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Plates are common structural elements of most engineering structures, including
aerospace, automotive, and civil engineering structures. The study of plates from
theoretical perspective as well as experimental viewpoint is fundamental to understanding
of the behavior of such structures. The dynamic characteristics of plates, such as
natural vibrations, transient responses for the external forces and so on, are especially
of importance in actual environments. In this paper, we conside the envelope surface
created by the vibrations of a square plate on a weakly nonliner elastic foundation and
analyze the stability of the uniform solution of the governing equation for the envelope
surface. We derive the two-dimensional equation that governs the spatial and temporal
evolution of the envelope surface on cubic nonlinear elastic foundation. The fact that the
governing equation becomes the quintic nonlinear Schrödinger equation is shown. Also we
obtain the stability condition of the uniform solution of the quintic nonlinear Schrödinger
equation.

Key words: elastic foundation, envelope, nearly monochromatic waves, perturbation,
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1. Introduction

Plates are common structural elements of most engineering structures, includ-
ing aerospace, automotive, and civil engineering structures. The study of plates
from theoretical perspective as well as experimental viewpoint is fundamental to
understanding of the behavior of such structures. The dynamic characteristics of
plates, such as natural vibrations, transient responses for the external forces and
so on, are especially of importance in actual environments. In this paper, we con-
side the envelope surface created by the vibrations of a square plate on a weakly
nonliner elastic foundation and analyze the stability of the uniform solution of the
governing equation for the envelope surface. We derive the two-dimensional equa-
tion that governs the spatial and temporal evolution of the envelope surface and
discuss the stability of the uniform solution.

In the course of studying the theory of plates the classical, Kirchhoff plate
theory [1]–[3], in which transverse normal and shear stresses are neglected to study
bending, buckling, and natural vibrations of rectangular plates, was first estab-
lished. The treatment of the linear vibrations of plates is comprehensively given in
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the monograph [4]. The governing equations of the nonlinear vibrations of plates
was also reduced [5]. The first-order shear deformation plate theory extends the
kinematics of the classical, Kirchhoff plate theory by relaxing the normality re-
striction and allowing for arbitrary but constant rotation of transverse normals
[6, 7] and finite element models are developed for the precise analysis of the plate
characteristics in real problems [8].

In general, the Schrödinger equation [9] governs the spatial and temporal evo-
lution of the amplitude of a wavepacket propagating transversely in any dispersive,
lossless medium. The spatial and temporal evolution of the amplitude of a wave-
packet centered around a wavenumber and a frequency is varying slowly in space
and time so that it creates an envelope. In other words, the Schrödinger equation
governs an envelope created by a wavepacket. The nonlinear Schrödinger equation
arises in the nonlinear dispersive characteristics of propagation medium and non-
linear restoring force and so on. Many studies of a wavepacket has been carried
out in water wave [10]–[12], plasma [13], fiber-optic communication systems [14],
and some other area as well. Moreover, several Schrödinger type equations are
derived from the wavenumber-based or directional-based spectrum of nearly mono-
chromatice waves and their stabilities of the solutions are analyzed [15, 16]. Nearly
bichromatic waves which are expanded from nearly monochromatice waves are also
analyzed and the related equations govern envelopes created by nearly bichromatic
waves are derived. The nonlinear dynamics and numerical simulations of its solu-
tions are performed [17]–[20].

We can consider the force due to the elastic foundation is propotional to the
second or third power of the displacement. The past studies have only treated the
second power of the displacement [21]. However, when considering the nonlinearity
of an elastic foundation, the third power of the displacement is naturally considered.
In this paper, we derive the two-dimensional governing equation that describes the
propagation of the envelope surface of a square plate on an elastic foundation using
the method of multiple scales [22]. The obtained equation becomes the quintic
nonlinear Schrödinger equation. We consider the stability of the uniform solution
of the obtained quintic nonlinear Schrödinger equation through the modulational
perturbation. The sufficient condition of the stability is shown.

The following section presents the plate equation on an elastic, weakly non-
linear foundation with cubic nonlinearity. In the third section we derive the gov-
rning equation of the envelope surface of nearly monochromatic waves on cubic
nonlinear elastic foundation using the method of multiple scales. In the fourth
section we analyze the stability of the uniform solution of the obtained governing
equation in the previous section.

2. Preliminary: Plate equation on an elastic, weakly nonlinear founda-
tion [21]

We consider a square plate with side length l. The mass of the plate per unit
area perpendicular to z-axis, the mass density of the plate, the area of the cross
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sectoin of the plate perpendicular to x-axis, the elasticity modulus, and the moment
of inertia of the cross section with respect to the x-axis are denoted by μ, ρ, Aa,
E, and I, respectively. Moreover, the weight W of the plate per unit area is set to
be constant, that is, W = μg (g is the gravitational acceleration) and we neglect
internal damping. Then, the equation of motion for the vertical displacement of
the plate w(x, y, t), in which t is time, is given by

μ
∂2w(x, y, t)

∂t2
+ EI

{
∂4w(x, y, t)

∂x4
+ 2

∂4w(x, y, t)
∂x2∂y2

+
∂4w(x, y, t)

∂y4

}

+ F (w(x, y, t)) = −μg,

0 < x < l, 0 < y < l, t > 0,

(1)

where F is the force in z-direction per unit area acting on the plate due to the
elastic foundation. We consider the free oscillations of the plate without specific
boundary conditions.

We assume that the vertical displacements of the plate are small compared
to the length l. We also assume that the force F (w) can be naturally written as
follows:

F (w) = ksw + bsw
3, (2)

where ks and bs are spring constants. Constant ks must be positive physically.
Constant bs takes either zero or positive or negative. If bs is zero, then the spring
is a linear spring. For a linear spring, the force is proportional to the displacement.
If bs is not zero, then the spring is a nonlinear spring [23]. If bs is positive (we
call a hard spring), then the nonlinearity increases the force. If bs is negative (we
call a soft spring), then the nonlinearity decreases the force. We are interested in a
nonlinear spring, that is, bs is positive or negative. In the appendix, the governing
equation with a nonlinear spring expressed by

F (w) = ksw + bsw
2 (3)

is shown. In this case, we have the known result [21].
Then Equation (1) becomes

∂2w(x, y, t)
∂t2

+
EI

μ

{
∂4w(x, y, t)

∂x4
+ 2

∂4w(x, y, t)
∂x2∂y2

+
∂4w(x, y, t)

∂y4

}

+
ks

μ
w(x, y, t) +

bs

μ
w(x, y, t)3 = −g. (4)

In order to simplify equation (4) the term −g will be removed by introducing the
transformation

w(x, y, t) = w̃(x, y, t) +
μg

ks
s(x, y), (5)
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where s(x, y) satisfies the following time-independent equation:

∂4s(x, y)
∂x4

+ 2
∂4s(x, y)
∂x2∂y2

+
∂4s(x, y)

∂y4
+

ks

EI
s(x, y) = − ks

EI
, (6)

where μg
ks

s(x, y) represents the deflection of the plate in static state due to grav-
ity. Equation (6) is easily solved as the boundary value problem, but we are not
interested in static state. w̃(x, y, t) is written as follows:

∂2w̃(x, y, t)
∂t2

+
EI

μ

{
∂4w̃(x, y, t)

∂x4
+ 2

∂4w̃(x, y, t)
∂x2∂y2

+
∂4w̃(x, y, t)

∂y4

}
+

ks

μ
w̃(x, y, t)

+
bs

μ

{
w̃(x, y, t)3 +

3μg

ks
w̃(x, y, t)2s(x, y)

+ 3
(

μg

ks

)2

w̃(x, y, t)s(x, y)2 +
(

μg

ks

)3

s(x, y)3
}

= 0. (7)

Using the dimensionless variables

w̄ =
l

Aa
w̃, x̄ =

π

l
x, ȳ =

π

l
y, t̄ =

(π

l

)2

√
EI

μ
t, (8)

equation (7) becomes

∂2w̄

∂t̄2
+

∂4w̄

∂x̄4
+ 2

∂4w̄

∂x̄2∂ȳ2
+

∂4w̄

∂ȳ4

+
l4

π4EI

{
ksw̄ +

bsA
2
a

l2
w̄3 +

3bsAa

l
w̄2 μg

ks
s

(
l

π
x̄,

l

π
ȳ

)

+
bsA

2
a

l2
w̄

(
μg

ks
s

(
l

π
x̄,

l

π
ȳ

))2

+
bsl

Aa

(
μg

ks
s

(
l

π
x̄,

l

π
ȳ

))3}
= 0, (9)

where we simply write w̄, which is w̄
(

l
π x̄, l

π ȳ,
(

l
π

)2√ μ
EI t̄

)
exactly.

We assume that the area Aa of the cross section is small compared to the plate
side length l, then we put ε̃ =

(
Aa

l

)2 with ε̃ a small parameter. We also assume
that the deflection of the plate in static state due to gravity, μg

ks
s(x, y), is small with

respect to the vertical displacement w̃. So, we assume that μg
ks

s(x, y) is O(ε̃n) with
n > 1. Setting

ε = −bsε̃

(
l

π

)4 1
EI

, p2 =
(

l

π

)4
ks

EI
, (10)

equation (9) becomes

∂2w̄

∂t̄ 2
+

∂4w̄

∂x̄4
+ 2

∂4w̄

∂x̄2∂ȳ2
+

∂4w̄

∂ȳ4
+ p2w̄ = εw̄3 + O(εn), (11)
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with n > 1 and ε is a small parameter. We can now write the following equation
governs the vertical displacement of a plate on a weakly nonlinear, elastic founda-
tion, which describes up to O(εn), n > 1:

∂2w(x, y, t)
∂t2

+
∂4w(x, y, t)

∂x4
+ 2

∂4w(x, y, t)
∂x2∂y2

+
∂4w(x, y, t)

∂y4
+ p2w(x, y, t)

= εw(x, y, t)3,

0 < x < π, 0 < y < π, t > 0,

(12)

where we drop all bars for convenience. The first four terms in the left-hand side
of equation (12) are the linear part of the plate equation and p2w− εw3 represents
the restoring force due to the elastic foundation. Since no other external forces
are considered, equation (12) describes the free osillations on an elastic, weakly
nonlinear foundation.

3. Governing equation of the envelope surface of nearly monochromatic
waves on an elastic, weakly nonlinear foundation

In this section we derive the governing equation for the envelope surface cre-
ated by nearly monochromatic waves propagating in unidirection on an plate with
weakly nonlinear foundation. Nearly monochromatic waves have the wavenumber
spectrum having a peak and spreading over around a peak. So, the energy of nearly
monochromatic waves is almost concentrated in a single wavenumber. The ampli-
tude of such waves varies slowly in time and space so that creates the envelope of
traveling waves.

In order to derivate the equation govern the envelope of nearly monochromatic
waves centered around the wavenumber kw and the angular frequency ω, we use
the method of multiple scales [22]. We introduce the slow time scales T1 = εt, and
T2 = ε2t in addition to the original time scale T0 = t. Moreover we introduce the
long scales X1 = εx, X2 = ε2x, Y1 = εy, and Y2 = ε2y in addition to the original
space scale X0 = x and Y0 = y. Here ε is a small parameter, which is physically
different from ε in equation (10). Both ε and ε are the same small parameter
mathematically and we assume that ε and ε are of the same order, so we denote ε

without distinction. Hence the time and space derivatives become

∂

∂t
=

∂

∂T0
+ ε

∂

∂T1
+ ε2

∂

∂T2
,

∂

∂x
=

∂

∂X0
+ ε

∂

∂X1
+ ε2

∂

∂X2
,

∂

∂y
=

∂

∂Y0
+ ε

∂

∂Y1
+ ε2

∂

∂Y2
.

(13)

Then we seek a second-order solution in the form

w(x, y, t; ε) =
2∑

n=0

εnwn(X0,X1,X2, Y0, Y1, Y2, T0, T1, T2) + O(ε3). (14)
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Substituting equation (14) into equation (12), using equation (13), and equating
coefficients of like powers of ε, we obtain

∂4w0

∂X4
0

+ 2
∂4w0

∂X2
0∂Y 2

0

+
∂4w0

∂Y 4
0

+
∂2w0

∂T 2
0

+ p2w0 = 0, (15)

∂4w1

∂X4
0

+ 2
∂4w1

∂X2
0∂Y 2

0

+
∂4w1

∂Y 4
0

+
∂2w1

∂T 2
0

+ p2w1

= −4
∂4w0

∂X3
0∂X1

− 4
∂4w0

∂X0∂X1∂Y 2
0

− 4
∂4w0

∂X2
0∂Y0∂Y1

− 4
∂4w0

∂Y 3
0 ∂Y1

− 2
∂2w0

∂T0∂T1
+ w3

0, (16)

∂4w2

∂X4
0

+ 2
∂4w2

∂X2
0∂Y 2

0

+
∂4w2

∂Y 4
0

+
∂2w2

∂T 2
0

+ p2w2

= −4
∂4w1

∂X3
0∂X1

− 4
∂4w1

∂X0∂X1∂Y 2
0

− 4
∂4w1

∂X2
0∂Y0∂Y1

− 4
∂4w1

∂Y 3
0 ∂Y1

− 2
∂2w1

∂T0∂T1
− 6

∂4w0

∂X2
0∂X2

1

− 4
∂4w0

∂X3
0∂X2

− 8
∂4w0

∂X0∂X1∂Y0∂Y1

− 2
∂4w0

∂X2
1∂Y 2

0

− 4
∂4w0

∂X0∂X2∂Y 2
0

− 2
∂4w0

∂X2
0∂Y 2

1

− 4
∂4w0

∂X2
0∂Y0∂Y2

− 6
∂4w0

∂Y 2
0 ∂Y 2

1

− 4
∂4w0

∂Y 3
0 ∂Y2

− ∂2w0

∂T 2
1

− 2
∂2w0

∂T0∂T2
+ 3w2

0w1. (17)

To analyze the propagation of nearly monochromatic waves centered around the
wavenumber kw and the angular frequency ω, we take the solution of equation (15)
in the form

w0 = A(X1,X2, Y1, Y2, T1, T2)ei(kwX0 cos θ0+kwY0 sin θ0−ωT0)

+ A∗(X1,X2, Y1, Y2, T1, T2)e−i(kwX0 cos θ0+kwY0 sin θ0−ωT0).

We write this equation as follows for convenience (hereinafter, “cc” is used as the
same manner):

w0 = A(X1,X2, Y1, Y2, T1, T2)ei(kwX0 cos θ0+kwY0 sin θ0−ωT0) + cc. (18)

Equation (18) describes the propagation of nearly monochromatic waves whose
propagation direction is θ0 (0 < θ0 < π/2) in the (x, y) plane. In other words,
A of equation (18) presents the envelope surface created by nearly monochromatic
waves. We derive the governing equation for A using equations (15), (16), (17),
and (18).

First, the dispersion relation for A is led by substituting equation (18) into
equation (15)

ω2 = k4
w + p2. (19)
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Next, substituting equation (18) into equation (16) and eliminating the terms that
produce secular terms yield the following solvability condition

4ik3
w

(
cos θ0

∂A

∂X1
+ sin θ0

∂A

∂Y1

)
+ 2iω

∂A

∂T1
+ 3|A|2A = 0, (20)

and we have the equation w1 satisfies as follows:

∂4w1

∂X4
0

+ 2
∂4w1

∂X2
0∂Y 2

0

+
∂4w1

∂Y 4
0

+
∂2w1

∂T 2
0

+ p2w1 = A3e3i(kwX0 cos θ0+kwY0 sin θ0−ωT0) + cc.

(21)
Then the solution of equation (21) becomes

w1 =
A3

8(9k4
w − p2)

e3i(kwX0 cos θ0+kwY0 sin θ0−ωT0) + cc. (22)

Similarly, we eliminate the terms that produce secular terms in the equation
obtained from equations (17), (18), and (22), then we obtain the solvability condi-
tion as follows:

(6k2
w cos2 θ0 + 2k2

w sin2 θ0)
∂2A

∂X2
1

+ 4ik3
w cos θ0

∂A

∂X2
+ 4k2

w sin 2θ0
∂2A

∂X1∂Y1

+ (6k2
w sin2 θ0 + 2k2

w cos2 θ0)
∂2A

∂Y 2
1

+ 4ik3
w sin θ0

∂A

∂Y2
+ 2iω

∂A

∂T2
− ∂2A

∂T 2
1

= 0. (23)

Equations (20) and (23) describe the evolution of the complex amplitude A

with the slow and long scales. We obtain the governing equation for A, which is
accomplished by combining equations (20) and (23). First, from equation (19), we
obtain the following relations:

ωω′ = 2k3
w, ωω′′ = 6k2

w − 4k6
w

k4
w + p2

, (24)

where ω′ = dω/dkw and ω′′ = d2ω/dk2
w. We use these relations in the calculation

below. Next, from equation (20), we have

∂A

∂T1
= −2

k3
w

ω

(
cos θ0

∂A

∂X1
+ sin θ0

∂A

∂Y1

)
+

i3
2ω

|A|2A. (25)

Differentiating both sides of equation (25) with respect to T1 yields

∂2A

∂T 2
1

= −ω′
(

cos θ0
∂

∂X1

∂A

∂T1
+ sin θ0

∂

∂Y1

∂A

∂T1

)
+

i3
2ω

(
∂|A|2
∂T1

A +
∂A

∂T1
|A|2

)

= −ω′
(

cos θ0
∂

∂X1

∂A

∂T1
+ sin θ0

∂

∂Y1

∂A

∂T1

)
+

i3
2ω

(
2|A|2 ∂A

∂T1
+

∂A∗

∂T1
A2

)
. (26)
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Substituting equation (25) to equation (26) yields

∂2A

∂T 2
1

= −ω′
[
cos θ0

∂

∂X1

{
−ω′

(
cos θ0

∂A

∂X1
+ sin θ0

∂A

∂Y1

)
+

i3
2ω

|A|2A
}

+ sin θ0
∂

∂Y1

{
−ω′

(
cos θ0

∂A

∂X1
+ sin θ0

∂A

∂Y1

)
+

i3
2ω

|A|2A
}]

+
i3
2ω

[
2|A|2

{
−ω′

(
cos θ0

∂A

∂X1
+ sin θ0

∂A

∂Y1

)
+

i3
2ω

|A|2A
}

+ A2

{
−ω′

(
cos θ0

∂A∗

∂X1
+ sin θ0

∂A∗

∂Y1

)
− i3

2ω
|A|2A∗

}]

= ω′2
(

cos2 θ0
∂2A

∂X2
1

+ 2 cos θ0 sin θ0
∂2A

∂X1∂Y1
+ sin2 θ0

∂2A

∂Y 2
1

)

− i6ω′

ω
|A|2

(
cos θ0

∂A

∂X1
+ sin θ0

∂A

∂Y1

)

− i3ω′

ω
A2

(
cos θ0

∂A∗

∂X1
+ sin θ0

∂A∗

∂Y1

)
− 9

4ω2
|A|4A. (27)

Substituting equation (27) into equation (23) and arranging terms leads to

i

{
∂A

∂T2
+ ω′

(
cos θ0

∂A

∂X2
+ sin θ0

∂A

∂Y2

)
+

3ω′

ω2
|A|2

(
cos θ0

∂A

∂X1
+ sin θ0

∂A

∂Y1

)

+
3ω′

2ω2
A2

(
cos θ0

∂A∗

∂X1
+ sin θ0

∂A∗

∂Y1

)}

+
{

1
2
ω′′ cos2 θ0 +

1
6

(
ω′′ +

ω′2

ω

)
sin2 θ0

}
∂2A

∂X2
1

+
{

1
2
ω′′ sin2 θ0 +

1
6

(
ω′′ +

ω′2

ω

)
cos2 θ0

}
∂2A

∂Y 2
1

+
1
3
(
ω′′ − ω′2

2ω

)
sin 2θ0

∂2A

∂X1∂Y1

+
9

8ω3
|A|4A = 0. (28)

Expressing X1, X2, Y1, Y2, and T2 in terms of the original x, y, and t variables, we
obtain

i

{
∂A

∂t
+

(
ω′ +

3εω′

ω2
|A|2

)(
cos θ0

∂A

∂x
+ sin θ0

∂A

∂y

)

+
3εω′

2ω2
A2

(
cos θ0

∂A∗

∂x
+ sin θ0

∂A∗

∂y

)}

+
{

1
2
ω′′ cos2 θ0 +

1
6

(
ω′′ +

ω′2

ω

)
sin2 θ0

}
∂2A

∂x2

+
{

1
2
ω′′ sin2 θ0 +

1
6

(
ω′′ +

ω′2

ω

)
cos2 θ0

}
∂2A

∂y2

+
1
3

(
ω′′ − ω′2

2ω

)
sin 2θ0

∂2A

∂x∂y
+

9ε2

8ω3
|A|4A = 0. (29)
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To eliminate the cross term of ∂2

∂x∂y , we transform the coordinate system by

⎛
⎝x̃

ỹ

t̃

⎞
⎠ =

⎛
⎜⎝

√
β −√

α 0√
β

√
α 0

0 0 1

⎞
⎟⎠

⎛
⎝x

y

t

⎞
⎠ , (30)

where α = 1
2ω′′ cos2 θ0 + 1

6

(
ω′′ + ω′2

ω

)
sin2 θ0, β = 1

2ω′′ sin2 θ0 + 1
6

(
ω′′ + ω′2

ω

)
cos2 θ0.

(Note that α > 0, β > 0 are easily found using equation (24).) We also let c1 = 3ω′
ω2 ,

c2 = 1
2c1 = 3ω′

2ω2 , c3 = 9
8ω3 , and γ = 1

3

(
ω′′ − ω′2

2ω

)
sin 2θ0, then equation (29) is

transformed to the new coordinate system (x̃, ỹ, t̃) as follows:

i

{
∂A

∂t̃
+ (ω′ + εc1|A|2)

(
(
√

β cosθ0 −
√

αsinθ0)
∂A

∂x̃
+ (

√
β cosθ0 +

√
αsinθ0)

∂A

∂ỹ

)

+ εc2A
2

(
(
√

β cosθ0 −
√

αsinθ0)
∂A∗

∂x̃
+ (

√
β cosθ0 +

√
αsinθ0)

∂A∗

∂ỹ

)}

+ (2αβ − γ
√

αβ )
∂2A

∂x̃2
+ (2αβ + γ

√
αβ )

∂2A

∂ỹ2
+ ε2c3|A|4A = 0. (31)

Hereinafter, we use anew x, y, and t instead of x̃, ỹ, and t̃ in order to avoid a
nuisance of symbols and we introduce the following symbols:

a =
√

β cos θ0 −
√

α sin θ0, b =
√

β cos θ0 +
√

α sin θ0,

c = 2αβ − γ
√

αβ , d = 2αβ + γ
√

αβ .
(32)

Summarizing this section, we obtain the governing equation of the envelope
surface of nearly monochromatic waves on an elastic, weakly nonlinear foundation
as follows:

i

{
∂A

∂t
+ (ω′ + εc1|A|2)

(
a
∂A

∂x
+ b

∂A

∂y

)
+ εc2A

2

(
a
∂A∗

∂x
+ b

∂A∗

∂y

)}

+ c
∂2A

∂x2
+ d

∂2A

∂y2
+ ε2c3|A|4A = 0. (33)

We note that equation (33) is a quintic nonlinear Schrödinger equation.

4. Stability analysis of the uniform solution

In this section, we analyze the stability of the uniform solution of equation
(33). We obtain the following uniform solution of equation (33):

A(t) = A0e
i(ε2c3A4

0t+β0), (34)

where A0 and β0 are real constants. We consider a modulational perturbation [24]
of equation (34) and express it in the form

Ã(x, y, t) = A(t){1 + B(x, y, t)}, (35)
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where perturbed quantity B(x, y, t) is written

B(x, y, t) = B1e
Ωt+ik(x cos θ+y sin θ) + B2e

Ω∗t−ik(x cos θ+y sin θ). (36)

Here Bi, Ω , k and θ are a complex constant, a growth rate with a complex quantity,
the wavenumber and propagation direction of the modulational wave, respectively.
Also superscript ∗ means complex conjugate.

Theorem 1. We assume that there is the innumerable perturbed quantity,
presented by equation (36), which satisfies 0 < c ≤ ∣∣B2

B1

∣∣ ≤ c̄ as B1 → 0. Then the
sufficient condition for the stability of the uniform solution of equation (33) is

k2 ≥ A4
0{4c3(c cos2 θ + d sin2 θ) − c2

2(a cos θ + b sin θ)2}
(c cos2 θ + d sin2 θ)2

ε2. (37)

Proof. Substituting equation (35) into equation (33) yields

i

[
∂A

∂t
(1 + B) + A

∂B

∂t
+ (ω′ + εc1A

2
0|1 + B|2)

(
aA

∂B

∂x
+ bA

∂B

∂y

)
+ εc2A

2(1 + B)2

×
(

aA∗ ∂B∗

∂x
+ bA∗ ∂B∗

∂y

)]
+ cA

∂2B

∂x2
+ dA

∂2B

∂y2
+ ε2c3A

4
0 |1 + B|4A(1 + B) = 0.

(38)
Using the relation

∂A

∂t
(1 + B) = iε2c3A

4
0A(1 + B), (39)

then it follows that eqation (38) is rewitten

i

(
∂B

∂t
+ (ω′ + εc1A

2
0|1 + B|2)

(
a
∂B

∂x
+ b

∂B

∂y

)
+ εc2A

2
0(1 + B)2

(
a
∂B∗

∂x
+ b

∂B∗

∂y

))

+ c
∂2B

∂x2
+ d

∂2B

∂y2
+ ε2c3A

4
0(1 + B)(|1 + B|4 − 1) = 0. (40)

Substituting equation (36) into equation (40) yields

eΩt+ik(x cos θ+y sin θ)(Θ11B1 + Θ12B
∗
2) + eΩ∗t−ik(x cos θ+y sin θ)(Θ21B

∗
1 + Θ22B2)

+
∑

m=0,1,...,5
n=0,1,...,5
2≤m+n≤5

em{Ωt+ik(x cos θ+y sin θ)}+n{Ω∗t−ik(x cos θ+y sin θ)}fm,n(B1, B2) = 0, (41)

where

Θ11 = iΩ − k(w′ + εc1A
2
0)(a cos θ + b sin θ) − k2(c cos2 θ + d sin2 θ) + 2ε2c3A

4
0,

(42)

Θ12 = −εkc2A
2
0(a cos θ + b sin θ) + 2ε2c3A

4
0, (43)

Θ21 = εkc2A
2
0(a cos θ + b sin θ) + 2ε2c3A

4
0, (44)

Θ22 = iΩ∗ + k(w′ + εc1A
2
0)(a cos θ + b sin θ) − k2(c cos2 θ + d sin2 θ) + 2ε2c3A

4
0.

(45)
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and fm,n(B1, B2) is shown in Appendix B. We find that fm,n(B1, B2) is the function
of B1 and B2, independent of x, y, and t.

Here Substituting (x, y, t) = (x0, y0, t0) into equation (41) yields

c̃1(Θ11B1 + Θ12B
∗
2) + c̃∗1(Θ21B

∗
1 + Θ22B2) +

∑
m=0,1,...,5
n=0,1,...,5
2≤m+n≤5

c̃m,nfm,n(B1, B2) = 0, (46)

where c̃1, c̃∗1 and c̃m,n are complex constants as follows:

c̃1 = eΩt0+ik(x0 cos θ+y0 sin θ)

c̃∗1 = eΩ∗t0−ik(x0 cos θ+y0 sin θ)

c̃m,n = em{Ωt0+ik(x0 cos θ+y0 sin θ)}+n{Ω∗t0−ik(x0 cos θ+y0 sin θ)}.

(47)

We also substitute (x, y, t) = (x1, y1, t1) into equation (41) then we have

c̃′1(Θ11B1 + Θ12B
∗
2) + c̃∗′1 (Θ21B

∗
1 + Θ22B2) +

∑
m=0,1,...,5
n=0,1,...,5
2≤m+n≤5

c̃′m,nfm,n(B1, B2) = 0, (48)

where c̃′1, c̃
∗′
1 and c̃′m,n are complex constants that (x1, y1, t1) is subsituted into

equation (47) instead of (x0, y0, t0). We devide by B1 in Equations (46) and (48)
then we obtain

c̃1

(
Θ11 + Θ12

B∗
2

B1

)
+ c̃∗1

B∗
1

B1

(
Θ21 + Θ22

B2

B∗
1

)
+

∑
m=0,1,...,5
n=0,1,...,5
2≤m+n≤5

c̃m,nf̃m,n(B1, B2) = 0,

(49)

c̃′1

(
Θ11 + Θ12

B∗
2

B1

)
+ c̃∗′1

B∗
1

B1

(
Θ21 + Θ22

B2

B∗
1

)
+

∑
m=0,1,...,5
n=0,1,...,5
2≤m+n≤5

c̃′m,nf̃m,n(B1, B2) = 0,

(50)

where f̃m,n, shown in Appendix C, is transformed from fm,n since we prepare later
calculation.

From the assumption of the theorem, we can take the sequences of B1 and B2

such that

lim
B1→0

B∗
2

B1
= cb, (51)

where cb ∈ C, since [c, c̄] is compact. We immediately obtain

lim
B1→0

B∗
2 = 0, lim

B1→0
B2 = 0, lim

B1→0

B2

B∗
1

= c∗b , lim
B1→0

B∗
1

B2
=

1
c∗b

, lim
B1→0

B1

B∗
2

=
1
cb

.

(52)
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Moreover, we express B1 as |B1|eiθb , then B∗
1

B1
= e−2iθb . There exsists an accumu-

lation point of θb0 in 0 ≤ θb < 2π from the theorem of Weierstrass-Bolzano. Using
the theorem of Weierstrass-Bolzano again, we can select a partially convergent se-
quence such as limn→∞ θbn = θb0 from the sequences of B1 that satisfies equation
(51). Therefore,

lim
B1→0

B∗
1

B1
= e−2iθb0 = cθ. (53)

Using equations (51), (52) and (53) and considering the state of B1 → 0, we obtain
the following coupled equations from equations (49) and (50):

c̃1(Θ11 + cbΘ12) + c̃∗1cθ(Θ21 + c∗bΘ22) = 0, (54)

c̃′1(Θ11 + cbΘ12) + c̃∗′1 cθ(Θ21 + c∗bΘ22) = 0. (55)

Combining equations (54) and (55),(
c̃1 c̃∗1cθ

c̃′1 c̃∗′1 cθ

)(
Θ11 + cbΘ12

Θ21 + c∗bΘ22

)
=

(
0
0

)
. (56)

Here, we can select (x0, y0, t0) and (x1, y1, t1) such that a matrix
(

c̃1 c̃∗1cθ

c̃′1 c̃∗′1 cθ

)
has full

rank. Therefore, from equation (56)

Θ11 + cbΘ12 = 0,

Θ21 + c∗bΘ22 = 0.
(57)

We finally obtain the relation

Θ11Θ∗
22 − Θ12Θ∗

21 = 0. (58)

We obtain Ω by solving equation (58) as follows:

Ω = −ik(w′ + εc1A
2
0)(a cos θ + b sin θ)

± [k2{ε2A4
0{4c3(c cos2 θ + d sin2 θ) − c2

2(a cos θ + b sin θ)2}
− (c cos2 θ + d sin2 θ)2k2}] 1

2 . (59)

In order to be stable in the perturbation, the content of root of equation (59) must
not be positive. This leads to the theorem. �

Remark 1. We assume that 0 < c ≤ ∣∣B2
B1

∣∣ ≤ c̄ only in this theorem. Al-

though we don’t assume the convergence of B∗
2

B1
, we have the convergent point cb

determined uniquely by equation (57), which is unrelated to how to take partial
sequences of B1 and B2.

Remark 2. In equation (59), Ω has one or two points on the imaginary axis
when equation (37) holds. However, when equation (37) doesn’t hold, Ω has one
stable point and one unstable point. Therefore, Ω is structurally unstable.



Quintic Nonlinear Schrödinger Equation for a Square Plate 173

Appendix A.

We consider a nonlinear spring, which characteristics is presented by

F (w) = kbw + bsw
2, (A.1)

instead of equation (2), where bs �= 0. This characteristics is not so real in engineer-
ing. However, the result from equation (A.1) is important in mathematics. Then
equation (4) becomes

∂2w(x, y, t)
∂t2

+
EI

μ

{
∂4w(x, y, t)

∂x4
+ 2

∂4w(x, y, t)
∂x2∂y2

+
∂4w(x, y, t)

∂y4

}

+
kb

μ
w(x, y, t) +

bs

μ
w(x, y, t)2 = −g. (A.2)

Using the same transformation (equation (5)) and dimensionless variables (equation
(8)), equation (A.2) becomes

∂2w̄

∂t̄2
+

∂4w̄

∂x̄4
+ 2

∂4w̄

∂x̄2∂ȳ2
+

∂4w̄

∂ȳ4

+
l4

π4EI

{
kbw̄ +

bsAa

l
w̄2 +

2bsμg

kb
s

(
l

π
x̄,

l

π
ȳ

)
w̄ +

bsl

Aa

(
μg

kb
s

(
l

π
x̄,

l

π
ȳ

))2}
= 0,

(A.3)
Here we put ε̃ = Aa

l with ε̃ a small parameter. Using equation (10), then we have
the following governing equation, which describes up to O(εn), n > 1:

∂2w(x, y, t)
∂t2

+
∂4w(x, y, t)

∂x4
+ 2

∂4w(x, y, t)
∂x2∂y2

+
∂4w(x, y, t)

∂y4

+ p2w(x, y, t) = εw(x, y, t)2,

0 < x < π, 0 < y < π, t > 0,

(A.4)

where all bars are dropped for convenience. In this case, p2w − εw2 represents the
restoring force due to the elastic foundation.

Substituting equation (14) into equation (A.4), we obtain

∂4w0

∂X4
0

+ 2
∂4w0

∂X2
0∂Y 2

0

+
∂4w0

∂Y 4
0

+
∂2w0

∂T 2
0

+ p2w0 = 0, (A.5)

∂4w1

∂X4
0

+ 2
∂4w1

∂X2
0∂Y 2

0

+
∂4w1

∂Y 4
0

+
∂2w1

∂T 2
0

+ p2w1

= −4
∂4w0

∂X3
0∂X1

− 4
∂4w0

∂X0∂X1∂Y 2
0

− 4
∂4w0

∂X2
0∂Y0∂Y1

− 4
∂4w0

∂Y 3
0 ∂Y1

− 2
∂2w0

∂T0∂T1
+ w2

0, (A.6)
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∂4w2

∂X4
0

+ 2
∂4w2

∂X2
0∂Y 2

0

+
∂4w2

∂Y 4
0

+
∂2w2

∂T 2
0

+ p2w2

= −4
∂4w1

∂X3
0∂X1

− 4
∂4w1

∂X0∂X1∂Y 2
0

− 4
∂4w1

∂X2
0∂Y0∂Y1

− 4
∂4w1

∂Y 3
0 ∂Y1

− 2
∂2w1

∂T0∂T1
− 6

∂4w0

∂X2
0∂X2

1

− 4
∂4w0

∂X3
0∂X2

− 8
∂4w0

∂X0∂X1∂Y0∂Y1

− 2
∂4w0

∂X2
1∂Y 2

0

− 4
∂4w0

∂X0∂X2∂Y 2
0

− 2
∂4w0

∂X2
0∂Y 2

1

− 4
∂4w0

∂X2
0∂Y0∂Y2

− 6
∂4w0

∂Y 2
0 ∂Y 2

1

− 4
∂4w0

∂Y 3
0 ∂Y2

− ∂2w0

∂T 2
1

− 2
∂2w0

∂T0∂T2
+ 2w0w1. (A.7)

Equation (A.5) is the same of equation (15) so that we have the same dispersion
relation of equation (19). Furthermore, we have the following solvability condition
from equation (A.6):

2k3
w cos θ0

∂A

∂X1
+ 2k3

w sin θ0
∂A

∂Y1
+ ω

∂A

∂T1
= 0, (A.8)

and we have the equation w1 satisfies as follows:

∂4w1

∂X4
0

+ 2
∂4w1

∂X2
0∂Y 2

0

+
∂4w1

∂Y 4
0

+
∂2w1

∂T 2
0

+ p2w1

= A2e2i(kwX0 cos θ0+kwY0 sin θ0−ωT0) + |A|2 + cc. (A.9)

Then the solution of equation (A.9) becomes

w1 =
A2

3(4k4
w − p2)

e2i(kwX0 cos θ0+kwY0 sin θ0−ωT0) +
1
p2

|A|2 + cc. (A.10)

Another solvability condition is obtained from equations (A.7) and (A.10) as follows:

(6k2
w cos2 θ0 + 2k2

w sin2 θ0)
∂2A

∂X2
1

+ 4ik3
w cos θ0

∂A

∂X2
+ 4k2

w sin 2θ0
∂2A

∂X1∂Y1

+ (6k2
w sin2 θ0 + 2k2

w cos2 θ0)
∂2A

∂Y 2
1

+ 4ik3
w sin θ0

∂A

∂Y2
+ 2iω

∂A

∂T2
− ∂2A

∂T 2
1

+ δ|A|2A

= 0, (A.11)
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where δ = 4(6k4
w−p2)

3p2(4k4
w−p2) . Using equations (A.8), (A.11) and (24), we have

2iω
∂A

∂T2
+ 4ik3

w

(
cos θ0

∂A

∂X2
+ sin θ0

∂A

∂Y2

)

+
{

ωω′′ cos2 θ0 +
1
3

(
ωω′′ + ω′2

)
sin2 θ0

}
∂2A

∂X2
1

+
{

ωω′′ sin2 θ0 +
1
3

(
ωω′′ + ω′2

)
cos2 θ0

}
∂2A

∂Y 2
1

+
1
3

(
2ωω′′ − ω′2

)
sin 2θ0

∂2A

∂X1∂Y1
+ δ|A|2A = 0. (A.12)

Expressing X1, X2, Y1, Y2, and T2 in terms of the original x, y, and t variables, we
finally obtain

i

{
∂A

∂t
+ ω′

(
cos θ0

∂A

∂x
+ sin θ0

∂A

∂y

)}

+
1
2

{
ω′′ cos2 θ0 +

1
3

(
ω′′ +

ω′2

ω

)
sin2 θ0

}
∂2A

∂x2

+
1
2

{
ω′′ sin2 θ0 +

1
3

(
ω′′ +

ω′2

ω

)
cos2 θ0

}
∂2A

∂y2

+
1
6

(
2ω′′ − ω′2

ω

)
sin 2θ0

∂2A

∂x∂y
+

ε2δ

2ω
|A|2A = 0. (A.13)

Equation (A.13) is rewritten by the transformation of equation (30) as follows:

i

{
∂A

∂t̃
+ ω′

(
(
√

β cos θ0 −
√

α sin θ0)
∂A

∂x̃
+ (

√
β cos θ0 +

√
α sin θ0)

∂A

∂ỹ

)}

+ (2αβ − γ
√

αβ )
∂2A

∂x̃2
+ (2αβ + γ

√
αβ )

∂2A

∂ỹ2
+

ε2δ

2ω
|A|2A = 0. (A.14)

When using the symbols a, b, c, and d in equation (32), we obtain the governing
equation of the envelope surface of nearly monochromatic waves on an elastic,
weakly nonlinear foundation with the characteristics of equation (3) as follows:

i

(
∂A

∂t
+ ω′

(
a
∂A

∂x
+ b

∂A

∂y

))
+ c

∂2A

∂x2
+ d

∂2A

∂y2
+

ε2δ

2ω
|A|2A = 0, (A.15)

where ˜ is omitted for convenience. Equation (A.15) is a standard nonlinear
Schrödinger equation with cubic nonlinearlity.

Appendix B.

f2,0(B1, B2) =−εc1A
2
0k(a cos θ + b sin θ)(B1 + B∗

2)B1

− 2εc2A
2
0k(a cos θ + b sin θ)B1B

∗
2 + ε2c3A

4
0(3B2

1 + 6B1B
∗
2 + B∗2

2 )
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f0,2(B1, B2) = εc1A
2
0k(a cos θ + b sin θ)(B∗

1 + B2)B2

+ 2εc2A
2
0k(a cos θ + b sin θ)B∗

1B2 + ε2c3A
4
0(B

∗2
1 + 6B∗

1B2 + 3B2
2)

f1,1(B1, B2) = εc1A
2
0k(a cos θ + b sin θ)(|B2|2 − |B1|2)

+ 2εc2A
2
0k(a cos θ + b sin θ)(|B1|2 − |B2|2)

+ ε2c3A
4
0{6(|B1|2 + |B2|2) + 6B1B2 + 2B∗

1B∗
2}

f3,0(B1, B2) =−εc1A
2
0k(a cos θ + b sin θ)B2

1B∗
2 − εc2A

2
0k(a cos θ + b sin θ)B2

1B∗
2

+ ε2c3A
4
0(B

3
1 + 6B2

1B∗
2 + 3B1B

∗2
2 )

f0,3(B1, B2) = εc1A
2
0k(a cos θ + b sin θ)B∗

1B2
2 + εc2A

2
0k(a cos θ + b sin θ)B∗

1B2
2

+ ε2c3A
4
0(B

3
2 + 6B∗

1B2
2 + 3B∗2

1 B2)

f2,1(B1, B2) =−εc1A
2
0k(a cos θ + b sin θ)B1|B1|2

+ εc2A
2
0k(a cos θ + b sin θ)(B1|B1|2 − 2B1|B2|2)

+ ε2c3A
4
0{(|B1|2 + |B2|2)(6B1 + 2B∗

2)

+ 4|B1|2B∗
2 + 6B1|B2|2 + 3B2

1B2 + B∗
2 |B2|2}

f1,2(B1, B2) = εc1A
2
0k(a cos θ + b sin θ)B2|B2|2

− εc2A
2
0k(a cos θ + b sin θ)(B2|B2|2 − 2|B1|2B2)

+ ε2c3A
4
0{(|B1|2 + |B2|2)(2B∗

1 + 6B2)

+ 4B∗
1 |B2|2 + 6|B1|2B2 + 3B1B

2
2 + B∗

1 |B1|2}
f4,0(B1, B2)= ε2c3A

4
0{B2

1B∗2
2 + 2(B3

1B∗
2 + B2

1B∗2
2 )}

f0,4(B1, B2)= ε2c3A
4
0{B∗2

1 B2
2 + 2(B∗2

1 B2
2 + B∗

1B3
2)}

f2,2(B1, B2) = ε2c3A
4
0{(|B1|2 + |B2|2)2 + |B1B2|2

+ 2(|B1|2 + |B2|2)(2B1B2 + |B1|2 + |B2|2)
+ 2B2(|B1|2B∗

2 + B1|B2|2) + 2B1(|B1|2B2 + B∗
1 |B2|2)}

f3,1(B1, B2) = ε2c3A
4
0{2(B2

1 + 2B1B
∗
2)(|B1|2 + |B2|2)

+ 2(B1B
∗
2 |B1|2 + B1B

∗
2 |B2|2 + 4B2

1 |B2|2)}
f1,3(B1, B2) = ε2c3A

4
0{2(B2

2 + 2B∗
1B2)(|B1|2 + |B2|2)

+ 2(B∗
1B2|B1|2 + B∗

1B2|B2|2 + 4|B1|2B2
2)}

f5,0(B1, B2)= ε2c3A
4
0B

3
1B∗2

2

f0,5(B1, B2)= ε2c3A
4
0B

∗2
1 B3

2

f4,1(B1, B2)= ε2c3A
4
0{B2

1 |B2|2B∗
2 + 2B2

1B∗
2(|B1|2 + |B2|2)}

f1,4(B1, B2)= ε2c3A
4
0{|B1|2B∗

1B2
2 + 2B∗

1B2
2(|B1|2 + |B2|2)}

f3,2(B1, B2) = ε2c3A
4
0{B1(|B1|2 + |B2|2)2 + B1|B1B2|2 + 2B1|B2|2(|B1|2 + |B2|2)}

f2,3(B1, B2) = ε2c3A
4
0{B2(|B1|2 + |B2|2)2 + B2|B1B2|2 + 2|B1|2B2(|B1|2 + |B2|2)}.
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Appendix C.

f̃2,0(B1,B2) = B1

[
−εc1A

2
0k(acosθ + bsinθ)

(
1 +

B∗
2

B1

)

− 2εc2A
2
0k(acosθ + bsinθ)

B∗
2

B1
+ ε2c3A

4
0

{
3 + 6

B∗
2

B1
+

(
B∗

2

B1

)2}]

f̃0,2(B1,B2) =
B∗

1

B1
B2

{
εc1A

2
0k(acosθ + bsinθ)

(
1 +

B2

B∗
1

)

+ 2εc2A
2
0k(acosθ + bsinθ) + ε2c3A

4
0

(
6 + 3

B2

B∗
1

+
B∗

1

B2

)}

f̃1,1(B1,B2) = B∗
1

{
εc1A

2
0k(acosθ + bsinθ)

(
B∗

2

B1

B2

B∗
1

− 1
)

+ 2εc2A
2
0k(acosθ + bsinθ)

×
(

1 − B∗
2

B1

B2

B∗
1

)
+ ε2c3A

4
0

(
6 + 6

B2

B∗
1

+ 2
B∗

2

B1
+ 6

B∗
2

B1

B2

B∗
1

)}

f̃3,0(B1,B2) = B1B
∗
2

{
−εc1A

2
0k(acosθ + bsinθ) − εc2A

2
0k(acosθ + bsinθ)

+ ε2c3A
4
0

(
6 +

B1

B∗
2

+ 3
B∗

2

B1

)}

f̃0,3(B1,B2) =
B∗

1

B1
B2

2

{
εc1A

2
0k(acosθ + bsinθ) + εc2A

2
0k(acosθ + bsinθ)

+ ε2c3A
4
0

(
6 +

B2

B∗
1

+ 3
B∗

1

B2

)}

f̃2,1(B1,B2) = |B2|2
{
−εc1A

2
0k(acosθ + bsinθ)

B1

B∗
2

B∗
1

B2

+ εc2A
2
0k(acosθ + bsinθ)

(
B1

B∗
2

B∗
1

B2
− 2

)

+ ε2c3A
4
0

(
12 + 6

B∗
1

B2
+ 3

B∗
2

B1
+ 3

B1

B∗
2

+ 6
B1

B∗
2

B∗
1

B2

)}

f̃1,2(B1,B2) = B∗
1B2

{
εc1A

2
0k(acosθ + bsinθ)

B2

B∗
1

B∗
2

B1

− εc2A
2
0k(acosθ + bsinθ)

(
B2

B∗
1

B∗
2

B1
− 2

)

+ ε2c3A
4
0

(
12 + 3

B∗
1

B2
+ 6

B∗
2

B1
+ 3

B2

B∗
1

+ 6
B2

B∗
1

B∗
2

B1

)}

f̃4,0(B1,B2) = B1B
∗2
2 ε2c3A

4
0

(
3 + 2

B1

B∗
2

)

f̃0,4(B1,B2) = B∗
1

B∗
1

B1
B2

2ε2c3A
4
0

(
3 + 2

B2

B∗
1

)
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f̃2,2(B1,B2) = B∗
1 |B2|2ε2c3A

4
0

(
11 + 6

B1

B∗
2

+ 6
B2

B∗
1

+ 3
B1

B∗
2

B∗
1

B2
+ 3

B∗
2

B1

B2

B∗
1

)

f̃3,1(B1,B2) = |B1|2B∗
2ε2c3A

4
0

(
6 + 2

B1

B∗
2

+ 10
B2

B∗
1

+ 6
B2

B∗
1

B∗
2

B1

)

f̃1,3(B1,B2) =
B∗

1

B1
B2|B2|2ε2c3A

4
0

(
6 + 2

B2

B∗
1

+ 10
B1

B∗
2

+ 6
B1

B∗
2

B∗
1

B2

)

f̃5,0(B1,B2) = B2
1B∗2

2 ε2c3A
4
0

f̃0,5(B1,B2) =
B∗

1

B1
B4

2ε2c3A
4
0

B∗
1

B2

f̃4,1(B1,B2) = B1|B1|2B∗
2ε2c3A

4
0

(
2 + 3

B∗
2

B1

B2

B∗
1

)

f̃1,4(B1,B2) =
B∗

1

B1
B2

2 |B2|2ε2c3A
4
0

(
2 + 3

B∗
1

B2

B1

B∗
2

)

f̃3,2(B1,B2) = |B1|2 |B2|2ε2c3A
4
0

(
5 +

B1

B∗
2

B∗
1

B2
+ 3

B2

B∗
1

B∗
2

B1

)

f̃2,3(B1,B2) = B∗
1B2|B2|2ε2c3A

4
0

(
5 +

B∗
2

B1

B2

B∗
1

+ 3
B1

B∗
2

B∗
1

B2

)
.
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