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HALF-SPACE THEOREMS FOR MINIMAL SURFACES

IN Nil3 AND Sol3

Benôıt Daniel, William H. Meeks, III & Harold Rosenberg

Abstract

We prove some half-space theorems for minimal surfaces in the
Heisenberg group Nil3 and the Lie group Sol3 endowed with their
standard left-invariant Riemannian metrics. If S is a properly
immersed minimal surface in Nil3 that lies on one side of some
entire minimal graph G, then S is the image of G by a vertical
translation. If S is a properly immersed minimal surface in Sol3
that lies on one side of a special plane Et (see the discussion just
before Theorem 1.5 for the definition of a special plane in Sol3),
then S is the special plane Eu for some u ∈ R.

1. Introduction

A classical theorem in the global theory of proper minimal surfaces
in Euclidean 3-space is the half-space theorem by Hoffman and Meeks
[8]: if S is a properly immersed minimal surface in R

3 that lies on
one side of some plane P, then S is a plane parallel to P. The proof
uses the maximum principle and the fact that catenoids converge to a
double cover of a punctured plane as the necksize goes to zero. As a
consequence, they proved the strong half-space theorem: two properly
immersed minimal surfaces in R

3 that do not intersect must be parallel
planes.

These theorems have been generalized to some other ambient simply
connected homogeneous manifolds. Let us first observe that there is no
half-space theorem in Euclidean spaces of dimensions n > 4, since there
exist rotational proper minimal hypersurfaces contained in a slab.

In hyperbolic 3-space H
3, one does not have a half-space theorem

for minimal surfaces (indeed, for instance any smooth closed curve in
the asymptotic boundary of H3 bounds a minimal surface), but one has
half-space theorems for constant mean curvature (CMC) 1 surfaces [13],
which can be obtained using rotational catenoid cousins (see also [2]).
One of the reasons that halfspace theorems exist for CMC 1 surfaces in
H

3 is that the “critical” value for mean curvature in H
3 is 1, i.e., there

exist compact CMC H surfaces in H
3 if and only if |H| > 1.
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Similarly, there is no half-space theorem for minimal surfaces in H
2×

R, since catenoids (i.e., rotational minimal surfaces) are contained in a
slab [11, 12]. On the other hand, Hauswirth, Rosenberg, and Spruck
proved a half-space theorem for CMC 1

2 surfaces in H
2 × R.

Theorem 1.1 ([7]). Let S be a properly immersed CMC 1
2 surface

in H
2 × R.

• If S is contained on the mean convex side of a horocylinder C, then
S is a horocylinder parallel to C.

• If S is embedded and contains a horocylinder C on its mean convex
side, then S is a horocylinder parallel to C.

(A horocylinder is a product γ × R where γ ⊂ H
2 is a horocycle.)

Since rotational CMC 1
2 surfaces are not suitable to obtain this the-

orem, their proof uses a continuous family of compact annuli bounded
by two circles in parallel horocylinders, one circle being fixed and the
other one having a radius going to infinity. To do this, they use the
Schauder fixed point theorem and elliptic PDE techniques.

The aim of this paper is to prove, using geometric arguments, some
half-space theorems for minimal surfaces in two simply connected ho-
mogenous 3-manifolds, the Heisenberg group Nil3 and the Lie group
Sol3, which are two manifolds admitting isometries with remarkable
properties.

The 3-dimensional Heisenberg group Nil3 admits a Riemannian sub-
mersion π : Nil3 → R

2. Translations along the fibers are isometries
called a vertical translations.

The inverse image by π of a straight line in R
2 is a minimal surface

called vertical plane; two vertical planes are said to be parallel if their
images by π are parallel straight lines. These vertical planes are mini-
mal, stable, and isometric to R

2 but not totally geodesic (in fact, there
are no local totally geodesic surfaces in Nil3).

Other examples of stable minimal surfaces in Nil3 are entire minimal
graphs, i.e., minimal surfaces G such that π|G : G → R

2 is a diffeomor-
phism. There exist many entire minimal graphs, and they were classified
by Fernandez and Mira [6]. Some examples (in the usual coordinates
(x1, x2, x3) described in Section 3.1) are given by x3 = 0 (which is ro-
tational) and x3 = x1x2

2 (which is invariant by a one-parameter family
of translations). In this space, there exist entire minimal graphs of
parabolic conformal type and of hyperbolic conformal type.

Using rotational catenoids, Abresch and Rosenberg obtained the fol-
lowing result.

Theorem 1.2 ([1]). Let S be a properly immersed minimal surface
in Nil3. If S lies on one side of the surface of equation x3 = 0, then S
is the surface of equation x3 = c for some c ∈ R.
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Let us observe that one has the analogous statement for the surfaces
of equation x3 = ax1+ bx2+ c for any a, b, c since all these surfaces are
congruent.

Daniel and Hauswirth proved a vertical half-space theorem for mini-
mal surfaces in Nil3.

Theorem 1.3 ([4]). Let S be a properly immersed minimal surface
in Nil3. If S lies on one side of some vertical plane P, then S is a
vertical plane parallel to P.

To do this, they constructed a one-parameter family of horizontal
catenoids, which are non-rotational properly embedded minimal annuli
that converge to a double cover of a punctured vertical plane as the
necksize goes to zero (they are semi-explicit and obtained by integrating
a Weierstrass-type representation).

In this paper, we will give another proof of this theorem (requiring
less computations) and we will prove the following result.

Theorem 1.4. Let S be a properly immersed minimal surface in
Nil3. If S lies on one side of some entire minimal graph G, then S is
the image of G by a vertical translation.

Theorem 1.2 is the particular case of Theorem 1.4 when G is the
surface of equation x3 = 0. It is natural to conjecture that two properly
immersed minimal surfaces in Nil3 that do not intersect are either two
parallel vertical planes or an entire minimal graph and its image by a
vertical translation (this would be the analogue of the strong half-space
theorem of R3).

The Lie group Sol3 admits a Riemannian submersion ψ : Sol3 → R

such that, for any s ∈ R, the surface

Es := ψ−1(s)

is minimal, stable, and isometric to R
2 but not totally geodesic. We will

call these surfaces special planes. Other remarkable minimal foliations in
Sol3 are the foliations (Ht

j)t∈R (j = 1, 2) where Ht
j is defined by xj = t

in the usual coordinates (x1, x2, s) defined in Section 2.1. The leaves
are totally geodesic, stable, and have intrinsic curvature −1 (in fact,
they are the only totally geodesic surfaces in Sol3). They are symmetry
planes in Sol3, which permits Alexandrov reflection. Two surfaces Ht

j

and Hu
k are congruent.

In this paper, we will prove the following theorem.

Theorem 1.5. Let S be a properly immersed minimal surface in
Sol3. If S lies on one side of some special plane E t (t ∈ R), then S is
the special plane Eu for some u ∈ R.
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Remark 1.6. There is no half-space theorem for the surfaces Ht
1

and Ht
2; indeed the equation x1 = ae−s for a 6= 0 defines a properly

embedded minimal surface lying on one side of H0
1.

We now outline the proofs of the theorems. We assume that there
exist a properly immersed minimal surface S lying on one side of the
surface Σ with respect to which we want to prove the half-space the-
orem (i.e., Σ is an entire minimal graph in Nil3, a vertical plane in
Nil3, or a special plane in Sol3). We assume that S and Σ are not
congruent. We consider the image Σε of Σ by a “small” translation,
a fixed circle (“small”) in Σε and a circle of varying radius (“large”)
in Σ. We construct a least area annulus bounded by the two circles
(using the Douglas criterion) and prove using curvature estimates that
a subsequence of these annuli converges to a properly embedded annu-
lus bounded by the small circle as the radius of the large circle goes to
infinity.

Then we prove that the distance between the limit annulus and the
surface Σ is positive. To do this, we distinguish two cases.

1) When Σ is a vertical plane in Nil3 or a special plane in Sol3 (The-
orems 1.3 and 1.5), we prove, using curvature estimates, that the
limit annulus is quasi-isometric to Σ and hence parabolic, and we
find a suitable bounded subharmonic function on the limit annu-
lus.

2) When Σ is an entire minimal graph in Nil3 (Theorem 1.4), we
cannot use such an argument since some entire minimal graphs
are hyperbolic. Instead, we use a nodal domain argument to prove
that the limit annulus is a graph, and then we use a generalization
by Leandro and Rosenberg [9] of a theorem by Collin and Krust
[3] about graphs with prescribed mean curvature. This theorem
states that if u and v are two solutions to the same prescribed mean
curvature graph equation over a domain Ω ⊂ R

2 that coincide on
∂Ω, then either u− v is unbounded or u ≡ v on Ω.

This implies that some annulus bounded by two circles must intersect
S, and we conclude by translating this annulus until reaching an interior
last point of contact, contradicting the maximum principle.

The paper is organized as follows. Section 2 is devoted to prelimi-
naries about Sol3 and to the proof of Theorem 1.5. Section 3 contains
preliminaries about Nil3 and the proofs of Theorems 1.3 and 1.4.

Acknowledgments. This material is based upon work of the second
author for the NSF under Award No. DMS-1004003. Any opinions,
findings, and conclusions or recommendations expressed in this publi-
cation are those of the authors and do not necessarily reflect the views
of the NSF.
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2. A half-space theorem in Sol3

2.1. The Lie group Sol3. The Lie group Sol3 can be viewed as R
3

endowed with the Riemannian metric

e2sdx21 + e−2sdx22 + ds2

where (x1, x2, s) denote the canonical coordinates of R3.
In these coordinates, the Riemannian submersion is given by

ψ : (x1, x2, s) 7→ s,

and so the special plane E t is simply defined by the equation s = t.
We consider the left-invariant orthonormal frame (E1, E2, E3) defined

by

E1 = e−s ∂

∂x1
, E2 = es

∂

∂x2
, E3 =

∂

∂s
.

We call it the canonical frame. The expression of the Riemannian con-

nection ∇̂ of Sol3 in this frame is the following:

(1)

∇̂E1
E1 = −E3, ∇̂E2

E1 = 0, ∇̂E3
E1 = 0,

∇̂E1
E2 = 0, ∇̂E2

E2 = E3, ∇̂E3
E2 = 0,

∇̂E1
E3 = E1, ∇̂E2

E3 = −E2, ∇̂E3
E3 = 0.

The isometry group of Sol3 has dimension 3. The connected com-
ponent of the identity is generated by the following three families of
isometries:

(x1, x2, s) 7→ (x1 + c, x2, s), (x1, x2, s) 7→ (x1, x2 + c, s),

(x1, x2, s) 7→ (e−cx1, e
cx2, s+ c).

The corresponding Killing fields are

F1 =
∂

∂x1
, F2 =

∂

∂x2
, F3 = −x1

∂

∂x1
+ x2

∂

∂x2
+

∂

∂s
.

We will call translations isometries belonging to the identity component
of the identity (they are in fact left multiplications for the Lie group
structure).

The isotropy group of the origin (0, 0, 0) is isomorphic to the dihedral
group D4 and is generated by the following two orientation-reversing
isometries:

(2) σ : (x1, x2, s) 7→ (x2,−x1,−s), τ : (x1, x2, s) 7→ (−x1, x2, s).

The reflection with respect to the surface x2 = 0 is given by σ2τ .
For more details, we refer to [5] and references therein.
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2.2. Proof of Theorem 1.5. Before proving the theorem, we will need
some preliminary results.

Lemma 2.1. Let Σ be a minimal surface (possibly with boundary) in
Sol3 such that

0 < s 6 2

on Σ. Then the function

ϕ :=
1

s
is subharmonic on Σ.

Proof. We view Σ as a conformal minimal immersionX = (x1, x2, s) : Σ →
Sol3 from a Riemann surface Σ. Let z be a conformal coordinate. We
set

A1 = esx1z, A2 = e−sx2z, A3 = sz,

so that

Xz = A1E1 +A2E2 +A3E3.

The conformality of X means that

(3) A2
1 +A2

2 +A2
3 = 0.

Since X is minimal, we have ∇̂Xz̄
Xz = 0, and so

(4) A3z̄ = 〈E3,Xz〉z̄ = 〈∇̂Xz̄
E3,Xz〉 = |A1|

2 − |A2|
2,

by (1). Then by (4) we have

ϕzz̄ = −

(
A3

s2

)

z̄

=
2|A3|

2 − s(|A1|
2 − |A2|

2)

s3
.

On the other hand, by (3) we have

|A3|
4 = |A2

1 +A2
2|
2 = |A1|

4 + |A2|
4 + 2Re(A2

1Ā
2
2)

> |A1|
4 + |A2|

4 − 2|A1|
2|A2|

2 = (|A1|
2 − |A2|

2)2.

Consequently, we get −|A3|
2 6 |A1|

2 − |A2|
2 6 |A3|

2, and so, since
0 < s 6 2, we conclude that ϕzz̄ > 0. q.e.d.

Lemma 2.2. There exist positive constants a, b, and d such that,
for all stable minimal surfaces Σ (possibly with boundary), for all p ∈ Σ
such that dist(p, ∂Σ) > d, if |〈N(p), E3〉| 6 a where N(p) denotes a unit
normal vector to Σ at p, then there exist points q1 and q2 in Σ such that
s(q1)− s(q2) > b.

Proof. We recall that stable minimal surfaces admit uniform curva-
ture estimates away from their boundary, and so there exist positive
constants d and δ such that, for any stable minimal surface Σ (possi-
bly with boundary), for each p ∈ Σ such that dist(p, ∂Σ) > d, there
is a piece S(p) of Σ around p that is a graph (in exponential coor-
dinates) over the disk in TpΣ of radius 2δ centered at the origin of
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TpΣ. Moreover these graphs have uniformly bounded second funda-
mental form. If |〈N(p), E3〉| is smaller than some constant a > 0, such
a piece S(p) necessarily has points q1 and q2 such that s(q1)− s(p) > b

2

and s(p)−s(q2) >
b
2 for some constant b > 0, and these constants a and

b are independent of Σ (see Figure 1): otherwise, one could produce
a sequence of such pieces with unbounded second fundamental form.
Moreover, these constants are also independent from the point p since
E3 and the differences of the s function are invariant by translations.
q.e.d.

E3

N(p)

TpΣ

s

q1

q2

S(p) ⊂ Σ

p

b

Figure 1. A piece of a stable minimal surface.

From now on, S denotes a properly immersed minimal surface in Sol3.
We assume that S lies on one side of some special plane E t (t ∈ R).

Up to isometries in Sol3, we can assume t = 0, s > 1 on S and

inf{u ∈ R | S ∩ Eu 6= ∅} = 1.

If S ∩ E1 6= ∅, then the maximum principle implies that S = E1. So
from now on we assume that

S ∩ E1 = ∅.

For R > 0 and h > 0 we let

KR := {(x1, x2, s) ∈ Sol3 | x
2
1 + x22 6 R2},

CR := {(x1, x2, s) ∈ Sol3 | x
2
1 + x22 = R2},

Dh
R := KR ∩ Eh,

Γh
R := CR ∩ Eh,

Qh
R :=

⋃

t∈[1,1+h]

Dt
R,
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qhR :=
⋃

t∈[1,1+h]

Γt
R.

We now fix real numbers r > 0 and ε > 0 so that ε < 1, ε < b
2 where

b is defined in Lemma 2.2,

(5) Area(qεr) < Area(D1
r) + Area(D1+ε

r )

and

(6) S ∩Qε
er = ∅,

which is possible since S is proper in Sol3.

Claim 2.3. If R > r, then there exists a least area annulus AR

bounded by Γ1+ε
r and Γ1

R. Moreover, this annulus lies between the
special planes E1+ε and E1 and it is embedded.

Proof. The solutions to the Plateau problem for Γ1+ε
r and Γ1

R are
respectively D1+ε

r and D1
R; indeed, the unique compact minimal surface

bounded by an embedded closed curve in the special plane Eh (h ∈ R)
is the part of this special plane bounded by this curve, by the maximum
principle (since we have the minimal foliation (Eu)u∈R). The total area
of these two disks is Area(D1

R) + Area(D1+ε
r ).

Let
M := (D1

R \D1
r) ∪ q

ε
r .

By (5), the area of M is smaller than Area(D1
R) + Area(D1+ε

r ).
Consequently, the Douglas criterion implies the existence of a least

area annulus AR bounded by Γ1+ε
r and Γ1

R. This annulus is embedded
by the Geometric Dehn’s Lemma in [10]. q.e.d.

By Lemma 2.2, if Ω ⊂ AR and dist(Ω, ∂AR) > d, then |〈N,E3〉| > a
whereN denotes the unit normal toAR (otherwise there would exist two
points q1, q2 ∈ AR such that s(q1)−s(q2) > b > 2ε, which contradicts the
fact that AR lies between the special planes E1+ε and E1). In particular,
Ω is transverse to E3.

We now introduce a constant ρ > r such that

(7) dist(Γ1+ε
r , qερ) > d.

If R is large enough, this implies that AR intersects transversely qερ in

a smooth curve Γ̃R. We denote by ÃR the part of AR lying outside Qε
ρ:

it is an annulus bounded by Γ̃R and Γ1
R.

Claim 2.4. Let (Rn) be an increasing sequence of positive real num-
bers such that Rn → +∞ as n → +∞. Then, up to a subsequence,

the annuli ÃRn
converge to a properly embedded minimal annulus Ã∞

whose boundary is a closed curve Γ̃∞ ⊂ qερ and such that

inf
Ã∞

s > 1.
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Proof. The annuli ARn
are stable, so they admit uniform curvature

bounds for their points lying at a distance > d from their boundary.

Hence, by (7), up to a subsequence, the annuli ÃRn
converge to a prop-

erly embedded minimal surface Ã∞ whose boundary is a curve Γ̃∞ lying
between the special planes E1+ε and E1 and in qερ (properness of the limit
annulus follows, easily deduced from the fact that outside a fixed sized
regular neighborhood of its boundary, each ARn

is transverse to E3 and

graphical over its s-projection to E1). Moreover, since ÃRm
lies above

ÃRn
if m > n, the curve Γ̃∞ lies above all the curves Γ̃Rn

; in particular,
we have

h := min
Γ̃∞

s > 1.

Let N be a unit normal vector field to Ã∞. Then we have |〈N,E3〉| >

a, so Ã∞ can be written as a graph s = f(x1, x2) over

L := {(x1, x2, 1) ∈ E1 | x21 + x22 > ρ2},

where f is a function with bounded gradient. The vector field E3 is

orthogonal to E1, and by construction, the annulus Ã∞ lies between the
special planes E1 and E1+ε. This implies that the map (x1, x2, 1) 7→

(x1, x2, f(x1, x2)) is a quasi-isometry between L and Ã∞. Since E1 is

flat, this implies that Ã∞ is parabolic (it has quadratic area growth).

On Ã∞ we have 1 6 s 6 1 + ε 6 2, so by Lemma 2.1 the function

ϕ := 1/s is subharmonic on Ã∞. Moreover, ϕ is bounded on Ã∞, so

since Ã∞ has parabolic conformal type, we have

ϕ 6 sup
∂Ã∞

ϕ =
1

h

on Ã∞. Consequently, we have s > h > 1 on Ã∞. q.e.d.

We can now conclude the proof of the theorem.

Proof of Theorem 1.5. Because of Claim 2.4, there exists m ∈ N such

that S ∩ ÃRm
6= ∅, and so

S ∩ ARm
6= ∅.

For c ∈ R, we let T c : Sol3 → Sol3 denote the isometry (x1, x2, s) 7→
(e−cx1, e

cx2, s + c). We consider the annuli T−c(ARm
) for c > 0. We

notice that S ∩ T−c(ARm
) = ∅ when c > ε. Then there exists a largest

c for which

S ∩ T−c(ARm
) 6= ∅.

We claim that no point of intersection lies on the boundary of T−c(ARm
).

Indeed, this boundary consists of T−c(Γ1+ε
r ) and T−c(Γ1

Rm
). The curve
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T−c(Γ1+ε
r ) is defined by

{
e−2cx21 + e2cx22 = r2,

s = 1 + ε− c,

so, since 0 6 c 6 ε < 1, it is contained in Qε
er and hence cannot intersect

S by (6). On the other hand, T−c(Γ1
Rm

) lies below E1 and hence cannot
intersect S either.

Consequently, there exists an intersection point of S and T−c(ARm
)

lying in the interior of T−c(ARm
). But since c is maximal, S lies on one

side of T−c(ARm
); this contradicts the maximum principle (see Figure

2). q.e.d.

3. Half-space theorems in Nil3

3.1. The Lie group Nil3. The 3-dimensional Heisenberg group Nil3
can be viewed as R3 endowed with the metric

dx21 + dx22 +

(
1

2
(x2dx1 − x1dx2) + dx3

)2

.

The projection π : Nil3 → R
2, (x1, x2, x3) 7→ (x1, x2) is a Riemannian

submersion.
We consider the left-invariant orthonormal frame (E1, E2, E3) defined

by

E1 =
∂

∂x1
−
x2
2

∂

∂x3
, E2 =

∂

∂x2
+
x1
2

∂

∂x3
, E3 = ξ =

∂

∂x3
.

We call it the canonical frame. The expression of the Riemannian con-

nection ∇̂ of Nil3 in this frame is the following:

(8)

∇̂E1
E1 = 0, ∇̂E2

E1 = −
1

2
E3, ∇̂E3

E1 = −
1

2
E2,

∇̂E1
E2 =

1

2
E3, ∇̂E2

E2 = 0, ∇̂E3
E2 =

1

2
E1,

∇̂E1
E3 = −

1

2
E2, ∇̂E2

E3 =
1

2
E1, ∇̂E3

E3 = 0.

A vector is said to be vertical if it is proportional to ξ, and horizontal
if it is orthogonal to ξ. A surface is said to be a (local) ξ-graph if it is
transverse to ξ. We will call the inverse image by π of a straight line in
R
2 a vertical plane.
The isometry group of Nil3 has dimension 4. The connected com-

ponent of the identity is generated by the following four families of
isometries:

(x1, x2, x3) 7→
(
x1 + c, x2, x3 +

cx2
2

)
,

(x1, x2, x3) 7→
(
x1, x2 + c, x3 −

cx1
2

)
,

(x1, x2, x3) 7→ (x1, x2, x3 + c),
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ARm

S

Qε
er

E3

T−c(ARm
)

E
1−c

E
1+ε−c

E
1

E
1+ε

s

Figure 2. Translating the annulus ARm
.
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(x1, x2, x3) 7→ ((cos θ)x1 − (sin θ)x2, (sin θ)x1 + (cos θ)x2, x3).

The corresponding Killing fields are

F1 =
∂

∂x1
+
x2
2

∂

∂x3
, F2 =

∂

∂x2
−
x1
2

∂

∂x3
, F3 = ξ =

∂

∂x3
,

F4 = (−(sin θ)x1 − (cos θ)x2)
∂

∂x1
+ ((cos θ)x1 − (sin θ)x2)

∂

∂x2
.

We will call translations isometries generated by the first three of these
families (they are in fact left multiplications for the Lie group structure).

The entire isometry group of Nil3 is generated by the aforementioned
isometries and the orientation-reversing isometry

(x1, x2, x3) 7→ (−x1, x2,−x3).

For more details, we refer to [4] and references therein.

3.2. A new proof of Theorem 1.3. We can prove Theorem 1.3 in
a very similar way to that of Theorem 1.5. For our purpose, it will be
useful to introduce the following coordinates in Nil3:

y1 = x1, y2 = x2, y3 = x3 +
x1x2
2

.

In these coordinates we have

E1 =
∂

∂y1
, E2 =

∂

∂y2
+ y1

∂

∂y3
, E3 = ξ =

∂

∂y3
.

What is important is that E1 is the partial derivative with respect to
a coordinate whose level sets are precisely the vertical planes to which
E1 is orthogonal. The proof of Theorem 1.3 will be analogous to that
of Theorem 1.5, replacing the s coordinate in Sol3 by the y1 coordinate
in Nil3. The main difference lies in the analogue of Lemma 2.1, which
is the following.

Lemma 3.1. Let Σ be a minimal surface (possibly with boundary) in
Nil3 such that

0 < y1 6 4

on Σ. Then the function

ϕ :=
1

y1
is subharmonic on Σ.

Proof. We view Σ as a conformal minimal immersionX = (y1, y2, y3) : Σ →
Nil3 from a Riemann surface Σ. Let z be a conformal coordinate. We
set

A1 = y1z, A2 = y2z, A3 = y3z − y1y2z,

so that

Xz = A1E1 +A2E2 +A3E3.
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The conformality of X means that

(9) A2
1 +A2

2 +A2
3 = 0.

Since X is minimal, we have ∇̂Xz̄
Xz = 0, and so

(10) A1z̄ = 〈E1,Xz〉z̄ = 〈∇̂Xz̄
E1,Xz〉 = −

1

2
(Ā2A3 +A2Ā3)

by (8). Then by (10) we have

ϕzz̄ = −

(
A1

y21

)

z̄

=
4|A1|

2 + y1(Ā2A3 +A2Ā3)

2y31
.

On the other hand, by (9) we have

|A1|
4 = |A2

2 +A2
3|
2 = |A2|

4 + |A3|
4 + Ā2

2A
2
3 +A2

2Ā
2
3

and
(Ā2A3 +A2Ā3)

2 = Ā2
2A

2
3 +A2

2Ā
2
3 + 2|A2|

2|A3|
2.

Consequently, we get −|A1|
2 6 Ā2A3 + A2Ā3 6 |A1|

2, and so, since
0 < y1 6 4, we conclude that ϕzz̄ > 0. q.e.d.

Lemma 3.2. There exist positive constants a, b, and d such that,
for all stable minimal surface Σ (possibly with boundary), for all p ∈ Σ
such that dist(p, ∂Σ) > d, if |〈N(p), E1〉| 6 a where N(p) denotes a unit
normal vector to Σ at p, then there exist points q1 and q2 in Σ such that
y1(q1)− y1(q2) > b.

Proof. The proof is analogous to that of Lemma 2.2. q.e.d.

From now on, S denotes a properly immersed minimal surface in Nil3
and P a vertical plane. We assume that S lies on one side of P.

For h ∈ R, we let Ph denote the plane of equation y1 = h. Up to
isometries in Nil3, we can assume P = P1, y1 > 1 on S and

inf{u ∈ R | S ∩ Pu 6= ∅} = 1.

If S ∩ P1 6= ∅, then the maximum principle implies that S = P1. So
from now on we assume that

S ∩ P1 = ∅.

For R > 0 and h > 0 we let

KR := {(y1, y2, y3) ∈ Nil3 | y
2
2 + y23 6 R2},

CR := {(y1, y2, y3) ∈ Nil3 | y
2
2 + y23 = R2},

Dh
R := KR ∩ Ph,

Γh
R := CR ∩ Ph,

Qh
R :=

⋃

t∈[1,1+h]

Dt
R,

qhR :=
⋃

t∈[1,1+h]

Γt
R.
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We now fix real numbers r > 0 and ε > 0 so that ε < 1, ε < b
2 where

b is defined in Lemma 3.2,

(11) Area(qεr) < Area(D1
r) + Area(D1+ε

r )

and

(12) S ∩Qε
2r = ∅,

which is possible since S is proper in Nil3.
The following facts can be proved in the same way as Claims 2.3 and

2.4.

Claim 3.3. If R > r, then there exists a least area annulus AR

bounded by Γ1+ε
r and Γ1

R. Moreover, this annulus lies between the
planes P1+ε and P1 and it is embedded.

By Lemma 3.2, if Ω ⊂ AR and dist(Ω, ∂AR) > d, then |〈N,E1〉| > a
whereN denotes the unit normal toAR (otherwise there would exist two
points q1, q2 ∈ AR such that y1(q1)− y1(q2) > b > 2ε, which contradicts
the fact that AR lies between the planes P1+ε and P1). In particular,
Ω is transverse to E1.

We now introduce a constant ρ > r such that

(13) dist(Γ1+ε
r , qερ) > d.

If R is large enough, this implies that AR transversely intersects qερ in

a smooth curve Γ̃R. We denote by ÃR the part of AR lying outside Qε
ρ:

it is an annulus bounded by Γ̃R and Γ1+ε
R .

Claim 3.4. Let (Rn) be an increasing sequence of positive real num-
bers such that Rn → +∞ as n → +∞. Then, up to a subsequence,

the annuli ÃRn
converge to a properly embedded minimal annulus Ã∞

whose boundary is a closed curve Γ̃∞ ⊂ qερ and such that

inf
Ã∞

y1 > 1.

We can now conclude the proof of the theorem.

Proof of Theorem 1.3. This is similar to the conclusion to the proof of
Theorem 1.5. There exists m ∈ N such that

S ∩ ARm
6= ∅.

For c ∈ R, we let Φc : Nil3 → Nil3 denote the isometry (y1, y2, y3) 7→
(y1 + c, y2, y3 + cy2). We consider the largest c > 0 such that S ∩
Φ−c(ARm

) 6= ∅. We have c 6 ε < 1, so using (12) we prove that no
intersection points lies on the boundary, and obtain a contradiction with
the maximum principle. q.e.d.
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3.3. Proof of Theorem 1.4. In this section, S denotes a properly
immersed minimal surface in Sol3 and G an entire minimal ξ-graph. We
assume that S lies on one side of G. For c ∈ R, we let T c : Nil3 → Nil3
denote the vertical translation (x1, x2, x3) 7→ (x1, x2, x3 + c).

Without loss of generality, we can assume that S lies above G. Let

c0 := inf{c ∈ R | S ∩ T c(G) 6= ∅}.

If S∩T c0(G) 6= ∅, then the maximum principle implies that S = T c0(G).
So from now on we assume that

S ∩ T c0(G) = ∅.

Moreover, applying a vertical translation to S, we can assume that

c0 = 0.

For R > 0 and h > 0 we let

KR := {(x1, x2, x3) ∈ Nil3 | x
2
1 + x22 6 R2},

CR := {(x1, x2, x3) ∈ Nil3 | x
2
1 + x22 = R2},

Dh
R := KR ∩ T h(G),

Γh
R := CR ∩ T h(G),

Qh
R :=

⋃

t∈[0,h]

Dt
R,

qhR :=
⋃

t∈[0,h]

Γt
R.

We now fix a real number r ∈ (0, 1). The part of G bounded by
Γ0
r and Γ0

1 is the unique compact minimal surface with this boundary,
hence a small perturbation of its boundary also bounds a unique least
area minimal surface that is near it; in particular, for a small ε > 0,
there exists a least area annulus A bounded by Γε

r and Γ0
1 so that

(14) Area(A) < Area(Dε
r) + Area(D0

1)

and this annulus is a ξ-graph. We fix such an ε and we moreover assume
that ε is small enough so that

(15) S ∩Qε
1 = ∅,

which is possible since S is proper in Nil3.

Claim 3.5. If R > r, then there exists a least area annulus AR

bounded by Γε
r and Γ0

R. Moreover, this annulus lies between the graphs
T ε(G) and G, above A, and it is embedded.
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Proof. Let W be the closure of the noncompact domain bounded by
T ε(G) from above and by G and A from below. Note that Γε

r and Γ0
R are

homotopic in W and individually homotopically nontrivial in W . By
the Geometric Dehn’s Lemma in [10], there exists an embedded minimal
annulus AR ⊂ W bounded by Γε

r and Γ0
R such that AR has least area

in W . q.e.d.

For R > r, we set

UR := {(x1, x2) ∈ R
2 | r2 < x21 + x22 < R2}.

We also set

U∞ := {(x1, x2) ∈ R
2 | r2 < x21 + x22}.

Claim 3.6. If R > 1, then the annulus AR is a ξ-graph of a function
uR : UR → R.

Proof. We first prove that AR is a ξ-graph near Γε
r. The annulus AR

lies below T ε(G); moreover, since R > 1, AR is situated above A, which
is a ξ-graph. As AR is analytic and without branch points up to the
boundary [10], this implies that AR is a ξ-graph near Γε

r (see Figure 3).
We now let N be the unit normal vector field to AR so that N points
upward near Γε

r.

A

Γ0

1

Γε

r

ξ

AR

T ε(G)

G

NCR

Γ0

R

Figure 3. The annulus AR.

We now prove that AR is a ξ-graph near Γ0
R. This comes from the

fact that the mean curvature vector of CR does not vanish and points
inside KR, so AR lies inside KR and cannot be tangent to CR along
Γ0
R. Moreover, since AR is embedded, this implies that N also points

upward near Γ0
R.

We now prove that the whole AR is a ξ-graph. Assume this is not the
case. Then the Jacobi function ν := 〈N, ξ〉 admits a nodal domain Ω on
which ν < 0. Denoting by λ1 the first eigenvalue of the Jacobi operator,
this means that λ1(Ω̄) = 0. On the other hand, Ω̄ is contained in the
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interior of AR because ν > 0 near the boundary of AR. From this we
conclude that

λ1(AR) < λ1(Ω̄) = 0,

which contradicts the fact that AR is stable. q.e.d.

Claim 3.7. Let (Rn) be an increasing sequence of positive real num-
bers such that Rn → +∞ as n → +∞. Then, up to a subsequence,
the functions uRn

converge (in the C2 topology on compact sets) to a
smooth function u∞ : U∞ → R. Moreover, this function u∞ extends to
a continuous function

u∞ : U∞ → R

by setting

∀p ∈ ∂U∞, u∞(p) := v(p),

where v : R2 → R is the function whose ξ-graph is T ε(G).

Proof. The annuli ARn
are stable, so one has uniform curvature

bounds over any compact subset of U∞. Hence, up to a subsequence,
the annuli ÅRn

:= ARn
\ ∂ARn

converge to a properly embedded open

minimal surface Å∞ lying between the entire graphs T ε(G) and G.

Let N be a unit normal vector field to Å∞ and ν := 〈N, ξ〉. Since Å∞

is the limit of the annuli ÅRn
, which are ξ-graphs by Claim 3.6, we have

either ν > 0 or ν 6 0. Up to a change of orientation, we can assume
that ν > 0. If ν vanishes at some interior point, then, since ν > 0 and ν
satisfies an elliptic equation of the form ∆ν+V ν = 0 for some potential
V , the maximum principle implies that ν ≡ 0. This means that Å∞ is
part of a vertical surface, hence a vertical plane since Å∞ is minimal;
this is a contradiction.

Consequently, Å∞ is the ξ-graph of a function u∞ : U∞ → R. Fi-
nally, the barriers T ε(G) and A imply that u∞ extends to a continuous
function

u∞ : U∞ → R

by setting u∞(p) := v(p) for all p ∈ ∂U∞. q.e.d.

Claim 3.8. We have

u∞ ≡ v.

In other words, the annulus Å∞ is the part of the entire graph T ε(G)
lying outside Γε

r.

Proof. The functions u∞ and v satisfy the minimal graph equation
on U∞, u∞ ≡ v on ∂U∞, and −ε < u∞ − v 6 0 since Å∞ lies between
the graphs T ε(G) and G. Then Theorem 5.1 in [9] implies that u∞ ≡ v
(observe that in the theorems of [3, 9] the functions only need to be
continuous along the boundary of the domain). q.e.d.

We can now conclude the proof of the theorem.
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Proof of Theorem 1.4. Since the annuli ARn
converge, as n → +∞, to

the part of T ε(G) lying outside Γε
r, there exists m ∈ N such that

S ∩ ARm
6= ∅.

We consider the annuli T−c(ARm
) for c > 0. We notice that S ∩

T−c(ARm
) = ∅ when c > ε. Then there exists a largest c for which

S ∩ T−c(ARm
) 6= ∅.

We claim that no point of intersection lies on the boundary of T−c(ARm
).

Indeed, this boundary consists of Γε−c
r , which is contained in Qε

1 and
hence cannot intersect S by (15), and of Γ−c

Rm
, which lies below G and

hence cannot intersect S either.
Consequently, there exists an intersection point of S and T−c(ARm

)
lying in the interior of T−c(ARm

). But since c is maximal, S lies on one
side of T−c(ARm

); this contradicts the maximum principle. q.e.d.

Remark 3.9. Since entire minimal graphs in Nil3 and entire CMC
1/2 graphs in H

2 × R are sister surfaces [4], it would be interesting
to prove a half-space theorem in H

2 × R for CMC 1/2 surfaces with
respect to an entire CMC 1/2 graph. However, in this setting there is
no known Collin-Krust type theorem (and actually such a theorem fails
for minimal graphs in H

2 × R). Nevertheless, we propose the following
conjecture.

Conjecture 3.10. Let G be an entire CMC 1/2 graph in H
2 ×R. If

S is a properly immersed CMC 1/2 surface in H
2 ×R that is contained

in the mean convex side of G, then S is the image of G by a vertical
translation.
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