4Z+2, aw′/2,0 = 0.
In both of these cases, we have u | s(z, u) and u | ∑2i+j=w′+1 aijz

2iuj since w′ is even.
Hence there are two embeddings X ' X± ⊆ (x, y, z, u, t)/ 1

2 (1, 1, 1, 0, 0) such that

X± =

{
x2 + ut + h(z)y + g2(z, u) = 0,

y2 ± 2s′(z, u)x + g′1(z, u)− t = 0

}/
1
2
(1, 1, 1, 0, 0), (3.13.1)

where s′(z, u) = s(z, u)/u, g′1(z, u) =
∑

2i+j=w′+1 aijz
2iuj−1 and g2(z, u) =∑

2i+j≥w′+2 aijz
2iuj .

Proposition 3.14. Assume that the condition (†) holds and that w′ is even. We
further assume that (a) w′ ∈ 4Z, bw′/4 = 0 or (b) w′ ∈ 4Z + 2, aw′/2,0 = 0. Under
the embeddings of X as in (3.13.1), let π± : Y± → X± ' X be the blow up with weight
(w′/2 + 1, w′/2, 1, 1, w′ + 1). Then the following holds:
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(1) The exceptional set E± of π± is an irreducible divisor over P (∈ X) with
a(E±, X) = 1 and Y± is canonical.

(2) The birational morphism π± : (E± ⊂ Y±) → (P ∈ X) is a divisorial contraction
if and only if one of the following holds:

(i) w′ ∈ 4Z and aw′/2,1
2 − 4aw′/2+1,0aw′/2−1,2 6= 0.

(ii) w′ ∈ 4Z + 2 and aw′/2,1b(w′+2)/4
2 + aw′/2+1,0

2 6= 0.

Proof. We can prove this as in the proof of (3.6). Since s′(z, u) 6= 0 and since
E± is a Z2-quotient of

Ẽ± =

{
x2 + ut + b(w′+2)/4z

w′/2+1y +
∑

2i+j=w′+2 aijz
2iuj = 0,

y2 ± 2s′(z, u)x + g′1(z, u) = 0

}

⊆ P (w′/2 + 1, w′/2, 1, 1, w′ + 1),

we see that E± is an irreducible divisor over P (∈ X). (Here the third term of the
first equation is assumed to be zero if (w′ + 2)/4 is not an integer.) We also see that
a(E±, X) = 1. Since Ẽ± ∩ {(∗ : ∗ : 0 : 0 : 0)} = ∅, we see that Y± is covered by the
z-chart V3, the u-chart V4 and the t-chart V5 as follows:

V3 =

{
x2 + ut + h(z)/zw′/2+2 · y + g2(z, zu)/zw′+2 = 0,

y2 ± 2s′(1, u)x + g′1(1, u)− tz = 0

}

/
1
2
(w′/2, w′/2− 1, 1, 1, 1),

V4 =

{
x2 + t + h(zu)/uw′/2+2 · y + g1(zu, u)/uw′+2 = 0,

y2 ± 2s′(z, 1)x + g′1(z, 1)− tu = 0

}/
1
2
(1, 1, 1, 0, 0),

V5 =

{
x2 + u + h(zt)/tw

′/2+2 · y + g1(zt, ut)/tw
′+2 = 0,

y2 ± 2s′(z, u)x + g′1(z, u)− t = 0

}

/
1

2(w′ + 1)
(−1, 1, w′ − 1,−2, 2).

If w′ ∈ 4Z, then the fixed points on V3 of the action of the cyclic group satisfy y = z =
u = 0 and x2 + aw′/2+1,0 = 0, ±2s′(1, 0)x + aw′/2,1 = 0. Since s′(1, 0)2 = −aw′/2−1,2,
we need the condition aw′/2,1

2 − 4aw′/2+1,0aw′/2−1,2 6= 0 in order that Y± is terminal.
Similarly if w′ ∈ 4Z + 2, then the fixed points on V3 of the action of the cyclic group
satisfy x = z = u = 0 and y2 + aw′/2,1 = 0, b(w′+2)/4y + aw′/2+1,0 = 0. Therefore we
need the condition aw′/2,1b(w′+2)/4

2 + aw′/2+1,0
2 6= 0 for Y± to be terminal. Conversely

each of these conditions (i) or (ii) is sufficient for Y± to be terminal. ¤

Remark 3.15. If π± : (E± ⊂ Y±) → (P ∈ X) is a divisorial contraction in (3.14),
then the non-Gorenstein singularity on Y± at which E± is not Cartier is unique and the
point is isomorphic to the cyclic quotient terminal singularity 1

2(w′+1) (1,−1, w′ − 1).
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3.16. If the condition (†) holds, w′ is odd and w′1 > w′2, then we can write∑
2i+j=w′ aijz

2iuj = −s′(z, u)2u for some s′(z, u) ∈ C[z, u] with only odd degree terms
in z. There are two embeddings X ' X± ⊆ (x, y, z, u)/ 1

2 (1, 1, 1, 0) such that

X± = {x2 + y2u± 2s′(z, u)yu + h(z)y + g1(z, u) = 0}/1
2
(1, 1, 1, 0), (3.16.1)

where g1(z, u) =
∑

2i+j≥w′+1 aijz
2iuj ± h(z)s′(z, u).

Proposition 3.17. Assume that the condition (†) holds, w′ is odd and w′1 > w′2.
Then under the embeddings of X as in (3.16.1), let π± : Y± → X± ' X be the blow up
with weight ((w′ + 1)/2, (w′ + 1)/2, 1, 1). Then the following holds:

(1) The exceptional set E± of π± is an irreducible divisor over P (∈ X) with
a(E±, X) = 1 and Y± is canonical.

(2) The birational morphism π± : (E± ⊂ Y±) → (P ∈ X) is a divisorial contraction
if and only if w′ ∈ 4Z + 3 and a(w′+1)/2,0 6= 0.

Proof. Since s′(z, u) 6= 0 and since E± is a Z2-quotient of

Ẽ± =

{
x2 ± 2s′(z, u)yu +

∑
i+j=w+1 aijz

2iuj

±b(w′+1)/4z
(w′+3)/2s′(z, u) = 0

}
⊆ P ((w′ + 1)/2, (w′ + 1)/2, 1, 1),

we see that E± is an irreducible divisor over P (∈ X). (Here the last term is assumed
to be zero if (w′ + 1)/4 is not an integer.) We also see that a(E±, X) = 1. Since
(1 : 0 : 0 : 0) 6∈ Ẽ±, we see that Y± is covered by the y-chart U2, the z-chart U3 and the
u-chart U4 as follows:

U2 = {x2 + yu± 2s′(z, u)u + h(yz)/y(w′+1)/2 + g1(yz, yu)/yw′+1 = 0}
/

1
w′ + 1

(0, 1, (w′ − 1)/2,−1),

U3 = {x2 + y2zu± 2s′(1, u)yu + h(z)/z(w′+1)/2 · y + g1(z, zu)/zw′+1 = 0}
/

1
2
((w′ − 1)/2, (w′ − 1)/2, 1, 1),

U4 = {x2 + y2u± 2s′(z, 1)y + h(zu)/u(w′+1)/2 · y + g1(zu, u)/uw′+1 = 0}
/

1
2
(1, 1, 1, 0).

If Y± is terminal, then it follows from the expression of U3 that (w′ − 1)/2 is odd and
a(w′+1)/2,0 6= 0. Conversely these conditions assure that w′+1 and (w′−1)/2 are coprime,
and are sufficient for Y± to be terminal. ¤

Remark 3.18. If π± : (E± ⊂ Y±) → (P ∈ X) are divisorial contractions in (3.17),
then the non-Gorenstein singularity on Y± at which E± is not Cartier is unique and is
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isomorphic to the origin of {xy + zw′+1 + u2 = 0}/ 1
w′+1 (1,−1, (w′ − 1)/2, 0), which is

a terminal singularity of type (cA/w′ + 1) and deforms to two cyclic quotient terminal
singularities 1

w′+1 (1,−1, (w′ − 1)/2).

3.19. Lastly we consider the case where the condition (†) holds, w′ is odd and
w′1 ≤ w′2. In this case, there is a positive integer i0 such that 4i0 + 1 = w′ and bi0 6= 0.
Since the condition (†) holds, we can write

1
4
b2
i0z

4i0+2 −∑
2i+j=w′aijz

2iuj+1 =
(

1
2
bi0z

2i0+1 − s′(z, u)u
)2

for some polynomial s′(z, u) in z and u with only odd degree terms in z. We have∑
2i+j=w′ aijz

2iuj = bi0z
2i0+1s′(z, u)− s′(z, u)2u, and hence

X =

{
x2 + (y + s′(z, u))((y − s′(z, u))u + bi0z

2i0+1)

+h1(z)y + g1(z, u) = 0

}/
1
2
(1, 1, 1, 0),

where h1(z) = h(z)− bi0z
2i0+1, g1(z, u) =

∑
2i+j≥w′+1 z2iuj . Thus we can construct two

embeddings of X. One is the embedding of X into (x, y, z, u)/ 1
2 (1, 1, 1, 0) such that

X = {x2 + y2u− 2s′(z, u)yu + h(z)y + g′1(z, u) = 0}/1
2
(1, 1, 1, 0), (3.19.1)

where g′1(z, u) = g1(z, u) − h1(z)s′(z, u). The other one is the embedding of X into
(x, y, z, u, t)/ 1

2 (1, 1, 1, 0, 1) such that

X =

{
x2 + yt + g′1(z, u) = 0,

(y − 2s′(z, u))u + h(z)− t = 0

}/
1
2
(1, 1, 1, 0, 1). (3.19.2)

Proposition 3.20. Assume that the condition (†) holds, w′ is odd and w′1 ≤ w′2.
Then the following holds:

(1) Under the embedding of X as in (3.19.1), the blow up π : Y → X with weight
((w′ + 1)/2, (w′ + 1)/2, 1, 1) has an irreducible exceptional divisor E over P (∈ X) with
a(E, X) = 1 and Y is canonical. However π : (E ⊂ Y ) → (P ∈ X) is not a divisorial
contraction.

(2) Under the embedding of X as in (3.19.2), the blow up π′ : Y ′ → X with weight
((w′ + 1)/2, (w′ − 1)/2, 1, 1, (w′ + 3)/2) has an irreducible exceptional divisor E′ over
P (∈ X) with a(E′, X) = 1 and Y ′ is terminal. In particular π′ : (E′ ⊂ Y ′) → (P ∈ X)
is a divisorial contraction.

Proof. (1) We see that E is a Z2-quotient of

Ẽ = {x2 − 2s′(z, u)yu + bi0z
2i0+1y +

∑
2i+j=w′+1 aijz

2iuj = 0}
⊆ P ((w′ + 1)/2, (w′ + 1)/2, 1, 1),
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hence E is an irreducible divisor over P (∈ X). We also see that a(E, X) = 1. Since
w′ ∈ 4Z + 1, the z-chart of Y is described as

{
x2 + y2zu− 2s′(1, u)yu + h(z)/z(w′+1)/2 · y

+g′1(z, zu)/zw′+1 = 0

}/
1
2
(0, 0, 1, 1),

hence Y has one dimensional singular locus. In particular Y is not terminal.
(2) This is the case treated in [8, 1.2(ii)]. ¤

Remark 3.21. Let π′ : (E′ ⊂ Y ′) → (P ∈ X) be a divisorial contraction
in (3.20)(2). Then there are two non-Gorenstein singularities on Y ′ at which E′ is
not Cartier. These points are isomorphic to the cyclic quotient terminal singularities

1
w′−1 (1,−1, (w′ − 3)/2) and 1

w′+3 (1,−1, (w′ + 1)/2).

Theorem 3.22. Let P ∈ X be as in (3.1) and assume that the condition (†) holds.
Then there is a divisorial contraction π : (E ⊂ Y ) → (P ∈ X) with a(E, X) = 1 if and
only if one of the following holds:

(i) w′1 > w′2 = w′ ∈ 4Z + 3 and a(w′+1)/2,0 6= 0.
(ii) w′1 > w′2 = w′ ∈ 4Z and bw′/4 = 0, aw′/2,1

2 − 4aw′/2+1,0aw′/2−1,2 6= 0.
(iii) w′1 > w′2 = w′ ∈ 4Z + 2 and aw′/2,0 = 0, aw′/2,1b(w′+2)/4

2 + aw′/2+1,0
2 6= 0.

(iv) w′2 ≥ w′1 = w′ and w′ is odd.

Proof. By [6, 9.21], there are exactly w + 1 divisors with discrepancy 1 over X.
Among these divisors, we found w− 1 in (3.2). We obtain the remaining two divisors as
exceptional divisors of some blow ups in (3.12), (3.14), (3.17) and (3.20). We also see
that these two divisors are different as valuations on the function field of X and are not
the same as Ek in (3.2). ¤

Remark 3.23. In cases (i), (ii) and (iii) of (3.22), there are exactly two divisorial
contractions with discrepancy 1, while in case (iv) of (3.22), there is only one divisorial
contraction with discrepancy 1. We see that (3.22)(i) is contained in the case s(z, u) 6= 0
in (1.1)(i) (by setting l = (w′ + 1)/4), and that (3.22)(ii), (iii) are the cases s(z, u) 6= 0
in (1.1)(ii)(a), (ii)(b) respectively (by setting l = w′/2). We also see that (3.22)(iv) is
the case (1.1)(iii).

By (2.1), (3.9) and (3.22) (see also (2.2), (3.10) and (3.23)), we know all divisorial
contractions to (cD/2) type terminal singularities which have discrepancy 1, and we
complete the proof of (1.1). ¤

4. Terminal singularities of type (cE/2).

In this section, we shall study terminal singularities of type (cE/2). We shall show
that there are only a few divisorial contractions with discrepancy 1 in the (cE/2) case.

Theorem 4.1. Let P ∈ X be a germ of a 3-dimensional terminal singularity
of type (cE/2). Then there is a divisorial contraction π : (E ⊂ Y ) → (P ∈ X) with
a(E, X) = 1 if and only if there is an embedding of X into (x, y, z, u)/ 1

2 (0, 1, 1, 1) such
that
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X = {u2 + x3 + 3νx2z2 + g(y, z)x + h(y, z) = 0}/1
2
(0, 1, 1, 1),

where ν ∈ C, g(y, z) =
∑

i+j≥4,even aijy
izj, h(y, z) =

∑
i+j≥4,even bijy

izj ∈ C{y, z} with
aij = 0 if 3i + j ≤ 4, bij = 0 if 3i + j ≤ 8 and b40 6= 0, b08 6= 0.

Proof. By [9], there is an embedding of X into (x, y, z, u)/ 1
2 (0, 1, 1, 1) such that

X = {u2 + x3 + g(y, z)x + h(y, z) = 0}/1
2
(0, 1, 1, 1), (4.1.1)

where g(y, z) =
∑

i+j≥4,even aijy
izj , h(y, z) =

∑
i+j≥4,even bijy

izj ∈ C{y, z} and the
degree four part h4(y, z) of h(y, z) is nonzero.

Under the embedding of X as in (4.1.1), let π1 : Y1 → X be the blow up with weight
(2, 1, 1, 2). Then the y-chart of Y1 is isomorphic to

{u2 + x3y2 + g(y, yz)/y2 · x + h(y, yz)/y4 = 0}/1
2
(0, 1, 0, 1).

Hence the y-chart or the z-chart of Y1 has singularities which are not terminal. The
exceptional set E1 of π1 is an irreducible divisor over P (∈ X) and satisfies a(E1, X) =
1. If h4(y, z) has four distinct factors, then it follows from [6, 7.3] that there is only
one divisor with discrepancy 1. Hence we can conclude that there are no divisorial
contractions with discrepancy 1 in this case.

If h4(y, z) has multiple factors, then we may assume that y2 | h4(y, z) by a linear
transformation in y and z. In this situation, we embed X as in (4.1.1) and take the blow
up π2 : Y2 → X with weight (2, 2, 1, 3). The z-chart of Y2 is isomorphic to

{u2 + x3 + g(yz2, z)/z4 · x + h(yz2, z)/z6 = 0}/1
2
(0, 1, 1, 0),

which has one dimensional singular locus, hence Y2 is not terminal. The exceptional
set E2 of π2 is an irreducible divisor over P (∈ X) and satisfies a(E2, X) = 1. Since Y1

and Y2 are not isomorphic over X, we see that there are no divisorial contractions with
discrepancy 1 if the number of divisors with discrepancy 1 is not greater than two.

If h4(y, z) has two double factors, then we may assume that h4(y, z) = y2z2. In this
case we can take the blow up π′2 : Y ′

2 → X with weight (2, 1, 2, 3). By [6, 7.5], there
are exactly three divisors with discrepancy 1. Since Y1, Y2 and Y ′

2 are not mutually
isomorphic over X, we see that there are no divisorial contractions if h4(y, z) has two
double factors.

Thus, by [6, 7.4, 7.7, 7.9], we know that there are no divisorial contractions with
discrepancy 1 if h4(y, z) does not have a quadruple factor or if there are at most two
divisors with discrepancy 1.

In the following we assume that h4(y, z) = b40y
4 with b40 6= 0 and that X has more

than two divisors with discrepancy 1. By [6, 7.9], there is an embedding of X into
(x, y, z, u)/ 1

2 (0, 1, 1, 1) such that
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X = {u2 + x3 + 3νx2z2 + g(y, z)x + h(y, z) = 0}/1
2
(0, 1, 1, 1), (4.1.2)

where ν ∈ C, g(y, z) =
∑

i+j≥4,even aijy
izj , h(y, z) =

∑
i+j≥4,even bijy

izj ∈ C{z, u}
with aij = 0 if 3i + j ≤ 4, bij = 0 if 3i + j ≤ 8 and b40 6= 0.

Under the embedding of X as in (4.1.2), let π3 : Y3 → X be the blow up with weight
(x, y, z, u) = (3, 2, 1, 4). Then Y3 is covered by the x-chart U1, the y-chart U2 and the
z-chart U3 as follows:

U1 = {u2 + x + 3νz2 + g(yx2, zx)/x5 + h(yx2, zx)/x8 = 0}/1
6
(2, 5, 1, 1),

U2 = {u2 + x3y + 3νx2z2 + g(y2, zy)/y5 · x + h(y2, zy)/y8 = 0}/1
4
(1, 1, 1, 2),

U3 = {u2 + x3z + 3νx2 + g(yz2, z)/z5 · x + h(yz2, z)/z8 = 0}/1
2
(1, 1, 1, 1).

Thus we see that Y3 is terminal if and only if b08 6= 0. The exceptional set E3 of π3 is
an irreducible divisor and satisfies a(E3, X) = 1. Since Y1, Y2 and Y3 are not mutually
isomorphic over X, we get the desired result when X has three divisors with discrepancy
1.

Lastly we assume that X has more than three divisors with discrepancy 1. It follows
from [6, 7.9] that there is an embedding of X into (x, y, z, u)/ 1

2 (0, 1, 1, 1) such that

X = {u2 + x3 + g(y, z)x + h(y, z) = 0}/1
2
(0, 1, 1, 1), (4.1.3)

where g(y, z) =
∑

i+j≥4,even aijy
izj , h(y, z) =

∑
i+j≥4,even bijy

izj ∈ C{z, u} with aij =
0 if 3i + j ≤ 6, bij = 0 if 3i + j ≤ 10 and b40 6= 0. In this case, under the embedding of
X as in (4.1.3), let π4 : Y4 → X be the blow up with weight (4, 3, 1, 6). Then the z-chart
of Y4 is isomorphic to

{u2 + x3 + g(yz3, z)/z8 · x + h(yz3, z)/z12 = 0}/1
2
(0, 0, 1, 1),

which has one dimensional singular locus, hence Y4 is not terminal. The exceptional
set E4 of π4 is an irreducible divisor over P (∈ X) and satisfies a(E4, X) = 1. Since Yi

(i = 1, . . . , 4) are not mutually isomorphic over X and since none of these are terminal,
we know that there are no divisorial contractions with discrepancy 1 if X has more than
three divisors with discrepancy 1. ¤

Remark 4.2. In (4.1), using the embedding of X as in (4.1.2), the blow up π3 :
(E3 ⊂ Y3) → (P ∈ X) with weight (3, 2, 1, 4) is the unique divisorial contraction with
discrepancy 1. We see that Y3 has two non-Gorenstein singularities which are isomorphic
to 1

6 (1, 1, 5) and 1
2 (1, 1, 1). The exceptional divisor E3 is not Cartier at each of these

points.
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