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IRREDUCIBILITY OF MODULI OF RANK-2
VECTOR BUNDLES ON ALGEBRAIC SURFACES

DAVID GIESEKER & JUN LI

Let X be a smooth algebraic surface over C, let I be a fixed line
bundle on X, and let H be a very ample line bundle on X . We recall
that a sheaf E is H-stable (resp. H-semistable) if it is coherent, torsion
free and so that for any proper subsheaf F C E, we have p, < p; (resp.
Pr = pg), where p, = (1/rankE)x; and x.(n) = x(E ® H®"). Here
by pp < pp we mean p.(n) < pg(n) for all sufficiently large n. There
is a coarse moduli space imf'\,’l parameterizing all rank 2 H-semistable
sheaves E with detE = I and c,(E) = d (modulo a certain equivalence).
mt‘,’(” is a projective scheme [8]. For small 4, zm‘,’(” can have rather wild
behavior, e.g., the dimension of zm‘,’{” may be larger than expected [9].
However, S. Donaldson [4], later generalized by R. Friedman [6] and K.
Zhu [34] showed that for large d, every component of SUI’;,’I is reduced
and has the expected dimension. mf(” is also normal [20] for d > 0.

Our purposes of this paper is twofold. The first is to develop a method
of studying m‘,’;’ by degeneration. The second is to use this method to
prove

Main Theorem. Let X be any smooth algebraic surface over C, and
I be a fixed ample divisor. Then there is a constant A depending on
(X, H, I) such that whenever d > A, then im‘;’[ is irreducible.

The proof of the theorem is based on the following well-known obser-
vation: Let 4 be large so that for d > 4, sm‘,’(" is smooth at a dense sub-
set. Take M C zm‘j'(” be any irreducible component and take E € M be a
smooth point. Let C, be the skyscraper sheaf over x € X andlet E - C,
be a general surjective homomorphism. The kernel E' of E — C,isa
stable sheaf with c,(E') = d + 1 and Ext’(E', E')® = {0}. Thus E’
belongs to a unique irreducible component of E)th",“’l . Now if we let
A(d) be the set of irreducible components of zm‘j(*’ , then this construction
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provides us amap f;: A(d) = A(d+1), d > A. Let f; = fy_10 o fy-
We have the following theorem due to C . Taubes [32].

Theorem 0.1 (Taubes). Forany d > A, there is an integer [(d) so that
forany | > 1(d), ]j,(A(d)) is a single point set.

We will give an elementary proof of Theorem 0.1 in the end of §7. The
main theorem will be a consequence of the following theorem.

Theorem 0.2. With the notation as in the main theorem, there is a
constant A depending on (X, H, I) such that for any d > A and any
irreducible component M C imf‘," , the set

M™ = {s € M | s corresponds to nonlocally free stable sheaf’}

is a codimension 1 subset of M. In particular, it is nonempty.

A corollary of Theorem 0.2 is that when 4 is sufficiently large, f,: A(d)
— A(d + 1) is surjective. Therefore combined with Theorem 0.1, A(d)
has exactly one element for d > 0. This proves the main theorem.

The proof of Theorem 0.2 is by studying a degeneration of moduli space
which we describe now: Let C be a smooth curve which will function
as parameter space for our deformation and let 0 € C. Pick a smooth
divisor X € |H| and blow up X x C along X x {0} to obtain a threefold
Z. Let n: Z — C be the projection and let C* = C\{0}. Note that
7' (C*) = XxC* and n~'(0) = XUA, where A is a ruled surface over X.
Let S)thi,(’l x C* be the constant family of schemes over C*. We intend to

construct a flat family (denoted by Sm‘é/‘é) that extends (the normalization

of) the family EDI‘;(” x C* over C* to C. This extension depends on the
choice of a, where a is a pair of rational numbers. It turns out that
the closed point of the special fiber of Zm‘é’/‘é over 0 has a rather nice

description: For any coherent torsion free sheaf F on ! (0) = XUA and
for any choice of a, we introduce the concept of a-stability of F . (This
concept was originally introduced by Seshadri in the context of sheaves

on reducible curves [31].) The family am?:® constructed has the property
z/C

that all closed points s € wz‘;/g over 0 € C are canonically associated to
a-semistable sheaves & on X UA. Moreover, & can be constructed by
“gluing” torsion free sheaves E, on X and E, on A along £ = XNA.
The merit of a-stability is that though E, and E, are in general not
stable, they are not far from being stable. Thus we can deﬁnp a rational
map ¥ from zm‘g ** = fiber of Dﬂ‘é}‘é over 0 € C to |, DJTZ’I , the union

of moduli spaces of H' semistable sheaves on A, where I' and H' are
appropriate divisors on A.
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To utilize this rational map, we need to locate those ¢ so that DJtZ’ r
contains image of ‘I’(‘.Dtg ’*) and to understand the geometry of ‘I-’(Smg ')

in E)JIZ’I . We show that we can choose o d such that there is at least one
¢ so that

(1) E)JIZ’ r n‘l’(img"") has codimension bounded independently of d (in
") and

(2) d — ¢ is bounded independently of d .

We will see that (1) will relate the properties of E)JIZ’ A \P(zm‘; '*) to that
of DJIZ’ I and (2) will allow us to deduce properties of Dﬁg’“ (and then
fmf‘,” ) from that of ‘.)JZZ’ ' ‘I’(Emg"’) . Thus we have an effective tool
for reducing questions about 9;)1;’1 to questions about WIZ’ r . Note that
ms! " is much better understood than Dﬁi,’l .

We show that d—c is bounded independently of d by first showing that
the assumption E)J”(Z’ A ‘P(img"') # & and c > d violate the a-stability
of & ¢ zmg’“ . To simplify our explanation, we assume & € th’a with
¥(&) e my r locally free on Z; = XUA. Then ¢ > d forces the second
Chern class of its restriction to X, é"l « » t0 be quite negative. However,
the bundle c%’,’  1s not far from being stable, so we can use argument of
Bogomolov to show that cz(g] ) cannot be too negative which contradicts
to the assumption ¢ > d. Next, if we can show that there is a ¢ so that
the image of ‘P(ivtd ) in zmc r has dimension equal to dlmfmd I then
c—d cannot be too negative, since dim fm” T _dim zm" * =4(c-d)+0(1).

To show that the dimension of ‘P(Dﬂg *) is equal to the dimension

of Sﬁf‘,’l , we use an extension of Donaldson’s line bundle %} on f))tf‘,”
[4]. Recall that .Z, is constructed as a determinant line bundle of a

complex of sheaves on Wtfiy” , that .?;('8"’ is generated by global sections
when m > 0 and that the associated map is birational. One creates
sections of ..‘Zf'" by the following process: Let D, be a smooth curve

linearly equivalent to rH. By restricting sheaves E € imd 1o D,,

one obtains a rational map F,: 9)2‘;, — M,, , where EUID is the mod-
uli space of semistable bundles on D,. If r> 0, Bogomolov showed
that for any E € 9)‘(d ! Fy(E) is defined if E is locally free. In
[4], Donaldson showed that %y is the pullback of the ample line bun-
dle .7 p, on m, D, - Thus, after a careful study of the pullback sections,

we get a map HO(QJID s ..‘Zb@'”) — Ho(i))t‘f\,” s fZX@m). Then one proves
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the base point freeness of H°(£m§,’1 , fl’j‘,@"’) by using sections obtained
from HO(Z)JID , ,?f’m) as one varies D, in its linear equivalent class [4],

[19]. Thus there is a morphism F,: Dﬂfi‘,’l — P% that is one-to-one at the
generic points of Emi,’l .

This setup can be easily extended to Emg ** . Let .2 be the Donaldson’s
line bundle on zmg *®. Choose D, C A with D, linearly equivalent to r=" .
Here, we use I (resp. X7) to denote sections of A — X with positive
(resp. negative) self-intersection. We show that if « is correctly chosen,
then 37 D, » & € zm" ** | is semistable for general D,. Again we create

enough sections of .Z®™ to show that z ®™ s base point free by pullback
sections of £ &™ for various D, . Thus we get a map F,: sm" L, pN . By
construction, F isa degeneratlon of F, . Therefore by semicontinuity of
dimension, dim FO(E)JI’; )=dimF X(zmj’( = dlmimg . Finally, there is
a similar rational map F,: ‘.mZ’ r PY so that F, isidentical to F,o'¥.
Hence dim ‘I’(img"’) must be equal to dim(‘mi,’l).

The proof of Theorem 0.2 is based on a careful study of deformation
theory once we have constructed the degeneration. Take any irreducible
component M C sm‘;’(” . We intend to show that M contains at least one
non-locally-free sheaf. Let 90t be the corresponding irreducible component
in Z/"C and let M, be the fiber of M over 0 € C. Take B C EUtZ’I be

the image ¥(901)) in SmZ’ r with the mentioned property. By studying the
vector bundles on the ruled surface A, we first prove that there is a closed
point v € M, so that the corresponding a-stable sheaf & on X UA is
not locally free on A. Then by studying the deformation problem, we
show that v is the limit of non-locally-free sheaves in M. Thus M has
to contain at least one non-locally-free sheaf. We sketch the idea of the
argument briefly. First of all, we choose & € 9, so that ¥(&) is generic
in ©. For simplicity, let us assume that & is locally free. Let 4~ be
the subscheme of A defined by % ®4  where S5~ is the ideal sheaf of

2_ b
X" . Denote

0 ={(&e SUIZ’I |&€’ is a torsion free sheaf on A with éf';z- =&}

The codimension of €' in 93?2‘ r is bounded independently of 4. Next,
we show that @' is almost contained in ©. The idea here is that if &’
is a family of bundles in ' parameterized by S (irreducible), 0 € S,
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with 90' o 8’| > then we can form a new family of bundles é’s' , SES,
on X UA by gluing &’ with &, along £~ = X NA. This is possible
because (F,)z- = (&,);5- = (€y);z- - If we can show that the family
8’; on Z, xS can be lifted to a family on Z x §, then by the openness
of the semistability condition, Z' will be in © for generic s € S. The
problem with this approach is that we have no control over the deformation
theory of g;'—in general the obstruction to the existence of such lifting
is nonvanishing. However, since for & € ©', Z - = é’l 45— » WE can
consider analogous family of bundles & on the scheme 4XUA constructed
by gluing sheaves along 4X~ = 4X N A. We show that these & can be
lifted to 5X U2A, 6X U 3A, etc. (cf. [9] for a similar idea.) Since 9 is
projective over C, gslzo lifts for generic s. In particular, if we choose
S so that for some closed s, € S, .Z‘ is not locally free (and satisfies
some additional technical conditions), then the gluing of é’l y With Zl >
i.e., & , belongs to 9, . Thus we know 90, has to contain a non-locally-
free sheaf. Finally, because the subsets of 9 and 91, of non-locally-free
sheaves are codimension-1 subsets, 2, = M, ¢ € C*, has to contain a
non-locally-free sheaf.

It remains to show that we can find a family (of sheaves over A) in
6’ containing %’l , S0 that this family also contains some non-locally-free
sheaves. ’Il'he idea is first to find a non-locally-free sheaf in the closuE
e c imf\” . We do this by finding a product of projective spaces T C €'
with 8’| A € T so that the set of non-locally-free sheaves is an ample divisor
on T. It can be seen as follows: Let P C A be a fiber of A over X. Any
sheaf E belongs to the exact sequence

0-E—8,00,%0,(1)—0

has ¢,(E) = 1. The (surjective) homomorphisms ¢ are parameterized by
a subset U C P’. Clearly, the compliment of P3\U is an ample divisor
of P*. Thus any nonconstant complete family of sheaves belonging to the
preceding exact sequence must contains at least one non-locally-free sheaf
that corresponds to closed point in P’ \U. The idea of attacking higher
¢,(E) is basically the same. Using the fact that the deformation of generic
sheaves on A are unobstructed, we then argue that we can indeed deform
8’| , Within ©' to a non-locally-free sheaf. The proof of Theorem 0.2 thus
is completed.

Our degeneration scheme is an algebrogeometric analogue to cutting
and pasting construction of Donaldson [4], Morgan [24], and Taubes [33]
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in studying ASD connections on four-manifolds. In his paper, Taubes re-
moves a tubular neighborhood A’ of S (a Riemann surface) from X and
endows the two open manifolds A’ and X' = X\S with complete metrics
having cylindrical metric at their ends. Certain questions on connections
on bundles over X can then be reduced to studying connections on A’
and X' with finite total curvature and their gluing problem. Compare to
the degeneration scheme we carried out, A corresponds to our A\X and
X' corresponds to X\X (X = XNA). Analogously, our approach reduces
questions of the moduli scheme zm}” to that of vector bundles over A
and X.

It is clear from this paper that we can give a different proof of Don-
aldson’s general smoothness result on rank-2 bundles based on the de-
generation theory. In a future paper we will show that same technique
can be applied to prove the general smoothness theorem for moduli space
of semistable sheaves of higher rank. We mention that K. O’Grady has
proved Theorem 0.2 independently [28].

0. Conventions and preliminaries

All schemes are defined over the field C of complex numbers and are
of finite type. We shall always identify a vector bundle with its sheaf
of sections. If D is a divisor on a variety X, then we denote by |D)|
the complete linear system associated to D. We will use p, and p, to
denote the projections from the product X xY to X and Y respectively.
Occasionally, we will also use p, and p, to denote the projections onto the
first and second factor respectively. When F is a coherent sheaf supported
on finite points, then we denote by /(F) the length of F. When X is a
smooth surface and E is a torsion free sheaf on X, then we abbreviate
I(EYV/E) to col(E), where EVV isthe double dualof E. If x € X isany
closed point, then col(E), = I(EVJE)® Oy .,)- Note that col(E), =0
if and only if E is locally free at x. If p and ¢ are two polynomials
with real coefficients, we say p = p (resp. p = q) if p(n) > q(n) (resp.
p(n) > q(n)) for all n sufficiently large.

Let X be a smooth variety and let H be an ample divisor on X .
Besides the H-stability introduced at the beginning of the introduction,
there is the concept of e-stability first appeared in [21].

Definition. Let e be a real number and let W be a smooth variety
with very ample divisor H. Then a torsion free sheaf E on W is said
to be e-stable if one of the following two equivalent conditions hold:
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(1) Whenever L E is a subsheaf, 0 < rank(L) < rank(E ), then
1
—_— E
rank(L) deg(L) < k) 98 ) * k@ rank(L)

(2) Whenever E — Q is a quotient sheaf, 0 < rank(Q) < rank(E),

then
1

1 1
rank(E) rank(E) 9e8(E) < rank(Q) deg(Q) + rank(Q)e'
We say E is u-stable if E is e-stable with ¢ = 0. When the strict
inequality is replaced by <, then we say E is e-semistable.

Starting from §2, we will mainly be concerned with schemes flat over
a smooth curve C. (Later, C will specifically be a Zariski open subset
of 0 € SpecC[t].) If Z and U are two schemes over C, we will denote
the product Z x. U by Z,. The convention is that we will use subscript
to specify the base scheme unless the base scheme is C. Also, we will
reserve ¢ as the uniformizing parameter of C. Assume u € U is any
point. Then we will denote by Z, the fiber of Z,, over u € U; that is,
Z,=2Z, %, Speck(u).

Let Z — S be aflat morphism and let £ — Z be any sheaf. We will use
E_ to denote the restriction of E to the fiber Z_; thatis, E = =E®, g,
In case Z = X xS and E is flat over S, we call £ a ﬂat famlly of
sheaves on X parameterized by S, and sometimes will use the subscript
E¢ to emphasize this. Let D C X be any subscheme, and, by abuse of
notation, we will denote by E S|D the restriction of Eg to D x §. ESI D
is a family of sheaves on D parameterized by S (not necessarily flat). If
we assume Eg is a flat family of torsion free sheaves and D C X is a
local complete intersection (l.c.i.) codimension one subscheme, then Egp
is flat over S [23, Theorem 22.6].

By a (length m) locally free resolution of E we mean an exact sequence
0—B™—...-B' - E— 0, where B' are locally free. One fact which
we need is the following: Let Z — S be flat and projective, and let E
be any coherent sheaf on Z flat over S. Assume E_, s € S closed,
admits a length m locally free resolution. Then E admits a length m
locally free resolution near Z . We only sketch the proof when m = 2.
Since the question is local, we can assume S is affine. Let Q be a locally
free sheaf on Z so that HI(Z ,Zom(Q, E)(-Z,)) = {0} and there is a

surjective homomorphism Q £ E_ . Since E_ admits a length two locally
free resolution, ker(f) is locally free. On the other hand, the vanishing

of HI(Z, Zom(Q, E)(-Z,)) implies that f, extends to Q L E. Let
R =ker(f). Since both Q and E are flat over S, R is flat over S also.
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Further, R, = ker(f;,) is locally free, so R is locally free near Z . Then
0— R— Q— E — 0 is a length 2 locally free resolution of E near Z_.

1. Semistable sheaves on singular surfaces

In this section, we will study the moduli of vector bundles over singular
surfaces. The class of surfaces which we will consider in this section will be
reduced, complete algebraic surfaces X with normal crossing singularities.
For simplicity, we assume X has only two smooth components X, and
X, that intersect along a smooth divisor X. The result of this section
can be generalized to the case of many components. In the first part of
this section, we will introduce the concept of H-stability of torsion free
sheaves on X . Most of the properties enjoyed by stable sheaves on smooth
surfaces are still valid for our situations, though for the sake of the length
of this paper, we will only mention those that are related to our study. The
main body of this section is to establish some technical results regarding
the embedding of the Grothendieck’s Quot-scheme to a projective space
after [8] that are essential to our construction of the degeneration in the
next section. In the end, we will discuss how to construct the moduli of
stable sheaves over X . We begin with the following definitions.

Definition 1.1. Let S be any reduced quasi-projective scheme and let
E be a coherent sheaf on S. For x € §, F is said to be torsion free at
x if f is a zero divisor of the &  -module &, , , whenever f € O »

a zero divisor of the g -module E The sheaf E is said to be tor51on
free if E_ is torsion free forany x € S.

Let E be any coherent sheaf on x, then an easy argument shows that
there is a torsion subsheaf 7" of E so that E/T is torsion free, and such
T and E/T are unique. By abuse of notation, we will call T the torsion
part of E, and E/T the torsion free part of E. We define the rank
of E to be an integer pairs, rk(E) = (rk(E),, rk(E),) where rk(E); =
rank(E ®g, @’Xi) . When rk(E), =1k(E), =r, we call E arank r sheaf.

Let H be a very ample line bundle on X and let / be an invertible
sheaf on X . In this section we will fix H and I once and for all. We
denote the sheaf E ® H®" by E(n) and denote by x ¢ the Hilbert poly-
nomial given by x(n) = x(E(n)). If E is a torsion free sheaf of rank
r, then

xg(n) = 5n*(H - H) + n(x(E) - 50, - H) + 2(E),

where @, is the canonical sheaf of X, and 7(E) is an integer. As usual,
7(E) is called the degree of E and denoted by degE .
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Next we shall make sense of the determinant line bundle of a torsion
free coherent sheaf £ on X. In case E has a locally free resolution
of finite length, [17] showed that there is an invertible sheaf detE on
X, which is the determinant line bundle of E . In general, a torsion free
sheaf £ on X does not necessarily admit a locally free resolution of finite
length, and the existence of detE is not obvious even if we allow detE
to be a rank 1 sheaf on X . In this paper, we will use the following ad hoc
definition.

Definition 1.2. Let E be a torsion free sheaf on X of rankr, and
let I be an invertible sheaf on X. We say detE =~ I, if in addition
deg E = I - H, there are isomorphisms det EI X\ ™ II X\ fori=1,2.

For the very ample line bundle H on X, we denote by H, (resp. H,)
the restriction of H to X, (resp. X,). Let o = (o, a,) Wwith a; =
(H;-H))/(H-H). For any torsion free sheaf E we define the polynomial

pg(n) = xg(n)/c - TK(E).

Note that since a, +a, =1, if rank(E) = r, then pg(n) = xz(n)/r.

Definition 1.3. A sheaf E on X is said to be H-stable (resp. H-
semistable) if E is a coherent, torsion free sheaf, and p, < pp (resp.
P < pg) whenever F is a proper coherent subsheaf of E.

Lemma 14. A sheaf E on X is H-stable (resp. H-semistable) if E is
a coherent, torsion free sheaf, and pp < py (resp. pp = pQ) whenever Q
is a quotient sheaf of E with rk(Q) # (0, 0).

Proof. The proof is similar to the proof given for semistable sheaves
on smooth variety [3, p. 153]. q.e.d.

Let d be any integer and let y be the polynomial depending on d and

r:
(11) x(m) = 5n*(H-H)=n{(H-D) = S(y- )]+ (= )2(E) + x(D -d.
Note that when E is any sheaf of Hilbert polynomial (1.1), E is of rank
r and degree deg/ . '

Definition 1.5.  &7*(n) will be the set of all H-semistable sheaves E(n)
of rank r with detE~1I and x, = x.

Let E be any coherent sheaf on X . We denote by EWY (resp. E(z)) the
torsion free part of E| X, (resp. EI Xz) . By abuse of notation, we will view

E® as a sheaf of O, -modules. Then the surjections o;: E — EY induce

a homomorphism g: E — FE Mg E? In general, it is neither injective
nor surjective. On the other hand, since X has only normal crossing
singularities along X, we have inclusion E(l)(—}:) ® E(Z)(—Z) —FE.
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Lemma 1.6. Let E be a torsion free coherent sheaf on X of rank
(r,,ry). Then c: E — EV @ E@ s injective. Moreover, if we denote
the cokernel of o by EQ then E© is a sheaf of Og-module and at the

generic point x € X, E_ ©0) o (ﬁer*’ with 0 <ry <min(r , r,).

Proof. Assume ker{a} # {0} Then supp(ker{c}) C T which violates
the torsion freeness of E. Therefore, ¢ is injective. Let E9 be the
cokernel of o . The exact sequence

E—-E®, Oy ®E®, Oy 2 E®, O; =0

yields the commutative diagram

E—EQ®, Oy ®EQ, Oy —— EQ®y O —— 0

(12) | P‘ lyz

E —, ED eBE(Z) ¢, E© — 0

Since y, is surjective, 7, is surjective. Thus E? isa sheaf of &-
modules. Now we denote p = (p,, p,): EY o E® - E®  Since
E—EWY js surjective, the exactness of (1.2) implies that both p, and p,

are surjective. To show that E 0 o Oy 69'0 at the generic point x € X, we
use the result from [31, p. 166] Wthh states that if E is torsion free, then
at generic point x € X,

(1.3) E 207" 66, 00, .

Thus E)) = 62" and EY = 671 while E_ = &7 . This com-

pletes the proof of the lemma q.e. d
For the remainder of this section, we let E be a rank-r torsion free co-
herent sheaf on X . If we assume detE ~ I, then since detE y\y = Iy \5

for i =1, 2, there are integers a, and a, such that det EY = Il x(a,X).
Let rankz(E(O)) = ry. Then by comparing the Hilbert polynomials of
E,E®,EY and E® we obtain

(1.4) a +a +ry—r=0.

Indeed, if we assume that E is H-semistable, then the tuples (a,, a,, 1)
is very much limited.

Lemma 1.7. There is a constant A such that if E € & X is an H-
semistable sheaf with det(E(’)) =1I1(aX) for i=1,2, then |a,|, |a,| < 4.
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Proof. The proof can be carried out easily by noting that both E" and
E? are quotient sheaves of E. Then the lemma follows from Lemma
1.4. We leave the proof to the readers. q.e.d.

To construct the moduli scheme of H-semistable sheaves on X, we
need to know that the set £* is bounded. More precisely, £* is bounded
if there is a scheme S of finite type over C and a coherent sheaf F on
X x S flat over S so that whenever E € &%, then there is a closed point
s € § sothat the sheaf F, which is the restriction of F to the fiber X x{s}
over s, is isomorphic to E. We will use the following characterization
due to Kleiman [16].

Proposition 1.8 (Kleiman). Let X be any projective surface and let H
be a very ample divisor. Assume that p is a polynomial and R is a set
of sheaves E with xp = p. If there is a constant K such that whenever
E € %, then h°(E) < K and h°(E ® Oy) < K for some divisor H'
linearly equivalent to H. Then &% is bounded.

We need a technical lemma similar to [8, Lemma 1.2]. We adopt the
convention that if p is a polynomial, then Ap(n) =p(n)—p(n—1).

Lemma 1.9. Suppose a, and a, are rational numbers, and r, A, and
l, are positive integers. Let p(n) = %nz(H -H)+a,n+a,. Then there are
integers K and N, so that if E is a torsion free coherent sheaf on X of
rank (r,, r,) with r, r, <r satisfying

(i) every nontrivial subsheaf F of E has Ap. < Ap,

(i) App <Ap and

@iii) A°(E(n)) > (a-rk(E))p(n) for some n> N,
then the following hold:

(1) hO(E ®Gy) < K for some divisor H' linearly equivalent to H ,

(2) K*(E(m)) =0 if m> N,

(3) Ap = Ap, and

(4) if " (E(=1,)) < A, then h'(E(m)) =0 for m > N,.

Proof. The proof is very much similar to that of [8]; we will give a
sketch of it.

Let E be the coherent torsion free sheaf satisfying (i), (ii), and (iii).
Let F, be the smallest subsheaf of E(n) so that Ho(Fn) = HO(E (n)) and
E(n)/F, is torsion free. Note that by (i), for some constant ¢ depending
on p and r only, F_ = 0. Without loss of generality, by replacing E
with E(—c) and changing the polynomial p accordingly, we can assume
F,=0. We remark that H*(F,(~1)) = H*(E(n - 1)). Let C be linearly
equivalentto H. Then C isa union of two smooth curves, so C = C,UC,
with C; C X,. By letting C be in generic position, we can assume that the
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F, ’s are locally free on C\Z and such that forany x € CNZ, F, | is of

the form (1.3). We choose C so that for two distinct points x, € C; and

x, € C,, the stalk of F, at x, and x, are generated by global sections.

Since 0 — F,(-1)— F, — Fn|c — 0 is exact, our remark shows that
h(E(n) - h°(E(n = 1)) S K'(C, F,).

Let n,,n,,---, n, be the integers so that Fnk # F"k_l(l) . Clearly k <
r,+r,. If welet (a,,b,) be the rank of F,, then there is an exact
sequence

0— G2 (-) ea(ﬁg‘:”"(—z) —~F,®0.—Q,—0,
where Q, is supported at a finite number of points. Hence
1
h(F,()®8,) < anhl((ﬁcl(—}:)(l)) + bnh’(ﬁcz(—):)(l)).

There are constants 4, and 4, sothatfor i=1, 2, hl(ﬁc_(—):)(l)) <A4,
for />0 and h'(&. (-Z)(l)) = O for I > A,. Thus

ho(F,l ®Fc) <, (F,®0;)+(a,+b,)4,
and
W (F,®0,) = x(F,®05,),
if n,>n>n;  + A, for some j. Therefore,

(1.5) W(E) <Y (F08,) <Y 1(F,00,)+A4,,
k=0 k=0

where A, is a constant depending on r and H . Because of assumption
(i), there is a constant A, such that deg(F\"(-n), C,) < 4, for i=1, 2.

Then since the cokernel of F, c ™ F,fl)l c,® F,fz)l c, is supported at a finite

number of points, we have for n < n,,
1 2
A(F, ®8c) = deg(F,) ) +a,(1 - &(C))) + deg((F,”) )
+b,(1-g(C)) ¢,
with 0 < ¢, since C being generic implies Fn| c 1s torsion free. Hence
1 2
X(F, ® ;) < deg((F,"),¢,) + deg((F, ) )

<a,n-(H -H)+As+b,n-(H,-H))+ A
< (a-rk(E) —¢&)(H - H) - n + 24
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for some ¢ > 0 depending on r and H only. In the following, we denote
r =1k(E). Let

1
gl)=> ((a-r —e)(H-H)-m+24,)

m=0
= (-1 —&) - 3(H-H)-I(I + 1) +2(I + 1) 4.
If n<n,,then

(1.6) > x(F,,®8,) < g(n).

m=0

If n>n,, then

X(F,®8,.) = Ayg(n) = (a-1)Ap(n) - B,
where B = (a-r')Ap(n) — Ax(n) > 0 by (ii). Thus
) > x(F,®8:)< Y (a-¥)Ap(m) - B
=(a-r)(p(n) —p(n, —1)) - B-(n—n, +1).

Since the leading coefficient of g(n) — (a-r')p(n) is negative, there is an
Ag such that if n > A, then

(1.8) g(n) — (a-r)p(n) < —4,.

Assume for some 7, > A, we have hO(E(ﬁo)) > (a- r')p(ﬁo). We claim
that then 7, > n, . Otherwise, by (1.5) and (1.6),

W (E@y)) < g(fy) + 4, < (a-¥)p(n),

contradicts our assumption. Thus 7, > n, . Next we claim that 4; > n, .
Assume not, that is n, > 4 + 1. Then by (1.5), (1.6), and (1.7),

h(E(7y)) — (e ¥)p(Fy)

n—1 n,
(1.9) < S AF,®F)+ Y 1(F, ®C,) + 4, — (e -1 )p(7y)
m=0 m=n,

<g(m —1)—(a-r)p(n, —1)—B-(Fy—n, +1)+4,<0.

The last inequality is the result of applying (1.8) with n = n, — 1 and
noting that 7, — n, +1 > 1. This violates the assumption (iii). Therefore
we must have 4, >n, .
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Now assume f is positive. Since n, is bounded by 4., we can find
A, > Ag so that forany n > 4,,

(1.10)  gn,—1)—(a-F)p(n, —1)=B-(n—n, —1)+ 4, <0.

If K°(E(7,)) > (a-r')p(7,) for some 7, > A,, we can use (1.5), (1.6),
and (1.8) again to see that (1.9) is impossible. Therefore f must be zero
and thus (3) is established if we let N, = A4,. Since (1), (2) and (4) follow
easily from the arguments of [8], we will omit the proofs. q.e.d.

Theorem 1.10. &% is bounded.

Proof. Assume E € &*. Apply Lemma 1.9, we see that there is a K
such that hO(E ) < K and hO(E ® &) < K for some H' linearly equiv-
alent to H. Then by Proposition 1.8, we conclude that &* is bounded.
q.e.d.

Corollary 1.11.  For any polynomial x of (1.1), there is an N, so that
if n > N, and E € &*(n), then h'(E) = 0 for i = 1,2 and E is
generated by the global sections of HO(E ).

For any x of (1.1), welet N be the integer provided by Corollary 1.11.
Let E€c &*(n), n> N, , be a fixed H-semistable sheaf. For i =1, 2, let

(1.11) Agt detEy\y — I(rn) x5

be isomorphisms. Since X is irreducible, 22 are unique up to scalars. Let
N =h"(E) andlet V' = V'(E) be the image of

(1.12) /\HO(X, E)— H° (X,.\z, /\E) — H(X\Z, I(rn)).

We remark that ¥’ do depend on the choice of E € & X(n). Then any
isomorphism ¢: cV - HO(E ) induces homomorphisms

. . r r o
(1.13) My ,=Ago /\ ¢ € Hom (/\c”, V’).

It is clear that ll;; p are nontrivial and that they are unique up to scalars.
Let

(1.14) ﬁgmeP(Hom (/\CN, Vi))
be the corresponding points (P((CI) is the space of lines in c ) and let

(1.15) WE, ¢)=Fg, . Ay ,] € POV') x POV?),
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where W' is the space Hom(A\'C", V). Assume that y: C" — H°(E)
is another identification, y = gpo g with g € GL(N, C). If we denote by
[£] the dual action of g on P(W'), then we have u(E, v) = [g)-u(E, ¢).
Thus E € &*(n) corresponds to an SL(N, C) orbit in P(Wl) X P(Wz).
It is nowadays standard to use the geometric invariant theory developed
by Mumford to study the space of these orbits. We first recall the theory
very briefly. Let N,, N, be positive integers so that

(1.16) N,/N,=(H,-H))/(H,-H,) (=a,/a,).

Let L(N,, N,) be the very ample line bundle on P(Wl) x P( w? ) that
corresponds to the invertible sheaf p;@(N,)®p,&(N,) . There is a canon-
ical SL(N, C) linearization on L(N,, N,) induced from the canonical
SL(W' C) linearization on &(N;) over P(W) For any x € P(W ) x
P(W?),let X € L(N,, N,)" be alifting of x. Let w,, ®,,--- , ®, bea
basis of H(L(N,, N,)). Denote G=SL(N, C).

Proposition 1.12. The following conditions are equivalent:

(1) Some G invariant sections of L(N,, N,) do not vanish at x .

(2) The closure of the orbit of X is disjoint from the zero section of
L(N;, N,)".

(3) Let A: G,, — G be any one parameter subgroup. Then at least one
of the rational functions of «, say wi(fl(“)) , does not vanish at 0. That
is, im__ X" #0.

If these conditions are satisfied, we say x (or X) is semistable under
G . Further, if the orbit of x is closed and the stabilizer G, of x is finite,
then we say x (or X) is stable under G. In [8], it is shown that when
X is smooth, E is H-semistable if and only if u(E, ¢) is SL(N, C)-
semistable. In the following, we will show that the same result holds for
the singular surface X .

We first introduce the concept of weighted basis. A weighted basis
(e;, ;) of cV is an ordered basis of CV together with integers ¢; with
t,<t,<---<ty and ¢, +---+ 1ty = 0. Clearly, any weighted basis cor-
responds to a one-parameter subgroup 4: G, — G by l(s)ej = s’fej s
and vice versa. The weighted basis (e;, z,) induces a weighted basis

of SYHom(A\ CY, V)Y as follows: Let u}, u), -, u. be a basis of
(V)Y Then
(l°17) 8.’I=u;’o®(ejl/\---/\ej’), J=(j0,j1,“‘,j,),

form a weighted basis of Hom(A\" C", V)" of weight d(¢’, 1) = t +
SR T and
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) N
(1.18) an=Qe, =0, Jy),
k=1

is a weighted basis of SV Hom(A\"C", V*)" of weight 3"V d(es, A) (cf.
k=198

[10]). Forany x = [x,, x,] € P(W")xP(W?) with x, € Hom(\"C", V),
we define

(1.19) o(x;,A) = jlggigj,{tjl +-- 4 tjrlxi(ejl A A ej') # 0}.
Lemma 1.13. The point x = [x, x,] € P(W') x P(W?) is stable

(resp. semistable) under G if and only if for any one-parameter subgroup
LG — G,
m

1.20) a,0(x,, 4) +a,d(x,,A) <0 (resp. <O0).

Proof. Assume X = (X,, X,) € L(N,, NZ)V is any stable (resp. semi-
stable) point. Then there is an w € HO(@’ (Ny, N,)) of the form

Nl N2
(1.21) w= ®85,:~ ® ®a§kz

k=1 k=1
such that o(X) # 0 and w(A(a)X) = aTco(Y) with T <0 (resp. T <0).
By the previous argument, we have

Nl N2
(1.22) T = szs(s}; ,A) + kZa(eikz , A).

Since 6(x;, A) =min,_ . ;\{t; ++, le’(x,) # O}, and since w(X) #
0 guarantees that sj;(x,.) #0 for k=1,---, N;, we have 5(85’;‘ ,A) >
6(x;, 4). Thus

NI N2
T=Y d(en., )+ Za(eikz, A)
k=1 k=1

> N,8(x,, A) + N,d(x,, 4) = %(alé(xl , A) + a,8(x,, A)).

Therefore that x is stable (resp. semistable) implies (1.20). Similarly, if
- for a one-parameter group 4: G,, — G, we have

a,8(x,, A) + a,8(x,, 4) < 0 (resp. <0),
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then we can find an @ € HO((?(Nl , NV,)) of the form (1.21) such that
w(AxX) = aTw(Bc') with T < 0 (resp. <). So we have established the
lemma. q.e.d.

Now we denote by (P(W') x P(W?))* (resp. (P(W') x P(W?))*) the
space of G-stable (resp. G-semistable) points in P(W') x P(W?). The
rest of the section is devoted to proving

Theorem 1.14. There is an N, so that the following hold for n > N, :

(i) If E € &*(n), then W (E) =0 for j >0, and E is generated by
global sections.

(ii) For any E € &*(n) and isomorphism ¢: CY — H%(E), w(E, ¢) €
PW') x P(W?))* . Furthermore, u(E, ) is stable under G if and only
if E is H-stable.

(iii) Let E be a torsion free sheaf of rank r with detE =~ I(rn) and
Xg(-) = x(- + n). Suppose there is a homomorphism ¢: cV - HYE) so
that u(E, @) is semistable under G. Then E is H-semistable.

Proof. The proof is similar to that of [8]. We will give a sketch of the
proof of (ii) and leave that of (iii) to readers. Since &* is bounded, there
isan A, such that h'(E) < A, forany E € &% . Now fix a large N, that
is provided by Lemma 1.9 with data r, 4, and p =Ax/r. Let n > Nj,.
Assume that E € &*(n) is H-stable and that u(E, ¢) = [x,, x,] is not
stable. Then there is a one-parameter subgroup A: G, — G such that

(1.23) a,8(x,, A) + a,8(x,, 4) > 0.

Let (e;, t;) be the weighted basis of ¢ associated to 1. Note 6, <t <
<ty and })t;=0.

We fix the basis {e,, --- , ey} . We seek to find a better choice of weight
t, <t, <--- <ty so that we can indeed compute the number in (1.23).
Let V C R" be the set

N
V={(,,v,, -, v v, =0,v,<v,<---<vyand vy = 1}.
k=1

V isa closed bounded convex subset of R” . Given any v € Vr\QN , there

associates a one-parameter subgroup 1,: G, — G, Av(a)ej = aM”fej ,
where M is the least common denominator of v,,v,,---,vy. For

any 1 <k <N, let F; be the subsheaf of EI x. spanned by sections
ple), - ,0(e) € HO(X, E). Let B(k) =rankF, ;. Cléarly, Bi(-) is
an increasing function and B;(N) =r. Let 1 < j <--- < j, < N be
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tuples of integers so that

(1.24) B,y = B, — 1) + 1.

Here we agree that f,(0) = 0. Clearly, the subsheaf of E| x. generated by
q)(ejli), ey, q)(ej.-) has rank r. Thus

(1.25) xi(ejliA---Aej;) # 0.

Further, one checks directly that if 1 < k: <. <L kri < N is any tuple so
that

xi(ek:-/\m/\ekr.»);éo,

then necessarily k,i > j; forall /=1,---,r. Now based on (1.19), for
any ve v nQ",

o0(x;, 4,) = jlt<r'1.i.r<1j {M(vjl +-- +Uf,)|xi(eil A Aef,) # 0}

r
= MZ’U].;‘.
k=1 iy

Next, we define f: V — R,

(1.26)

flv) = Z(alvjkl +ayv)2).
k=1

Then for vy = (1/ty)(t;, t,, - , ty), f(vy) >0. Let T = max,, f(v).
Then T > f(v,) > 0. We claim that T is attained at a point 7 =
(v,,--+,Uy) where ¥, = ... =7, and U, , =--- =T, = 1 for some
1 </ < N. Indeed, since the functional f is linear and V' is a compact
convex set, the maximum of f is always attained at a vertex of V. Clearly

all vertices of V' are those v = (v, -+, vy) with v, = .-- = v, and
Vg =+ =vy =1 forsome 1 < k < N. Since Z;f:lﬁ. =0 and
Uy =1, we have

v, ==, =~(N=1)/I, Uy ==Uy=1L

Now we can assume that ¢, = v, and that (1.23) still holds. Let F C E
be the subsheaf generated by ¢(e,), - , ¢(e) € HO(E). Let rk(F) =
(ry» ;). We claim that j; , j, </ and j; ,,j;,, > /. By (1.24), the
sheaf generated by ¢(ei{)’ e, ¢(ej.-. ‘) has rank r; + 1 over X;. Thus
ji, > 1. Similarly, j° </ follows from (1.24). So Loy oo sty =
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- - . - =1
(N-=D/1, tf,’ﬁ.’ s b ,

7;

r ~(N=1])
th,§=z ( 7t
k=1 k

k=1

i l=r, (—_(Nl_ l)> +(r—r)

=ri+1
and
0<a,d(x,,A)+ayd(x,, 4)

-M [al (r, (—ﬁl_—l) +(r— r1)> +a, (’z <—£l_—l') = rz))]

M
= T[Ir — (a,r, + a,r,)N].

Therefore
1 0 1 1 1
_ >——|>_N=-— .

a ;" B2 o’ 2 7V = 7B
Since E is H-stable, for any subsheaf F' C F C E we have ApF,(_n) <
Ayx/r. Clearly, ApF(_n) < Ay/r for the same reason. Now we apply
Lemma 1.9 to the sheaf F(—n). By our special choice of N,, we con-
clude that App _,, =Ax /r. We claim that there is an /, independent of

particular choice of E € &*(n) so that hO((E/F)(—I0 —n)) = 0. Other-
wise, (E/F)(—n) will have a subsheaf J(—n) such that

ApJ(_n) >Ay/r= ApE/F(_n).

We can further assume Q = (E/F)/J is torsion free. Thus Q as a
quotient sheaf of E has Po < Pg which contradicts Lemma 1.4 since E
is H-semistable. Therefore hO(F (=l —n)) = 0. Since [, is bounded
independent of E € &*(n), we can assume h'(E(—l, —n)) < A4, . Thus
hl(F (=l, —n)) < A4,. So by applying Lemma 1.9 again, we can assume
h'(F)=0 for j =1, 2 by enlarging N, if necessary. Since
1 0
Pr-m™ = Tyt F) 2 Pen(™)

and ApF(_n) = ApE(_n) , we have Ppi—ny) Z Pgieny - This violates the H-
stability of E. Therefore u(E, ¢) must be a stable point. The situation
of semistability can be treated similarly. q.e.d.

For the sake of completeness, we now discuss how to construct the
moduli space of semistable sheaves E on X with yp = x and detE~ 1.

As one will see, what we will construct is a reduced scheme whose closed
points are in one-one correspondence with the set &* (modulo certain
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equivalence relation). However, it is unlikely that the functor from the
category of separable finite type schemes to the category of subsets in &%
(cf. [8]) will be represented by the moduli space that we will construct. The
main difficulty here is due to the lack of the Picard scheme of open surfaces
X,\X. Since the following discussion will not be needed in the future
discussion of this paper, we will only sketch the idea of the construction
and leave the details of the proof to the readers.

We first choose n large so that the conclusions of Theorem 1.14 all hold.
We then let €, (x) be the Grothendieck’s Quot-scheme parameterizing all
quotient sheaves GBN Oy — E(n) with N = x(n) such that xp = x.
Then &€, (x) is projective. Next, we let é’n(x) be the normalization of

@ (x) and let & be the sheaf on X x &, (x) that is the pullback of the
universal family on X x&, (). Since & admits a finite length locally free

resolution on (X;\Z) x é’n( X), we can define the determinant line bundles
(® >
det&" = det&|(X,\X) x €, (%)

Since é"n( x) is normal, similar to the proof in Lemma 2.2, one can show
that there is a reduced closed subscheme é’n( x,I) C év’n(x) such that
Ee é”n(x) is a closed point in é;( x, I) if and only if detgc =~ I . Indeed,
more is true: There are line bundles L, and L, on a (X, I) so that
as line bundles on (X,\X) x a (X, 1), det gl = pIIX\Z®p,L;. Now
let 7' c HO(X \Z, I) be the least subspace containing all V'(E) of

E € &(n) (cf. (1.12)). Since &*(n) is bounded, " are of finite
dimension. Parallel to the discussion after Corollary 1.11 (see also §2), we
have a morphism

o: én(x, In—-P (Hom (/’\CN, 71>> x P (Hom (/r\CN, 72)> .

By Theorem 1.14, if we let é;( x> I)* be the space of all semistable quo-
tient sheaves, then the induced morphism

34,01, 1"~ (ITP (stom (A" %)))

is finite (see prqf)f of Proposition 2.8). Thus similar to the discussion at
the end of §2, &,(x, I)”//G is projective and

2 r 5
//G: &€ (x, D*]/G — (HP (Hom (/\c”, %‘))) //G

i=1
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is finite. We let 9%’ be the image scheme of @ (x, I)*//G with the
reduced scheme structure. It is easy to see that the set of closed points
of mz’;(” are in one-one correspondence with the set of semistable sheaves
(modulo the equivalence relation specified in [8]) of Hilbert polynomial y
and determinant ~ I .

2. The construction of the degeneration of moduli schemes

In this section, we are going to construct a degeneration of moduli
scheme of semistable sheaves (of arbitrary rank) over smooth algebraic
surfaces. We will consider the following situation: Let C be a smooth
(irreducible) affine curve, and 0 € C a closed point, and let ¢ be a uni-
formizing parameter at 0. By abuse of notation, we will use ¢ (# 0) to
denote closed points of C* = C\0. We consider a family of algebraic sur-
faces n: Z — C with smooth total space such that Z, = n_l(t) , t#0,
are smooth connected, and Z, is reduced with normal crossing singular-
ities. For simplicity, we assume Z, = X, U X, intersect along a smooth
(connected) divisor . (The result of this section can be generalized to the
case where Z; = X, U---U X, such that H'(@y) = C*, where X, = X,\
singular loci of Z;.) We fix a relative ample line bundle H of Z — C
and an invertible sheaf 7/ on Z. As we mentioned at the beginning of
this paper, our immediate goal is (for a fixed y) to construct a degener-
ation M, of the family of schemes imé’l , where m’é’l is the moduli of
H,-semistable sheaves E over Z, of Hilbert polynom'ial x and determi-
nant /,, such that closed points of 9, associates canonically to semistable
sheaves over Z,. Here we adopt the convention that H, = HI z,-

We begin our discussion with some remark about family of sheaves on
Z. Let p: S — C be a scheme of finite type over C and let Eg be a
rank-r sheafon Z; = Zx.S. Let ng: Z; — S be the projection. We say
E is a flat family of torsion free sheaves over S if Eg is flat over S and
if for every closed s € §, the restriction of E to the fiber Z = Z x - {s}

(we denote it by E|) is torsion free. Let Z M (resp. Z (2)) be the smooth
variety Z\X, (resp. Z\X,), and let Z;l) (resp. Zéz)) be the scheme
zW Xc S (resp. z? xcS). For i =1,2, =ng: ZS) — § are smooth.
Thus any sheaf E; on Zg that is flat over S locally admits a bounded

locally free resolution on Zéi). Hence we can define determinant line

bundles det E 120 - We say that detEg ~ p;I , if there are isomorphisms
S
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(2.1) /1 detE z0 = (ﬂSL ®pzl)lzm s

where L; € Pic(S) and p,: Z; — Z . Note that if S is flat over C, then
detEg =~ p;I implies that for any closed g € S over 0 € C, we have
detE .~ 1y according to Definition 1.3, where I, = II Z,

Let x be the polynomial depending on d and r:

22 x(n) = 50’ (H, - H) +n((H, - 1) = 5(H, - K;))
+(r— 1)%(@’2’)4-)((1,)—61, t#0.

Let &7 % be the set of all H -semistable sheaves E on Z, satisfying detE ~

I, and g = X . (We agree that det E ~ I, means detE I, when t #0.)

We fix an N, sufficiently large so that the conclusions of Theorem 1.14

hold for ZZX for all + € C (cf. [8, Lemma 1.2]). Let n > N, and
t

N
let N = x(n). Following Grothendieck [12], we define Quoté’/? to be
the functor sending any scheme S of finite type over C to the set of all
quotient sheaves E of ﬁZN on Z flat over S so that XE( m) = x(n+m)

N
for any closed s € S. Duot’é’/'z is represented by a scheme & uotZ c
projective over C, called Grothendieck’s Quot-scheme Next, we let il

be the set of all closed points & € @’uoté jc over t e C* such that the
corresponding quotient sheaf E, (over Z,) is H,-semistable and such
that detE, = [ (rn). Since being semistable on smooth surface is an
open condition and having determinant = I, is a closed condition, usg.

N
is a locally closed subscheme of & uotz Ic . Since @ uot’é}'z is projective
over C, by shrinking C if necessary, we can assume ifcf. is flat over

N N
C* . Now we define @’uoté}lcﬁ ce uot’é}'z to be the closure of . in

N N
@’uot’é’/’z endowed with reduced scheme structure, and let ‘Ré}lc"? be

N
the normalization of Quot? /I 4 . m’é’/lc’ﬂ will be the basic object in our

construction of degeneration of moduli.

As is clear from the construction, m;;’c”’w depends on the parameters
d,r,I and H (x depends on d and r as in (2.2)) and also on the
choice of n > N, (or N = x(n)) that is always chosen large enough (cf.
Theorem 1.14). Since I is fixed throughout the paper, we will not build
I into the notation. Also, the choice of » is not important as long as
it is large enough. In this and the next sections, we work on arbitrary
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r > 2. Starting from §4, we will study the case where r = 2. If all these
N
are understood, we will abbreviate m’é’/lc’ﬁ to ®¥H . More frequently

we shall write just M7 if the context makes the choice of H either clear
or unimportant. We will also use S’i;i to denote the fiber of |¢ over
t € C. We will adopt the following convention throughout the paper.
Unless otherwise is stated, all schemes are over C. In case the set is
related to the surface Z,, we then will build the subscript Z, into the
notation. Finally, the subscript O (resp. ) is reserved to denote the fiber
over 0 € C (resp. t € C) of the respective scheme.

Returning to the scheme ,? , because M®? is constructed as the closure
of a scheme over C*, no component of % is contained entirely in ERg .
Thus by [13, I11.9.7], by shrinking C (still containing 0) if necessary, we
can assume R’ is flat over C. Thus we have

Proposition 2.1. % is a normal scheme that is flat and projective over
C . Further, for any closed v € ®? | there is a curve S, 5o €S and a
morphism ¢: S — ®? such that p(sy) =v, moo09:S — C is dominant
and ¢(s) is H-semistable for general s € S.

Following [8], we intend to find a C-morphism u from R toa big
projective space Plg. We first study the following situation. Let Sch
be the set of all normal C-schemes of finite type that are flat over C.
Let S € Sch be an affine scheme and let Eg be a flat family of sheaves
(not necessarily torsion free) on Z; over S. We assume that there is a

homomorphim Ag: ﬁz N, Eg such that at any closed point s € S, the
restriction A : ﬁze N E, is surjective at the generic points of Z_.
Lemma 2.2. With the notation as above, and suppose on Zgy , where
S0 = p_l(C*) with p: S — C, we have detES|zso = p;I(rn)lzso. Then
detEg ~ p,I(rn).
Proof. We need to prove that there are isomorphisms
(2.3) lil detESlZéi) = p;I(rn)IZg).
By assumption, detES|z§'>|Zs° = p;I (rn)|Zs . So there is a canonical

section v € H%(Zg, (p},1(rn))”" ® det Eg 7). We will show that there

is a Cartier divisor D of S contained in §; such that v extends to a
nonvanishing section in

(2.4) H(ZY", (0,1(rn))”" (D) ® det Eg 7).

Since Zél) is normal, v extends to a meromorphic section T of
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(0,1 (rn))_1 ® det ES| z0- Knowing that the zero and pole divisors of U

are contained in S, and that Zél) — S is smooth with connected fiber,

there is a divisor D of S contained in S, such that ¥ is a nonvanishing

section of (2.4). Thus A, = U is an isomorphism between detESlZu)(D)
'S

and p;I (rn), and (2.3) holds for i = 1 because S is affine. The same
reason shows that A, exists also. q.e.d.
Now suppose we have isomorphisms (2.3) for the family E. By com-

posing the isomorphisms 4, with the homomorphism A’ Ag: /\'@’299 N

detES|z§” , we get

r r
SN *
A’i o /\hS: /\ﬁzs —>pZI(rn)|Zs(i).

Thus 4,0 A" hg induce

(2.5) 6;: T, (/\yZN) = 75, (p21(rn) 70)-

Considering the square
Z _* , 7

Jvﬂs lﬂc
s L. ¢
Since (P;I(’"))wg) = p}(I(rn)lZ(,-)) and p: S — C is flat, by [13, I11.9.3]
C
we have

(2.6) ”S*(P;I("n)lzg)) = P*nc*(l(m)lzén)-

Finally, let 7" = 7. (I(rn),40) . Compared to the V' defined in (1.12),
C

it is easy to see that if @’Z N s 18 a quotient sheaf, then for any closed
s € S, the subspace Vi(ES) cH (X;\Z, I(rn)) corresponding to E_ is
contained in 7 ® k(t,) , where t, lies under s. Clearly, "' are torsion
free sheaves on C. We claim that 7" are coherent. Indeed, let p, bea
positive integer so that for any p > p,, HO(X2 , I(rn)(—le)lxz) = {0}.
There is an obvious injective homomorphism

2.7 9.7, (I(rn)(pyX,)) — ”c*(I("”)|z“))'

Let sen,. (I (rn)I 2m) . Let g, be the smallest integer such that there is
an integer a > 0 so that s/t extends to section f € e, (I(rn)(gyX,))
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with ﬂl X, # 0. By the minimality of ¢, Bl X, # 0. Thus

0
H (Xza I(r”)(_qu1)|X2) 7"" {0}’
which implies that g, < p, and B € =, (I(rn)(p,X,)), so that
s € ne, (I(rn)(pyX,))

and (2.7) is surjective. Therefore, 7! is coherent. Similarly, 77 is
coherent. Hence 7' are locally free.
The homomorphisms J; considered as sections

d,: S — Homyg (p* (/\ﬁgw) , p*(nc*(l(rn)lzg,)))

induce C-morphisms j;: S — Homc(/\’ (?CGB N, Wi) . If we can show that

for any closed s € S over ¢t € C, fi,(s) € Hom(\" @2, 7" @ k(1) is
nontrivial, then we can associate to E s morphisms

(2.8) #:S—P (Homc (/\zﬁg"”, 7"))

and the C-morphism

w=1[u,u]:S—P (Homc (/\ﬁgm, 71))

x P (Homc (/'\@g’", %2)) :

We need the following technical lemmas.

Lemma 23. Let S € Sch. Let s € S be any closed point, and
ty = p(s). Suppose that v € N cV and that v € H° (/\’ﬁ;:” ) is the
corresponding section. Then ji,(s)(v) € 7' ® k(ty) is trivial if and only if
the section (1,0 \" h(s))(@) € HY( zs(i) , 0 1 ("')|z;">) is also.

Proof. Tt suffices to show that for any closed ¢, € C, the restriction
homomorphism n a ®k(t,) — HO(Z’(:) I (m)ll,‘;’) is injective. Assume

that ve 7' @ k(t,) with rto(v) =0. Let we HO(C, 7°') be the section
with w ® k(t)) = v. Then rto(v) = 0 is equivalent to W0 = 0, and
‘o

(2.9)

the latter implies that w = (¢t — t,)w’ for some w' € H(C, 7"*). Hence
v=w®k(,)=0. qed
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The lemma guarantees that j,(s) is never trivial if we assume that
h: (?Ze N E_ is surjective at the generic points of Zs(') . Next we show

that the morphisms y; are canonical.
Lemma 2.4. For S € Sch, the morphisms

u;: S = P(Hom (NG, 7))

are canonical.

Proof. Clearly, the definition of x; depends (only) on the choice of
the isomorphisms 4, of (2.3). We claim that if 4; and A; are two pairs
of isomorphisms,

’ ~ K
'li , ﬁ.il detESlZé” = pZI(rn)IZg) >

then there are f, € H'(S, &) such that A, = mg(f;) - 4;. Indeed, since
both 4, and A are isomorphisms,

/ -1, = > x
g =40 -pzl(’”)|z;"’ = pzl(rn)|2§”

are isomorphisms. So g; € HO(ZS), (?’Z*m). Since p: S — C is flat and
S
”c*ﬁz“) =0, we have

HZ{, Gr) = HY(S, rs.Fp0) = HS, p*no,Oh0) = HY(S, O)).

Thus, the g, € H*(Z{, @}w) are pullback sections of f, € H*(Zg, ;).
S

It follows that 4, = mg(f;) - 4,, so that the induced homomorphisms J,

and 6; differ by 75(f;). Hence the morphisms x4, and ,u:. are identical.

q.e.d.

Combining Lemmas 2.3 and 2.4, we have proved
Proposition 2.5. For any affine S € Sch and flat family of sheaf Eg

over S with homomorphism h: ﬁz - Eg having the property that at
each closed point s € S, h: ﬁz@ N E_ is surjective at the generic points of
Z and that detEg = ngL®p,I(rn), S° = p~'(C*), there is a canonical
C-morphism
1 2
s = [1,(8), 1y(S)]: S — P(Wg) x P(W2),
where WCi = HomC(/\'ﬁfN, 7).
Now we are ready to construct the C-morphism u, from %’ to P( Wé

X P(WCZ). We first cover R? by affine open sets S, S,,--- , S, in Sch.
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On each Sj , we have a C-morphism

(2.10) ;i S; = P(W2) x P(WR),

provided by Proposition 2.5. Since the morphisms M. are canonical,

W =1 j| 8,08, - Therefore, {u j}5.=1 patches together to give a C-morphism

(2.11) pg: R — P(WE) x P(W)).

Let & = &I(N,C) = SL(N,C) ®; C be the special linear group
scheme over C. For any scheme S € Sch, assume that g ¢ ?S =
ZI(N, S) and that o: ﬁ@N — Eg is a quotient sheaf homomorphism

Then g(g) =0og: ﬁz — Eg is a quotient sheaf also. Hence guotz 'C
is naturally a &-scheme. Since Z is an irreducible smooth group scheme
and Quot?, /IC " is invariant under & , é’uoté’/lc’ " as well as its normal-
ization |? are natural Z-schemes. One checks easily that through the
dual action g(v) =vog,where g€ % and v € Homc(/\'ﬁéBN, Wi) ,
P(Hom (N 2", 7)) are also Z-schemes.

Proposition 2.6. Through the dual action of & on P(WCI) X P(Wé),
the morphism pg: ) e P(W, 1) x P( WZ) is a &-morphism.

Proof. One needs to check that for S € Sch, if ad: ﬁeN — Eg isa

flat family of quotient sheaves on Zg over S, and gg € ? I(N,S) isa
section over S, then

u(8s(05)) = gs(u(og)): S — P(W) x P(W,).

This is straightforward from our construction of the map u: RY & P( WCl)
x P(W2). (See also [21, p. 114].) q.e.d.

Let (P(W/})xP(W/))* be the open subset of P(W,})xP(W/) consisting
of all semistable points under &, and let 4 C %8¢ be the set consisting
of all semistable quotlent sheaves. We prove the following.

Proposition 2.7.  uy ' (P(W2) x P(WCZ))”) = U’ . In particular, 4* C
R is open.

Proof. We first show that u, () C (P(W2) x P(W2))” . Let z € u*
be any closed point over ¢ # 0 € C. Then ug(z) € (P(Wé) x P(Wé))”
follows from [8, Theorem 0.7]. Now assume that z € #*° is a closed point
over 0 € C, and that E is the corresponding semistable sheaf over Z,
with isomorphisms (4,, 4,) of (2.3). Then by using Lemma 2.3 and the
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fact that | is flat over C , we conclude
N H(Zy, 55" V'(E)

Je lj

NENok(0) —— (. d(rn)0)®k(0) — 77 @k(0)

is commutative up to scalars in C*, where j is the obvious injection, and
Vi(E) is defined in (1.12). By Theorem 1.14, [E] € P(Wl) x P(Wz) is
SL(N, C) semistable, where W' is the space associated to E defined in
(1.15). Since w'c Wé ® k(0) (Lemma 2.3), ug(z) must be semistable
also. Thus we have proved that . () C (P(W2) x P(W2))™ .

Now we prove the other direction: ,uE‘ ((P( WCI) x P( WC2 N¥) Cc ¥ . Let
w € u}l((P(Wcl) x P( WCZ))”) be any closed point corresponding to the
quotient sheaf &’2’ N L E , where w is over ¢. In case E is torsion free,
w € Y* by [8] and Theorem 1.14. We now prove the general situation.
There are two possible situations: Either £ =0 or ¢ # 0. In the following,
we will prove the case where ¢ = 0 and leave the easier case ¢ # 0 to the
readers. We assume w € mg . By Proposition 2.1, we can find a smooth
curve S flat over C, s € S over 0 € C and a C-morphism

(2.12) 9:(s,8) - (w, )

such that ¢(S\s) C 4*. We can assume S\s is over C\0. Let Eg be
the pullback quotient sheaf on Zg via ¢, and let Ag: é’z N, Eg be the
quotient homomorphism. Consider the homomorphism Ag: ﬁZioN — Eq

that is the restriction of Ay to Zy where s0= S\s . Following the proof
of Lemma 3.2 and the remark after Lemma 3.2 in the next section (see also
[8]), we can find a flat family of torsion free sheaves Fg with FS[ Zo = Eq

and a homomorphism h's: ﬁZN — Fg on Zg which extends Ay such

that h;: ﬁze N F, is surjective at the generic points of Z . We then
have the diagram

hs

0 —— ker(hy) —— 5"

(2.13) I

Eg 0

hs

0 — ker(hy) —— é’ZN
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By assumption, h;(ker(hs)) is supported on Z . Thus it must be zero
since Fg is flat over S. Eg is a quotient sheaf of (ﬁ’?ﬁs, so there is

a homomorphism gg: Eg — Fg induced from ﬁe’N 9 é’eN such that

ggohg = h Because @’e — F, is surjective at the genenc points of
Z, g 1nduces 1somorph1sms det(gs) detE IZ"’ — detF X120 - Thus

the morphisms u(Eg), u(Fg): S — P(W, ) x P(W, ) induced by quotient
homomorphisms kg and h; respectively are 1denucal. So u(Fg)(s) is
semistable. Since F| is torsion free, by Theorem 1.14, F, is semistable

and then & : ﬁzej N F, is surjective. Thus é’z N Fg is also a family
of quotient sheaves in the Quot-scheme ®? . Because }? is separated,
E = F,, which completes the proof of the proposition. gq.e.d.

Let uy: 4% — (P(Wcl) X P(Wé))” be the restriction of u, to " .
Then we have

Proposition 2.8. ,: 4* — (P(Wcl.) X P(WCZ))” is finite.

Proof. We first check that u, is proper. Since R s projective
over C, up: D P(WCI) X P(Wé) is proper. Thus the restriction
of up to pp'(P(W}) x P(Wé))”) = 4* is a proper morphism to
(P(Wg) x P(WR)™.

Next we check that for any closed point z € (P( WCI) xP(WCZ))“ , ,ual(z)
is fmite We first prove that if #, and 7, are two closed points of £*
in up (z) and h;: é’G’N — E,; are corresponding quotient sheaves on
Z, where t lies under 111 and 7,, then E, = E, as quotient sheaves of
ﬁz N Indeed, according to [8, Lemma 4.3], there is a dense open subset

V C Z, such that E”V = E2|V as quotient sheaves of ﬁ,? N . Now let Q;
be the kernel of 4;: ﬁg N E;. We have the diagram

hy

0— 0 L B —— 0

h,

0 — @, —2 o8N 2, . 0.
Since E1|V =E,, as quotient sheaves of ﬁzeﬁl, , hy(f1(@,)) is a torsion
subsheaf of E, supported on Z\V. Thus A,(f,(Q,)) = 0 since E, is
torsion free. So Q; C @, . Similarly, Q, C Ql. Therefore Q, = @, and
E, = E, as quotient sheaves of ﬁz’ N
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Thus we have proved that the set uj'(z) Cc 4* C ®? is over a

H
single closed point in @uoté’/lc’ﬁ N Since | is the normalization of

@ uot’é’/lc’y}v , D uoté’/lc’ﬁN is finite. Hence u;j](z) is finite, and the
proposition has been established. q.e.d.

Let I1. = (P( Wcl) x P( WCZ))” //% . By the geometric invariant theory,
II. is a good quotient of (P(WCI) X P(WCZ))” by £. Further, I1. is
projective over C . The following lemma (for its proof see [8]) shows that
there is a good quotient 4*'//% .

Lemma 2.9. Let G be a reductive group, and M, and M, be two G-
schemes. Suppose that u: M, — M, is a finite G-morphism and that a
good quotient of M, by G, say M,//G, exists. Then a good quotient of
M, by G exists, and the induced morphism M,//G — M,//G is finite.

We summarize our result as follows.

Theorem 2.10. For any integer d, let n > N, be a sufficiently large
integer, and let 4*° C iRd’H, N = x(n), be the set of closed points
corresponding to H-semistable quotient sheaves. Then the C-morphism
Uyt 87— (P( Wcl) X P(Wé))” so constructed is finite and & equivari-
ant. Further, the good quotient M°* " = 4% /€ exists. Finally, m* ¥ is
projective and flat over C .

The following theorem shows that the scheme m?H isa degeneration
of the moduli zm‘é'”' in the weak sense, where Sde’H‘ is the moduli of
rank r Ht-semista‘ble sheaves on Z, of det= I, and c,=d.

Theorem 2.11. M* ¥ is normal. Further, for any closed t # 0 € C,
there is a finite morphism from ﬂﬁ;{’H to DJIdZ’H' .

Proof. By the universal mapping propertty, it is easy to check that

H s normal if ®¥'¥ is normal [26, p.5]. For ﬁﬂf H , we note that

sm;’ H s the good quotient of 41, that is finite over the open set of

N
semistable sheaves in Duot}"ﬁ (see the construction at the beginning of
this section). Therefore, the quotient zm;"” =4 //SL(N) is finite over
d,H,
mz . qed.

3. Geometric realization of sheaves on Z,

In this section, we will keep the notation developed in §2 and still work
on the moduli of sheaves of arbitrary rank.
Let 2 be any irreducible component of uf; , and let 77 be the cor-
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responding multiplicity. Since ®? is normal, it is smooth at the generic
point of 2. Let U c 4*° be a smooth open set so that & #U ﬂmg cZ.
Set p: U — C. We can and do assume that the reduction of U — 0 =
p~'(0) is smooth. Let f,: C™ — C be a branch covering with 0 € C™
as its only ramification point of index m over 0 € C. We define U™ as
the normalization of the cartesian product

meCU-———) U

(3.1) l”’" lp

cm I,
We assume 72|m. Then U™ is smooth and further, the fiber p;l(O) C
U™ has multiplicity 1 because the fiber p_l(O) C U has multiplicity 7.
Therefore, p,, is a smooth morphism at p;ll(O). By shrinking U if
necessary, we can assume p, : U” — C™ is smooth.
Similarly, we can form the Cartesian product Zé"m :

zZ0h —— Z

(3.2) 1% l

cm I, ¢

Zym=Zgmxm U™, where Z'm and U™ are schemes over C™ via 7,
and p,, respectively. Obviously, Zé"m is not smooth when m > 1. Let
y: Zg'm — Zpm be the desingularization of Z, and let E C Z'» be the
exceptional divisor of y. Clearly, = is the union of (m — 1) copies of
the ruled surface A, and Z(;" is the union of X, X, and these (m —1)
copies of A. In the following, we denote Zg” = A,U---UA, , where

Ay, =X,, A, =---=A,,_, are the ruled surfaces, and A, = X, such
that £, = A, NA, is nonempty. Next, we let Z{;‘m = ~('3”m xom U™, and

let Eym = E x-m U™ be the exceptional divisor of Zb”m — Zpgm. Let
Yym: Zym — Zy, . Let

N
(3.3) ¥: P, — Fy

be the restriction to Z; of the universal quotient family. F; is a flat
family of torsion free sheaves. By pullback via y; = , we get

N
(3.4) 7o (0): DG, = vomFy-
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Since ZUm\_Um — Z,\IZ x U is finite and flat, the restriction of (3.4) to
Um\...U,,. is a flat family of torsion free quotient sheaves. We seek to find
a new sheaf E . that is a “modification” of yUmF along E/m .
Definition 3.1. A sheaf E; » on Z(',"m is called a good modification of
yymFy along E/m if there is a homomorphism

N
(3.5) ¥: Dzn, — Eyr

such that the following hold:
1. The restrictions of (3.5) and (3.4) to ZU,.. \_.Um are isomorphic.

2. Ey,m is a family of torsion free sheaves on ZUm flat over U™
3. Forany closed u € U™ over 0€ C, ¥, : @ Osm — E, is suljective

at the generic points of Zé"

4. E = admits a length-two locally free resolution at each point.

The main goal of this section is to construct good modification of
yz,mFU . Intuitively, the modification E » will be constructed as follows:
We take # as the restriction of yz,mFU to the compliment of the excep-
tional divisor of Z]j» — Zjw. We extend F to an open V = Z]. so
that V' contains the generic points of the exceptional divisor E,» and so
that y’{]m (¥) extendsto V and # is generated by the image of GBN Osm

s

on V. Since Z{;’m is smooth, we can continue to extend # to all ZZ'm via
i, . Then by restricting to a smaller U if necessary, we obtain the desired
modification. In the following, we give the details of this construction.

We first study a special situation. Let £ O C be any field, and let
R D k be a discrete valuation ring with maximal ideal m generated by
a uniformizing parameter ¢. Let K be the field of fractions of R. We
assume that there is a flat morphism SpecR — C™. Let Z = Zcm X
Spec R be the product scheme. We denote the generic fiber by zm , and
the closed fiber of ZR over SpecR by Zk We also let i be the open
immersion Z - Z , and let j be the closed immersion Z, Z" Zy A
We first prove the followmg lemma.

Lemma 3.2. Let E, be a torsion free sheaf on Z7, and let L, bea
locally free sheaf on Z;” S0 that there is a surjective homomorphism

N
(3.6) Ye: Pi"Ly - Ey

over Z,'(" . Then there exist a unique coherent sheaf E C i E, on Zl’;’
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flat over Spec R and a unique extension of Y,

N
(3.7) Ye: DL, — Eg

such that the following hold:
(1) i"Ep = Ey, and Epa, = (j*ER)lAi are torsion free.
(2) j*‘PR: EBN j'LR — E,_ is surjective at the generic points of Z,:"
(3) Ex admits length-2 locally free resolution everywhere.
Proof. We first assume k is algebraically closed. Let X,,--- , X, C

Z,Z” be the smooth curves in the singular locus of Z;". Then by [18, p.

100], there is a unique coherent sheaf E; on Z 2 \U"Z, flat over SpecR
and a unique extension of ¥ :

N
(3.8) ¥ @LRlZ;\Uz‘_ — Ep

such that (1), (2), and (3) of the lemma hold.

Now let 7 be the open immersion Z5'\UZ, — Zy' andlet E, n*E'
Clearly E, is torsion free. Because ZR is smooth and " Z C ZR is
a codimension 2 subvariety, Ep = n*E g 1s coherent. Next, the existence
of ¥, follows easily from the fact that L, = n*(LRIZ’q"\UZ,-)' Now we
show that (j*E R), A, is torsion free. Assume Ek| A, has torsion elements at
x € A;. Let w be (local) parameter so that {w = 0} defines A; at x.
Since Ep/wEy is torsion free, x € L, , UZ,. We assume x € ;. Then
there is f € M3 such that the germ {f = 0, w = 0} is contained in
Z, as set and such that there are u, v € ER,x, [v1#0€e ER,x/wER,x,
and fv = wu. Thus (4/f) s = (v/1) 5 as elements in Eg .
Therefore,

u/f=v/w e ry*E;2 =Eg
and v =w-v/w=0€ Ep J/wEg .. So (j*ER)lA,. is torsion free, and (1)
is established. In particular, this argument shows that depthEp, > 2 for
any x € Z . Thus E, admits length-2 locally free resolution everywhere
[22]. Fmally, the uniqueness follows from the uniqueness of E and (1).

Now we assume k is any field. Let k be the algebraic closure of k, let
R=Rx, k,andlet K be the fractional field of R. Let Ex = E, ®Kf
and let Lz =L, ®, k . If we apply the previous argument to

N
(3.9) Ye =Y, 0, K: P Lz— Eg,
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then there is a unique extension sheaf Ex on Zk'z’ flat over SpecR and
unique extension homomorphism ¥% such that (1), (2), and (3) of the
lemma hold. We claim that there is a sheaf Ep on Z,’{' and a homomor-
phism ¥: @N Ly — Eg such that
(3.10) Ex=E ® k, Yz=¥ e k.
Indeed, let ¢ € Gal(k/k), and let o, = Izn ® ¢: Zy x, Speck —
Z7 x, Speck be the morphism, where ¢: Speck — Speck is defined
by taking o' as the homomorphism ¢*: k — k. Then there are canon-
ical isomorphisms ¢, Fx = Ex and o,¥x = wg. By the uniqueness of
the extension,

O':E'E= 53 and O':‘P}—z=lyﬁ.
Since Ex C (i,Ey) ®, k , by descent theory, there is an Ep on Z, and a
Wy @N Ly — Ej such that (3.10) holds; Finally, (I)L(Z), and (3) hold
for E, and ¥, since they hold for E;®, k and ¥ ®, k. The uniqueness
follows from the flatness of E,, (1) and the fact that ¥ : @N L, — E,
is surjective at generic points of Z, . We shall leave the details to the
reader. q.e.d. B

Remark. If we replace Z 1’{' by Z, = Z x-Spec R, then since Z, has
only normal singularities along ¥ C Z,_, the argument is valid and the
resulting sheaf n*E;z still satisfies (1) and (2) of the lemma.

Now we are ready to prove the main result of this section.

Proposition 3.3. Let 2 C 8ty be any irreducible component, let i be
the multiplicity of & C U, and let m > O be divisible by 7. Then
there is a smooth open subset U C U™, U, = UNYy # @ C &, having
the following properties: Let V: Q)N @ZU — F, be the pullback of the
universal quotient sheafon Z,, and let U ™ — U be the branched covering
as in (3.2). Then there is a good modification ¥ @N ﬁi{;'m — Eym of

the pullback yl"jm (P): @N (%,’;'m — y{,mFU along Eym . Further, for any
closed u € U™ over 0 € C™, the restriction of ¥: @" Osn — Eym to
Um

the generic point of X, C 23’". is surjective. Finally, there is a large m,
|m, so that E, is locally free at X, x U"cZm.

Proof. Welet U™ — U be the base change so that p,: U™ — C™ is
smooth. Let K be the field of rational functions over U™ . There is a
canonical discrete valuation v: K\{0} — Z so that v(f) = 1, where 7 =
Pm(t,),and t, is the uniformizing parameter of C™. Let R = {v > 0}
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and let k = {v =0}. v is a valuation of K/k.

Clearly, SpecR is flat over C™. Consider SpecR — U™, n,: Zp =
ZmxmSpecR — Zym , and ng: Z' — Zm\E,m . We obtain homomor-
phism of sheaves

N
(3.11) Yy D — Ex.

where each of them is a pullback via 7, . Clearly, (3.11) satisfies the
condition of Lemma 3.2. Therefore there is a unique flat extension E R
of E; and an extension ¥, of ¥ such that (1), (2), and (3) of Lemma
3.1 hold.

Now, by general tautology, we can find an open set U C U, where
Un iy is dense in U N4l such that over Zc'" X om U™, there is an
extension sheaf E~ , an extension homomorphism

N
(3.12) ¥Y: P — Egn
Um

with the desired properties. Indeed, if we denote by n5: Zy — U™ the
obvious morphism, then n;Eﬁ = Ep and ng‘l‘ = ¥, . The statement

that ‘T’u: @N é’z:,, —E ,uelU ™ | is surjective at the generic points of
X, will be proved in Proposition 4.1. Here we remark that in doing so,
we may have to further shrink U.

To prove the last statement, we first consider the following situation.
Suppose that E, is a family of torsion free sheaves on Zé"m flat over

C™, and that ¥: @" @5, — E, is surjective at Zgm\Zgm , , surjective
Cm y

at the generic point of Z m o and surjective at the generic points of X, C

zm o- Let C'™ — C™ be a branched covering with only ramiﬁcation

point 0 € C'™ ramified over 0 € C™ of index / and ¢, sz — Zfm.
We claim that for some large /, the modification of ¢, (P): 69 é’g,,;, —
Cm

¢1*(E ») (along the exceptional divisor of ¢;) constructed by Lemma 3.2,
say E,, , is locally free at X, C ZC:m 0"

We first study the case when / =2. Let p' € %,,, be any closed point
and let p € £ be the closed point under p' via ¢, . We will prove that

(3.13) col(E2miA2m)p,_<_max{col mIA -1, 0}

(For definition of col, see §0.) Indeed, let (x, y, z) be a local coordinate
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of an analytic neighborhood V C Zé",.. of p so that

xy=t,, {y=0}CA,, {x=0}cA,_,,
{x=0,y=0’ Z=O}={p}'
Then there is a local coordinate (x’, ', z') of an analytic neighborhood
V' cZM of o', V' C¢;'(V), such that
xy' = Lym > {'=0}c Aoy s {x'=0} ¢ AV
{(x'=0,y =0,z =0}={p'},
and such that the map ¢,: Zoan — Zgw is givenlocally by ¢,(x",y', z') =
(x', x'y"%, Z') [2]. Without loss of generality, we can assume Epa oy 18

locally free away from p. Let V. = V\{p} and V' = ¢, (V) nV".
Since ¥,, is surjective at the generic points of X, we can assume ¥,
is surjective on V_NA,, . Thus E, . = b, (E,)y > and by the proof of

Lemma 3.2, E, = n*(qb;(Em)) , where 7 is the inclusion V' — V',
Clearly, if E, is locally free at p, then E2m|V, = ¢;(Em)|V, is locally free
at p'. Now we assume E,, is not locally free at p. Let

0—»(?;9" i»ﬁf(hw) 5 Ele -0
be a locally free resolution of Em”, provided by Lemma 3.2. Then over
v, E2m|V1 has a locally free resolution

- * B

where ¢;(A) = Ao¢,. Since E,, is not locally free, there is f € ﬁ;?’hp ,

f ¢ my" such that A(f) € md**) . We write A(f) = xM,+yM,+2zM,
where M,, M,, M; € 570" . Notice

(@A) () = X' M, + X'y M, + 2’ M, = X' (M, + Y M,) + 2 M,
Since {x' =0, z' =0} C ¢, (p), the image of the meromorphic section
(M, +y"°M,)/z = —M,/x’
via ¢;(B) in E, is regular over V' . Because Ezm“, = "*(Ezmwi) , this

section extends to a regular section in E, v - Now we define F,, on v’
as the cokernel

(3.14) oles, 00,40 00, 5 F, -0,
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~ "4 0
A=| M, +y"M, z'l )

M3 -X

where

It is straightforward to check that there is a commutative diagram
(3.15)

®h ¢; (4) ®(h+ ¢5(B) .«
yy,’p, —2-—) ﬁVl’p”) 2—) ¢2(Em)p, —_—— 0
J,“’"’O) J(l,m n
©h ®2 4 ®(h+r) B
o 00, 2o 58" Nee, L. F, . ——0.

Clearly, ¢;(E,,), S Fpp y SEyy
tion to A, ~of (3.15), we have

, and further, by studying the restric-

(d);(Em)Mz,,.)P' = (Em|Am)p s (¢;(Em)|A2m)p’ g (FZmIAz,,,)p"

Therefore we must have (3.13).

To finish the proof of the proposition, we argue as follows. Let / be
the integer so that for any closed & € U(;" and any p € £ x.= {{},
we have col(EUm| A,,,xcm{é})p < [l. By shrinking U if necessary, we can

~nl
assume EUZI"‘ is a good modification on Z [21 . - Then by induction on /,
we can show that by further shrinking U if necessary, E is locally

U2’m
! !
free at X* " X cm U 2™ We leave the details to the reader. gq.e.d.

We will call E;,» a proper transform of sheaves over U C u*. In
general, a sheaf E on Zg" is said to be a proper transform of an H-
semistable sheaf F on Z; if there is a smooth curve S flat over C,
5o €S over 0 € C, a C-morphism g: S — Rr?, g(sy) = {F} so thatif
we let Fg be the sheaf on Z that is the pullback of the universal quotient
family and let Eg be the good modification on Zg'm X § constructed in
Proposition 3.3, then E = E¢ ® k(s;) .

Corollary 3.4. Every closed point of iﬁg has proper transforms.

In the next section, we will concentrate on studying the geometry of
the proper transform E;~ . More specifically, we will give a quite explicit
description of the distribution of the first and second Chern classes of
the sheaves E| A, for j = 0,---, m and will study the stability of the

restriction of E to A, .
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4. The Chern classes of £,

From now on, we will work with a special degeneration Z that suits
our purpose of studying the degeneration of moduli of vector bundles
over X . First we explain how to construct our Z. Let C be a Zariski
neighborhood of 0 € Spec(C[¢]). During our discussion, we will feel
free to replace C by a smaller neighborhood 0 € C' C Spec(C[f]). We
form a smooth threefold Z. over C by blowing up X x C along the
subvariety X x {0}, where X € |H| is a smooth divisor and H is a very
ample line bundle on X . Let n.: Z. — C be the projection. Then
Z, = n'l(O) = X UA, where A is a ruled surface. Next, we need to
choose an appropriate ample divisor on Z. Let p,: Z — X be the
projection. For any rational number ¢ = p/qg, 0 < & < 1/2, we form a
divisor py H®?(—(g—p)A) on Z . For convenience, we will abbreviate the
Q-divisor p}H (—g—gﬂA) to H(e). Clearly H(e) is relative ample over C.
In the sequel, we will write H(¢)®" freely, and understand that by H(g)®"
we always mean n € Z* so that n-¢ € Z. Let I be a line bundle over X .
Following §2, we construct the degeneration o HE® (= om? ’*) based on
the threefold Z — C, ample divisor H(¢), line bundle p;,I over Z and
the Hilbert polynomial (depending on r and d)

(4.1) x(n) = %nZ(H-H)+n((H-I)— %(H-KX))+(r— Dx(@y)+x(I)—d.

In the following, we will restrict ourselves to r = 2. We first study the
distribution of the first Chern classes of a proper transform E along A,.
Let F(n) € 4, be any H(e)-semistable sheaf on Z, and let E be a sheaf
on Zé" that is a proper transform of F . By Lemma 1.6, there is an exact
sequence over Z,,

(4.2) 0-F->FVeF® L FO o,

where F!) (resp. F (2)) is the torsion free part of Fl x (resp. FIA), and
F is a sheaf of @;-modules with (F*), = &7, 0<ry <2, atthe
generic point £ € X. Recall that detF =~ [, I, = = p} ¥ ,Z Thus there
are integers q,, a, such that det F Q- I(a,X) and detF® = of Iy,(a,%).
Since F is semistable and F" is the quotient sheaf of F, we have
Pr X Ppo (resp. pp X prw). Note that with the choice of H(e), a =
(82, 1 —82). So pp = x/r and

1
Pro = 5;5[’1282(H~H) +ne-H@Z+1-K,) + x(F)].
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Therefore by H(e¢)-semistability, we have

H- (K, -1

(4.3) a2 (1= &)=

1 -

Similarly, since F @ s the quotient sheaf of F , we have p r 3 Dpo . Thus

we have

H-(K,-1I)
(H-H)

Further by (1.4), a, +a, +2 =r,. Since H is a very ample divisor on

X, we may and will assume throughout this paper that

(4.5) (H-H) > 18((K, - H)| + 18|(I - H)|.

Therefore, 2 > a, >0 and 0> a, > —2. The sheaf F is said to be of
type I if ry = 2, and type II (resp. IlI) if r, = 1 (resp. r, = 0). We
remark that type III may possibly occur only when H - (K, —I)=0.
Now we will use this information to analyze the geometry of the sheaf
E. Recall that A, A, --- , A~ are irreducible components of Z(;" and

that £, = A,_, NA;. Let P, be the generic fiber of A; over £. We
say that E| . has generic fiber type (q;, b;) if the restriction sheaf E| p=

@ (a;)®C(b,) . Then det E(Pi = (a+b,) . Clearly, the line bundle y*H(:e) s
y: Zy — Z , satisfies

(4.4) a,>—(1-¢) -2,

(4.6) Y H(e)p =0, i=1,---,m-1.

Since E admits length-2 locally free resolution, det E is locally free and
further by assumption on the determinant line bundle, there are integers
a,, - ,a, sothat

(4.7) detE = I, (zm: a,.A,.) :

i=0

Here by abuse of notation, we denote by I, = p}I the pullback line

|z
bundle on Z(;" as well ason Z,. We claim that
(4.8) n=a;_;+o,,—2a¢>0 fori=1,..-,m-1

Indeed, if we let E(n) = E ® y*H(e)®", then the homomorphism ¢:
@N é’z,,, — E(n), that is the restriction to Z(;" of the homomorphism
0

constructed in Proposition 3.3, is surjective at the generic points of A,
for i =0, .-, m. In particular,if E has generic fiber type (a;, b,) on
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A, then by (4.6), a,,b, >0, i =1,--- ,m~—1. Since detE(n)P=
ﬁi(a, +b,) and a;+b,=a;,_ +a, - 2a we have established (4. 8)

Since E is a proper transform of F, F ng = EI AN\E (resp. Fl A\Z =]
Ep\s, ). In fact, more is true. Since @" g, 7, generates the sheaf F(n),
@ Oy (resp. EB @,) generates the sheaf F (n)(l) (resp. F (n)(z))
Hence the sheaf F (n)(l) (resp. F (n)(2 ) considered as sheaf on A C Z(;"
(resp. A, C Zé” ) is generated by @N @z”(;" . By the way E was con-
structed, we conclude that

2
(4.9) FYUCE, s, (TosD. FPcE, )

as subsheaf on A, (resp. 4,).

Let j,: F m_, E| ™ (resp. j,,: F@ E, ) be the inclusion. In the
following, we will show that coker(j,) (resp. coker( J,p)) 1s a torsion sheaf
supported at discrete point set of A, (resp. 4A,). We will prove this by

showing that det F M — det El Ay and det F? = det E, .

Assume F is of type I, that is detFV = O(ﬁoA)l x and detF? =
Iy(m,, X )IA with 7, + 7, = 0. Further assume detE = I (£o;A;). Then
by (4.9), we have

(4.10) nyg=a, —ay>7,

Therefore from (4.8) it follows that
0=(a;—qy+ Z:(ai_1 -, —2a)+ (o, —o,)20,+71, =0.
i=1

Hence all equalities in (4.8) and (4.10) hold. Thus, detF" = detE, 5

detF® = detEIA , and EIA. are of generic fiber type (0,0) for i =
1, ,m=1. '

Now assume F is of type II. Then det F M- IO(ﬁOA)I x and detF @ =
Io(ﬁmX)|A with 7, + 7, = —1. Let ng, n, be defined by (4.10) and

CERCTRINY be defined by (4.8). Then Z;.”zonj =0, n;, >0 for
i=1,---,m-1 and n,>n,, n,>n, . Since n,+7n, = —1, there is
an i, € {0, --- , m} such that
n., i#1,,
ni={_l .?é.o
n+1, =i,
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Here we agree 7, = 0 for i = 1,--- ,m — 1. We claim that i; # 0,
m. Assume i, = m. Since F is of type II, there is a section v €
HO(Z0 , F(n)) so that the restriction of v to X is nontrivial while the
restriction of v to A is trivial. Indeed, the generic sections of the kernel
of HO(ZO, F(n)) — HO(A, F (n)(z)) satisfy this condition (such sections
exist follows from Theorem 1.10 by assuming 7 large). Then the section
v will provide a section U € HO(Z(;" » E(n)). Since iy =m, detF(n)(l) =
det E(n )Ao So jj,: F(n)(l) — E(n) jA° is surjective at the generic point of
X, . Thus vlz is nontrivial. On the other hand, since i, = m, E(rz)IA
are of generic fiber type (0,0) for i =1, — 1. Hence UIZi are
nontrivial for i = 1,--- , m. Thus ﬁl A IS nontrivial. This contradicts

the fact that vl  is trivial and j, : F @ _, E, A, is isomorphic at generic
point of A . So i, # m. Similarly, we can prove i, # 0. Hence
det FV) = detE and det F? = detE,,

The s1tuat10n where F is of type III can be analyzed similarly. We will
omit its detail but state it as a proposition.

Proposition 4.1. Let F be any H(e)-semistable sheafon Z, and let E
be a proper transform of F on Zé" . Then there are canonical inclusions
Jo: F W EIA(, and j,: F @ _, E, satisfying the following:

(1) Jj, (resp. j,) isan isomorz;"hism except at finitely many points of
A, (resp. A,).

(2) Assume EIA,~ are of generic fiber type (a;, b;) for i=1,--- ,m—1,
then (a;, b,) can only be of the forms (0, 0), (0, 1), or (1, 1). Moreover,

m— 0, Fisoftpel,
Z a,+b)=4 1, Fisoftypell,
J=1 2, Fisoftypelll

Remark. Since @N @, — F(n) is surjective, conclusion (1) of the
proposition proves what vs?e need in Proposition 3.3 when r = 2. For
r > 2, the same argument works without any change. Since we only need
r = 2 in the rest of this paper, we will leave the proof of the general case
to the readers.

In the remainder of this section, we will study the distribution of the
second Chern classes of E along A;. Assume detE = [(3_q;A;) . With-
out loss of generality, we can assume a, = 0. Then since E| a, ar€ torsion
free (Definition 3.1), we have the exact sequence
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m m
0—-F— ®EIA,~ — ®E|z.- — 0.
i=0 i=1

By using the Riemann-Roch theorem, we get
m m
AE) =Y x(Ep) =Y x(Ey)
i=0 i=1

= X(Ep )+ Y (X(Ep) —2(Eg)) = an(Em

i=1

Hence we have proved

Lemma 4.2. Let E on Z be a proper transform of F with F(n) €
Uy . Then the sum of the second Chern classes 3" CZ(E| A, ) isequalto d.

Now, we are going to derive an upper bound of c2(E ). We will
show that there is a constant 4, so that cz(E ) <d+A4,. "Here and in
the following context, unless the contrary is mentloned, by a constant we
always mean a constant that depends only on (X, H, I). In particular,
it is independent of the choice of d and 0 < ¢ < % . Our approach is as

follows. Since F? - E has cokernel supported at a discrete point set,
cy(Ejp ) < ¢y(FP). On the other hand, by (4.2), we have

(4.11) X(F) + x(F?) = x(F) + x(F?).

Since F" is not far from being stable, we should have an upper bound
of x(F (”) . Thus if we can find a manageable lower bound of x(F © ),
the bound of ¢,(F (2)) then follows immediately.

We will use e-stability defined in §0.

Lemma 4.3. There is a constant e such that the sheaf F 1 s e-stable.

Proof. Let Q be any rank-one quotient sheaf of F ) Then 0 is
also a rank (1, 0) quotient sheaf of F. Hence by semistability of F,
py(n) = pg(n). Thus

(1/6%)-eH - (c,(Q) - 1K) > L((I - 1) - (K, - H))
and we have

(4.12) det(Q) > 1(1 - e)(K, - H) + (¢/2)(I - H).
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On the other hand, by (4.4), detF" can only possibly be I, I(H), or
I(2H) . Hence

deg(Q) — %deg(F(l)) >3(1—¢e)(H-Ky)+5(U-H)—3(I-H)— (H-H)
> —3(H-H).

Thus for e = 6(H - H), FY is e-stable. q.e.d.

e = 6(H - H) will be fixed in the rest of this section.

Lemma 4.4. There is a constant A such that for any e-stable rank-two
locally free sheaf V to X with detV = I(aH), |a| <2 and any sheaf of
Og-modules Q that is a quotient sheaf of VIZ’ we have

x(Q) 2 —¢,(V) + 4.

Proof. The proof is a modification of Bogomolov’s theorem showing
that the restriction of a u-stable rank-2 vector bundle to any hyperplane
curve of high degree is stable. We will prove the only nontrivial case where
rank Q=1.

First assume Q is a locally free &g-module. Then there is an exact
sequence of sheaves 0 - W — V — Q — 0 with W locally free on X .
By using Riemann-Roch, one checks directly that ¢, (W) = ¢ (V) — [Z] =
I+ (a—1)[Z] and

(4.13) (W) =c¢,(V)+2(Q)+(g(X)-1)—a(H-H) - (- H).
Thus

ey (W) = ¢ (W)’ = 4x(Q) +4c,(V) + 4(g(Z) — 1) — (a + 1)*(H - H)
—2a+ V(I -H)—(I-1I).

Assume that

20) < —,(V)+La+ V) (H-H) + La+1)I-H)
+1(I-D)—(gZ) - 1.

Then W violates Bogomolov’s inequality for stable bundle and is there-
fore unstable. So there is a rank-one destabilizing subsheaf L C W, W/L
torsion free, such that

(4.14) L-H-%a-1)(H-H)-3}(I-H)>0.
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By the e-stability of V', we have
(4.15) L-H-%a(H-H)-3(I-H)< }e.

_Finally, W belongs to the following exact sequence

0L-oWI®L (a-1)2)eF -0,

where z is some zero scheme of X . Thus
¢,(W)=—-L-L+L-I+(a-1)L-H+[(z)>-L-L+L-I+(a-1)L-H.
Combined with (4.13), we obtain
(4.16) x(Q) > —¢c,(V)—(g(X)-1)+(H-H)—L-L+(I-H)+(a—-1)L-H.

Next, by Hodge index theorem, L-L < (L-H )2/ (H-H )2 . Thanks to
(4.14), (4.15), |L - H| is bounded by a constant 4'. Therefore, by (4.16)
for some constant 4, we have x(Q) > —c,(V) + 4. In general, when Q
is not locally free, the previous argument shows that the locally free part
0’ of Q has x(@'") > —¢,(V)+ 4. Thus

20) > 2@ > —,(V) + 4. qed.

Corollary 4.5. There is a constant A, so that c,(F (')) >A4,.

Proof. Let V be the double dual of F") andlet detV = I(aH). Then
|a| < 2. Assume 4c,(V) — cl(V)2 < 0. Then by Bogomolov’s inequality,
V is not stable. Let L C V' be the destabilizing subsheaf so that V/L is
torsion free. Then degV < degL < degV + %e . Thus by the Hodge index
theorem, ¢ (L)-c,(L) is bounded from above by a constant. Therefore,

&, (V) > ¢, (L)I +aH —¢,(L)) > 4,

for some constant 4,. gq.e.d.
Proposition 4.6. There is a constant A, such that for any proper trans-
form E of F with F(n) €,

(Ey ) <d+ 4,

Proof. 1t suffices to show that ¢, (F (2)) <d+ A, . Let S be the kernel
of (F “))IE — F9 and let F' be the cokernel of the composition

S = (FO)z = (FYVz.
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We have the diagram
0 0 0
0 S, T, — I, — 0
0—— § FOr — L FO 50
0 S, y FOYWIE — FF —— 0
0 S 7 —— T, —— 0
1
0 0 0

where S, is the kernel of the corresponding row exact sequence, and
T,,T,, and S, (resp. T;, T, and S;) are the corresponding kernels
(resp. cokernels) of the column sequences. Then the whole diagram is

a commutative diagram, and each column as well as each row is exact.
Hence

X(FO) = 2(F) + 2(Ty) - 1(T3)
= 2(F') + (0(T}) = 2(8,) = (x(T}) = x(SY))
> (—¢(F™)™) + ) + (1(S) - 2(8) = —¢,(F) + 4.
Here the third inequality holds because of Lemma 4.4 and x(Tl' ) = x(T})
which can be seen as follows: x(Tl') =x(T,) if X((F(l))l;;) =x((F(l))W|E) .
But the later two only depend on the degree of F M and F (F (l))vv

since both are torsion free. The last inequality holds since c¢,(F (l)) >

e, (FMYY) +U(T]), and I(T}) = I(T,) > x(S,) . Also x(S}) > 0. There-
fore,

0 1
~x(F?) = —2(0) - x(F) + x(F)
< (d - 1@y - xD) + ((F") - A) + x(FV) < d + 4,
for some constant A, , and the proposition is established.
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5. Irreducible components of om?

In [19], the second author constructed a line bundle %, (H) on zm" I
and showed that.% (H) is nef. and its top self-mtersectlon number is
positive. In particular, when f)]ti,” has the expected dimension ¢, =
4d - 3x(Oy) — I - I, the self-intersection number is positive, i.e.,

d,1
(5.1) [Z, (H)]“(my") > 0.
S. Donaldson first introduced this number (5.1) in a different category and

showed that this intersection number is an invariant of the underlining
smooth structure of the four manifold X when p,21.In this paper,

we will use (5.1) to deduce some properties of the degeneration m?e .
In short, we will show that there is a constant 4, having the property
that for any irreducible component md-e - om?- , there is an irreducible
component X of mg" such that for generic F € X and proper transforms
E of F, E, is u-stable and further, all such sheaves over A, form an
algebraic subset of dimension ¢, in an appropriate moduli space of vector
bundles over A

We first construct the line bundle on 9m?. We will briefly sketch the
construction of this line bundle and outline some useful properties enjoyed
by this line bundle. The full proof of these results can be found in [17],
[19].

For any integer r > 0, let D" C Z be a divisor such that n: D" — C
is smooth, D] = n~'(¢) € |[rH| for ¢t # 0 and D C A\X. We call
such D" good divisors in |rH.(-rA)|, where H, = pyH. Since H is
very ample, the set of good divisors in |rH.(—rA)| is base point free.
Let PlC(D /C) be the relative Picard scheme. On Pic(D"/C), there is
acurve C C PIC(D /C) consisting of line bundles L on D such that

L®? D! ®p xlg D, , which exists if X -7 is even which can certainly be

arranged in advance. Clearly, C is an étale covering of C. Then there
is a line bundle 6" on D~ =C X D" so that (0 )®2 = D ®pXI|D, for

any closed v € C, where 6" = (6" )pr and D; is the fiber of D% over

veC.

We now construct a line bundle on ¥ = Cx 4 asfollows. Let F (n)
be the universal quotient family on Z x. 4. Since ¥ is a family of
torsion free sheaves on Z x 4™ flatover 4™ and D'NZ =@, F |, isflat
over 4 also (see §0), where &, is the restriction of F to D"x 4" . Let
Dy, (Tesp. p,;; resp. py3) be projection D" x 4F — D (resp. D' x Uz —

r
v
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r SS , r SS ss :
D" x. 4" ; resp. D xCLlC — ilc) . Note that p,; is smooth. Hence

(5.2) R.p23*(p1*3(=gl-p’) ®P1*z§’)

is a perfect complex on u? [17]. Following [17], we can form the deter-
minant line bundle

(5.3) det(R p,s, (p13(F ) ® p1y0")

on ilsg of the complex (5.2). We have the following useful result.

Lemma 5.1. Let & be a Poincaré line bundle on D" x . Pic*~(D’/C)
and let & = det(Rq,,P), where q, is the projection onto Pic®~'(D"/C).
Then there is a line bundle & on U*° such that

(54)  det(R by, (03(Fy) @py0) = 07> 00, 7,

where p, and p, are projections from Y2 onto C C Pic®* '(D'/C) and
u* respectively, and g, is the genus of the fibers of D" — C. We denote
the line bundle & by %, (D"). Further, suppose D" and D' are two good
divisors in |rH.(—rA)|. Then there is an isomorphism Z,,(D") & ,‘Zu(ﬁ') .

Proof. For technical reasons, we will show that the line bundle .%,(D")
is the restriction to u’g of a similar line bundle on ‘R‘é« . Let F'(n) be
the restriction of the universal family to (Z\X) x ®? . Then there is a
global length-3 locally free resolution of %' . Namely, there are locally

free sheaves &, &, and &; on (Z\X) x ®? such that &' belongs to
the exact sequence

(5.5) 08 -8 —G—~F —0.

Thus similar to (5.3), we define line bundle

3 -1
(5.6) (®<det<R'p23*<p;‘3(cz,De) ®p;;o')>)“>’)
i=1
on C x c m? . Since the determinant line bundle preserves triangle of
perfect complexes and is independent of choice of resolution (5.5) [17],
one concludes that the restriction of (5.6) to usg is canonically isomorphic
to (5.3). Then by mimicking the proof of [19, Lemma 2.1], one shows
that there is a line bundle _?R(D') over ®? so that (5.6) is isomorphic to
j 204 g p}.‘i”R(D')_I . Thus the first part of the lemma is established.
Next, let D" and D’ be any two good divisors in |rH.(—rA)|, and let
.%(D') and -911(52) be the corresponding line bundles just constructed.
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In [19, Lemma 2.2], it was shown that for any closed t #0€ C,
(5.7) F(D") @ k(t) = Z(D") ® k(t).

Then by applying [13, II1.12.9] to the locally free sheaf %(D’)@.%(ﬁ')_'

over ®’ — C and adding the fact that % is normal, projective and flat
over C, we infer that

(5.8) Z(D") = Z(D")(D),

where D C D is a divisor contained in SRg . Finally, since the set of good
divisors in |rH,.(—rA)| is an irreducible set, when D = D", the divisor
D in (5.8) satisfies #(D) = &. Thus, for any choice of D' and D,
@ (D) = &, and the lemma has been established. g.e.d.

In the sequel, we will denote the unique line bundle .%,(D") by Z;(r).
Our next task is to analyze when the line bundle .Z{;(r) descends to a line

bundle on 9M“ . We need the following descent lemma of Kempf.

Lemma 5.2 (Descent Lemma). Let . be a Z-line bundle on 4> .
& descends to M if and only if for every closed point w € Y with
closed orbit & - {w}, the stabilizer stab(w) C & of w acts trivially on
Z, =L k(w).

Proof. We can invoke Theorem 2.3 of [5] since o’ is normal and is
a good quotient of 4™ by . q.e.d.

Proposition 5.3. There is a function x: Z* — (0, 1/2) and a constant
A having the following properties: For any d > A, there is a large r such
that whenever ¢ € (0, x(d)), then the line bundle £;(r) descends to a line

bundle on M° .

Proof. The proof is very much the same as [19, Proposition 1.7]. We
give a sketch here. First note that with & = SL(N, C) x,C, 4” isa &-
scheme. The action of & on ﬁ;’N induces a ¥ action on the universal
quotient sheaf # (n), and thus induces a & action on the line bundle
.S’U(D').

To show the existence of the descent line bundle, thanks to the descent
lemma, we only need to check that for any closed w € 4* with closed
orbit SL(N, C)- {w}, the stabilizer stab(w) acts trivially on % (D), .
By [19], it suffices to check the case when % (n),, is a quotient sheaf on
Z,. First, note that Z/NZ C stab(w) for any closed w € k. By using
the fact that x(F,; ® 6,) = 0 for any closed w € 4” (and v € C)

over t € C, one concludes that the Z/NZ action on Z;(D") ® k(w) is
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trivial [19]. Next, note that the only closed w € 4*° over 0 € C that
have closed orbits SL(N, C) - {w} and stabilizers stab(w) C Z/NZ are
those F(n)’s where F are nontrivial direct sums of H(g)-stable sheaves.
Assume F=J &---®J,, r > 2. By base change property [17],

Zy(D) ® k(w)

(5.9) L flop =1
®(/\H(Do,(Jlea---eaJ,),D5®05)) ,

i=0

where (6))%
g € stab(w),

K r ® Io_I 11’6' Then following the proof of [19], for any

det(g)): Z,(D") ® k(w) — F (D) ® k(w)

is the identity if x(J;, ® 6p) =0 forall j=1,---,r. But this follows
from Proposition 5.8.

It remains to show that the descended line bundle .S”m(D’) is indepen-
dent of the choice of D" € |rH (—rA)|. It suffices to show that for two
different D" and 5’C , the isommorphism (5.8) is & equivariant. But
this follows immediately from the fact that the isomorphism (5.7) is &
equivariant [19]. q.e.d.

We denote the descended line bundle on 9° by £ (r), and denote its
restriction to mﬁ’ by Z (r),. We remark that by [19], for ¢t # 0, Z (r),
exists forany r> 1.

In [4], S. Donaldson (see also [6, 34]) showed that for the algebraic
surface X and the fixed divisors / and H , there is a constant 4 such that
sm‘,’(” is smooth at the generic points when d > 4. We fix such an 4 and
assume that d > A4 throughout the rest of this paper. Let ¢, = dim Eme” .
In the sequel, we fix an irreducible component n? - m? .

Lemma 5.4 (Donaldson). Let N’ be any irreducible component of me .
Let r > 1. Then the self-intersection number is positive, i.e.,

(5.10) 2. (14" >0

Jor any closed t #0 € C.
Proof. 1In [19], the second author of this paper showed that for suffi-
ciently large ¢, Ho(‘ﬁfi , i’jn(r);@q) is base point free and the morphism
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.md 0/ o2d ®q,\V
(5.11) : y: o - PH N, Z.(n:")Y)

is a birational morphism onto the image y(‘ﬁf) . So (5.10) follows imme-
diately. q.e.d.

Now we intend to generalize (5.11) to a C-morphism y.: m? — P..
To accomplish this, we need to construct many % invariant sections of
Z,(r)®? over 4*. (We always assume r to be so chosen so that .7(r)
exists.) This will be done by using the technique of restricting sheaves to
D" . For any good divisor D" € [rH(-rA)|, let M(D"/C) be the relative
moduli scheme of rank-2 semistable vector bundles E on D'/C with
detE = py1,,, . Since D" is a family of smooth curves, MmD'/C) - C
is a flat family. Now let 4*°[D’] be the open subset of {*° consisting of
closed points u € 4*° such that F D is locally free and semistable, where

u isover t € C. By restricting F € 4*[D"] to D", we obtain a morphism
(5.12) @, : 4”[D']— MD'/C).

If we view 9(D"/C) as a & scheme with trivial & action, ®,, is &-
equivalent.

Proposition 5.5 [Donaldson]. There is a relative ample line bundle <,
on M(D"/C) — C such that the following isomorphism holds over 4*[D'] :

(5.13) @, (Fy) = Z, (DU’ [D'].

Further, this isomorphism is % -equivariant.

Proof. See [4, 6, 19]. q.ed.

Take ¢ large so that .Z37 is very ample and let v € HO(ZDI(D'/C),
Z,7%) be any section. Then @}, (v) isa & invariant section of %, (r)®?
over 4”'[D’]. We will show that the section ®},(v) can be extended to the
scheme 4*°. We first state a technical lemma whose proof can be found
in [20] (see also [19]).

Lemma 5.6. Let S be a smooth curve over C, s € S over t € C.
Assume we have the following: a map p: S — 4, p(S°) c u*[D,
S0 = S\s, with a sheaf Fg on Z x .S which is the pullback of the universal
quotient sheaf by p, a section v € Ho(mt(D’/C),E,”?"), and vg which
is the pullback section p*CDI),(v) on S°. Then Vg0 extends uniquely to a
section Vg € H°(S, p"Z,(r)®%). Further, w € 175'1(0) if and only if either
F, D is not semistable or V(¥ D,') =0.

Proposition 5.7. With the notation as above, let D" € |[rH.(—rA)| be
any good divisor and let v € HO(SDI(D'/ C), Z2%) beany section. Then the
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pullback section @}, (v) € HY(u*[D, ,‘ZU(r)®") extends canonically over
U toa & invariant section. We shall denote this extension by ®p,(v),, -
Further,

(5.14) @} (v)(0) = (W \U (D)) U {F € 4"[D"]|v(F,,) = 0}.
Proof. Let ®),(v) be the pullback section. Since ¥ is normal, by

Lemma 5.6, <D;,,(v) extends uniquely to a section v’ on the closure of
Y*[D] in 4™, and also

(5.15) E\UED,1) (¥™[D,1 € (') (0).

Thus, the extension of v’ by zero is regular. We let @ (v),, be such an
extension. Clearly, dJI,,(v)ex is canonical and is & invariant. The charac-
terization of <I);)r (v)e'x1 (0) follows from the construction and Lemma 5.6.
q.e.d.

To construct the C-morphism y. promised earlier, we need to show
that the space of Z-invariant sections, say H (U, %(r)m)? , is base
point free. It is certainly base point free on the set 4\’ [19, Theo-
rem 3]. To attack the general situation, we need the following technical
proposition:

Proposition 5.8. There is a function k: Z* — (0, 1/2) depending on
(X, H, I) having the following properties. For any d, > A, there is an
r > 1 such that for any € € (0, k(d,)), whenever d < d, and F € 4* is
an H(e)-semistable sheaf over t € C, F D is semistable for generic good
divisor D" € |rH.(-rA)|.

Proposition 5.8 will be proved shortly.

By Proposition 5.8, for d;, and r, if we choose & small enough, then
there are good divisors DI RN D,'c € |rH(—rA)| such that for any closed
s € 4* and at least one j € {1, --- , k}, Z D, is semistable, where ¢

lies under s. Thus by choosing g large so that all %?" are very ample,
we have: J
Proposition 5.9. Let V, = nj*(.? ?q), where T it wt(D;/C) - C, let
J
7 = {<I>l');(v)ex|v € V;} and let 7 be the span of 7{,--- , % in

nc*(.?u(r)@q)g, where m.: W — C. Then Z(. is base point free.

Let T: 4 — P(Z_’) be the induced C-morphism. Since 7. C

nc‘(.?u(r)m)? , T factors through a C-morphism y: 9 — P(7;).
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Theorem 5.10. Let ° C m? be any irreducible component. Then
(5.16) dimy(M) = ¢,

Proof. Clearly, y(‘ﬁd) is a scheme dominant over C and
dim y(‘ﬁf) = ¢,;. Since y(‘J‘td) is irreducible and projective over C, it
is flat over C [13, 111.9.7]. Thus y(*)td)o = y(‘}t‘é) has dimension c, .

q.e.d.
Corollary 5.11. With the notation as above, let 34 C U5 be the irre-

ducible component corresponding to N, and let X 1 » X, be the irre-
ducible components of ,. For any good divisor D € |rH.(—rA)| and
v e HHOND'/C), £29), if we let W(v) C N be the zero locus of the
extension section ®p,(v),,, then there is at least one i € {1, --- , I} such

r C
that for any tuple {D}, v ;}2,,

((d] W(vj)) NX, #0.

j=1

Proof. Without loss of generality, we can assume {Dj'. , U j};‘; , is con-
tained in the collection used in Proposition 5.9. Then the corollary follows
since W (v j) are divisors cut out by ample divisotrs in P(WCV) . q.e.d.

Let X be the irreducible component of 4, satisfying Corollary 5.11,
and let U C 4 be the (irreducible) open subset provided by Proposition
3.3. Namely, @ # UNg, € X and there is a family of torsion free sheaves
& on Zg'm xem U ™ such that & is a good modification of the restriction
to Z x- U of the universal family on Z x. 4" . Note that & is flat over
U™ and locally free along X, x.» U™ . Then & x num 15 a flat family

to torsion free sheaves on A, x .m U ™ . Let (a, k) be integers so that for
any closed u € U", detE,, =1, (aX7) and ¢)(E,, ) =k, where we
denote the line bundle p;’ll a by I, .By Proposition 4.6, |a| < 2 and
k<d+4,.

Put U)'[A, 1= {u¢€ U(;n'g;IA,,, is H(e)-semistable} and let ¥: U;'[A,,]
— ﬂﬁZ’k be the map sending u € U(;" [A,] to ‘%I A, - Here we denote by

sm;;"‘ the moduli scheme of H(g),-semistable rank-two sheaves E on A
satisfying detE = I, (aX”) and c,(E) = k. We now state and prove the
main result of this section:

Theorem 5.12. With the notation as before, there is a constant A and
a function x:Z* — (0, 1/2) such that for any d > A, any ¢ € (0, k(d))
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and any irreducible component X of Y, satisfying Corollary 5.11, we have
(5.17) dim ¥(U;") = c,.

We need the following technical lemmas.

Lemma 5.13. There is a constant e such that for any F € ity , F @ s
ee-stable.

Proof. Let Q be any rank-one quotient sheaf of F @ Then Q isa
quotient sheaf of F also. Thus by comparing the linear coefficients of
Po(N) 2 pp(n), we get ~

1_1 [H(s) (cl(Q) >]> ~H(I - Ky).

Let degQ = H(g), - ¢,(Q). Then
degQ > —Le(1 —&)(Ky - H) — 2¢(H - H) + 3(1 - &")(I - H).

On the other hand, we have c,(F (2)) = I| A(aX) with o possibly be 0,

—1,o0r -2. Since X -H(e), =¢(H-H) and I,-H(¢) = (1 -¢)(I-H),
for e=6(H-H),

degQ - L degF @ jee. qed.

Lemma 5.14. Given the constants e and A,, we can find a function
k:Z* — (0, 1/2) having the following properties: For any d > A, there is
a large r such that whenever ¢ € (0, k(d)) and V is an ee-stable (with
respect to H(e),) rank-2 vector bundle on A with detV = I,(aX”),
la| <2 and c,(V) < d + A,, the following hold:

(1) V either is u-stable or belongs to the exact sequence

(5.18) 0-I'T+pE )=V I (-T=(-a)E7)®F =0

for some zero scheme z C A, numerical zero divisor T C A and 2I' = I A~
(2) For generic D, € |rz*|, D is semistable.
Lemma 5.14 will be proved shortly
Proof of Theorem 5.12. Recall & (n) is the universal family on Z x .

4* | and for any closed u € Llo 9’ @ s the torsion free part of .9;' A- We
first show that for generic u € 27, 9’“(2) is u-stable. Assume not. Then
by Lemma 5.14, 9’“(2) belongs to the exact sequence

(5.19) 0 I'(T+ BZ7) 8.7, — FA I (-T-(B-a)X’)es, 0,
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where z, and z, are two zero schemes, and T’ is a numerical zero divisor.
Since c, (5‘;(2)) < d+A4, (Proposition 4.7), by calculating the second Chern
class of ?u(z) based on (5.19), we get

(5.20) [(z))+1(z,) <d + (4, +4(H - H)).
Clearly, then Z[Dj] (= {u € & |9Z] D is semistable}) is the set of all
u € Z such thatin (5.19), z,, z, C A\D. We define
(5.21) : & - Pic’()/{1, -1}
to be the map sending u € 2 to &(I) = - IT is well-defined. Further,
forany v € H'(9(D'/C), Z7%), the zero locus of @}, (v),, (denoted by
wWw)nZ [D{)]) is mapped (under II) into a divisor in PicO(Z) /{1, —1}.
We denote the image set II(W (v) N2°[D;)]) by B(v).

Now we choose ¢, generic good divisors DJ’. € |[rH.(—fA)| in the sense
that no two D; ’s coincide along Z, and no three D; ’s share common in-
tersections along Z,. We also choose sections v ; € Ho(im(D; /C), % ?fq) ,

j=1,--,¢;,suchthat forany {ij, -, i} C{l, -, ¢},
g+l

(5.22) ) Bw,)=2.
=t

The tuple {(D; , U j)}j"z , always exists because of the ampleness of H and
&, . Let
J

ue (ﬁ W(vj)) & +#9,
j=1

which exists, thanks to Corollary 5.11. Since ¢, = 4d+0(1), when d >0,

(5.20) implies that there are at least g+ 1 of D; ’s,say D[, -+, D; 41550
that u € N2 Z[D]]. Then Il(x) € B(v,) for j=1,---, g+ 1, which

contradicts to (5.22). So we have proved that for generic u € 27, 9;(2) is
p-stable and thus U;'[A, ] # @ .

It remains to show that (5.17) is true. Let ¢, : U(;" — U be induced by
projection. Without loss of generality, we assume for any closed u € U.",

%IA,,. is u-stable. By (5.14), for any D" and v € H'(O(D'/C), &),

¢;,’(W(v)) N U, is a union of fibers of ¥. Thus for generic D" and
generic section v, by Proposition 5.8, ‘1’(¢;1(W(v) NU)) is a proper di-
visor in W(U,") . Now suppose dim¥(U,") < c,. Then by using Proposi-
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tion 5.8 and the ampleness of %, , for generic D[, - , D:d and sections

v, -+, v, so that
d

ﬂ‘P¢m W(v,)) =

On the other hand, dim(%’ \U,) < ¢;. So by choosing {D; , V;} generic,

we also have .
@\ (m W(v,.>) _
i=1

Thus

(5.23) F40 ((d] W(vi)) =0
i=1

which contradicts the assumption. So we must have dim ¥( U(;”) =cy;.

In the remainder of this section, we will prove Proposition 5.8 and
Lemma 5.14. Assume that V' is a rank-2 vector bundle on A such that
detV =X ), |a| £ 2 and ¢,(V) < d + A4,, that V is ee-stable
and that V is not u-stable. Let L C V be a destabilizing subsheaf,
L =& +bX") where T is a pullback divisor from X. We assume V/L
is torsion free. Then we have the following exact sequence

(5.24) 00T +bX )=V -O(-T-(b-a)2)®.7 -0,
where 7, is the ideal sheaf of a zero subscheme z C A. Thus
(5.25) d+A4,>¢,(V)>-T+bX )T+ (b—a)X7).
Since V' is ee-stable and L is the destabilizing subsheaf,

jee > (T'+bX7)-H(e), — 3(aZ7) - H(e), > 0.
Setting a = (I'- £°)/(H - H) , we obtain

(5.26) a(2b—a) + b(b —a) < 5;’ ;11)
(5.27) 0<bet+a- ;aas 2(158H)

One checks easily that there is a function x: Z* — (0, 1/2) so that for
any ¢ € (0, k(d)), the only solutions (a, b) of (5.26) and (5.27) with
a-(H-H) and b integersare a =0 and 0 < b <e/(H-H). Thus we
have proved part 1 of Lemma 5.14.
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Proof of Lemma 5.14. By tensoring V' with (I')_1 , We can assume
V satisfies detV = @(aX”) and c,(V) < d + A,. Then (1) follows
from the previous argument. For (2), it is clear that the sheaves V' of
(5.18) have semistable restriction Vb for general D,. We now show
that the same conclusion holds for all ,u-stable sheaves V. Assume that
V|D, is not semistable. Then there is a quotient line bundle Q of VI D,
over D, VID' — Q@ with degQ < 0. Let W be the kernel of V' — Q.
Then W is a locally free sheaf on A with ¢,(W) = o[Z"]—r[Z'] and
(W) =c,(V)+degs Q <c,(V). Hence

ey (W) — ¢ (W)’ = 4c,(V) + 4deg Q — (r — o’)(H - H)
< 4c,(V) - (rF = o*)(H - H).
Since r can be made large, we assume (r’ —4) > 4(d + A))/(H -H) >
4c,(V)/(H - H). Then Bogomolov’s inequality shows that W is Bogo-
molov unstable. That is, there is a rank-1 locally free sheaf L c W, W/L
is torsion free, so that L®k(—(ka/2)[}:—] + (kr/2)[Z*)) is effective for

k> 0. Write #(L) =& (aX” +T') where I is a divisor in A supported
on the fibers of g: A — X. Denote b= (I"-X)/(H - H). Then

(5.28) a-af2+r/2>0, b+r/2>0.

By computing the second Chern class of W in terms of L similar to
(5.25) and then comparing it with c,(V), we get

@X” +D)((@-a)X” —rZ" —T) < c,(W) < ¢y(V).

So

d+ 4,
(5.29) a(a—a)—b(r—a+2a)§(H.H).
Since V' is semistable, (L — (a/2)X7)- H(e), < 0. Thus
(5.30) ea-af2)+(1-¢)b<0.

We will show that & = 0 by showing, after an appropriate choice of r
and ¢, that b >0 and b < 0 are impossible. We first assume b < 0, so
b<-1/(H-H). By (5.28) and (5.29),
d+ A,
(H-H)
Thus |a| < \/d+4,+2 and then r—a+2a>r—-2\/d+A4,—4. So by
(5.29) again,

d+ A 1
(5.31) (H.HZ)Z(H.H)(r—Z,/d+A2—4).

>a(a—a)+ (=b)(r—a+2a)>ala—a).
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If b > 0, thanks to (5.28) and (5.30), we have

e r l-—e r _l—-¢ (-1)
. <(la-= — < —Z(= —< . —.
(532)  0<(a-3a)+5<——(-h+5< H-' 2
Now for any d, we can choose r large so that (5.31) does not hold. Then
let ¢ = x(d, r) be small enough so that the right-hand side of (5.32) is
negative. Since neither (5.29) nor (5.32) holds by our choice of r and ¢,

b has to be zero. Therefore, for any rational ¢ € (0, k(d, r)), VID, is not
semistable only if the line bundle L C W satisfies ¢, (L) - [Z*1=0. Let
D C A be a divisor so that L(D) is a subsheaf of V' with V/L(D) torsion
free. Since V'/L is torsion free over A\D,, we have D =@ or D=D,.
We claim that D = & . Otherwise, since L is a destabilizing subsheaf of
W, L(D) c V will be a destabilizing subsheaf of V' . This would violate
the u-stability of V. Therefore, V' belongs to the exact sequence

05 @@L +T) >V >0(a—-a)E -T)®F -0

with a numerical zero divisor I". Therefore, Vl p 18 semistable for generic

+

D, € |r=*|. This completes the proof of Proposition 5.8 and Theorem
5.12.

6. Vector bundles over the ruled surface A

In previous sections, we have succeeded in constructing a degeneration
of the moduli scheme 9°°¢. By an appropriate choice of ¢, we also
showed that for any irreducible component M? of the degeneration om? s
there is an irreducible component 2 of ‘J“tg so that the restriction to A,
of proper transforms E of generic F € 2 are u-stable. Further, the set
of all such EI A, is an algebraic subset of smg”‘ of dimension equal to ¢, .

In this section, we will concentrate on studying this subset of SJIZ’k .
First let us fix some notation. We still denote by X" (resp. £7) a sec-
tion of ¢: A — X such that (Z*-X%) > 0 (resp. (£~ -X7) < 0). Note that
X~ is unique while |Z+| is base point free. We use /X~ to denote the
nonreduced curve that is the /th infinitesimal neighborhood of £~ C A.
Let H(e), be the ample Q-divisor g Hg((1 — €)27), where Hg is the
restriction of H to X C X. We understand that ¢ is a small positive ra-
tional number. We will work on the Grothendieck’s Quot-scheme instead
of on the moduli space since the previous space has a universal family.
Let o be either 0 or 1, k a positive integer and let ‘RZ be the Quot-

scheme parameterizing all quotient sheaves E of @N H (8)5(_") with
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detE = @(aX”) and c,(E) = k. Here N = x(E(n)), where n will be
chosen large enough (depending on d and ¢). For any constant ¢ > 0,
we let ‘.Rz’e - ERZ be the subset of all e-stable quotient sheaves. When
the choice of a is made, we will suppress the index a and denote SRZ
and ®y° by R, and R respectively. Let ¢ = g(X) and let 4, be a
constant that remains fixed throughout this section.

Let V be a fixed locally free sheaf on 4X~ . We define 9‘;, C 9‘&2 to
be the subset consisting of all quotient sheaves E € 9‘{2 with EI a- =V,
Clearly, 6‘,’, is a constructible set (Proposition 6.5). Then 8?, is the
finite union of locally closed subsets of :; . We call © C 8], a maximal
irreducible component if © is locally closed, irreducible, and ©, C ©
whenever O, is a locally closed irreducible component of 6?, such that
6 C 6_1 The goal of this section is to prove the following theorem.

Theorem 6.1.  For constants A, and e, there are constant A and func-
tion k: Z* — (0, 1/2) having the following property: For any k > A, any
¢ € (0, k(k)), any locally closed irreducible S C ©;, with codimension
at most A, in i)’ti and a general closed s € S, there is an irreducible
curve T C 8, s € T such that there is a quotient sheaf E € T with
R (A, %ndo(g’tl)(—42_)) =0 and col(E), =1 for some p € A\Z" .

Proof. Clearly, there is a maximal irreducible component & C 6‘;,
such that S € &. Of course, codim& < A, . Thus Theorem 6.1 follows
immediately from

Theorem 6.2. For constants A, and e, there are constant A and func-
tion k: Z* — (0, 1/2) having the following property: For any k > A, any
¢ € (0, k(k)), and any maximal irreducible component & C 65, with codi-
mension at most A, in 9‘{2 , there are non-locally-free sheaves F € G such
that h*(A, €nd°(F)(~r£7)) =0 and col(F), =1 for some p € A\Z™ .

We now sketch the idea of the proof of Theorem 6.2. First, as we
explained in the introduction, we can deform an E € 6 C 6}, to F € R}
so that F is not locally free at some p € A\Z. If FI - =V, then we

are done. Otherwise, we let ‘.Rih - ‘ﬁi be the subset of non-locally-free
sheaves. Assume 9‘{7:‘ NS # &. Then since m;“ C R, is a divisor, some
component 7 of \& which contains F is contained in ®"NS. On the
other hand, by studying the deformation problem, we can show that we
can deform a general sheaf E € T within T to a non-locally-free sheaf.
Thus T cannot be contained in mjj‘ N S, a contradiction. In the rest of
this section, we will provide the detail of this argument. First we state
some results regarding the set .
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Lemma 6.3. With the notation as above, there is a constant A such that
whenever k > A, any generic sheaf E € & has generic fiber type (o, 0).

Proof. Let %, be the subset of D‘tz consisting of locally free sheaves
that are of generic fiber type (o« +1/,-[), [ > 1. By [3], dim%, <
3k + N> + O(1). Since dim®; = 4k + N’ + O(1), there is a constant
A such that for k > 4, codim(|J,5, %)) > 4, + 1. Thus 6\U;5, B, is
nonempty. q.e.d.

Next, let D be any fixed divisor on A. We will estimate the dimen-
sion of the set . of all sheaves F € ZRZ with hz(A, & ndo(F Y(=D))
# 0. Here & ndO(-) is the traceless part of the endomorphism sheaf. We
have the following estimate.

Lemma 6.4. There is a constant A, independent of k and ¢ such that

codim& > k — A4,.
Proof. Since F is torsion free,
1 (&nd’(F)(-D)) = h*(&nd"(F*")(-D)),
which is equal to ho(é’ ndO(F W)(KA + D)) by Serre duality. For p €
H°(&nd’(FYV)(K, + D)), let detp € H°(2K, + 2D). In the following,
we denote by .Mk"b’l (resp. Mkl) the set of all rank-2 locally free (resp.
arbitrary) sheaves F in %, having p € H(&€nd"(F"V)(K, + D)) with

nontrivial detp. Then by [4], [6], [34], there is a constant 4,(D) such

that
dim#,"”! < 3k + N* + 4,(D).

Assume F € Mkl . Then F"V e ' where k' = ¢,(F"V). Further, F
is a subsheaf of F"" with cokernel Q of length k — k’. It is shown in
[19] that the number of moduli of the set of F with ¢,(F) =k and F Vv
fixed (c,(F¥")=k') is 3(k — k). Therefore,

. 1 . vb, 1 . 2
dimg] < rgg&(dlm.sa/k_j +3j) <3k + N"+ A4,(D).

Now let %Vb’o (resp. Mko) be the set of locally free (resp. arbitrary)

sheaves F € R; so thatthereisa p#0¢€ Ho(é;’ndo(FW)(KA+D)) such
that det p = 0. We claim that there is a constant 4,(D) so that

6.1) dim /"> < 3k + N* + 4,(D).

Let F € Mk"b’o ,and let p: F — F®K,(D) be a traceless homomorphism
with detp = 0. Let L =ker(p). Then we have the exact sequence

(6.2) 0-L—F—L'®detF®.F —0.
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Following [4, p. 296], p is induced by a homomorphism L_l(aZ_) —
L(K, + D). Combined with the H(g),-stability of F, we get a uniform
bound of the degree of L. Thus a standard argument of counting the
number of moduli of all possible extensions of (6.2) yields (6.1). Finally,
using argument similar to those used in deriving estimate of dim Mkl from
that of dim.JaVk"b’1 , we obtain the main estimate of the lemma. q.e.d.

As a first step toward establishing Theorem 6.2, we have the following
proposition that will be proved eventually.

Proposition 6.5. With the notation as in Theorem 6.2, there is a con-
stant A such that if k > A, and & is a maximal irreducible component
of 6‘,’, of codimension less than A,, then there is a stable sheaf E € S so
that h*(A, £nd°(E)(-4%7)) =0 and col(E), =1 for at least one closed
point p € A\X™ . Here, & is the closure of & in iRi

We next show that we can find an £ € & so that F satisfies the con-
clusion of the Proposition 6.5. We will accomplish this by studying the
deformation of family of sheaves on A. We first state some known facts
that we shall need.

Lemma 6.6. Let S be any quasi-projective scheme and let & be a
Jamily of torsion free sheaves on A x S flat over S. Let F be any sheaf
on 4X" . We define S to be the set {s € S|&,s- = F}. Then S isa
constructible set. Take S, C S be the closure of Sy . Then there is a closed
subscheme structure on E with the following property: For any morphism
f: T — S, suppose there is an isomorphism (idy x f)"(&) ;5.7 = Pys-F ,
where p,s-: 4X” x T — 4%~ . Then [ factors through S .

Proof. Let L' be a very ample line bundle on 4% so that
R(F®L™") =0 and H'F ® L™") = C™ generatess F ® L™'. Fix
a homomorphism g: @” L — F so that the induced homomorphism
C™ - H'(F ® L™") is an isomorphism.

Consider the Grothendieck’s Quot-scheme 9‘&’,‘,& parameterizing all quo-
tient sheaves of @™ L having Hilbert polynomial y ¢ - & defines a closed
point [g] € ﬁ‘tanL. Put 7,5 (resp. mg): 4X xS — 4X" (resp. — S) and
denote 7 = Zom(@" mys-L, &,5-). Consider the sheaf 75.(7") on

S. Since S is quasi projective, by choosing L™ sufficiently ample, we
can assume 7¢.(7") is locally free. Here we have used the fact that since
& is a flat family of torsion free sheaves, 8’,,2_ is still flat over S (cf.
§0). Let ¥V C P(7") be the open subset consisting of all closed points
corresponding to surjective homomorphisms. Over 4X~ x V', there is a
flat family of quotient sheaves
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m
* * *
(6.3) h: my- (@L) =0 (&) © My Gp(1), s

where p is the projection 4X™ x V' — 4X~ x §. Thus there is an induced
morphism ¥: V — mf,fL . We define 8 C V' to be the closed subscheme
defined by the ideal sheaf that is the pullback via ¥ of the ideal sheaf
defining [g] € R, .

We then define 3’; to be the scheme theoretic image of n: B C P(7") —
S'. Set-theoretically, §; is identical to the closure of Sg in S. Now we
check that for any morphism f: T' — § satisfying the condition of the
lemma, f will factor through Sy . Since (id, xf)"(&) 45~ 1 = Pys-F

the homomorphism g: @™ L — F induces

(6.4) =Dy (8): @ris-L — (idyx 1) (&) g1 = Va5 F.

Clearly, n induces a morphism [n]: T — D‘t’,‘,fL that factors through {: T
— [g] € mij . On the other hand, [n] induces a morphism j: T — V
[13, I1.7.12] such that the pullback of the (6.3) via j is identical to (6.4).
Therefore, we have the commutative diagram

vV

|
T —— [g]c Ry,

with Woj=¢. So, T L V factors through % . Since Sy is the scheme-
theoretic image of B, f: T 5 S factors through _.57 q.ed.

Now, suppose s € ERZ is a closed point so that for a closed point p €

A\Z", col(gs)p = 1. Let U C A x ] be a classical neighborhood of
(p, s) so that there is a locally free resolution

(6.5) 0-0,L65 &, 0.

Since general sheaves E € ERZ are locally free for large k& [20], f _'(0) -
Ax ZR; is a codimension three analytic subvariety of U , where we think of
f asamapof U to C’. Let ZRSh(s, p, U) be the image set nz(f'l(O)) .
Since &, is torsion free, m,(f '1(0)) is a codimension one subset.
Lemma 6.7. With the notation as above, there is a classical neighbor-
hood U of (p,s) so that near s, SRSh(gs, D, U) is an analytic hypersur-
Jace of 9‘{2 Further, if we assume ERZ is smooth at s, then there is a
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scheme structure of ms“(é’s , 0, U) so that for any Artin ring of the form
A, = SpecC[t)/(¢") and ¢: A, — R"(s, p, U) with p(0) = s, there is
a codimension 2 subscheme Z, C A x. A, flat over A, and a classical
neighborhood U’ of {p} x¢ A, C A x¢ A, such that ¢* (&), belongs to
the exact sequence

(6.6) 0— ¢"(&)y — Ty - E, —0.

Proof. The first statement follows from the previous argument. Now
we assume R; is smooth at s. Since col(&)) , = 1, there are analytic
coordinates y = (y,,y,) of p€ A and z=(z,, -, z;) of s € R re-
spectively so that the resolution (6.5) has the form f = (y, +A,(y, z), y,+
hy(y, z), hy(z)) with

8 8
(6.7) 5y_lh'(0’ 0)=0, 6—y2hz(0, 0)=0.

Now we give %™(&, p, U) the scheme structure {/,(z) = 0} . The lemma
follows immediately from the explicit expression of f and (6.7). q.e.d.

Now we return to the proof of Theorem 6.2. Let x € &, and let
p € A\X™ be the closed point provided by Proposition 6.5. Clearly, The-
orem 6.2 will be established if we can show that XRSh(s ,p,UNG #3.
Otherwise, since ®™(s, p, U)N & is a divisor (in &) and (6\&)NU
has codimension at least one in &N U, by choosing s € 8 NR™(s, p, U)
generic and shrinking U > (s, p) if necessary, we can assume (6\&)nNU C
M (s, p, U) as sets and s is a smooth point of R, . Let ®(s, p, U)
has a scheme structure by Lemma 6.7. Now we endow & C iRi the closed
scheme structure introduced in Proposition 6.5 with S=6 and F =V,
and let &, be the closure of {E € R}|E ;- = F} endowed with the
scheme structure given by Proposition 6.5 with F = é‘;l 4~ - Then for
some & > 0, the scheme 6§, NS NU (C 6\& as a set) must be a sub-
scheme of 6R™(s, p, U), where 6%%(s, p., U) is defined by f° = 0
when ®™(s, p, U) is defined by f = 0. That is,

(6.8) &, N8NUCoR™(s,p, V).
We will derive a contradiction by showing that (6.8) is impossible.

Let S be a smooth affine curve and 0 € S, and let ¢: (0, S) — (s, &),
9(S\0) € 6. Define Eg on A x S to be the pullback of the universal
family. By Lemma 6.3, without lose of generality we can assume that for
any closed s € S, h*(&nd°(E,)(—4%7)) = 0. We will derive a contra-
diction to (6.11) by constructing deformation E; of Eg over A, so that
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E;|42‘ XSXA, is the constant deformation of Eg,;-, ¢ while E;l Ax{0}xA,
is not contained in (n — 1)9%5“(&1 , 0, U). We need the following defor-
mation lemma.

Lemma 6.8 (Deformation lemma). Let Y be either Ax S or 4X” xS,
where S is an affine scheme, and let M, be a coherent sheaf on Y x A,
flat over A, . Suppose that M, admits length-2 locally free resolution and
that there is a line bundle L on Y so that detM = p;L Then there is
an obstruction class w(M,, L) € Exti,(M M ) My=M,y, such that

o(M,, L) =0 ifand only ifthere is a coherent sheaf M n1 on YxA a1 Slat
over 4,,, sothat M,y , =M, and detM, , = pyL. Wecall M,_,
a determinant fixing deformatlon of M, over A, ,. Further, the space of
all determinant fixing deformations is a homogeneous space isomorphic to
Ext), (M, M,)°.

Proof. The case where M, is locally free was proved in [9], and that
where Y is smooth was proved in [25][1]. In general, let 0 — Q, — Q) —
M, — 0 be alocally free resolution of M, . Since M, is flat over 4,

(6.9) 0—-0Qy - Qoy = My — 0

is a locally free resolution of M; on Y [27, p. 296]. Thus (6.9) as a
complex of sheaves gives rise to a complex of sheaves # om(Q gy Q'IY)
whose associated hypercohomology is Exty (M, M) .

Now we fix an affine covering {U,} of ¥ x 4, ,, and let Q, o (TESD.
QO,a; resp. d: Ql,a — QO,a) be the restriction of Q, (resp. Q,; resp.
d) to U,NY x4, . Since Q0 and Q1 are locally freeon Y x4, NU_,
we can find locally free sheaves Q0 o and Ql . on U_, that restrict to
9, , and Q1 respectively. Let d Q1 — Qo, be an extension of d_,
and let f o siu, ~ Ql alU,, (U,p = U, N Uy) be a homomorphism
that restncts to the 1dent1ty of Ql, s, Qi, g, = Qi,aanﬂ . Since the

restriction of fzﬂ of;y oﬁa: éi,alU,,ﬁ, — Qi,alvuﬂ, to Uaﬂy NY x A, is the
identity homomorphism,

[f]:rﬁy =_f~:ﬂof/;yof~;a—ld
vanishes along Y x 4, NU,p, . So by identifying Zom(Q,, Q;)(-Y xA4,)
to Zom(Q,y, Q;y), we have
(6.10) (1.5, € TW,g,» Zom(Qy, Oyy)-
Similarly, one finds that

(6.11) [fodl,,=d,° ;lﬂ—ffﬂociﬂ eT(U,5, Zom(Qyy, Qoy))-
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It is straightforward to check [11, p. 724] that the triple ([ f]o , [ f]l s [fod))
is a cocycle in the hypercohomology group of HZ(Q 4 om(QlY , QIY))
and whose vanishing is equivalent to the existence of {( f d )} so that
the left-hand sides of (6.10) and (6.11) are zero cochains. Thus (Q, o faﬂ)
form locally free sheaves Q and {d } 1nduccsahomomorphlsm d: Ql
Q0 Let M, , be the cokernel of d . Since Q are locally free and dle 4,
is identical to (6.9), one obtains easily that M,_, is flat over 4, , and
Mn+1|YxA,, = M, . We define ([f]o, [f]l ; [f ®d]) to be the obstruction
class w(M, , L). One further checks that if detM, = p;,L , (M, , L) is
traceless [9]. Finally, following [9], when w(M,, L) = 0, we can choose
M, , sothat detM, & = p}L . The last statement of the lemma follows
from [15], [12].

Lemma 6.9. With the notation as before and let 4X; = 4~ xS. Then
there is a canonical exact sequence of @g-modules:

1 —\0 i 1 0
ExtAxS( Eg(—4Zg)) l»ExtAxs( Ey)

— 0
5 Ex‘4>:— «s(Esjaz; » S|42‘,“) - EXtA s(Es»> Eg(=4Zg)) "

n—1

(6.12)

Further, if E” is a determinant fixing deformation of Eg~ over A, , and
g€ Extix s(Egs Es) , then the new deformation (E )¢ of E;_l given by
Lemma 6.8 satisfies (Eg)*|4Zg = (E§|4zs_ )P®

Proof. Let 0— @, — Q, = E; — 0 be a locally free resolution. Then
we have the following exact sequence of complexes of sheaves:

0—Zom(Q., Q.(—4%)) —» Zom(Q., Q.)

(613) — %Om(Q.M):; s Q.|4z§) - 0.
Note that since ES,v is torsion free for closed v € S,
(6.14) 0= Quz: — Qopaz; — Esjaz; 0

is still exact [19]. Thus by taking the corresponding long exact sequence of
the hypercohomologies of the short exact sequence (6.13) and combining
it with (6.14), we get

1 - 1
Ext, s(Eg, Eg(—4%g)) — Ext, o(Eg, E)

(6.15) . Exi? E (45"
= Extys-«s(Esjas; > Esjas; ) — Extys(Eg, Eg(=4Zg)).

Finally, one checks directly that the traceless submodule Ext(:, .)0 C

Ext(-, -) is preserved in (6.15). Thus (6.12) is exact. The last statement
can be proved by using [12]. q.e.d.



IRREDUCIBILITY OF MODULI OF RANK- 2 VECTOR BUNDLES 87

Now we continue our construction of deformations. We first let FS2 be
the constant deformation of Eg over 4,. By the deformation lemma,
the space of all determinant fixing deformations is a homogeneous space
with group Exti>< s(Eg, E S)O , and by Lemma 6.9 the subspace of defor-
mations that induce constant deformation along 4%~ x § is isomorphic
to the image of EthxS(ES , ES(—4Z'.;))0 4 Extixs(ES , ES)0 . Because
H? AxS,& ndO(ES)(—4Z;)) = 0, the long exact sequence coming from
the spectral sequence H (£z()) = Ext’( ) guarantees that

! -\\0 £, g0 1 _0
(6.16) Exty, s(Eg, Eg(—4Zg)) > H (Ax S, &xt (Eg, Eg(—4Z)"))
-0

isexact [11]. Since col(Eg o), =1, thereisa g € Extixs(ES , ES(—4Z§))0
so that {(g) generates the & -module gxtl(ES, ES(—4Z;))2. Thus by

[29],
(6.17) (FHElA x {0} x 4, ¢ R(s, p, U).

We let E; = (F; )¢ . In general, since Eth(ES , ES)0 = {0} by the vanish-
ing of H Z(g ndO(E 5)(—4Zg)), we can successively apply Lemmas 6.8 and
6.9 to find determinant fixing deformation Eg of E; over 4,, n >3,
such that E§|4z‘ SxA, is the constant deformation of ES| 4s-xs- There-
fore by Lemma 6.6, Eg,, (g4 € 65 and Eg,, (x4 S & which
implies E¢ C &. Hence E;I Ax{0yxd, € S, NG&. On the other hand, by

(6.17), E;|A><{0}><A is not contained in the n — 1)R™(s, p, U). Since n
can be arbitrary la;ge, (6.8) is impossible. So Theorem 6.2 is established.
q.e.d.

Now we prove Proposition 6.5. We first study the case where a = 0.
We state a useful result of [3] for constructing vector bundles on A.

Lemma 6.10. Let E be any rank-2 locally free sheaf on A with ¢, =0
of generic fiber type (0, 0). Then there is a l.c.i. zero scheme Z C A such
that E belongs to the exact sequence

(6.18) 0-F—-E—J, ,—0,

where F = q"q E, and %, s the ideal sheaf of Z in Y = 4 'q92).
Here q(Z) is the scheme-theoretic image of Z . Further (6.18) is unique,
¢,(F)=-[Y] and c,(E)=1(Z).

For our purposes, we need to generalize this construction to a family of
sheaves on A. Let & be the restriction to Ax & of the universal quotient
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family. Let u: Ax & — X x & be the obvious projection. Since for the
generic points s € &, &, has generic fiber type (0, 0) (Lemma 6.3) and

(6.19) 1&gy = 4. Enegsy)

is an isomorphism, there is a Zariski open set T C & such that 7" =
/‘*(gv)p:xr is locally free and that for any closed s € T, (6.19) is an
isomorphism. In the following, we shall view 7  as a family of locally
free sheaves on X parameterized by T . Now according to Lemma 6.10,
there is a l.c.i. codimension-two subscheme Z C A x T so that for Y =
,u_l/z(Z ), &€" belongs to the exact sequence

(6.20) 0—-p' W —& -ppZ e 0,

where £ is a line bundle on T . Since /(Z,) and /(q(Z,)), s € T closed,
are independent of s € T by Lemma 6.10, both Z and Y are flat over
T . Now, by replacing 7 with a smaller open subset (which we still denote
by T), we can assume #supp(q(Z,)) is constant over 7. We have the
following estimate:

Lemma 6.11. With the notation as above,

(6.21) #supp(q(Z,)) > k- A4,,  Ay=A,+2(g+1).

Proof. Let s € T be a general closed point. Assume L C 7 is a

subline bundle so that no subline bundle of 7 has degree higher than the
degree of L. Then %’sv belongs to the exact sequence

(6.22) 0-¢'L—-& —q'L' ®©5 —0.

The number of moduli of the set of vector bundles belonging to (6.22)
(with L and Z_ fixed) is at most

dimExt' (¢"'L™' ® %, , ¢"L) — 1 < —2deg L +2g +1(Z,).

(If degL > —g, the estimate is different but the conclusion of the lemma
can be derived more easily.) It is easy to see that degL > —1/ q(Z) - &

since deg#Z_ = l(q(Z,)) . Further, for fixed distinct points x,,--- , x, C
X, the number of moduli of the set of all zero scheme z C A with
supp(q(z)) € {x,, -, x,} is at most [(z) [14]. Therefore, the num-

ber of moduli of 7 can be at most
dim Pic(Z) + #moduli of {Z,} + dimExt' (¢"L® .7, , ¢*) — 1
<g+UZ)+#supp(q(Z,)) + (—2deg L + 2g + I(Z))).

However, we have assumed that the number of moduli of T is at least
4k +3(g—1)—A, . Therefore, combined with k = /(Z), we obtain (6.21).
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Remark. The lemma implies that for generic s € T, 7, is ¢,-stable
with e, = A, + 1, and Z, is the union of z' and z” where ¢(z') and
q(z") are disjoint, z’ is a simple scheme with /(z) > k — 24, . Here, we
call z C A asimple scheme if z is reduced and the projection supp(z) —
supp(g(z)) is one-to-one.

For any rank-2 vector bundle W on X, welet T, = {s e T|Z; = W}.
Since the number of moduli of the set of rank-2 vector bundles on X is
at most 4g — 3, there is a W so that

(6.23) dim T, > dim T — (4g - 3).

We fix such a W. For any E € Ty, , by dualizing (6.20), E belongs to
the exact sequence

(6.24) 0-E—-WwW' LF-o.

By the remark after Lemma 6.11 and the assumption on the number of
moduli of T, we can assume that there are m distinct points x, , --- , X,
C X, m >k —24,, a sheaf F' supported on fibers of g|A other than
P, = q_l(xi) ,i=1,---, m, with surjective homomorphism ¢': W" —
F' such that the number of moduli of the set

m
T([x], (¢’, F')) = {E € T}, |E belongs to (6.27) with F = (P&, (1) & F'

i=1

m
and y = @a,. ® o’ where g;: wY - O, (1)}
i=1
is at least 3m — A,, where A, is a constant depending on 4, and A
only. Put R = ker{g': W' — F'}. R is locally free. Then all E €
T([x], (', F')) belongs to the exact sequence

m
(6.25) 0-E—-R5@Pa,(1)-0.

i=1 _
We choose the trivialization R! p 2O, ®0,, P, = q_l(x,.) , and basis
{u;, v} of H'(@,(1)) so that u;'(0) € ™. We then identify s’ =
[s{ TN si] € Pf ~ P’ to homomorphism s': R — é’PI_(l) ,
(2.26) S'(1,0)=sju, +s0,, (0, 1) =s5u, + 530,
Forany s=(s', - ,s™) € H;'_'__le , we define

m .

i
o, = @' R
i=1 i

m

é’P‘_.
1
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o 3 ' 3 i i
Note that if s' ¢ Q; C P; (resp. s' ¢ M, CP;), where Q; = {s;5, =
5,83} (resp. M; = {s, = s, = 0}), then the kernel E of (6.28) with
s=@"s' islocally free at P, (resp. £~ N P;). Now put

my3 . . i
[Q] = {s € IT"P}] there is at least one i so thats € Q,}

and [Q] = II"'P?\[Q] . By [3], there is a flat family of locally free sheaves
7" on Ax[Q] such that for any closed s € [Q] , 7, belongs to (6.28)
with ¢ = o,. Let [Q], = {s € [Q] |7 € T, }. Since the number of
moduli of T([x], (¢', F')) is at least 3m — Ay,

(6.27) dim[Q],, > 3m — 4,

Let 7" be the closure of [Q], in l'I'"P?. Since [Q] is an ample divisor
of II"P), [QINY # &. Now let 5, € [Q]N ¥ . We will show that
s, corresponds to non-locally-free sheaf. Let 0 € D be a small disk with
parameter ¢ and let ¢: (0, D) — (s, 7Z"), ¢(D\0) C [Q],, . ¢ is rep-
resented by families of homomorphisms s'(f) € Hom(R, Oy (1)). In this
way we obtain a sheaf E, which belongs to the exact sequeﬁce

m
Gs.
0—-E,—R ®@' Oxxp = @ﬁP.xD(l)’

Let .2}, = Im{o ()}C@ Fp«p(1) and let ,‘Z'—Im{s()}cﬁpixp(l).

Clearly, %, is flat over D. Assume s5'(0) € Q,. Then %, ® k(0) =
Op & Cp , p; € P;,. Consequently, E, ® k(0) is non- locally-free at p,
and col(ED o), = 1. Wedenote E;, ;= E , and remark that E_ % does
depend on the choice of the curve 0:D— W.

Proposition 6.12. With the notation as above, there are constants A
and e, such that whenever m > A, [QINY " # @ and further, for generic
seQIn7,

(1) there is a closed point p € A\L"~ such that col(E)), =1,

(2) E, is ey-stable.

Proof. For (1), we only need to show that [Q]N7" is not contained in
l'I'"M,. when m is large. But this follows from the dimension comparison
since dimII7" M, = m while dim[QIN% >3m—A4,—1.

Now let s € [Q]N7Z" be a general closed point. Thanks to the remark
after Lemma 6.11, we know that W is e,-stable for a constant e;. We fix
a X' C A sothat E_ (which is well-defined if we choose a curve D passing

s) is locally free along =* . Let v, € Ho(ﬁl,’(l)) be such that U,._'(O) ex’.
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By definition, /(Fjz+) < 24;. Thus R;. is e -stable with e, < e,+24;.
Now we define a birational map f: l'I"'P? — II"P' by sending s € 1™ Pf
to ([s; , sj], s, s ) € IT"P' . Since E_ islocally free along =*, f
is well defined near s. Since Z” has bounded codimension in l'I'"P? , the
images f([Q]1N%") has bounded codimension also. In particular, since
s € [QINZ  is general, for some universal constant e, (depending on
A,), we can assume ([s, 5;], - , [sy 2, s;' ?]) is in general position
of I “P' . Note that Es|z+ belongs to the exact sequence

m
?
0— Egg+ = R & @szp,. -0,

where y'(a, b) = s,a+s,b. Since when k > 0, m —e, > 2¢,, we
can choose 7 so that Ker{;';”7': Rz+ — ;1 Cy:pp} is stable.
Therefore, Es|z+ is e,-stable. Then one checks directly that E_ is e,-
stable for some constant e, (depending on 4, and A) because E_ is of
generic fiber type (0, 0) and ¢ is small.

Proof of Proposition 6.5 in case o = 0. When e; < e, the E  con-
structed in Proposition 6.12 is contained in & C ‘ﬁi already. Now assume
e, > e . By the technique of [30], when k> 0,

(6.28) dim(®P\R}) < dim R — 24, - 2.

Therefore, there is a unique maximal irreducible component &, of 8‘;,3 C
M| such that & C &,. Let &, be the closure of &, in R . By (6.28),

dim(&,\8) < dim R — 24, — 2.
Now let E (= E) € & be the sheaf provided by Proposition 6.12.
Namely, for some p € A\X, col(E)p = 1. We can apply Lemma 6.7 to
the pair (E, p) to conclude that there is a classical neighborhood U C ERZ’
of E such that ®*(E, U, p)N&; is a nonempty divisor. Then by (6.28),

D”cSh(E ,U,p) NG # @. Therefore, Proposition 6.5 is true for a = 0.
qg.e.d.

Our strategy of proving Proposition 6.5 when a = 1 is by reducing
it to the case @« = 0. Let & be the maximal irreducible component of
e, C 9%,16"’ having codimension at most 4,. We fixa Z*. Since d > 0,

for generic V € &, h(&nd°(V)(-X* —427))=0. So
Ext'(V, V)" — Ext'(Vy5- , Vi) @ Ext' (Ve , Vi)'

is surjective. Therefore, there is a deformation ¥V, of V' such that V;l -
is a constant deformation while Vu|z+ is stable for general u. In particular,
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We can assume I/}y is stable already. Let S C & be thesetofall V' € &
such that ¥; is stable. Let M be a line bundle on " with degM =
—3g. We consider the set

(6.29) & ={(V,o0)|V €S, o is asurjective map V — M_l}.

Let p: & — S be the obvious projection. On A x &, there is a family of
sheaves # such that for any w = (5, 0) € %, ZU belongs to the exact
sequence

(6.30) 0~F, -&5M ' -0,

where & is the universal family on A x §. We claim that for general
we ¥, 7, is of generic fiber type (0, 0). Indeed, since &, is of generic
fiber type (1, 0), by [3], & fits into the following exact sequence

1

* > —1 - *
(6.31) 0-¢'L7'E) =& -q¢'Les, -0,

where g: A — X, and L is a line bundle on X. Since the number of
moduli of § is at least 4k + 3(g — 1) — 4,, an argument similar to the
proof of Lemma 6.11 shows that for generic s € .S, the line bundle L
in (6.31) satisfies degL = k + O(1). In particular, when k is large,
degL > 9g . Thus,
FLE) g M

cannot be trivial because otherwise we would have nontrivial L — M™".
Therefore, by shrinking S if necessary, we can assume the sheaves & in
(6.30) have generic fiber type (0, 0).

Next, we claim that the number of moduli of {& |w € #} is larger
than 4k +3(g — 1) — 4, — 9g . Indeed, by (6.30), Zmz* belongs to the
exact sequence

0—+M'—>Zulz+—>M—>O,

where M' = &@,.(-X" — M). In particular, degM' ® M~' > 2g since
9Ky -H| < |H-H|. Thus, %, = M &M’ . Therefore, for fixed 7,
the number of moduli of the set of all locally free sheaves V' that belong
to the exact sequence

Oq%——»V—»M—rO

is at most 9g. Since the number of moduli of S is at least 4k+3(g—1)
— A, , the number of moduli of {Z |w € &} is at least 4k + 3(g — 1) —
A, —9g . Finally, since *9';42* =MeeM and &, is of generic fiber type
(0,0), #, is e -stable for e, = 18g. Notice ¢,(F,) =k, =k —3g.

w
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Nowlet T C iRzl’ ‘! be the set such that z € T if and only if g e{Z)|

for some w € #}, where &' is the universal family of %, and let
1
0, ~ ~
8y y={E€R E ;- 2V andEp. Mo M},

Clearly, T C 8} ,, C ‘ﬁgl’e‘ and codim(7, ‘ﬁzl’e‘) < A4,+9g. By the
proof of Theorem 6.1 in case @ = 0, we can find a family of sheaves
E,C 9‘;}, u On Ax D, where D is an irreducible curve, having the fol-
lowing properties: There are 0, 1 € D such that E; € T and col(E, )p =1
for some p € A\X" . (It is easy to see that Theorem 6.1 still holds when
we replace 6, by 8, v C D‘tz’e .) Thus by reversing elementary trans-
formation,
0-F—E—M"'-0,

we obtain a family of sheaves F,, ¢ € D, that are e,-stable for a constant
e, independent of k such that F; € S and col(F, )p = 1. In particular,

if we let &, C 6:,"’2 c 9‘{,1("’2 be the maximal irreducible component
containing &, then &, contains a sheaf E with col(E ), =1, peA\X .
Thus by letting A large and assuming k > A, the estimate (6.31) will
allow us to find E € G C SR,‘C"’ that has the desired properties. This
completes the proof of Proposition 6.5.

7. Proof of the main theorem

In this section, we will prove Theorems 0.1, 0.2, and the main theorem
stated in the introduction. Let M be any irreducible component of zmj’(”

and let 9N? C M’ be the corresponding irreducible component. Our strat-
egy for proving that M contains non-locally-free stable sheaves is to show
that there are non-locally-free stable sheaves in ‘)’(g and that the generic

such sheaf on Z;, can be lifted to non-locally-free sheaves in ‘ﬁf =M. In
producing the desired deformation, we need a vanishing theorem similar
to [9]. Thus we will work on the scheme Z[» rather than on Z.

We assume that d > 4 and in the subsequent discussion, A4 is large
so that the previous requirements for the second Chern class 4 are all
satisfied. We first prove the following theorem.

Theorem 7.1. For any ample divisor H and any divisor I, there is a
constant A such that whenever d > A, any irreducible component M C
imf{’l (moduli of rank-2 H-semistable sheaves) contains at least one non-

locally-free u-stable sheaf. Further, if we let MY c M be the subset of
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u-stable sheaves E with col(E) =1, the MY isa nonempty, codimension-
1 subset of M.

Let M? C M’ be the irreducible component corresponding to M C
sm’;’( . Let 4° € ®?, and let n: 4 — MY be the quotient projection.
Then by Proposition 3.3, there is an open subset
(1.1) Ucu®nr ',
an integer m > 1 and a flat family of sheaves gUm on ng X om u"
having the following properties: & is a proper transform of the universal
quotient family on Z x. U such that it is flat over U™ and that the
restriction of &;m to A, x Uy' C Zg'm x. U™ satisfies the conclusion
of Proposition 3.3. Choose a general closed point E, € U(;” . Let (a, k)
be such that detEOlAm = IAm(aE_) and ¢, (E, 0, )=k. Here T =4, N
A,_,. Let 4 C A, be asin §6; that is, 4% =4A, _ . Then by
Corollary 5.11 and Theorem 5.12, we can assume the set ‘1’(U ) my

has dimension ¢, , where ‘¥: U — DJI is the rational map 1nduced
by the family & m . Further, by Proposmon 4.6, k is bounded from
above by d + 4,, where A, is a constant depending only on (X, H, I).
Therefore, there is a constant 4, such that codim ‘¥( U(;") <A4,.

Now let © = {E € My’ k|E|4z_ > Eg45-}, and let A; be the number

of moduli of the set of all rank-2 locally free sheaves on 4X" (it is finite).
Since E, is generic, we can assume

(7.2) codim(¥(U, ) N©) < A4, + 4,.

We remark that since 1, = = 2I' , by tensoring &, ", with —I'([a/2]Z7),
the new family satlsﬁes the condition of Theorem 6.1. Since when A
is large and d > A, (7.2) ensures that k is large. We now fix e =
—(H - H). By assuming d large, we can assume E, A, is e-stable (see
(6.31)). Then by Theorem 6.1, there is a smooth affine curve S, two
closed points s,,s, € S and a flat family of e-stable sheaves Eg; on
A,, x S having the following properties: ESl 4z~ 1s a constant family of
locally free sheaves, h*(A,,, &nd"(E,)(—4%7)) = 0 for all closed s € S,
Eso = EOIA,,. and col(Esl ), =1 for some p €A \X"

Let L be an ample line bundle on Zé”m such that the restriction of L to
Ztm , t # 0, is isomorphic to H. Let n > 0 such that for any closed u €
U™ (over te C™), W'(Z",& ®L®")=0 for i>0 and H(Z", &, ®
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L?") generates the sheaf & ® L>" on Z". Put W = @®" L®" and let
R, be the Grothendieck’s Quot-scheme of all quotient sheaves F of W
on sza teC™, with y.=y. Welet WQ‘,R%,,, be the set of all v € 77
such that the quotient sheaf .# (F is the universal quotient family of
M%,) is isoorphic to &, for some u € U™ with 7, (u) = =, (v) € C”
Since U™ is irreducible, 7~ is also so (notice n > 0).

Now let 9‘{%;,,0 C SR%,,, be the irreducible component that contains 7.
In the following, we shall show that 9{’52{,,0 contains Es, as a quotient sheaf
of W . Indeed, since the fiber of U™ over 0 € C™ is reduced, the fiber of
9‘&%;,,0 over 0 € C"™ is also so. Thus there is a smooth curve T — 9%%:,,0 flat
over C™ and a closed point v, € T over 0 € C™ such that the quotient
sheaf 9’ is isomorphic to E,, that the induced morphism T — C™ is
not branched near v, and that T is only contained in the irreducible
component ER’; L0 ER’; . - Let F,. be the pullback of the universal family
on Z "= ~(’;"m x-m T . Since T is not branched at v, Z}" is smooth near
Z C Z . Further since F = E, has a length-2 locally free resolution,
w1thout loss of generality, we can assume F, has a length-2 locally free
resolution. Let A, be the fiber of Z over v, (i.e., Zvo) and let A, be

the subscheme of Z}" supported on A, defined by the ideal sheaf

(7.3) Fa, = O ( Zh,A,> C Ty,

=0

where h, =1, h,  =4,and h > 1 will be specified shortly.

Now we construct a sheaf M' on A, xS as follows: We denote A?" =
A, \Z”. We let the restriction of M"' to (A,\A2) x S be the pullback
of F,. TIANA) via p,: (AI\A?n) xS — (AI\A?n) (a constant family along
S), and let the restriction of M ' to A, x S be the family Eg. Since
the restrictions of Eg and 1’1( TI(A\AL) ) to 4" x S are isomorphic
constant families on 4X” (note that Eg5- is locally free), they can be
glued together along 4X~ x S to form a sheaf M ! on A, xS . Intuitively,
M" is obtained by replacing the part of pl( TIA, ) on A xS by Eg.
One special feature of M" is that the restriction of M' and F, to A x
{0} =A, xS8Sn Z}” x {0} are isomorphic. Clearly, M ! admits a length-2
locally free resolution and det M b= p; det Fr, A, Let detF, = I be
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the line bundle on Z}" Let A, = A, + (k= 1)A;. We say a sheaf
M**! on Ay, xS is a preferred deformation of M* (on A, x.5) if (1)
(M k“)l AxS = M* , (2) the length-two locally free solution of M’ * can be

extended to a locally free resolution of M kel ,(3) detM el pf(ITI Ak+l) .

We have the following deformation lemma:
Lemma 7.2. Let M° = (M l)I A Suppose

Exty s(M", M°(=A, )’ =o.

Then there is a sequence of sheaves {Mk}, M* on A, x S, such that
M**Y is a preferred deformation of M* and the restriction of M*™' 1o
Ay x {0} is isomorphic to Fy, Ay

Proof If M Uis locally free, the existence of a preferred deformation
was proved in [9]. In general, we use the length-2 locally free resolution as
we did in proving Lemma 6.8. We show that when det M k— p;‘ITI A the

obstruction class w(M k I.) of the existence of the preferred deformation
M**! lies in the S-module Extiox (M ' M O(—A, x S5))° . By assumption,
E’“f\oxs(MO , Mo(—A1 x S))0 = {0} . So we know that there always exist
k1 of M* , and by [15], the set of all such exten-

sions is a homogeneous space isomorphic to Extll\ox s(M 0 , M° (=A% S))0 .
Since

1 0 0 0 1 0 0 0
Exty ,s(M", M (-A; x 8))" = Exty o, (M}s 101> Mia x0y (= A1)

preferred extensions M

is surjective (see the proof of Lemma 6.9), there is a
1 0 ,,0 0
g eExtonS(M , M (=A, xS))

so that g(M'_‘“)I A,y x{0} is isomorphic to Fr, Ay Thus we have con-
structed the desired extension.

One local property of M**! that follows from the existence of the
extension of length-2 locally free resolution is the following: Let ¢ be
the uniformizing parameter of 7. Then the homomorphism induced by

multiplying ¢,
(7.4) 0o M XM M o0
is exact. Indeed, let

(7.5) 0-0,%0,-M -0
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be a locally free resolution on A, x §. Then near each closed point p €

A, , there are locally free sheaves él , éo on A, , xS so that we have
an exact sequence

O—)éliéo—)Mk+l—>O
whose restriction to A, x § is (7.5). Thus we have a commutative exact
diagram

I
Q,

Xt
0 Q, ’ - Q1|ons > 0
4 ¢ Piagxs
0 QQ —— Q0 — Qojagxs — 0
0 MK Xt ke M° 0
0 0 0

where the last row is exact because Fj. is flat over 7. q.e.d.

Next, we choose A, = X hA, so that Extf\oxs(Mo, M°(-A, x 8))°
vanishes automatically. By Proposition 4.1, (Mo)lij s 1 £j<m—
1, has generic fiber type either (0,0), (0,1), or (1,1). Let A, =
1, h, , =4, and let hj_1 be such that hj_l = 2hj - th —(a+b)
when (M 0)l " has generic fiber type (a, b). Notice that {h;} is strictly
decreasing.

Lemma 7.3. Assume hZ(Am,é’ndo(M&mx{s}
closed s € S. Then

ExtioxS(M", M°(-A, x 5))’ = 0.

)(—4X7)) = 0 for any

Proof. Let E be the sheaf (MO)| Agx{s} with s € S closed. Since S is
affine, it suffices to show that Extio(E , E(-A, ))0 =0 for all s. By Serre
duality,

(1.6) Extio(E, E(-A))° = Ext,

NECA) Eew, ),
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where @ Ay is the canonical sheaf of A;. (7.6) is
H(A,, £nd’(E) ® @, (A))-

Using the adjunction formula we obtain @ A = ny K X(Z;."zl JA,), where
Ty: Z(;” — X is the projection. Therefore, Wy, has fiber type 0 on Aj,
1<j<m-1.Since K, = 7tf‘,KX(—2Am_l)IA , by assumption we have

H'@A,,, &nd’(E) e w A (A) = H'@M,,, gndO(E)(KAm +4%7)) = {0}.

Therefore

m—1
H°( U4, &nd"(E)e w, (A, - Am)) — H'(Ay, End"(E) ® w, (A,)
j=0
is surjective. For 1 < j < m — 1, since a)AO(Al - Aj+1)|A, has fiber type
—1 (resp. —2; resp. —3) when E[A. has generic fiber type (0, 0) (resp.
(0, 1); resp. (1,1)), hO(Aj, &nd®(E) ® (A —4;) = 0. Thus
repeating the previous argument yields that

H(A,y, £nd°(E) ® A (A= 4)) - H'(Ay, &nd"(E) @ 0, (A)))

Ao

is surjective. The lemma will be established if we can show that
H'(Ay, &nd"(E) @ @, (A, - A,)
= H(X, &nd*(E)(K, — (3 - 6)H)) = {0},

where 6 =0 (resp. d = 1; resp. d = 2) when E is of type I (resp. type
IL; resp. type III). Now let p € H (X, £nd’(E)(K, — (3 - 6)H)). Then
detp € HO(X, 2K, —2(3 - 0)H) = {0} must be trivial. Let J be the
kernel of p. Then E| x belongs to the exact sequence

(1.7) 0 J—Ey—J  ©laH)®.7 —0.

Since tr(p) =0, p isinduced from J"l@)l(aH)cxufz — J(Ky—(3-0)H)
and therefore

2J-H)>(B+a-6)(H-H)— (H-Ky)+ (H-T).

Finally recall that E is a proper transform of an H/(¢)-semistable sheaf on
Z,, and by (4.12) the quotient sheaf J e I(aH)® 7, of E y satisfies

—~(J-H)+(I-H)+a(H-H)a> (1/2)(1 —&)(H - K,) + (¢/2)(I - H).
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Combining these two inequalities together, we obtain
(7.8)
2a(H-H)+ (2-¢)(I-H) - (1 -¢)(H-K,)
>(3-d6+a)H-H)—-(H-Ky)+(I-H),
which holds only when & + a > 3. Therefore, we obtain a contradiction
because by §4, det EI x = I(aH) with 0 < a <2-4, and hence the lemma
is established. q.e.d.

We continue the proof of Theorem 7.1. By Lemmas 7.2 and 7.3, we can
successively find preferred extensions {M*} k> such that (M k+')l AgxS =
M* and that (M k)I A x{0} = FT| A Further, we remark that once we have
chosen the family Eg, we can take n large so that with W = @N L?’(_") R
there is a surjective homomorphism

* 1
(7.9) & P Wi xs ™M

(p,: ZJ' xS — Z7) that coincides with the quotient sheaf W — F,. when

restricted to A, x {0} . We can also assume hl(z(;" , Zom(L,, E)(—A,))
=0 for all closed s € S. Then g, extends to

* k
(7.10) 8- D, WlAka—>M ,

that restricts to WIAk - Fp, A, along A, x {0}.

Let £ be the restriction of M* to ZZZ xS CZ5 xS, where Z/'!': =
Zg',.. Xem Ay, and A, = SpecC[t]/ (tk) — T is the obvious immersion
with closed point v, in its image. We claim that £* is flat over A, xS.
Indeed, since both 7 and S are smooth, and & - M = M|1A,>< s 1s flat

over S, by local criterion of flatness all we have to show is that & k Xt gkt
is injective. But that follows immediately from (7.4). So & k s flat over
A, x S. By the universality of the quotient scheme m’éj , & * induces a
morphism

(7.11) 9r: A xS — RE,,.
By definition, (okHlAka =@ -

Since ‘,R%,,, is projective over C™, there is an irreducible component
'9%,,, of M%, so that ¢, factor through ’m)'(z”'" for all k > 1. In par-
ticular, Esl belongs to ’m’ém as a quotient sheaf. On the other hand,

since ¢, (4, x {0}) is contained in the image of T — i)ﬁti‘zv;"o , the image
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of T is contained in 'm%,,, . But we have assumed that S‘ti‘zv;no is the only
irreducible component of RZ. that contains 7. So '9%"2,,, = 9‘&%,,, . In
particular, S C ERX % and then E, € iR" 0

Now we are ready to prove Theorem 7.1. By Lemma 6.7, there is a
classical neighborhood ¥, C m’é;,, of s, and a classical neighborhood
Vv, C Zé"m of pea,, VZHZ(;” C A,,, such that if we let ¥ be the
universal quotient family of m’é’m" , then the set

9\(1)(1/1 V) ={ue Vllcol(yu)q =1 for some g € Ztman, t lies under u}

is a nonempty codimension 1 subset of V| containing s, . Because of our
construction, the curve S C SR%;,,O is not contained in i)‘t“)(V1 , V,). Thus

i)‘t(l)(Vl , V,), is not contained in the fiber of SR" "0 over 0 € C™. In other

words, R (V 4 )nm’( .0 # @& for general te C™ . Therefore, we have
proved the ﬁrst part of the followmg proposition.

Proposition 7.4. There is a curve R C mgm" containing s, and flat over
C™ such that the following hold:

(1) For any closed t € R not lying over 0 € C™, there is a closed point
q € X such that for the pullback sheaf F on Zé"m xcm R, col(F) =1

(2) For generic t € R, ¥, is u-stable and further, Extz(.Z , 9?)0 =0.

Proof. We only need to prove (2). Let R be any curve C 9%’»‘24,,0 con-
taining s, , which is flat over C™. Let R (over C™) be the normalization
of R. Let Zg be the normalization of Zg'm X -m R, where 7 = m-p and
p is the branched order of R over C™ at 0. By Proposition 3.3, there is
a good modification F (on Z%') of the pullback of & via Zg — Zp .
Further, since 9; is locally free along X, 95' a, = =F, A where X, € R
lies over s, .

Now to prove (2), it suffices to show that F, is u-stable for generic x €
R. Assume F, are not u-stable forall x € R. Then by the semicontinuity

theorem, there is a line bundle . on Z—-'-W a nontrivial homomorphism
F — % such that the degree of <, Z ,CZZ,,, , is no bigger than

%(I -H) . Without loss of generality, we can assume F — _9” is surjective

at the generic points of all irreducible components A C Z . Let &
be the restriction of #’ to A,. Since F has generic ﬁber type (0,0),
(0, 1), (1, 1) along A;, 1 <i<m-1, wemusthave B, =Z-y" H(8)|A. >
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0, y: Zz — Z,. On the other hand, from (4.12) it follows that
By = (1/2)(1 —&)(H - Ky) + (¢/2)(1 - H).
Finally, by definition, Fxol A 1s e-stable with e = —(H - H) . Therefore,
B 2 3(H - H) + 3¢,(F, |y ) - H(e)
>LH-H)+i(1-¢e)(I-H)—¢eH-H).
So, we have

(7.12) > B> %(I-H),
0

which certainly contradicts the assumption that £, - H < %(I - H) for
generic x € R. So we have proved that F, are u-stable for general x €
R. Finally, Ext’(F,, FX)0 = {0} for general x because H*(& ndO(Fxo ®
n}K ) = 0 which follows from the proof of Lemma 7.3 (cf. [9]).

Proof of Theorem 7.1. Fix a general closed 1 € C™. Let Ut0 C 9‘1%;,,9,
be the open subset of all H-stable quotient sheaves. Since m)’(z”""o,; is irre-

ducible, Ut0 is also so. Thus all quotient sheaves E € Ut0 are represented
by closed points in M. In particular, Proposition 7.4 tells us that there is
a stable sheaf E € M with Ext? (E,E )0 = 0 such that for some closed
pEX, col(E) b= 1. Now a straightforward deformation argument shows
that there is an E € M such that Ext*(E, E)’ =0 and col(E) = 1.
Proposition 7.5. There is a constant A depending on (X, H,I) such

that whenever d > A, the number of irreducible components of Em/d‘,’l is
independent of d .

Proof. Let A, be the set of irreducible components of SJI‘;(’I . Since
zm;” is projective, A, is finite. Let A be the integer provided by Theo-
rem 7.1. Then there are maps
(7.13) Ny —= Ay d>A,
defined as follows: For any M € A, pick a u-stable sheaf E € M so
that Ext’(E, E)0 = 0. Since d > A4, such E always exists. Let x € X
be a general closed point and let F be a torsion free sheaf belonging to
the exact sequence
(7.14) 0-F—-ELC -0,

where C_ is the skyscraper sheaf supported at x. Then F is still u-
stable and Extz(F , F )0 = 0. Thus F belongs to a unique irreducible
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component M’ € A,,, . We define ¢,(M) =M . It is easy to see that ¢,
are independent of the choice of E,  and x. Further, by Theorem 7.1,
every irreducible component M C im‘;( , d > A, contains u-stable sheaf
F such that col(E) =1 and Ext’ (E, E )0 = 0; that is, F belongs to the
exact sequence (7.14) with E = F'Y. Thus, ¢,,d > A, are surjective.
Therefore, {#A,},., is a decreasing sequence of positive integers. In
particular, for some large A', #A, is independent of d aslongas d > 4.
This proves Proposition 7.5.

Proposition 7.6 (Taubes). With the notation as in Proposition 7.4, and
let ¢g be the map

B .
Pq =Payp-1°---9341°9: Ay - Ad+ﬁ'

Then for any d > A, thereis a large B, such that (og" (A,) = single point.

Proof. Let M,, M, € A;, d > A, be any two irreducible components.
Choose u-stable sheaves E; € M; so that Extz(Ei, E,.)0 =0. Let m be
large enough so that both E; belong to the exact sequence

0-H*™ L E - H"®I®F -0

with z , z, zero subschemes of X . Without loss of generality, we can
assume supp(z,) Nsupp(z,) = J. Let F, be subsheaves of E; belonging
to the following diagrams:

0 —— H®™ . E, ,» H®"®I®F, —— 0
I u u
0 — H®™ L F, H"®1®.%, , — 0.
1 2

Clearly E,/F, = &, and E,/F, =&, . Thus {F;} € ¢;({M,}), where
B =1(z,) =l(z). On the other hand, this exact sequence tells us that both
F, and F, correspond to closed points in the affine space Extl(H®'" ®
I ®J’zluzz , H®™) . Since being stable is an open condition, F, and F,
are in the same irreducible component of A, 5 Therefore, (pg ({M,}) =
(og ({M,}). So for sufficiently large integer S, q)g" (A,) consists of one
point only.

Proof of the main theorem. By Proposition 7.4, there is a constant A
so that for d > A4, #A, = k is independent of d. Further, the map

¢, and subsequently {pg are all isomorphisms. On the other hand, for
any d > A, there is a large B, such that ¢5" (A,) is a single point set.
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Therefore, k¥ has to be one; that is, smj” will become irreducible when
the second Chern class is sufficiently large.
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