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0. Introduction

In this paper we continue the study of elliptic operators and ΛMiomology,
pursued by the first two authors in [5], [6], [7]. We particularly focus on
the concept of relative cycles, their production from elliptic differential
operators on manifolds with boundary, the behavior of such relative cy-
cles under the boundary map in the exact sequence for ΛMiomology, and
implications of such calculations to various aspects of A'-homology and
index theory.

For orientation, we recall how (ordinary) cycles for KQ(M) and K\(M),
when M is a compact manifold (without boundary), are determined, re-
spectively, by an elliptic pseudodifferential operator B on M or by an
elliptic selfadjoint pseudodifferential operator A on M. Say B is of order
m\ we write B e OPSm(M), using the notation for pseudodifferential op-
erators given in [28], [40]. Typically one has m > 0. If m > 0, replace
B by Bo = B(ί + B*B)~[/2 e OPS°(M), so we can suppose m = 0. We
suppose B maps sections of a vector bundle £Ό to sections of E\, so (if
m = 0) B: L2(M,E0) -• L2(M,EX). The cycle determined by B is the
pair {σ,B) where, for / e C(M), σ(f) = σo(/) Θ σ\(f) is the operation
of multiplication of sections of EQ Θ E\ by the scalar function / (so σ7 is
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a representation of C(M) on L2(M,Ej)), and B almost intertwines these
representations, in the sense that

(0.1) σι(f)B-Bσo(f)eJr

for each / e C(M), where 3? denotes the space of compact operators
(from L2(M, E$) to L2(M, E\)). These properties were abstracted to define
general cycles for Ko(M) in Atiyah [1]. There remained the problem of
putting an appropriate equivalence relation on the cycles to produce the
correct group, which was solved independently in the works of Kasparov
[29] and of Brown, Douglas, and Fillmore [11],

The way an elliptic self adjoint pseudodifferential operator A acting on
sections of a vector bundle E produces a cycle for K\ (M) is the following.
Let P be the orthogonal projection on L2(M,E) associated with the posi-
tive spectrum of A. Then P is a pseudodifferential operator; P e OPS°(M).
We define a homomorphism

(0.2) σ:C(M)^&(H),

where H is the range of P and £{H) is the Calkin algebra &(H)/&(H),
by the recipe

(0.3) σ(f) = π(PMf),

where Mf is the multiplication operator, MfU = fu, and π is the natural
quotient map of S?(H) onto &{H). Such a homomorphism defines a
cycle for K\(M), denoted Ext(M) in [11], [24], where the appropriately
generalized notion of cycle is set down, as well as the equivalence relation
giving the group K\(M).

The groups Kj(M), j = 0 or 1, are special cases of Kj(Qί) for a C*-
algebra with unit 21, when 21 = C(M). Cycles for K°($V) in general are
special cases of cycles for K°(% %jJ) « KK(^, C), described in § 1, when
y - 21, and cycles for ̂ (21) are special cases of cycles for KKι{u^9C)9

with ̂  = 21, described at the end of §2. In this paper we will be concerned
exclusively with commutative C*-algebras 21 = C(X) for X a compact
metric space, with particular emphasis on the case X = M, a compact
manifold with boundary.

Relative ΛMiomology groups, the principal objects of study in this paper,
play an important role in the study of ΛMiomology, via their appearance
in ΛMiomology exact sequences, such as the segment

(0.4) K0(dM) -> K0(M) -> K0(M, dM) Λ κx {dM) -> Kx (M).
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The boundary map on Ko(M,dM) was defined in [8] and shown to be
consistent with the boundary map of Kasparov [30] in the exact sequence

(/, c) -> κκ(% c) -+ κκ(<y, c)
Λ KKι (%/S, C)-^KKι (% C)

in the case 21 = C(M) and S - Co(Af), the set of continuous functions
vanishing on dM. As a consequence, as shown in [8], there follows the
isomorphism

(0.6) K0(M, dM) « KK(C0(M), C).

We will build upon these results in this paper, obtaining numerous conse-
quences by studying relative cycles associated to first order elliptic differ-
ential operators on a compact manifold with boundary.

In §1, after recalling the definitions of cycles for Ko{M,dM), and more
generally for A:°(a,2l/Jr), and for the Kasparov groups KK(J*",C), we
present a general result on compactness of commutators which enables us
to establish that various constructions involving (closed extensions of) first
order elliptic differential operators do indeed produce relative cycles. This
result, while fairly simple, plays a crucial role in the following sections.

§§2 and 3 contain the results associating an element of KK(CQ(M),C)

and of K0(M,dM), respectively, to a first order elliptic differential opera-
tor ΰ o n a manifold M. In §2, M can be any Riemannian manifold, and
one can take any closed extension of D. A localization principle, exploiting
finite propagation speed for solutions to symmetric hyperbolic equations,
is used to establish that the element of KK(CQ(M), C) SO obtained is inde-
pendent of the choice of such an extension. In §3, M is required to be a
compact manifold with boundary, and some restrictions are placed on the
class of closed extensions of D considered. Nevertheless, a wide variety
of extensions are treated, including minimal and maximal extensions, and
extensions defined by coercive local boundary conditions, when they exist.
One important operator treated here is D = d+Σ), satisfying the zero-order
part of the d-Neumann condition, in case M is a strongly pseudoconvex
complex manifold, or more generally a weakly pseudoconvex domain for
which there are appropriate subelliptic estimates. Using the results of §2,
together with the isomorphism (0.6), we are able to draw the nontrivial
conclusion that different boundary conditions on an elliptic differential
operator D, within the class of those considered in §3, lead to the same
element of K0(M, dM). The major results of the succeeding sections will
depend heavily on this fact.
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§4 is devoted to the study of the image under the boundary map d:
Ko(M, dM) —y K\ {dM) of the relative classes defined by first order elliptic
differential operators. The map on the level of cycles depends explicitly on
the choice of boundary condition on D. Utilizing the independence of the
boundary condition of the class [D], we thereby obtain useful identities
amongst elements of Kx{dM). When D is given its maximal extension,
d[D] e K\(dM) is seen to be the extension determined by the Calderon
projector associated to D. In case D is a Dirac operator on M (provided M
has a spinc-structure), d[D] coincides with the class in K\ {dM) determined
by the Dirac operator on dM; there is a generalization when D is an
operator of "Dirac type". Study of other extensions of D leads to the
identification of other cycles which are equivalent to this one in Kx{dM).

One of the most important applications of this is the following. Let M
be a compact complex manifold with boundary, and suppose M is strongly
pseudoconvex. Then the operator D = d + Σ): ΛO e v e n(M) -+ Λ 0 o d d (M) can
be regarded as giving an element of Ko{M,dM) in two ways, either by
taking the maximal extension or by assigning the 0-order part of the d-
Neumann boundary condition. The identity we obtain in this case is

(0.7) [DdM] = [τM] in K{{dM),

where ΏQM is the Dirac operator on dM with its natural spinc-structure,
and [TM] is the Toeplitz extension of dM, associated with the "Bergmann
projector" onto the space of L2 holomorphic functions on M. We note
that, given (0.7), Boutet de MonveΓs index theorem for Toeplitz operators
follows directly, as an application of the intersection product Kι{dM) x
K\(dM) —• Ko(dM), so (0.7) can be viewed as a refinement of this index
theorem. Furthermore, (0.7) holds whenever M is a weakly pseudoconvex
domain satisfying the condition that the d -Neumann problem is subellip-
tic with loss of less than two derivatives on (0,/?)-forms for p Φ 0. Thus
Boutet de MonveΓs index theorem is extended to this class of weakly pseu-
doconvex domain.

The ball bundle B*X of a compact manifold can be given the structure
of a strongly pseudoconvex domain. In that case, a construction of Boutet
de Monvel [13], [14] gives easily

(0.8) &x = [τB x] inKxiSTX),

where S*X is the cosphere bundle of X and &x is the "pseudodifferential
operator extension" of S*X, defined by τ: C(S*X) -• @(L2(X)) where,
for/? G C°°{S*X), τ{p) is an operator P e OPS°(X) with principal symbol
equal to p, which is well defined mod 3ί". Comparing (0.7) and (0.8) then
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gives the important identity

(0.9) &x = [Ds*χ],

which will yield further consequences in §6.
Applying results of §4 in conjunction with the Bott map, in §5 we obtain

results on the boundary map d: KKι(Co(M), C) —• K0(dM). Again, when
D is a symmetric operator on M of Dirac type, we obtain

(0.10) d[D] = [D*] in K0(dλf),

for an associated operator Z># on dM of Dirac type. From the exactness
of the sequence

(0.11) KKι(C0(M)X) Λ K0(dM) -> K0(M)

it follows that the image of [Z)#] in K0(M) is zero; following this with the
map M —• pt., giving Ko(M) —• Z, we obtain the consequence

(0.12) IndexZ># = 0.

Thus the identity (0.10) is a refinement, in ΛMiomology, of the cobordism
invariance of the index of elliptic operators, which is the main content of
Chapter XVII of the notes [35] on the Atiyah-Singer index theorem.

In §6 we make further contacts with index theory. To an elliptic operator
B e OPS°(Λf) we associate a twisted Dirac operator DE on M, the double
of the ball bundle in Γ*M, having the property that

(0.13) π.([DE]) = [B] inKo(M).

In particular the operators B and DE have the same index. The proof of
(0.13) given in §6 makes use of the identity (0.9), together with the Bott
map.

The boundary conditions studied in §3 and exploited in the later sections
are all local boundary conditions. Nonlocal boundary conditions give rise
to operators exhibiting different behavior. In Appendix A we make some
brief comments on nonlocal boundary conditions of Atiyah-Patodi-Singer
type.

We remark that many of the results on compactness of commutators
have considerably sharper versions. Typically commutators shown here to
be compact actually map L2{M) to the Sobolev space Hι(M) (of course
weaker results hold in cases associated with the d -Neumann boundary
condition). Proofs of these Sobolev space results are somewhat longer
than the arguments given here. Such results are potentially of use in the
production of /?-summable Fredholm modules and may play a role in cyclic
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cohomology, but these sharper results are not needed for the applications
to ΛMiomology given here, so we have restricted attention to the cruder
compactness results.

To close this introduction, we mention a notational convention we use
for a pair of function spaces. Let M be a noncompact manifold. CQ°(M)

denotes the space of all infinitely smooth functions on M with compact
support, while Co(M) denotes the Banach space of continuous functions
on M which tend to 0 at infinity.

1. A compactness principle

We begin this section by recalling the definitions of cycles for Kasparov
groups and for relative ΛΓ-homology groups, respectively. In each case a
major ingredient is a compactness property of a commutator. We then
present the main result of this section, a general principle for producing
candidates for cycles for which such a compactness property holds.

In the following, S is a separable C* -algebra, not necessarily with unit.
We define a cycle giving an element of KK(J^', C), confining attention to
the case where J^ has no grading. For relative cycles, we assume 21 is
a separable C*-algebra with unit and J a closed two-sided *-ideal; then
we define a cycle for an element of K°(21,21/^). Now K°(Qί9QL/Jr) is
contravariant in the pair (21,^); thus it is a A^-cohomology group with
respect to the algebras. The "cycles" mentioned above consequently might
thus be called "cocycles". In the case 21 = C(X) for X a compact metric
space, J" = Cγ(X) = {/ € C(X): f = 0 on Y} for a closed subset Y of
X, the groups

K0(X, Y) = K°(C(X), C(X)/CY(X))

are covariant in (X, Y), i.e., ΛMiomology groups in these spaces. Since this
includes the main cases of interest for this paper, we use the term "cycles".

A cycle for an element of KK(J', C) consists of a pair (σ,F), where σ
is a *-representation of J? on a sum of Hubert space HoθHι which leaves
each Hj invariant; σ = σo®σ\9 and F e &(Ho®H\) is a bounded operator
of the form

(1.1)
_ / 0 Γ # \
" \T 0 )'

where T: Ho —> H\ and Γ#: H\ -+ Ho are bounded linear maps. The
following three conditions are required to hold for all a e <J\

(1.2)
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where 3£ is the space of compact operators,

(1.3) σ(a)(F2-l)e3f,

(1.4) σ(a)(F-F*)e3T.

We note that conditions equivalent to (1.2)—(1.4) are

(1.5) σ{(a)T- Tσo(a) e J T , σo(α)Γ# - T*σλ{a)

(1.6) σo(a)(T*T- 1) e JΓ, σ{(a)(TT* - 1) e

(1.7) σo(a)(T*- T) e JΓ, (Γ# -

for all α € J". In typical examples one takes Γ# = Γ* (i.e., F = F*), and
indeed it is known that any cycle is equivalent to one for which F = F*>
but there are uses for allowing the weaker hypothesis (1.4). In any case we
note that, by (1.7), Γ# can be replaced by Γ* in (1.5)—(1.6). Furthermore,
the second part of hypothesis (1.5) is redundant.

An element of KK(J^, C) consists of an equivalence class of cycles of
the form above. We refer to [10] for a full discussion of such equivalence
relations, but mention one here which we will use in a crucial way. Namely,
if σ = σo Θ o\ is as above and Fo, F\ are two maps of the form (1.1), then
(σ,Fo) ~ {σ,F\) provided there is a norm continuous map t v-> Ft for
t e [0,1], such that, for each t, the conditions (1.2)—(1.4) hold, with F
replaced by Ft. This is the "operator homotopy" equivalence relation. In
particular, if (σ,F0) and (σ,F{) define cycles for KK(*f9C) and

(1.8)

for all a e J*', since σ(a) commutes with Fo and F\ mod <%', it follows
that

(1.9) Ft = tF{ + (I - t)F0

produces an operator homotopy.
We next describe a cycle for an element of the relative group K° {% KjJ?).

This consists of a pair (σ, T), where σ = σ o θσi is a unital "-representation
of 21 on Ho θ H\, GJ acting on HJy and
(1.10)

T: Ho -• Hu bounded, with closed range, partial isometry mod 3£.

We require the following two additional conditions:

(1.11) cx[ά)T - Tσo(a)e^ for all ae 21,

(1.12) σj(a)Pje^ for all aeJ",
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where Po is the orthogonal projection of Ho onto ker T and Pi the orthogo-
nal projection of H{ onto coker Γ. Note that (1.11) holds for all a e 21, not
just for the elements of J?. Equivalence relations among cycles to define a
class in K°(2L99L/*f) are discussed in [8]. It can be shown that each cycle
(σ, T) is equivalent to one for which T is a partial isometry. In such a
case, one has

(1.13) / - T*T = Po, I-TT* = Λ

The examples of cycles we construct in this paper will all directly satisfy
the property that T is equal to its partial isometry part modulo a compact
operator, so that (1.13) holds m o d ^ . In that case, note that (1.11)
implies

(1.14) [aj(a),Pj]e^ for all ae 21.

Clearly, if (σ, T) defines a cycle for an element of K°(%^i/^), such
that (1.13) holds ( m o d ^ ) , then the hypotheses (1.5)—(1.6) hold, with
Γ# = T*. In other words, with F of the form (1.1), Γ* = Γ*, (σ, F) defines
a cycle for the Kasparov group KK(*f, C). It is shown in [8] that, if 21 is a
separable C*-algebra with unit which is nuclear, in particular one of type
I, most particularly one which is commutative, then this correspondence
of cycles gives rise to a group isomorphism

(1.15) A'°(α,a/J r )«Λ:A'(J Γ ,c).

This isomorphism will play an important role in the present paper; it forms
a double-edged tool. Advantages of considering KK(J^, C) arise from the
rich set of equivalence relations which arise naturally. In particular the
operator homotopy relation mentioned above provides a very useful tool
for showing that various cycles are equivalent in KK(uf,C). Via the iso-
morphism (1.15) we obtain identities in K°(% 21/J^ which are not trivial.
Advantages of considering ΛΓ°(2l,2ί/Jr) arise for an opposite reason, from
the extra structure provided by (1.11) (for a e 21) as opposed to the weaker
condition (1.5) (for a e Jr). One particularly important manifestation of
this is the computation of the boundary map d: K°(% 21/^) -• Kι (21/^);
under this map, identities in ΛΓ°(2l,2l/JΓ) alluded to above will give very
important identities in A^1(2t/Jr), as we will see in §§4 and 5.

We now come to the main point of this section, the construction of a
class of operators T for which the compactness condition (1.11) is satisfied.
The operator T will be manufactured from an unbounded, closed, densely
defined operator A from //0 to H\, as

(1.16) T = A(A*A+l)~1'2.
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We prepare to give the hypotheses relating A to the *-representation σ =
σo Θ o\ of 21. These hypotheses are motivated by the example of A as
a first order elliptic differential operator on some compact manifold M
with boundary, with 21 = C(M). The hypotheses are related to those
for an "unbounded Kasparov module" in Baaj and Julg [4], but differ in
an important way, particularly in (1.19) below. It will be convenient to
consider the closed, densely defined operator on HQΘH\,

(1.17)
O)

which is selfadjoint. Let σ, be *-representations of a C*-algebra 21 on Hj,
giving σ = σo Θ σ\ a *-representation of 21 on //0 θ H\. We make the
following hypotheses, where 2lo is some dense *-subalgebra of 21:

(1.18) for α e 2l0, σ{α) preserves 2{B) and [σ(α),B] extends to
a bounded operator on Ho θ H\,

(1.19) (J92 -h I ) " 1 is compact on either Ho or H{.

Note that (1.19) says that either (A*A + I ) " 1 is compact on Ho or
(AA* + I ) " 1 is compact on H\9 since

This phenomenon of compactness of the resolvent on one factor but not
necessarily on the other is an important twist in our hypotheses; such a
situation will prevail in the most subtle examples of cycles produced in
subsequent sections.

The following is the main result of this section.
Proposition 1.1. Granted the hypotheses (1.18)-( 1.19), then

(1.21) [σ(a),B(B2 + I)" 1/ 2] is compact on Ho θ Hx

for a e 21. Furthermore, B has closed range, i.e., A and A* both have closed
range. The range ofB has finite codimension in Hj if{B2 + 1 ) " 1 is compact
on Hj.

Note that, if T is given by (1.16), then

(1.22) B(B2 + I)-1'2 =

so (1.11) follows from (1.21). Since the range of T is equal to the range of
A, we also have (1.10), so once we prove Proposition 1.1 we can conclude
that (σ, T) defines a relative cycle for K0(QL,Qί/Jr) provided (1.12) can be
verified.
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Our technique for analyzing the commutator (1.21) uses an integral
representation for (B2 +1)"1/2 in terms of the resolvent of B2, in a fashion
similar to arguments of Cordes and Herman [22], Taylor [38], and Baaj
and Julg [4]. The representation is

(1.23) ( 5 2

+ l ) - ' / 2 = / J , λ , ι l f

In the course of the proof, we will suppose for definiteness that H\ is the
factor on which (B2 + I ) " 1 is given to be compact. Note that it suffices to
prove the compactness in (1.21) for a a e 2lo.

To begin, since σ(a) preserves 3f(B) for a e 2lo, we can write
(1.24)

[σ{a),B(B2 + I)" 1/ 2] = [σ(a),B](B2 + 1)" 1 / 2 + B[σ{a), (B2 + I)" 1 / 2 ] .

The first term on the right is clearly compact on H\. Before looking at
the last term on the right, we obtain the following result which gives some
information on the behavior of the first term on Ho.

Lemma 1.2. (B2 + 1)~1/2 is compact on the orthogonal complement of
ker5 (in Ho).

Proof. Our assertion is the same as the claim that (A*A + I ) " 1 / 2 is
compact on the orthogonal complement of ker^4 in Ho. What is behind
this is the identity

(1.25) Ag(A*A) = g(AA*)A on 3(A\

for any bounded continuous function g on R+, which follows from the
identity

(1.26) Bg(B2) = g(B2)B on 3f(B)

in light of (1.20). Since A A* by hypothesis has compact resolvent, H\ has
an orthonormal basis of eigenvectors for AA*, and we have

A:

A*: Eigen(A, AA*) -> Eigen(A, A*A).

If λ φ 0, these maps are inverses of each other, up to a factor λ, so are
isomorphisms.

To prove the lemma, we first show that

(1.28) / G C§°(R), /(0) = 0 => f(A*A) is compact on Ho.

Indeed, write f(s) in the form

f(s) = sfι(s)f2{s)Ms)9 fj e C0°°(R).
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Then
f(A*A) = A^

= A*(fιf2)(AA*)AMA*A)

= A*MAA*)f2(AA*)Af3(A*A),

applying (1.25) with g = fxf2. Here, Aβ(A*A) is bounded from Ho to
//i, /2(̂ 4̂ 4*) is compact on H\9 and A*fχ(AA*) is bounded from //i to
Ho, so (1.28) is established. It follows that the spectrum of A* A, which is
contained in [0, oo), is discrete in any compact interval in (0, oo), of finite
multiplicity. It remains to see that this spectrum cannot accumulate to 0.
But the argument around (1.27) now shows that

(1.29) {0} U spec A*A = {0} U spec AA*,

and since AA* has compact resolvent, its spectrum does not accumulate
to 0, so Lemma 1.2 is proved.

To proceed with the proof of Proposition 1.1, we next show that the
last term in (1.24) is compact on H\ and on the orthogonal complement
of ker5 in JSQ. We use the integral representation (1.23), together with the
following formula for [σ(a), (B2 + 1 + s2)'1]. With t = y/\ +s2, we write

(1.30) (B2 + t2)'1 = (B + it)-\B - it)~\

and hence

( 1 3 1 ) [ σ { a l {β2 + t2

+ (B + itΓι[σ(a),(B-itΓxl

Since, for a e 2lo, σ(a) is assumed to preserve 3f(B)9 we can write

(1.32) [σ(a)9 (B + it)~l] = -(B + I O " 1 ^ ^ ) ^ ] ^ + it)'\

and hence (1.31) gives

f 1 33)
-(B2 + t2Γ{[σ(a),B](B-itΓι.

Consequently the last term in (1.24) is equal to

s2)-ι[σ(a)9B](B2 + 1 + s2)~ι ds
π Jo

(1.34) °°

= Ά + T2.

In view of the operator norm estimates

(1.35) \\B(B±it)-ι\\<l, \\(B±iή-ι\\<l/t
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for t > 0, it follows that both integrals in (1.34) are convergent in the
operator norm. Thus T\ and T2 are compact on any closed subspace of
Ho θ H\ on which the integrands can be shown to be compact.

The integrand for Tx is a product of bounded operators with the factor
(B2 + 1 + s2)~\ which we have seen is compact on Hγ and on (keri?)-1;
thus T\ is compact there. The integrand in Tι is a product of bounded
operators and B(B2 +1 +s2)"1. It follows from Lemma 1.2 that this factor
is compact on all of Ho®H\, so Tι is in fact compact on HoφH\.

To complete the proof of the compactness of the commutator (1.21),
it remains to show that this commutator is compact on keri? (in Ho) for
a G 2lo. In such a case, we can write, in place of (1.24),
(1.36)

[σ(a)9 B{B2 + I)" 1/ 2] = [σ{a), (B2 + l)~ι'2B] (on 3{B))

= [σ(a)9 (B2 + \)-χ'2}B + (B2 + I)" 1 / 2[σ(α), B]

(on 3f(B)).

This is equal to

(1.37) (B2 + l)'ι'2[σ(a)9B]

onkeri?. Now[σ(α),5] maps HQ to //i, and ( 5 2 + l )~ 1 / 2 is compact on H\,
so (1.36) is compact on Ho. This completes the proof of the compactness
assertion (1.21).

Finally, the proof of Lemma 1.2 shows that 0 is an isolated point of
speci?2, hence of spec B, so B has closed range. The proof of Proposition
1.1 is complete.

We make a few additional comments. In view of Lemma 1.2, we see
that T = A(A*A+1)"1/2 is equal to the partial isometry part A(A*A)~~χl2 (0
on ker^) modulo J?, Thus the identities (1.13) hold mod ^ , and hence
the compactness result (1.14) is valid under the hypotheses of Proposition
1.1. Lemma 1.2 also implies that

(1.38) (P° p}=(B2 + l)-{ mod JT.

Hence the remaining hypothesis (1.12) for (σ, T) to define a relative cycle
for K°{% %IS) is equivalent to

(1.39) σ(a)(B2 + l)-{ eJ f f o r α e ^ .

This hypothesis, and hypothesis (1.18) for a e 4 a dense *-subalgebra
of J^, form the hypotheses of Baaj and Julg [4] (see also [10]) that (σ, B)
define an "unbounded Kasparov module", and consequently that (σ,F)
define a cycle for KK(J*", C). J. Rosenberg and A. Wasserman came upon
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the idea of using the commutator identity (1.31) to prove the Theorem of
Baaj and Julg, and their comment to us on using this identity has been of
use in the proof of Proposition 1.1. Note that, if F is given by (1.22), then

(1.40) F2 = I-(B2 + l)-\

so (1.39) is equivalent to (1.3).
We make a further remark on the commutator identity (1.31). This is

a diagonal matrix, and, using

(141)(1.41)

a brief calculation of the upper left element in (1.31) gives the identity
(1.42)

for a e 2t0, where Lo = A*A + t2 and L{ = AA* + t2.
We note the relation with the commutator identity

(1.43) [σo(a)9 (A* A + t2)~x] = -L^ι[σ0(a)9A*A]L^ι

9

which is valid under the hypothesis

(1.44) OQ{O) preserves 3ί(A*A) for a e 2lo

This is a much stronger sort of hypothesis than the hypothesis of Propo-
sition 1.1 that σ(a) preserve 3f{B). When both are valid, we can replace

] + [σ(a),A*]A,

and also use L^{A* = A*L~[ι on 3ί(A*)\ then we obtain (1.42) again.
However, it is very important to us to obtain (1.31) (and hence (1.42))
without making the hypothesis (1.44), a hypothesis which is not satisfied
by our major examples produced in subsequent sections.

A final comment which we make on Proposition 1.1 is that the hypoth-
esis (1.18) has only to be checked on one factor. More precisely, we have
the following.

Proposition 1.3. Assume that, for a e Oo, σo(a) preserves 3${A), and
that W(a) - σ\{a)A - Aσo(a) extends from 2)(A) to a bounded operator
from Ho to Hx. Then σx{a) preserves 3ί{A*)f and (1.18) holds.

Proof Given v e &{A*) and u e 31 {A\ we have

(Au, σx (a)υ) = (σ{ (a*)Au, υ) = (Aσo(a*)u, v) + (W(a*)u, v)
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This shows that σx{a)v e 3>Γ(A*) and

A*σx{a)v = σo(a)A*v + W(a*)*υ9

which implies (1.18).

2. Kasparov cycles defined by elliptic operators

In this section we consider how elements of the Kasparov group
KK(Co(M)9C) are defined by elliptic operators on a Riemannian mani-
fold M (without boundary), where Co(Af) consists of continuous functions
vanishing at infinity. We emphasize that M is not assumed to be complete.
Of particular interest will be the case where M is the interior of a compact
manifold with boundary, but for now M is absolutely general. Consider
an elliptic first order differential operator

(2.1) D: CQ°(M,EQ) —• CQ°(M,EX),

between sections of Hermitian vector bundles Eo and Ex. Such an operator
has a number of extensions to closed unbounded operators on L2(M, Eo).
One is the "minimal extension", denoted Amn> which is just the closure of
D on CQ°(M, EO). Another is the "maximal extension", Anaχ> with domain

(2.2) Sr(Anaχ) = {ue L2{M,E0): Du e L2{M,EX)},

where Du is computed a priori as a distribution on M. There is the well-
known identity

(2.3) Anax = {Dί • )*,

where Dι: C§°{M,EX) -+ Cg°(M9E0) is the formal adjoint of D, also a
first order elliptic differential operator. Note that

(2.4) HΪomp(M, Eo) C Sf(Dmϊn) c &(DmΆX) c H^{M9 Eo),

H^omp(M,Eo) being the space of compactly supported elements of the
Sobolev space Hι(M,E0), etc. The last inclusion in (2.4) follows from
elliptic regularity.

We will consider any closed extension De of D satisfying

(2.5) Dmin CDeC Anax,

i.e., such that &(Dmin) c 3f{De) c -^(Anax) and Deu = Du, in the distri-
butional sense, for u eS$(De). Associated to De we have the self adjoint
operator

<2δ> B = U Di
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and the bounded operator

(2.7) Fe

on Ho Θ Hi = L2(M,Eo Θ E{), where

T = De(D*eDe + I ) " 1 / 2 , Γ* = D*e(DeD*e + I ) " 1 / 2 .

We also have *-representations of C0(M) on HQ and /Γl5 and Hoφ Hu

given by scalar multiplication. We denote this action by Mf, f e C0(M).
The following is the main result of this section.

Proposition 2.1. The pair {M,Fe) defines a cycle for KK{C0(M)9C),
which we denote [De]. Furthermore, ifDd is another closed extension ofD
satisfying (2.5), the pair (M,Fd) defines an equivalent cycle:

(2.8) [De] = [Dd]eKK(C0(M)X).

Consequently, to D there is uniquely assigned an element

(2.9) [D]eKK(C0(M),Q.

Note that, since 2ϊ(De) c &(Dmax), in view of (2.4), Mf2f{De) c
Hίomp(M,E0) provided fe C0°°(M), so

(2.10) feC$°(M)=>Mf preserves 3f{De).

Also Mf preserves 3f{D*) and hence 3!(B). Also,

(2.11) (5 2 + l)- 1 :L 2 (Λ/,^oθ^i)-/ί ι | ) C (M,^oθ^i),

and hence, by Rellich's theorem,

(2.12) fe C0°°(M) =» M/(52 + I)" 1 is compact on L2{M,E0 ®EX).

Thus the fact that (M, Fe) defines a cycle for KK(Co(M), C) can be proved
by the methods of Baaj and Julg [4]. We proceed to establish some local-
ization properties for functions of the operator B, which make clear the
operator homotopy between Fe and Fd for different extensions, and also
gives sharp results on commutators which directly imply that (M,Fe) de-
fines such a cycle.

We analyze functions of B via the formula

(2.13) φ(B) = (2πΓ1'2 Γ φ{t)eitB dt,
J—oo

which follows from the Fourier inversion formula and the spectral theorem
if φ belongs to the Schwartz space *^(R). This formula extends by limiting
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arguments to other classes of functions φ, and we will be able to use it for
the class

(2.14) S°(R) = {φe C°°(R): \φW(λ)\ < C, (l

in particular, for the function

(2.15) 2 1 / 2

This approach to functional calculus for elliptic self-adjoint operators has
been used in [39] and in Chapter 12 of the book [40], and also in the paper
[17] of Cheeger, Gromov, and Taylor.

If φ belongs to 5f (R), it is easy to see that φ, a priori a tempered
distribution on R, is smooth on R\{0} and rapidly decreasing at infinity.
In other words, given any ε > 0, for φ e Sf (R), we can write

(2.16) φ = <P\+φ2, supp0i c (-β,ε), φ2e<9p(R).

Lemma 2.2. For f e Co(Af), Mfψ2(B) and φ2(B)Mf are compact on
L2(M,E0®E{).

Proof. Write φ2(λ) = (1 + λ2)~NψN{λ), ψN e c5*(R). Then

(2.17) Mfφ2(B) = Mf(B2 + l)'NψN(B).

The compactness then follows from (2.12). We note the more precise
consequence of (2.17), which follows by elliptic regularity for B2 + 1:

(2.18) fe C0°°(M) => Mfφ2(B): L 2 ( M , £ o θ £ i ) -^ C^(M,E0 ®EX).

The function ψ\ belongs to S^(R), in particular is bounded and contin-
uous, and <p\(B) is a bounded operator. Furthermore, ψ\ can be approxi-
mated by a sequence Φy G S^(R) in such a fashion that Φ ; e Cg°((-ε, β)),
and φ\(B) is the strong limit of

(2.19) Φj(B) = (2π)" 1 / 2 f Φj{t)eitB dt.

To analyze such an integral, we exploit finite propagation speed for the
operator eitB, which is the solution operator to the symmetric hyperbolic
system

(2.20) du/dt = iBu.

Accordingly, for any compact K c M and any neighborhood $ of K, there
exists ε > 0 such that

(2.21) supp u c K, \t\<ε=> eitBu supported in ff.
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Furthermore if

Dd 0

for another closed extension Dd, we have

(2.22) eitBu = eitB*u for supp u c K, \t\ < ε.

Consequently, using (2.19) and passing to the limit, we obtain

(2.23) φι(B)Mf = φ{(B*)Mf if s u p p / c K9

this operator having range in {u e L2(M, E0ΘE\): supp M C ^ } . Taking
adjoints, we also have Mfψχ{B) = Mfψχ(B#) in this case. This identity,
together with Lemma 2.2, implies, for any φ G 5γ(R),

(2.24) Mfφ(B) = Mfφ(B*) mod X

if / G CQ°(M), and a standard limiting argument also gives this for
/ G Co(M). Taking φ to be given by (2.15), we have the "compact per-
turbation" relation (1.8), implying the operator homotopy relation which
establishes the identity (2.8).

The finite propagation speed argument described above applies to the
following more general situation. Let M1 be another Riemannian mani-
fold, with the property that M and M' are identified on (9, and let Dd be a
closed extension of an elliptic first order differential operator on Mf, oper-
ating between sections of vector bundles E'o and E[, identified over (9 with
Eo and Eu such that Dd coincides with De on Cg°(#9E0). Then (2.21)-
(2.23) continue to hold, the operators in (2.23) having range consisting of
functions supported in 0.

This observation leads to a sharp analysis of the commutator [Mf, φ(B)]
for φ G 5?(R) and / G C0°°(M) as follows. Let K = supp/, take / G
C Q ° ( ^ ) for a relatively compact neighborhood (9 of K, such that / = 1 on
a smaller neighborhood <9h oΐK. By Lemma 2.2, [Mf, φ(B)] = [Mf, φ{ (B)]
mod o^, and we concentrate on the analysis of this last commutator. By
(2.21) we have

(2.25) Mfφ{(B) = Mfφ{(B)Mp φχ{B)Mf = Mfφx(B)Mf.

Now we can produce a compact manifold M1 identified with M on (9 (e.g.,
the double of a compact neighborhood of (9 with smooth boundary) and a
first order differential operator Dd: C°°(M', E'o) -• C°°(M', E[) coinciding
with De on CQ°(^,EO) in the sense given above, and we have

Mfφx{B)Mj = Mfφι(B*)Mf,
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where 5 # is a first order elliptic self adjoint operator on the compact mani-
fold M'. Consequently φ\(B*) is a pseudodifferential operator, in
OPS?>0(Λ/')> coinciding with φ(B*) mod O P S ^ ( M ' ) (see [40, Chapter
12]). Therefore the standard pseudodifferential operator calculus implies
that

(2.27) Mfφι(B*)Mj = Mfφx(B% Mfφx(B*)Mf = ψ\(B*)Mf

mod OPS"0 0(M')9

(2.28) ^

In particular, this operator is compact. This implies

(2.29) Mfφx(B)Mf - Mfφ{(B)Mf e JΓ9

and hence, by (2.25) and Lemma 2.2, we conclude that

(2.30)

for any / € Cg°(M). In case φ(λ) = λ(λ2 + 1)" 1 / 2 , this is the compactness
result which implies that (M,Fe) defines a cycle for KK(Co(M),C).

We now briefly discuss cycles for the Kasparov group KKι(Co(M),C).
The group KKι (J^, C) is defined for a (separable, nuclear) C*-algebra J*',
as

(2.31) KK\JrX) = KK{Jrχx),

where Ci = C Θ C is the graded complex Clifford algebra with one gener-
ator. For a general pair of Z2-graded C*-algebras Jr,</, the definition of
KK{<f9f) can be found in [30], [10]. In the case of (2.31), a cycle in the
"Fredholm picture" is given by a pair (ψ,T), where ψ is a *-representation
of *f on a Hubert space H and

(2.32) T:H->H

is a bounded operator, satisfying

(2.33) (T-

(2.34) {T2

(2.35) [T9ψ(a)]e&

for all a e <J (cf. Blackadar [10, p. 184]).
Consider a first order elliptic differential operator

(2.36) D: C0°°(
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(i.e., Eo = E\ = E in (2.1)) which is formally symmetric:

(2.37) D = Dι.

We aim to associate a class in KKι(C0(M),C). Let De be any closed
extension of D (not necessarily symmetric) satisfying (2.5), and set

(2.38) Te=De(D;De+l)-1'2.

Let Af: Cb(Af) —• <2?(L2(M,E)) be defined by scalar multiplication, as
before. Then the methods developed above also establish the following.

Proposition 2.3. The pair (Af, Te) defines a cycle for KKι (C0(Af), C),
which we denote [De]. Furthermore, ifDd is another closed extension ofD
satisfying (2.5), then

(2.39) (Te-Td)Mfe3ir forfeCo(M),

so the pair (Af, Td) defines an equivalent cycle'.

(2.40) [De] = [Dd] inKKι(C0(M)X).

Consequently to a formally symmetric first order elliptic differential operator
D there is uniquely associated an element

(2.41) [D]eKKι(C0(M),C).

3. Relative cycles defined by elliptic operators

In this section we consider how elliptic operators on a Riemannian
manifold M, under certain conditions, define relative cycles and hence
elements of

K°(C(M)X(M)/C0(M)) = K0(M,dM).

Here M is a Riemannian manifold of a less general sort than in §2. We
make the assumption that

(3.1) M is open in M, a smooth compact manifold with boundary.

Thus the closure M is compact in M, with boundary dM = M\M. Even-
tually we will focus attention on the case where dM is smooth, but at
present we make no smoothness assumption on dM.

Let Eo, E\ be smooth Hermitian vector bundles over Af, which we as-
sume extend to smooth bundles over M. Suppose D is a first order differ-
ential operator from sections of EQ to sections of E\, which is elliptic over
Λ7. We consider various closed extensions of

(3.2) D: C
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As in §2, Z)min and D m a x are two such; also recall that (2.4) holds. We
consider closed extensions DB of D satisfying

'max(3.3) £>min cDBcDn

and also a further condition that the domain of DB be defined by a "local
boundary condition". In its most general formulation, we can state this
hypothesis as

(3.4) Mf\3f{DB)^3f{DB) for feC°°(M),

where C°°(M) denotes the space of restrictions to M of functions in
C°°(M). Since

(3.5) [Mf,D]u = σD(x,df)u

for u e Hloc(M,Eo), in particular for u e &{DB), σD{x,ξ) denoting the
symbol of D, this implies that the hypothesis of Proposition 1.3 holds,
with So = C°°(M), σo(f) = Mf, and A = DB. We also take σx(f) = Mf,
and use M to denote σo Θ <J\ Then the hypothesis (1.18) of Proposition
1.1 holds. We now have the following:

Proposition 3.1. Suppose in addition that

(3.6) either DBDB or DBDB has compact resolvent

on Ho = L2(M,E0) or Hx = L2{M,EX). Set

(3.7) T = DB(D*BDB + IΓ{/2.

Then the pair (M, T) defines a cycle for Ko(M, dλf), which we denote [DB].
The extensions Dm[n and D m a x both satisfy these hypotheses. Furthermore,
all extensions satisfying our hypotheses give rise to equivalent cycles, so there
is a uniquely defined element

(3.8) [D]eK0(M,dM).

Proof. Adding hypothesis (3.6) completes the hypotheses of Proposi-
tion 1.1. As remarked in (1.39), to show (M, T) defines a relative cycle it
remains to show that
(3.9)

Mf(D*BDB + I ) " 1 and Mf{DBD*B + I ) " 1 are compact for fe C0(M).

It suffices to verify this for / e C™(M)\ in such a case these operators map
Ho and H{ respectively to H2

omp(M,E0) and H2

omp(M,E{), and the com-
pactness of (3.9) follows from Rellich's theorem. Note that, by standard
elliptic estimates,

(3.10)
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the closure in Hι (M, Eo) of C0°°(M, Eo). Since Dmax = (D^)*, we see that
(3.4) holds for Dmin and DmΆX, and that D^inDmin has compact resolvent,
since

(3.11) (fliioAnin + 1)" 1 / 2 : L2(M,E0) - Hι(M,E0).

Thus (3.6) holds for Z)min and for Anax It remains to show that [DB] =
[Z>c] in KQ(M, dM) for any two extensions Dβ and Z>c of D satisfying the
hypotheses of Proposition 3.1. However, these extensions certainly satisfy
the conditions of §2, and by Proposition 2.1 they define identical elements
of KK(C0(M),C). The coincidence of [DB] and [Dc] in K0(M,dM) then
follows from the isomorphism

(3.12) Ko(M,dM)**KK(Co(M),C)

mentioned in §1, which is proved in [8].
We now specialize to the case where M has smooth boundary, and dis-

cuss in further detail several types of local boundary conditions of interest.
In such a case, if D is an elliptic first order differential operator as above,
it is well known that the trace map

(3.13) γ(u) = u\dM, γ: C°°(M,£0) - C°°(dM,E0)

has a unique extension to a continuous map

(3.14) γ: Sf(DmΛX) - H'ιf2(dM9E0).

Very general results containing this are given in Theorems B.2.7-B.2.9 in
vol. 3 of [28]. For later use we make note of the following.

Lemma 3.2. If K is α bounded subset of^(Dmax) which is relatively
compact in L2(M9EQ)9 then γ(K) is relatively compact in H~ι/2(dM,Eo).

Proof Let (9 be a neighborhood of Λ7 in M on which D is elliptic,
with a parametrix E. For u € ^(Anax), extend Du e L2(M,Eo) to be
zero on 0\M> and let Hu denote EDU\M Write u = Wo + U\ = Hu+
(1 - H)u. Clearly we have H: Sf{Dmax) -> Hι(M,E0), so {Hu: ueK}is
bounded in H1(M,EQ). By the trace theorem, {γHu: u e K} is bounded
in Hχl2(dM,E0), hence compact in H-{/2(dM,E0). On the^other hand,
1 - H preserves &(Dmax) and D{\ - H):3f(Dmax) -> C°°(M). It follows
that {(1 - H)u: u e K} is compact in 3r{Dmax), and (3.14) implies that
{y((l - H)u): u e K} is compact in H-{/2(dM,E0).

The closed extensions of D we now consider are of the following form.
Let a multiplication operator by

(3.15) B e C°°(dM, Hom(Eo,F0))
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be given, where FQ is some smooth vector bundle over dM. Then DB will
denote the restriction of Dmax to

(3.16) 3f(DB) = {uei^(Anaχ): Bγu = 0},

where applying B gives an operator from H~ι/2(dM, EQ) to H~χl2(dM, Fo).
It is clear that (3.4) is satisfied in this case, and (3.5) holds on 3f{DB).
Thus, by Proposition 3.1, with T = DB{D*BDB + I ) " 1 / 2 , (Λf, T) defines a
relative cycle for [DB] e K0(M, dM), as long as either DBDB or DBDB has
compact resolvent, i.e., as long as either of the inclusions

(3.17) 3f(DB) - L2(M,E0), ${D*B) -> L\M,EX)

is compact. Note that, with Fo = Eo, DB = Dmin if B = id and DB = Z)max if
B = 0. We describe some other important classes of boundary conditions
of the form (3.16).

One class of boundary conditions is the class of "coercive" boundary
conditions. These are the ones for which

(3.18) (D,B):Hs(M,E0)^Hs-ι{M,Eι)ΘHs-ι/2(dM,F0)

is Fredholm for s > 1. This property can be characterized algebraically, as
a "Lopatinsky condition"; a standard discussion can be found in [28], [40],
[42]. We note that, in such a case, (DB)* is of the form D'B§ where Dι is the
formal adjoint of D and 5 # e C°°{dM, Hom(£i,F1)) for a certain vector
bundle F\ —> dM. This adjoint boundary condition can be described as
follows. By the generalized Green formula,

(Du,v)L2{M) - (u9D'v)L2{M) = - ί (Gu,υ)dV9

J dM

where, for x e dM, G(x) = <J/)(x,i/), v being the unit normal to dM
(see [35, p. 285]). Then 2?#(x) is the orthogonal projection of Eχx onto
G(x)(keτB(x)) = F{x. It is a standard result that, if {D,B) is coercive, so
is(£>',5#).

Under this coerciveness condition,

(3.19) 3{DB) = {ue Hι(M,E0): Bγu = 0},

and DB.2J{ΌB) -+ L2(M,E{) is Fredholm. Hence the operator T: Ho ^
Hi defined by (3.7) is Fredholm. Therefore, in this case [DB] actually
defines an element of KQ(M). AS is well known, in many cases, D has no
coercive local boundary condition; we will see in §4 that the image of the
class [D] e Ko(M,dM) under the boundary map to K\(dM) provides an
obstruction to the existence of such a boundary condition.
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Another type of boundary problem which will play an important role
in this paper is the following. Let Ή be a compact complex manifold,
with smooth boundary, endowed with a Hermitian metric. We have the d
operator

(3.20) d: A°>P(M) -• A°>p+ι(M)

and its formal adjoint

(3.21) 2): A°>P(M) -+ AOjf'ι{M)9

where A°>P(M) denotes the space of smooth (0,/?)-forms on Λf. In partic-
ular, consider

(3.22) D = a + Ί3: Λ°'even(M) -> Λ°'odd(M).

Let

(3.23) &p = {ue AOj>(M): (dr)_\u = 0 on dM},

where r is a real valued function in C°°(M) satisfying r = 0 on dM and
dr φQ on dM. Let Dw denote the closure of D restricted to (&peyen&

p

Then D = D*NDχ is the complex Laplacian acting on (0,/?)-forms for p
even, likewise for D = DχD*N acting on (0,/?)-forms for p odd. £># and
DH define closed unbounded operators from Ho to 77i, where

(3.24) Ho = Lleyen(M), Hλ = L2

0Mά(M).

Typically, D*NDχ does not have compact resolvent on ί/o In fact, for
p — 0, the boundary condition (3.23) is vacuous, so kerD# in L§0(M)
consists of the space of all holomorphic functions in L2(M), which is typ-
ically an infinite dimensional space. However, in many important cases
the operator D with d -Neumann boundary conditions is known to have
compact resolvent on Llp(M) for all p φ 0. The first result on this is
due to Kohn [32]; he proved subelliptic estimates (with loss of one deriva-
tive) which imply such compactness whenever M is strongly pseudoconvex.
Such compactness holds whenever the 9-Neumann problem is subelliptic
with loss of less than two derivatives on (0,/?)-forms for p Φ 0. In recent
times a great deal has been learned about weakly pseudoconvex domains
satisfying such a condition. Kohn [33] showed that, if M is a pseudo-
convex domain in Cn with real analytic boundary, then such a regularity
result holds provided that there is no germ of a (one complex dimensional)
complex manifold contained within dM. Characterizations of such subel-
lipticity in terms of "finite /?-type" for dM smooth have come out of the
work of d'Angelo [23] and Catlin [16].
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It is clear that the locality condition (3.4) holds for DN, and hence
Proposition 3.1 applies. In view of the importance of this result for de-
velopments in later sections, we make a formal statement.

Proposition 3.3. Let M be a complex domain, with a Hermitian met-
ric, which is relatively compact with smooth boundary dM. Suppose the
complex Laplacian Ώ, with ̂ -Neumann boundary conditions, has compact
resolvent on Llφ(M) for p φ 0. Then, with T = DN(D*NDN + I)" 1 / 2 , the
pair (M, T) defines a relative cycle for Ko(M, dM). In particular, this occurs
when M is strongly pseudoconvex. If we denote the class in Ko(M, dM) by
[DN], then

(3.25) [£>*] = [Anax] inK0(M,dM),

Anax denoting the maximal extension of the operator (3.22).
We note that there are closed extensions of elliptic differential opera-

tors, defined by nonlocal boundary conditions, to which the results of this
section do not apply, although the results of §2 do apply. See Appendix A
for a brief discussion of some special cases.

4. The boundary map on K0(M, dM), and applications

We recall the characterization of the boundary map

(4.1) d: K{){%ΆIJr)-^K\ςΆlJr)

given in [5], [8]. Let (σ, T) be a cycle defining an element of ΛΓ0(21,21/^),
so (1.10)—(1.12) are satisfied. We also suppose T is a partial isometry, at
least mod X, so (1.14) holds. If Kj denotes the range of Pj and S{Kj)
the associated Calkin algebra, ^(Kj)/^, we define

(4.2) τ ; : * / . ^ - > * ( * ) )

by

(4.3) τj(f) = π(Pjσj{f)Pj),

where / e 21 is any preimage of / under 21 —• 21/^. The right side
of (4.3) depends only on /, not on the choice of /, by (1.12), and (1.14)
implies τy is a homomorphism of algebras. Thus each τy defines an element
[τy] € A:1(2l/JΓ), and we have

(4.4) d[(σ,T)] = [τo]-[τι].

It is proved in [8] that this agrees with the boundary map d: KK(*f, C) —>
KKι(21/^,0) defined by Kasparov, under the isomorphism of relative
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and Kasparov ^-homology groups. In particular, it is shown in [8] that
the following diagram commutes, with the vertical arrows all representing
isomorphisms, and horizontal rows exact:
(4.5)

I I I I
KK{%C) -> KK(S,C) ^ KKι(%/Jf,C) -> KKι{%C)

We will examine the image under (4.1) of elements defined by elliptic
operators considered in §3, in the case 21 = C(M), S = Co (AT), M a
manifold of the type considered in §3. In this case, we are looking at the
boundary map

(4.6) d: K0(M, dM) -> Kx (dM).

Suppose DB is a closed extension of an elliptic differential operator,
with local boundary conditions, satisfying the hypotheses of Proposition
3.1. For definiteness, suppose DBD*B has compact resolvent. We define the
element

(4.7) [ktr DB]eKx{dM)

to be the class of the cycle

(4.8) τ: C(dM) ->@{kerDB)

given by (4.3), with j = 0, PQ the orthogonal projection of L2(M, 2?0) onto
kerDB = kerΓ and / any element of C(M) whose restriction to dM is
/ . In view of the discussion above, we have the following consequence of
Proposition 3.1.

Proposition 4.1. For DB as above,

(4.9) d[DB] = [kerDB] inKx{dM).

In particular, this result holds for Dmax. For any DB satisfying the hypotheses
here, we hence have

(4.10) [keτDB] = [ker£>max] inKx{3M).

This result follows from (4.4) together with the fact that [τi] = 0 in
K\ {dM) since τ\ represents C(dM) on @[K\) and K\ is finite dimensional.

For Proposition 4.1, no smoothness of dM is required. We proceed to
derive further consequences for the sorts of boundary problems considered
in §3, where dM is smooth. First, note that if DB is defined by coercive
boundary conditions, we have [τo] = 0 in K\ {dM) as well as [τ\] = 0, since
both Hubert spaces Ko and κ\ are finite dimensional in this case. Applying
Proposition 4.1 to this case, we have the following conclusion.
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Corollary 4.2. If there exists a coercive local boundary condition for D,
then d[D] = 0 in K\(dM). Consequently, in this case, one must have

(4.11) [kerZ)max] = 0 inKx{dM).

Below we will see examples where (4.11) is clearly violated. In such
examples it is well known that no coercive local boundary conditions exist.

When M has smooth boundary, it is desirable to have an intrinsic char-
aςterization of [ker Dm a x] e K\ (dM) in terms of a pseudodifferential oper-
ator on dM, the Calderon projector Q e 0PS°(<9M), acting on sections of
E0\dM. This operator satisfies Q2 = Q,Q = Q* on L2(dM,E0), and also
the following condition. For any s e R, consider

(4.12) ps = {u e HS(M,EO): Du = 0}.

Then the trace map γ takes ps into Hs~l/2{dM,E0), and

(4.13) γ(ps) = Q{H'-ι'2{dM,Eo)) =V 5 _ 1 / 2 .

The homomorphism C(dM) —• @ (Range Q) given by τ(f) = π(QMf)
defines a class

(4.14) [β]€*i(βΛ/).

The construction of the Calderon projector can be found in several stan-
dard treatments of pseudodifferential operators; see [37], [40], [42]. We
aim to prove the following.

Proposition 4.3. IfQ is the Calderon projector associated to the elliptic
operator Df then

(4.15) [kerZ)max] = [Q] inKx{dM).

Proof We produce a Fredholm map from the Hubert space po to So =
Q(L2(dM,Eo)) = y(pi/2) which gives rise to this equivalence. First, γ
maps po onto δ-\β> with at most finite dimensional kernel. Now, let Ao

be any elliptic operator in OPS~1/2(dΛ/,i?o)5 with scalar principal symbol,
and set

(4.16) A = QAoQ + (1 - Q)A0(l - Q).

This operator has the same principal symbol as Ao, and it commutes with
Q, since AQ = QA0Q = QA. Thus A: *?_1/2 -• &0 is Fredholm and the
composition A o γ: ρ0 —• &Q is Fredholm. It remains to show that, for
/ G C(dM), f = f\dAf9 and / e C(M),

(4.17) (Ao γ)PM? - QMf(A o γ): p0 -• SQ is compact,
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where P is the orthogonal projection of L2(M,E0) onto po = kerD m a x .
Applying a parametrix for A which commutes with (?, we see that it suffices
to prove

(4.18) γPMf - QMfγ: p0 -> @- \/2 is compact

for / = f\dM, f e C°°(M). Note that yM~f - Mfy = 0 on p0, or equiva-
lently

(4.19) γMfP-MfQγ = 0 on p0.

In view of the standard compactness of [Mf,Q] e OPS~ι(dM) on
H-χl2{dM), to prove (4.18) it suffices to show that

(4.20) γ o [MpP]: L2(M,EQ) -> H-{/2(dM,E0) is compact

for / E C°°(Af). In fact, we clearly have

(4.21) [Mf,P]: L2(M,E0)-+&(Dm!iX),

bounded, while, as noted at the end of Proposition 1.1,(1.14) holds, so this
commutator is compact on L2(M,Eo). Therefore (4.20) holds, by Lemma
3.2. This completes the proof of Proposition 4.3.

From Proposition 4.3 we can deduce what can be perceived as the "odd
case" of the cobordism invariance of the index. Indeed, suppose Jf is a
compact manifold with boundary, dim M even. Let Ej —• M be smooth
Hermitian vector bundles, and D: C°°(M9E\) a first order elliptic differ-
ential operator. Suppose M has a Riemannian metric and σo(x,ξ): EOx —•
E\x is proportional to an isometry, in fact say ||σ/>(x,ξ)i;|| = ||ξ|| ||v||. Of
course, [D] e K0(M,dM), and Proposition 4.3 identifies d[D] e Kx(dM).
We can reinterpret this result, as follows.

Let v denote the unit (inward) normal field on dM. Then, for x edM,

(4.22) τ(x) = (l/i)σD(x,u): FOx -+ FXx

defines an isomorphism of the vector bundles F$ and F\, where Fj —> dM
is the restriction of Ej to dM. Using v to define an injection T*(dM) -*
T*(M) forx edM, we see that

(4.23) τ(x)-ισD(x9ζ):FOx-+FQx (xeθM, ζeT^dM))

is the symbol of a first order elliptic differential operator Z># on dM:

(4.24) D # : C°°{dM,F0) -> C°°(dM,F0).

Expanding the identity

ξ + sv)*σD(x,ξ + sv) = \\ξ\\2 + s2
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for x € dM and ξ e T*(dM) implies τ(jc)"1 = τ(x)*9 and hence

(4.25) σD»(x,ζ) = σD#(x,ξ)*,

as well as

(4.26) \\σD«(x,ξ)v\\ = \\ξ\\'\\v\\.

Furthermore it is clear that the principal symbol of the Calderon projector
Q for D is the projection onto the sum of the positive eigenspaces of
σD#(x,ξ), so we have the following result.

Proposition 4.4. With D and D# as above,

(4.27) d[D] = [D#] in Kx(dM).

A particular case of the situation described above is the following. Sup-
pose M is an even dimensional spinc manifold with boundary. If E —• M
is a smooth Hermitian vector bundle and DE an associated ("twisted")
Dirac operator (uniquely determined up to a zero order term), we have

(4.28) [DE]eK0(M,dM).

If F —• dM is the restriction of E —• M, we have a Dirac operator Dp on
dM and an element

(4.29) [DF]eK{(dM),

which coincides with D | under the construction above. Therefore,

(4.30) d[DE] = [DF],

We will discuss the analogue in the "even case" in the next section, and
show how it implies the well-known cobordism invariance of the index of
elliptic operators.

The computation (4.30) provides examples where the conclusion (4.11)
of Corollary 4.2 does not hold, since standard index calculations show that
(4.30) is not generally zero in K\(dM). This reproduces the well-known
fact that there are typically no coercive local boundary conditions for the
Dirac operator.

We proceed now to the computation of d[DN] when DM - d + Σ) is
the closed operator from L^ e v e n(M) to ^oodd(^) w ^ domain described
in §3 (see (3.23)). M is a complex manifold with smooth boundary. We
suppose M is a weakly pseudoconvex domain with the property:

(4.31) D = (d + Σ))2, with 9-Neumann boundary conditions, has
compact resolvent on Llp(M) for p Φ 0,
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which holds in particular if M is strongly pseudoconvex. In this case,
Proposition 3.3 (as well as 1.1 and 3.1) applies. Hence kerZ)^ is finite
dimensional and kerDN is at most a finite dimensional perturbation of
the summand

(4.32) H+(M) = kerDN n L2

00(M) = {ue L2(M): du = 0},

the "Hardy space" of L2 holomorphic functions on M. We have the
"Toeplitz extension"

(4.33) [τM]eKι(dM)

given by τ M : C(dM) -+ €(H+{M)) as

(4.34) τM{f) = P+{fu) (modJΓ),

/ denoting any continuous extension of / to Λ/. Consequently

(4.35) d[DN] = [τM] in Kx(dM)

under our hypotheses.
Now there is another way we can look at the operator D = d + £), and

that is as a Dirac operator on M, with spinc-structure induced from its
complex structure. Then Λ°'even and Λ 0 o d d make up the space of even and
odd spinors. Consequently the formula (4.30) applies; we have

(4.36) d[d + V] = [DdM] inKι{dM)9

where ΌQM is the Dirac operator on dM, with its naturally induced spinc-
structure. We collect our major conclusions in the following result, noting
also that (4.35) and (4.36) must be equal.

Proposition 4.5. IfM is a complex manifold which is pseudoconvex and
satisfies (4.31), then [d+Ί)]e K0(M, dM) has image d[d + T>]eK{{dM)
given by (4.35) and (4.36). In particular, in this case,

(4.37) [τM] = [DdM] inKx{dM).

As noted in [6], the identity (4.37) immediately implies the index theo-
rem [ 13] of Boutet de Monvel as a consequence of the Atiyah-Singer index
theorem, as a special case of the intersection product

K\X)x K{ (X) - Ko(X), X = dM.

Thus (4.37) can be viewed as a refinement, in ΛMiomology, of Boutet de
MonveΓs index theorem. That this refinement holds for a broader class of
pseudoconvex domains than those which are strongly pseudoconvex also
implies that Proposition 4.5 extends Boutet de MonveΓs index theorem to
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the class of pseudoconvex domains for which (4.31) holds, e.g., the pseudo-
convex domains considered by Kohn [33] and by Catlin [16]. Proposition
4.5 has additional uses in index theory, particularly via the identity (4.43)
which we establish below. This identity will be applied in §6.

In parallel with Proposition 4.3, we want to relate the class of the
Toeplitz extension [TM] £ K\{dM) with the class given by the Szegό
projector S, acting on L2(dM), defined to be the orthogonal projection
of L2(dM) onto the set of boundary values of holomorphic functions in
Hχl2(M). In case M is strongly pseudoconvex, a detailed analysis of S has
been given by Boutet de Monvel and Sjόstrand [15] (see also [41] for an
alternative treatment). In that case, one knows that S e OPS^p^βidM).
Thus, for any Ao e OPS~1/2(<9Λ/), the commutator [A0,S] belongs to
OPS7/2)1/2(<9AO, and [Mf,S] e OPS~f

ιβ/2(dM) for / e C°°(dM). Thus
the proof of Proposition 4.3 is easily modified to yield the following result.

Proposition 4.6. When M is a compact complex manifold with bound-
ary which is strongly pseudoconvex, we have

(4.38) [τM] = [S] inKx(dM).

Consequently,

(4.39) [S] = [DdM] inKx{dM).

It is quite possible that such a result extends to the class of weakly
pseudoconvex domains for which Proposition 4.5 holds. We remark that
the identity (4.37) is in a sense more fundamental than (4.39), and (4.38)-
(4.39) are only particularly useful when one has a rather precise hold on the
Szegό projector S. Since at present one has a satisfactory understanding
of S only when M is strongly pseudoconvex, we have not tried seriously
to extend Proposition 4.6 beyond this case.

Our next result will apply Proposition 4.6 to a special class of strongly
pseudoconvex domain. Namely, let I be a compact smooth manifold
(without boundary); suppose X is endowed with a real analytic structure.
Then, as is well known, the ball bundle B*X can be given the structure of
a strongly pseudoconvex domain (in a noncanonical fashion). In this case,
d(B*X) = S*X is the sphere bundle in Γ*X. In addition to the Toeplitz
extension [TB*X] Ξ K\(S*X), there is the element

(4.40) PxeKxiS X),

the "pseudodifferential operator extension",

(4.41) 0 - JT{H) - OPS°(ΛΓ) -+ C{S*X) -> 0,
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where H = L2(X). We have the following important identities.
Proposition 4.7. For any compact smooth manifold X,

(4.42) &x = [S] inK{{S*X).

Consequently, if D is the Dirac operator on S*X determined by its spinc-
structure,

(4.43) &x = [D] inKx(S*X).

Proof The identity (4.42) is proved using a construction previewed
by Boutet de Monvel in [13] and carried out in the appendix to [14]
of a Fourier integral operator F with complex phase mapping 3f'(X) to
3f'(S*X)9 satisfying (modulo smoothing operators)

(4.44) F*F = I, FF* = S,

providing a Fredholm map from L2(X) onto the range of S in L2(S*X). If
σA in C°°(S*ΛΓ) is the principal symbol of A e OPS°(X), then the operator
calculus developed in [14] implies

(4.45) A = F*{SMσA)F mod O P S " ^ ^ ) ,

so the extension C{S*X) — S(L2(X)) and the extension C(S*{X)) -• β
(Range S) are seen to coincide in K\(S*X). This proves (4.42), and (4.43)
follows from Proposition 4.6.

As we have mentioned, Proposition 4.7 has further applications to index
theory, which will be discussed in §6.

5. The boundary map on KKι (C0(Af), C)

Part of the exact sequence of Kasparov A'-theory is the segment

(5.1)

KK\C{M)X) -> KKι(C0(M)X) Λ KK(C(dM)X) - KK(C(M),C),

where M is a compact manifold with boundary. We have the identification

(5.2) KK{C(dM), C) = K0(dM).

We want as explicit as possible an identification of the boundary map d,
on the level of cycles. The formula given here will be derived from that
of §4, i.e., the formula for

(5.3) d:Ko(M,dM)-+K{(dM),
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via use of the Bott map. The Bott map provides isomorphism:

KKι(C0(M),C) - >KK(C(dM),C)

(5.4) ®b[ ** ®b { ~

KK(C0(I) ® C0(M), C) KKι (Co(/) ® C ( 9 ¥ ) , C)

These vertical isomorphisms are given by Kasparov products. We take

(5.5) KKι(C0(M),C) = KK(CO(M)9CX).

The Kasparov product

(5.6) KKiCoWX^ ® KK(CO(M)XX) ^ KK(C0(I) ® C0(M),C{ ®C

produces an isomorphism

(5.7) ®b:KK(Co(M),Cι)%KK(Co(I)®Co(λf),Cι®Cι)

upon applying the element

(5.8) b e KK(C0(I),Cι) = KKι(C0(I),C)

defined by any closed extension of the symmetric operator

(5.9) id/dx onC0°°(/).

One follows this with the natural isomorphism

(5.10)

(see Blackadar [10]).
One natural closed extension to take of (5.9) is via periodic boundary

conditions. This also produces

(5.11) b'eKKl(C(Sl),C).

In fact, (5.8) and (5.11) correspond under the natural isomorphism

(5.12) KKι(C(Sι),C)^KKι(C0(I)9C),

which follows from the Kasparov exact sequence associated to the short
exact sequence

(5.13) 0 -> Cb(/) -> C{Sι) -> C -> 0.

This is a special case (for M = pt.) of the cohomology exact sequence
arising from the split short exact sequence

(5.14) 0 -> Cb(/ x l ) i C{Sι xX)τ* C(X) -+ 0
K
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for compact X (e.g., X — dM). The Kasparov exact sequence is:
(5.15)

KK(C0(I x X),C) ^KKι(C(X),C) UκKι(C(SιxX),C)
K*

Γ ΐ i r
KK(C(Sι xX),C) k KK{C{X), C) t KK{ (Co(/) Θ C(X)9 C)

One has κ*p* = id, since pK = id on C(X). Hence p* is injective, which
implies d = 0 in this case, and consequently gives the split short exact
sequence

(5.16) 0 - KKι(C(X),C) Pτ± KK\C{SX x X),C)
K*

and its complement. Note that KKι(C(X),C) = K{(X), which is 0 if X is
a point; this proves (5.12). We also see that

(5.17) ®b:KK(C(X),C)^KK(Co(I)®C(X),Cχ)

factors through <g>£>:

κκ(C(X), c) - ^ ΛΓΛ:1 (Cίs1 x x), c)
(5.18) ^ ^ 1 Γ

KKι(C0(I)®C(X),C)

In particular, we deduce that

(5.19) ®bι is injective.

From (5.16) we see that ®̂ / provides an isomorphism of KK(C(X),C) =
with

(5.20) {«

where K* is defined by the projection πx: Sι x X -+ X;κ* = πx*. This
result is also given in [11]; there the map KQ(X) -• K{(Sι xX) is explicitly
defined as follows. If (σ, T) defines a cycle in K0(X), consider the com-
mutative C*-algebra in &IX = β generated by σ(a), a e C(X), and by
the unitary part ofπ(T)E&, provided σo = σ\ on Ho = H\. This defines
a *-homomorphism C(Sι x X) —• S9 which gives the desired element of
Kχ(Sι xX).

We have a similar result replacing C(X) by C0(M). We obtain from

(5.21) 0 -> Co(/ x M) Λ C0(Sι xM)^± CΌ(M) -+ 0
KK
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the short exact sequence

(5.22) 0 -> KKι (Co(M), C) £± KKι (C0(Sι x M), C)
*

The reason we bring out these facts is that, in order to analyze d in
(5.4), it is convenient to factor through:

KKι(C0(M),C) - ^ KK(C(dM),C)

[
(5.23) KK(C0{Sι x M),C) - ^ KKι(C(Sι xdM),C)

'•[ I''
KK(C0(I x M)X) KKι{C0(I x dM),C)

This is a commutative diagram, by the associativity of the Kasparov prod-
uct. The point is that the second d in (5.23) has been evaluated in §4,
since

(5.24) KK(C0(Sι x M),C) « K0(Sι xM,Sι x dM).

The injectivity (5.19) implies that this will be an effective tool for speci-
fying the top d in (5.23).

One application we make of these constructions is the following. Sup-
pose M is a compact spinc manifold with boundary, E —• A? a smooth
Hermitian vector bundle. We have Dirac operators

(5.25) [DE] e KKJ(C0(M)X), [DF] e KK^\C{dM)X\

where F = E\dM is the restricted bundle; F —• dM. Here j = 0 if dimM
is even, 7 = 1 if dimM is odd, and j + 1 is computed mod 2. As shown
in §4, if M has even dimension, and we consider

d:KK(C0(M)X) ->
(5.26) II

K0(M,dM)

then

(5.27) d[DE] = [DF].

Our result here is:
Proposition 5.1. If M has odd dimension, and we consider

d:KKι{C0(M)X) > KK(C(dλf),C)

(5.28) II
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then

15.29) d[DE] = [DF].

In view of our analysis via (5.23), the following is a key ingredient in
the proof.

Lemma 5.2. The map

(5.30) ®br. KKJ(C0(M),C) -^ KKJ+ι(C0(Sι x M),C)

with j + 1 computed mod 2, Λαs /Ae property that

(5.31) »*[/>*] = [Ari

vvAere G is the pull back ofE —• M, so G —• Sι x M. Jπ (5.31), one uses
(5.30) w/ίA 7 = 0 if dim M is even, and j = 1 if dim M is odd.

Proof This follows from the fact that DE and DG define unbounded
Kasparov modules for Co(Af) and CbOS1 x Af), together with the result
of Baaj and Julg [4] which implies that the Kasparov product of DE with
[id/dx] € KKι(C(Sι)9C) is given by D^I -f I®DE, where D/ is the op-
erator associated to id/dx on the graded (C(Sι)9 Ci)-bimodule, and ® is
the appropriate graded tensor product. The identification of this with DQ
is standard Clifford algebra.

The proof of Proposition 5.1 is now immediate. By commutativity of
(5.23), and by (5.27),

(5.32) ®bΌ

while, by Lemma 5.2, we have

(5.33) ®b

where F is the restriction of E to dM and G the pull back of F to S1 x dM.
The injectivity (5.19) hence implies Proposition 5.1.

From commutativity and exactness in

KKι(C0(M),C)-> KK(C(dM),C)-+ KK(C(M),C)

(5.34) K0(ΘM)

we deduce the following spinc-cobordism invariance of the index of Dirac
operators.

Corollary 5.3. IfY-dM is an even dimensional compact spinc mani-
fold, and F -> Y is spinc-cobordant to 0, then

(5.35)
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Consequently, if Y\ and Yι are even dimensional compact spinc manifolds
and F\ —• Y\ and Fι —> Y2 are spinc-cobordant Hermitian vector bundles,
then

(5.36) IndexD^ =lnάtxDFr

The same sort of arguments produce the following "even" analogue of
Proposition 4.4. Let E —> M be a Hermitian vector bundle over M (dim M
odd), endowed with a Riemannian metric, and suppose D: C°°(M,E) —•
C°°(M,E) is a first order elliptic differential operator satisfying

(5.37) σD(x,ζ)* = -<TD(X,{), σ/>(*,{)2 = - | | £ | | 2 .

Consequently D defines an element [D] e K\(M,dλf). Define bundles
E+,E- -+Mby

(5.38) Ef = {e G Ex: az>(x, i/)e = ±/έ?}, x G 9Af,

where v is the unit inward normal to dM. Then E\dM = E+ ® E~, and,
for <̂  G T*(dM), σo(x,ζ): E+ —»• i?~ isomorphically, so it defines the
principal symbol of a first order elliptic differential operator D* on dM:

(5.39) Z>#: C°°(dM,E+) - C°°(M,£-).

Generalizing Proposition 5.1 and Corollary 5.3, we have:
Proposition 5.4. Under the hypotheses above,

(5.40) d[D] = [D*] inK0(dM).

Consequently,

(5.41) Index[Z)#] = 0.

The conclusion (5.41) is the principal result of Chapter XVII of the
notes [35] on the Atiyah-Singer index theorem. In particular, it applies
to signature operators. These exist on arbitrary Riemannian manifolds,
without extra structure like a spinc-structure, and this provides a more
flexible tool for proving index theorems than Corollary 5.3, since the or-
dinary cobordism ring (with vector bundles) has a much simpler structure
than the spinc-cobordism ring. This cobordism invariance of the index was
the major analytic point in the proof of the Atiyah-Singer index theorem
described in [35].

6. Further remarks on index theory

In §5 we derived the spinc-cobordism invariance of the index of Dirac
operators. This, together with the elementary multiplicativity of the index
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of Dirac operators, is one of the main analytical tools in a proof of the
index theorem for Dirac operators, on a spinc manifold M, which states

(6.1) IndexDE = (ch(E) U Td(Tλf))[M],

where DE is the Dirac operator on S®E, S being the bundle of spinors. Of
course, the bordism invariance implied by Proposition 5.1 and the exact
sequence (5.34), and its analogue for KK proved in §4, (4.27), are also
key analytic results for proving the isomorphism

(6.2) K'j{X)±Kf(X)9

where K?(X) = KKJ{C{X),C) is the analytic #-homotoρy group and
Kιj(X) the topological ΛMiomology group. A map on the level of cycles,
which is proposed to lead to the isomorphism (6.2), has been described in
[5], [6]. As pointed out in these papers, one can derive the index theorem
for Dirac operators, indeed for general pseudodifferential operators on a
compact manifold, from the existence and commutativity of the diagram

K\M)
(6.3) U jS \ ^ ia

e
for a general compact smooth manifold M. Here, M is the double of the
unit ball bundle of M (endowed with a Riemannian metric), with a spinc

structure, arising from its natural almost complex structure. The map
ia assigns to a vector bundle over M an elliptic symbol whereby such a
bundle is created from two bundles over M by "clutching", and thence the
element in KjftM) determined by an associated elliptic pseudodifferential
operator.

The map μ o it can be described as follows. The spinc structure on M
together with a vector bundle E —• M determines a Dirac operator DE

on sections of S ® E —• M and hence an element of Kfftλf); μ o it([E])
is the image of [DE] under the map Kg(M) -> K0{M) defined by the
natural projection π: M —• M. Consequently, a major ingredient in the
proof of commutativity of (6.3) is the following result (a special case of
such commutativity), which can be stated without specifically bringing
topological ΛMiomology.

Proposition 6.1. We have a commutative diagram:

(6.4) f][D] I \

K0(M) -^ KQ(M)
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Before we give a detailed proof of Proposition 6.1, let us note that
it immediately reduces the general problem of computing the index of
a pseudodifferential operator to the computation of the index of Dirac
operators. If Eo and E\ are complex vector bundles over M9 and

(6.5) P: C°°(M,EQ) - C°°{M,Eι)

is an elliptic pseudodifferential operator, whose principal symbol provides
a clutching map to define a vector bundle

(6.6) E -> M,

and if

(6.7) DE: C°°{M,S+®E) -> C°°(M,S-®E)

is the associated Dirac operator, then the content of Proposition 6.1 is that

Since the index is obtained via the unique map to a point:

Ko(M) π* > K0(M)

I
^o(pt.) = Z

then (6.8) implies

(6.9) Index P = Index DE.

Formula (6.1) for the index of a Dirac operator gives the general index
formula

(6.10) IndexP = (ch{E) U Td(TM))[M].

The reducibility of the general index problem to that for Dirac operators is
well known, but it seems to be accomplished most directly via Proposition
6.1. This analysis also explains why the general index formula has such a
close formal resemblance to the index formula for Dirac operators, as op-
posed say to signature operators. It is a happy coincidence that very simple
and accessible direct proofs of the index theorem for Dirac operators have
recently become available [26], [27], [9].

Our proof of Proposition 6.1 will make use of Lemma 4.13, proved in
[7], which states the following. Consider

(6.11) PjϋeKxii

the pseudodifferential operator extension,

(6.12) 0 - X{H) -> OPS°(M) - C(5*M) - 0
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where H = L2(M). Then there is a natural commutative diagram

K°(S*M)
(6.13) Π ^ M I ^

KX(S*M) -ϊ% Kχ(M)

having the following property. If A e OPSm(M) is an elliptic selfadjoint
operator defining a class [A] G K{(M), A: C°°(M,E0) -> C°°(Af,JEΌ), and
if 2s+ —• S*M is the vector subbundle of π*Eo —• *S*M which is the direct
sum of the positive eigenspaces of the symbol of A, then

(6.14) π.(E+n&M) = [A] and p.{[E+]) = [A].

In view of the identity (4.43) proved in Proposition 4.7, we can replace
&M by [D] in (6.13), where D is the Dirac operator on S*M, with its
natural spin^-structure. It is in this form that we will use (6.13) below.

We can prove Proposition 6.1 by replacing M by Sι x M in (6.13), using
the injection

(6.15)

described in §5, and its analogue with M replaced by M, together with the
identification

S*(Sι xM) = Sι xM.

Then (6.13) yields the commutative diagram:

K°(Sι x M) Ω

Kx(Sl XM) ^Kλ{Sι xM)

We also have the following commutative diagrams, with j : Sι x M —̂  M
the natural projection:

K°(M) — ^ > K°(Sι x M)

K0(M) - ^ - * Kι(Sι xM)

Furthermore,
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and also

K0(M) - ^ - + Kι(Sι xM)

K0(M) -?ίU K^S1 xM)

A straightforward diagram chase shows that the diagram

is commutative, and the injectivity of (6.15) completes the proof of Propo-
sition 6.1.

We also point out that Proposition 3.8 of Connes-Skandalis [21] gives a
result related to Proposition 6.1; in fact their result applies also to families
of elliptic operators.

A. Boundary conditions of Atiyah-Patodi-Singer type

As we indicated at the end of §3, there are boundary conditions defin-
ing closed extensions of elliptic differential operators which satisfy all the
hypotheses of Proposition 3.1, except that the boundary conditions are not
local. In such a case the compactness result of Proposition 3.1 need not
hold. Since there are important examples of this phenomenon which occur
naturally, we give some further discussion here. Before discussing details
we emphasize that the closed extensions considered here do fall within the
framework of §2, giving cycles in KK(Co(M),C).

The operators we consider here are closed extensions of an elliptic op-
erator of first order D on M, a compact manifold with smooth boundary,
given by a boundary condition Qu = 0 on dM, where Q is an orthogo-
nal projection in OPS°(dM) which has the same principal symbol as the
Calderon projector associated to D. This class of boundary problems in-
cludes those, which we denote AVPS> investigated by Atiyah, Patodi, and
Singer [2], who pointed out the role of a nonlocal invariant, the eta in-
variant, associated to an operator on dM, in the formula for the index
of Z)APS The prescription of §3 does not generally define a cycle for
K0(M,dM) in this case. If it did, the Fredholm property would actually
produce an element of K0(M), and <9[Z>APS] would equal 0 in K\(dM).
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Since [DAFS] = [Dmax] in KK(C0(M),C) « K0(M,dM), we see this is im-
possible whenever it can be verified that <9[Z)max] Φ 0 in K\(dM), a result
that frequently occurs, as we have noted in §4. On the other hand, DAPS

does produce a cycle for K0(%Vl/C0(M)), where 21 is C0(M) with the
identity adjoined (as a constant function on AT), and hence an element
of Ko(M*)9 where M # is obtained from M by collapsing dM to a point;
M* is thus typically a space with a conic-type singularity. We denote the
associated element of KQ(M*) by {Ay>s}.

As an example of this last phenomenon, we consider in detail a family
of operators on the unit disc Ω = { z e C : | z | < l } , defining a family of
homology classes in A^S 2 ). Take

(A.I) D = d/d~z on Ω.

Then [D] = [Z>max] e KQ(Ω,dΩ), with dΩ = Sι. Define operators D{k) by

(A.2) Όom{D{k)) =lueHι(Ω): u\sι =
{ n<k

Thus each D^ is defined by a nonlocal boundary condition like that of
Atiyah-Patodi-Singer, and

(A. 3) Index D{k) = k+ 1.

In this case, Ω# = Ω/<9Ω = S2, and we have

(A.4) {D{k)}eK0(S2).

We can get an explicit hold on these elements by considering the following
commutative diagram with exact rows:

K0(pt.)
ind

One has an isomorphism

ind θ η: K0{S2) -> Ao(pt.) θ ^o(^ 2 , pt.),
(A.5) ||

Z

(A.6) (ind θ η){D{k)} = (k + 1, [Dmax]).
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Note also that, if 2J denotes the Dirac operator on S2, associated to its
complex structure, defining

(A.7)

then

(A.8) η[3f] = [D] e K0(Ω,Sι) « K0(S2, p t) .

Since Index ̂  = 1, we have the identity

(A.9) 1&] = {D(O)} in K0(S2).

In this case, 3 = d, taking 0-forms to (0, l)-forms, and Index 91 = 1
is a special case of the Riemann-Roch theorem. The sphere S2 also has
a spin structure, with associated spinc structure differing from the one
above by a factor of a line bundle whose square is the canonical bundle.
The associated Dirac operator 2J1 then satisfies Index<SΓ/ = 0, so \3!'\ =
{/)(_!)} in K0(S2).
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