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THE RING OF POLYNOMIALS INTEGRAL-VALUED
OVER A FINITE SET OF INTEGRAL ELEMENTS

GIULIO PERUGINELLI

ABSTRACT. Let D be an integral domain with quotient
field K and Ω a finite subset of D. McQuillan proved that
the ring Int(Ω, D) of polynomials in K[X] which are integer-
valued over Ω, that is, f ∈ K[X] such that f(Ω) ⊂ D, is a
Prüfer domain if and only if D is Prüfer. Under the further
assumption that D is integrally closed, we generalize his
result by considering a finite set S of a D-algebra A which
is finitely generated and torsion-free as a D-module, and the
ring IntK(S,A) of integer-valued polynomials over S, that
is, polynomials over K whose image over S is contained
in A. We show that the integral closure of IntK(S,A) is
equal to the contraction to K[X] of Int(ΩS , DF ), for some
finite subset ΩS of integral elements over D contained in
an algebraic closure K of K, where DF is the integral
closure of D in F = K(ΩS). Moreover, the integral closure
of IntK(S,A) is Prüfer if and only if D is Prüfer. The
result is obtained by means of the study of pullbacks of the
form D[X] + p(X)K[X], where p(X) is a monic non-constant
polynomial over D: we prove that the integral closure of
such a pullback is equal to the ring of polynomials over K
which are integral-valued over the set of roots Ωp of p(X) in

K.

1. Introduction. Rings of integer-valued polynomials are a promi-
nent source for providing examples of non-Noetherian Prüfer domains
(see the book [6, Chapter VI, page 123]). Throughout this paper, D
is an integral domain which is not a field, and K is its quotient field.
We denote by K a fixed algebraic closure of K and by D the integral
closure of D in K. We give the following definition, which generalizes
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the classical definition of the ring of integer-valued polynomials over a
subset ([6, Chapter I.1, page 3]).

Definition 1.1. Let R be an integral domain containing D. Let F be
the quotient field of R (so that K ⊆ F ). For a subset Ω of F , we set

IntK(Ω, R) + {f ∈ K[X] | f(Ω) ⊂ R},

which is the ring of polynomials in K[X] which map every element of
Ω into R. If F = K we omit the subscript K. Thus, Int(Ω, R) is a
subring of K[X] (the coefficients of the relevant polynomials are in the
quotient field of R).

In the case of a finite subset Ω of D, McQuillan studied the alge-
braic structure of the corresponding ring of integer-valued polynomials
Int(Ω, D), describing the spectrum of such a ring and also its additive
structure ([13]). Using McQuillan’s arguments, Boynton observed in
[4] that Int(Ω, D) fits in a pullback diagram. Here we generalize this
class of rings by first considering a finite set Ω of integral elements in
D and polynomials in K[X] which preserve the integrality of the ele-
ments of Ω, that is, for each α in Ω, f(α) is integral over D; according
to the above definition, this ring is denoted by IntK(Ω, D). For exam-
ple, given a monic non-constant polynomial p ∈ D[X], let Ωp be the

set of roots of p(X) in a splitting field. Then the ring IntK(Ωp,D) is of

the above kind, and it is not difficult to show that the ring IntK(Ω,D),
for a finite set Ω of D, can be reduced to this case. More generally,
we consider a finite set S of integral elements over D which do not
necessarily lie in an algebraic extension of K, i.e., S is contained in
a D-algebra A, which is finitely generated and torsion-free as a D-
module (for example, a matrix algebra or a quaternion algebra). We
then consider polynomials inK[X] which map the elements of S into A:
IntK(S,A) = {f ∈ K[X] | f(S) ⊂ A}. Note that A is not necessarily
commutative and may contain zero-divisors, and each of its elements
satisfies a monic polynomial over D.

Given a monic polynomial p(X) in D[X], the study of the ring
IntK(Ωp,D) goes through another kind of pullback ring. As for the

rings IntK(Ω, D), the ones we now introduce are the pullbacks of the
canonical residue map K[X] � K[X]/p(X)K[X] with respect to some
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subring of K[X]/p(X)K[X]; thus, they are subrings of K[X] sharing
with K[X] the ideal p(X)K[X].

Definition 1.2. Let p(X) be a non-constant monic polynomial in
D[X]. We consider the following subring of K[X]:

D(p) + D[X]+p(X)·K[X] = {r(X)+p(X)q(X) | r ∈ D[X], q ∈ K[X]}.

It is straightforward to verify that the elements of this set form a
ring under the usual operation of sum and product induced by the
polynomial ring K[X]. In Lemma 1.6, we will show that a polynomial
f(X) in K[X] is in D(p) if and only if the remainder in the division of
f(X) by p(X) is in D[X]. Note that the principal ideal p(X) ·K[X] of
K[X] is also an ideal of D(p). We then have the following diagram:

D(p)

����

� � // K[X]

����
D(p)

p(X)K[X]
� � // K[X]

p(X)K[X]

so that D(p) is a pullback of K[X] (for a general reference about
pullbacks see [9]). Examples of such pullbacks appear in [4], and more
widely in [16].

We see at once that D(p) is contained in IntK(Ωp, D). Also,

IntK(Ωp,D) has the ideal p(X)K[X] in common with K[X], so, like

D(p), also IntK(Ωp,D) is a pullback ring. This point of view is clearly
a generalization of [4, Example 4.4 (1)], which we briefly recall below
in subsection 1.2.

We give some motivations which led us to study the pullback rings
D(p) = D[X] + p(X) ·K[X]. In [16], this kind of polynomial pullback
arose as the ring of integer-valued polynomials over certain subsets of
matrices. Let Mn(D) be the D-algebra of n× n matrices with entries
in D, and let IntK(Mn(D)) = {f ∈ K[X] | f(Mn(D)) ⊂ Mn(D)},
the ring of integer-valued polynomials over Mn(D). Given a monic
polynomial p ∈ D[X] of degree n, we denote by Mp

n(D) the set of
matrices M in Mn(D) whose characteristic polynomial is equal to
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p(X). We consider the overring of IntK(Mn(D)) made up by those
polynomials which are integer-valued over Mp

n(D), namely:

IntK(Mp
n(D),Mn(D)) = {f ∈ K[X] | f(Mp

n(D)) ⊂ Mn(D)}.

This partition of Mn(D) into subsets of matrices having a prescribed
characteristic polynomial was used in [16] to give a characterization of
the polynomials of IntK(Mn(D)) in terms of their divided differences
(see [16, Theorem 4.1]). By [16, Lemma 2.2 and Remark 2.1], we have

IntK(Mp
n(D),Mn(D)) = D(p).

In particular, the ring IntK(Mn(D)) is represented as an intersection
of pullbacks D(p), as p(X) ranges through the set of all the monic
polynomials in D[X] of degree n ([16, Remarks 2.1 and 2.2]). In
[17], the authors address the following question, which generalizes the
previous case: for a D-algebra A as above, where D is integrally closed,
we consider the ring IntK(A) = {f ∈ K[X] | f(A) ⊂ A} of integer-
valued polynomials over A. Is IntK(A) equal to the intersection of
pullbacks of the form D(p)? In general, we have∩

a∈A

D(µa) ⊆ IntK(A),

where, for a ∈ A, µa(X) denotes the minimal polynomial of a over K
(by assumption on A and D, µa ∈ D[X] and is monic). The conditions
under which the previous containment is an equality are not known.

Throughout the paper, given a monic polynomial p(X) in D[X], we
denote by Ωp the multi-set of its roots in K (we recall the notion of
multi-set in Section 2).

This work is organized as follows. In Section 2, we recall a character-
ization for the polynomials in D(p) in terms of their divided differences.

We use this result to show that the ring Int{n}(Ω, D) of polynomials
whose divided differences of order less than or equal to n are integer-
valued over a subset Ω of D can be represented as an intersection of
such pullbacks. This ring has been introduced by Bhargava in [1]; we
recall the definition in that section. In Section 3, we prove the following
theorem:
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Theorem 1.3. Let p(X) be a monic non-constant polynomial in D[X].
Then the integral closure of the ring D(p) = D[X] + p(X)K[X] is the
ring IntK(Ωp, D).

As a corollary, we show that the integral closure of Int{n}(Ω, D) is
equal to the ring Int(Ω, D), in the case of a finite subset Ω of D. For a
general subset Ω of D, in the case where D has finite residue rings, an
argument from [17] gives the same conclusion. In Section 4, we prove
the main theorem:

Theorem 1.4. Assume D is integrally closed, and let Ω be a finite
subset of D. Then the ring IntK(Ω, D) is Prüfer if and only if D is
Prüfer.

If Ω ⊂ D, then this is precisely the main result obtained by
McQuillan. The crucial remark is that, for a monic polynomial p(X) in
D[X], IntK(Ωp,D) ⊆ IntF (Ωp, D) is an integral ring extension, where
F = K(Ωp) is the splitting field of p(X). It is not difficult to see that

IntF (Ω, D) is equal to IntF (Ω, DF ), where DF is the integral closure of
D in F , and this is precisely the kind of ring considered by McQuillan.
We note that this is a partial answer to [17, Question 29], where we
asked if IntK(Ω, D) is Prüfer, when Ω is a subset of integral elements
of degree over K bounded by some positive integer n. If D is integrally
closed, we also give a criterion to establish when the pullback D(p) is
integrally closed, that is, equal to IntK(Ωp,D) (see Theorem 4.5). In
particular, in the case of a Prüfer domain D, this condition is satisfied
automatically if D(p) is integrally closed.

Finally, in the last section, we apply the previous results in the more
general setting of a finite set S of integral elements over D which do
not necessarily lie in an algebraic extension of K.

Corollary 1.5. Assume D is integrally closed, and let S be a finite
set of a torsion-free D-algebra A, which is finitely generated as a D-
module. Let ΩS be the set of roots in D of the minimal polynomials of s
over D, as s ranges through S. Then the integral closure of IntK(S,A)
is IntK(ΩS ,D).
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1.1. Preliminary results. In the case of a monic polynomial, the fol-
lowing lemma determines the quotient of D(p) by the ideal p(X)K[X].
We denote by π : K[X] � K[X]/p(X)K[X] the canonical residue
map, which associates to a polynomial f ∈ K[X] the residue class
f(X) + p(X)K[X].

Lemma 1.6. Let p ∈ D[X] be a monic non-constant polynomial. Then
D(p) is the pullback of D[X]/p(X)D[X] ↪→ K[X]/p(X)K[X] with
respect to the canonical residue map π : K[X] � K[X]/p(X)K[X].
In other words, the following is a pullback diagram (i.e., D(p) =
π−1(D[X]/p(X)D[X])):

D(p)

����

� � // K[X]

����
D[X]

p(X)D[X]
� � // K[X]

p(X)K[X]

In particular, a polynomial f ∈ K[X] belongs to D(p) if and only
if the remainder in the division by p(X) in K[X] belongs to D[X].
Equivalently, we have

D(p)

p(X) ·K[X]
∼=

D[X]

p(X) ·D[X]
.

Proof. Since p(X) is monic, we have two consequences. Firstly,
D[t] ∼= D[X]/p(X)D[X] is a free D-module of rank n = deg(p)
with basis {1, t, . . . , tn−1}, where t is the residue class of X modulo
p(X)D[X]. In particular, every element r ∈ D[t] can be uniquely
represented as r(t) =

∑
i=0,...,n−1 cit

i, with ci ∈ D.

Secondly, p(X) · K[X] ∩ D[X] = p(X) · D[X], so the image of the
restriction of π to D[X] is isomorphic to D[t]. Therefore, D[t] ∼=
D[X]/p(X)D[X] embeds naturally into K[X]/p(X)K[X] ∼= K[t] (the
class X (mod p(X)D[X]) is mapped to X (mod p(X)K[X]), so with-
out confusion we may denote them with the same letter t). Note that
K[t] is a free K-module of rank n with the same basis {1, t, . . . , tn−1}.

We consider now the composition of mappings D[X] ↪→ D(p) �
D(p)/p(X)K[X]. By the second consequence above, and by the second
isomorphism theorem, we have the isomorphism of the claim. More
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explicitly, given f ∈ K[X], there exist (uniquely determined) a quotient
q ∈ K[X] and a remainder r ∈ K[X] (with either r = 0 or deg(r) <
deg(p)) such that f(X) = r(X)+q(X)p(X). Hence, if r(X) =

∑
i ciX

i,
then π(f) = π(r) = r(t) =

∑
i cit

i ∈ K[t]. From the algebraic structure
of D[t] we deduce that r(t) is in D[t] if and only if the remainder r(X)
is in D[X]. This condition in turn is equivalent to f ∈ D(p). �

Lemma 1.7. Let p, q ∈ D[X] be monic polynomials. Then

D(p) is contained in D(q) ⇐⇒ p(X) is divisible by q(X).

In particular, D(p) = D(q) ⇔ p(X) = q(X).

Proof. One direction is easy. Conversely, suppose D(p) ⊆ D(q)
so that p(X) = r(X) + q(X)k(X), for some r ∈ D[X], r = 0 or
deg(r) < deg(q), k ∈ K[X]. If r ̸= 0, let c ∈ K \D be such that c ·r(X)
is not in D[X]. Then c·p is in D(p), but it is not in D(q), contradiction.
Notice that k(X) has to be in D[X] (see also [12, Lemma]). �

The following two cases, linear and irreducible polynomials, are
given as an example and to further illustrate the connection between
polynomial pullbacks and rings of integer-valued polynomials.

1.2. Linear case. In the linear case, the connection between the
polynomial pullbacks and ring of integer-valued polynomials over finite
sets becomes evident. Suppose p(X) = X − a ∈ D[X]. Then the
remainder of the division of a polynomial f ∈ K[X] by X − a is the
value of f(X) at a. Hence,

D(p) = D + (X − a) ·K[X] = Int({a}, D).

It is well known (see, for example [6, Proposition IV.4.1]) that
Int({a}, D) is integrally closed if and only if D is. It is easy to see
that the integral closure of Int({a}, D) is Int({a}, D′), where D′ is the
integral closure of D in K (notice that Int({a}, D′) = D′+(X−a)K[X]
is a pullback). More generally, we recall the following result.

Lemma 1.8. Let E ⊂ K be a finite set. Then the integral closure of
Int(E,D) is Int(E,D′), where D′ is the integral closure of D in K.
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Proof. By [6, Proposition IV.4.1], Int(E,D′) is integrally closed.
Conversely, take f ∈ Int(E,D′). Then for each a ∈ E, there exists
a monic polynomial mf(a) ∈ D[X] such that mf(a)(f(a)) = 0. We
consider the monic polynomial of D[X] equal to the product of the
mf(a)(X)’s, as a ranges through E. Then m(f(X)) is in Int(E,D),
because, for each a ∈ E, we have m(f(a)) = 0 ∈ D. This gives a monic
equation for f(X) over Int(E,D). �

Remark 1.9. We now recall the following observation made in [4].
Under the assumptions of Lemma 1.8, Int(E,D) is the pullback of∏m

i=1 D ⊂
∏m

i=1 K with respect to the canonical mapping π : K[X] �
K[X]/p(X)K[X] ∼=

∏m
i=1 K, where p(X) =

∏
a∈E(X − a). The map π

is given by f(X) 7→ (f(a))a∈E . Notice also that p(X)K[X] is an ideal
of Int(E,D), because every polynomial of K[X] which is divisible by
p(X) is zero on E. In particular, we have the following isomorphism of
D-modules

Int(E,D)

p(X)K[X]
∼=

m∏
i=1

D.

1.3. Irreducible polynomial case. We suppose now that D is in-
tegrally closed and p(X) is a monic irreducible polynomial in D[X] of
degree n > 0. It is easy to see (for example, [12] or [2, Proposition 11,
Chapter V]) that p(X) is irreducible in K[X], so that p ∈ D[X] is also
prime and D[X]/(p(X)) ∼= D[α], where α is a root of p(X) in K. The
next proposition follows by [15, Proposition 3.1] (which is proved in
the case D = Z). We sketch the proof for the sake of the reader, giving
emphasis to the relevant points.

Proposition 1.10. Let p ∈ D[X] be a monic and irreducible polyno-
mial, with a set of roots Ωp ⊂ K. Let F = K(Ωp) be the splitting
field of p(X) over K and DF the integral closure of D in F . For each
α ∈ Ωp, we set

Sα + IntK({α}, Dα),

where Dα is the integral closure of D in K(α) ⊆ F .

Then, for each α ∈ Ωp, Sα = IntK(Ωp, DF ), and this ring is the
integral closure of D(p). Moreover, D(p) is integrally closed if and
only if Dα = D[α], for some (hence all) α ∈ Ωp.
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Proof. Using a Galois-invariance argument it is easy to show that
the ring Sα does not depend on the choice of the root α of p(X)
and is equal to IntK(Ωp, DF ). We observe that Sα = {f ∈ K[X] |
f(α) is integral over D}. Then, for a polynomial f ∈ Sα, and for every
conjugate α′ of α over K, f(α′) is integral over D as well. Since D[α],
for α ∈ Ωp, is a free D-module of rank n, we can show that

D(p) = {f ∈ K[X] | f(α) ∈ D[α]} = IntK({α}, D[α]).

Finally, using a pullback diagram argument, since Dα is the integral
closure of D[α] in K(α), we deduce that IntK(Ωp, DF ) is the integral
closure of D(p) (see [15, Proposition 3.1] for details). �

In particular, the proposition shows that all the subrings Int({α}, DF )
⊂ F [X], for α ∈ Ωp, contract in K[X] to the same ring Sα. Notice also

that IntK(Ωp,D) is equal to IntK(Ωp, DF ), where DF is the integral
closure of D in the splitting field F = K(Ωp) of p(X) over K.

2. Pullbacks and divided differences. In this section we recall
a result of [16] which characterizes a polynomial f(X) in a pullback
D(p) = D[X]+p(X) ·K[X] in terms of a finite set of conditions on the
evaluation of the divided differences of f(X) at the roots of p(X) in K.
We use this result to show that the ring of integer-valued polynomials
whose divided differences are also integer-valued can be represented as
an intersection of such pullbacks.

Given a polynomial f ∈ K[X], the divided differences of f(X) are
defined recursively as follows:

Φ0(f)(X0) + f(X0)

Φ1(f)(X0, X1) +
f(X0)− f(X1)

X0 −X1

. . .

Φk(f)(X0, . . . , Xk) + Φk−1(f)(X0,...,Xk−1)−Φk−1(f)(X0,...,Xk−2,Xk)
Xk−1−Xk

.

For each k ∈ N, Φk(f) is a symmetric polynomial over K in k + 1
variables (see [7, 16, 18, 19] for the main properties of the divided
differences of a polynomial). We recall here that, given a finite sequence
of elements a0, . . . , an of a commutative ring R, and a polynomial
f ∈ R[X] of degree ≤ n, we have the following expansion due to
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Newton:

f(X) = f(a0) + Φ1(f)(a0, a1)(X − a0)(2.1)

+ Φ2(f)(a0, a1, a2)(X − a0)(X − a1) + . . .

+Φn(f)(a0, . . . , an)(X − a0) · . . . · (X − an−1).

Since in general a polynomial may not have distinct roots, we need to
recall the following definition.

Definition 2.1. A multi-set is a collection of elements Ω in which
elements may occur multiple times. The number of times an element
occurs is called its multiplicity in the multi-set. The cardinality of a
multi-set Ω is defined as the number of elements of Ω, each of them
counted with multiplicity. The underlying set of Ω is the (proper) set
containing the distinct elements in Ω.

A multi-set Ω1 is a sub-multi-set of a multi-set Ω2 if every element
α of Ω1 of multiplicity n1 belongs to Ω2 with multiplicity n2 ≥ n1.

Remark 2.2. Let Ω be a multi-set of cardinality n, and let S be the
underlying set of Ω. The choice of an ordering on the elements of Ω
corresponds to an n-tuple in Sn (we have thus n! choices). Conversely,
given an n-tuple s in Sn, where S is a set, if we do not consider the
order of its components, we have a multi-set Ω of cardinality n.

Remark 2.3. A particular ring of integer-valued polynomials involving
divided differences has been introduced by Bhargava in [1]. Given a
subset S of D and n ∈ N, we consider those polynomials f(X) in
K[X] whose kth divided difference Φk(f) is integer-valued on S for all
k ∈ {0, . . . , n}, namely:

Int{n}(S,D) + {f ∈ K[X] | for all 0 ≤ k ≤ n, Φk(f)(Sk+1) ⊂ D}.

For n = 0, we recover the ring Int(S,D), which contains Int{n}(S,D)
for all n ∈ N.

Given f ∈ Int{n}(S,D) and k ∈ {0, . . . , n}, we have:

(∗) for all (a1, . . . , ak+1) ∈ Sk+1, Φk(f)(a1, . . . , ak+1) ∈ D.
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Since Φk(f) is a symmetric polynomial in k + 1 variables, for all
permutations σ ∈ Sk+1, we have

Φk(f)(a1, . . . , ak+1) = Φk(f)(aσ(1), . . . , aσ(k+1)).

Hence, we may disregard the order of the components of the chosen
(k + 1)-tuple. If we consider a multi-set Ω of cardinality k + 1 formed
by the elements of S, we may define Φk(f)(Ω) as the value of Φk(f) at
one of the (k+ 1)-tuples associated to Ω. Thus, we choose an ordering
of Ω and, by the above, the value Φk(f)(Ω) does not depend on the
chosen ordering. Notice that Ω is not necessarily a sub multi-set of S.
We only require that the underlying set of Ω be contained in S. For
example, if S = {1, 2, 3} and k = 1, we have {1, 1}, {1, 3} and {2, 2} as
possible choices for Ω.

We may rephrase the above property (∗) by saying that, for all multi-
sets Ω of cardinality k+1 such that the underlying set Ω′ is contained
in S, we have Φk(f)(Ω) ∈ D.

2.1. Notation. We fix now the notation for the rest of this section.

– p(X) is a monic non-constant polynomial in D[X] of degree n.
– Ωp = {α1, . . . , αn} is the multi-set of roots of p(X) in K (the
αi’s are integral over D).

– F = K(α1, . . . , αn) the splitting field of p(X).
– DF the integral closure of D in F .

Given f ∈ F [X], whenever we expand f ∈ F [X] as in (2.1) in terms
of the roots Ωp of p(X), we implicitly assume that an order of Ωp has
been fixed (so we choose one of the n! associated n-tuples). Changing
the order of Ωp will give a different expansion.

We now need the following preliminary lemma: the divided differ-
ences of a polynomial p(X) are zero when they are evaluated at the
roots of the polynomial p(X) itself.

Lemma 2.4. For every sub-multi-set Ω of Ωp of cardinality k + 1,
k < n− 1, we have Φk(p)(Ω) = 0, and Φn−1(p)(Ωp) = 1. Equivalently,
we have:

Φk(p)(α1, . . . , αk+1) =

{
0, if 0 ≤ k < n
1, if k = n
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for any possible choice of an ordering for Ωp.

Proof. We fix an ordering for Ωp. We consider the Newton ex-
pansion of p(X) over F with respect to Ωp up to the order n
(p(X) is split over F ). The coefficients of this expansion are exactly
{Φk(p)(α1, . . . , αk+1)}0≤k≤n, where for k = n, we have the leading co-
efficient of p(X) which is 1. Since p(X) is divisible by itself, all the
other coefficients in this expansion are zero. Obviously, the result does
not depend on the chosen ordering for Ωp. �

Lemma 2.5. Let f ∈ K[X], and let r ∈ K[X] be the unique remainder
in the division of f(X) by p(X) in K[X]. If r ̸= 0, let m < n be the
degree of r(X). Then, over F [X] we have

r(X) = f(α1) + Φ1(f)(α1, α2) · (X − α1) + · · ·(2.2)

+ Φm(f)(α1, . . . , αm+1)
m∏
i=1

(X − αi),

which is the Newton expansion of r(X) with respect to Ωp={α1, . . . , αn}.

Proof. If f(X) = q(X)p(X) + r(X), by linearity of the divided
difference operator, we have Φk(f) = Φk(r) + Φk(p · q), for all k ∈ N.
Moreover, by the so-called Leibniz rule for divided differences (see, for
example, [18]), we have Φk(p · q) =

∑
i=0,...,k Φ

i(p)Φk−i(q) (we omit

the variables). By Lemma 2.4, for 0 ≤ k < n, we get that

(2.3) Φk(f)(α1, . . . , αk+1) = Φk(r)(α1, . . . , αk+1).

Notice that, for k = m, the above value is the leading coefficient of
r(X), and for m < k < n, it is zero. Because of the last formula, r(X)
has the desired expansion over F [X]. �

By means of Lemma 2.4 and Lemma 2.5 we give a new proof of [16,
Proposition 4.1], which says that a polynomial f(X) of K[X] is in D(p)
if and only if the divided differences of f(X) up to the order n− 1 are
integral on every sub-multi-set of the multi-set Ωp of the roots of p(X).

Proposition 2.6. Let D be an integrally closed domain with quotient
field K. Let f ∈ K[X] and p ∈ D[X] monic of degree n. Let
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Ωp = {α1, . . . , αn} be the multi-set of roots of p(X) in a splitting field
F over K. Then the following are equivalent :

(i) f ∈ D(p).
(ii) For all 0 ≤ k < n, Φk(f)(α1, . . . , αk+1) ∈ D[α1, . . . , αk+1].
(iii) For all 0 ≤ k < n, Φk(f)(α1, . . . , αk+1) ∈ DF .

Proof. If (i) holds, let f(X) = r(X) + p(X)q(X), for some q ∈
K[X], r ∈ D[X], deg(r) < n or r = 0. In particular, the divided
differences of r(X) are polynomials with coefficients in D. By (2.3),
Φk(f)(α1, . . . , αk+1) = Φk(r)(α1, . . . , αk+1) ∈ D[α1, . . . , αk+1], for all
the relevant k’s. Hence, (i) ⇒ (ii).

Obviously (ii) ⇒ (iii), since the roots of p(X) are integral over D,
so that D[α1, . . . , αk+1] ⊆ DF .

Suppose now that (iii) holds. We have to prove that the remainder
r(X) of the Euclidean division in K[X] of f(X) by p(X) is in D[X].
Let m < n be the degree of r(X). Consider the Newton expansion
of r(X) with respect to Ωp over F [X] as in Lemma 2.5 (see (2.2)).
By assumption, the coefficients {Φk(f)(α1, . . . , αk+1)}k=0,...,m of this
expansion are in DF . The leading coefficient of r(X) is equal to
Φm(f)(α1, . . . , αm+1), so that it is in DF ∩ K = D (we use here
the assumption that D is integrally closed). The coefficient cm−1 of
the term Xm−1 of r(X) is Φm−1(f)(α1, . . . , αm) ± (

∑
i=1,...,m αi) ·

Φm(f)(α1, . . . , αm+1) which is in DF , so cm−1 is in K ∩ DF = D.
If we continue in this way we prove that r(X) is in D[X], which gives
(i). �

Remark 2.7. If we choose another ordering on the multi-set Ωp of
roots of p(X) we have other conditions of integrality on the values
of the divided differences of a polynomial f ∈ D(p) at the vectors of
elements in Ωp. Since condition (i) of Proposition 2.6 does not depend
on the order we choose on Ωp, the above conditions are also equivalent
to this one:

(ii′) for all 0 ≤ k < n, and for every sub-multi-set Ω of Ωp

of cardinality k + 1, Φk(f)(Ω) ∈ D[Ω],

that is, Φk(f) is integral-valued on Ω: Φk(f)(Ω) ∈ DF (see also [16,
Proposition 4.1 and Remark 4.1]).
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Note that, if p ∈ D[X] is a monic polynomial of degree n which is
split over D, that is, p(X) =

∏n
i=1(X − ai), ai ∈ D, then conditions

(i) and (ii) are equivalent without the assumption that D is integrally
closed (this follows immediately from the formula (2.2)). In particular,
condition (ii) becomes: for all 0 ≤ k < n, Φk(f)(a1, . . . , ak+1) ∈ D.
We have, thus, in this case found again the result of [7, Proposition
11] (see also [16, Lemma 2.2 and Remark 2.1]).

Now we give the link between the ring of integer-valued polynomials
whose divided differences are also integer-valued introduced by Bhar-
gava and the polynomial pullbacks D(p) we are working with.

We observe first that, if p ∈ D[X] is a monic polynomial of degree n
which is split over D (i.e., the set of roots Ωp is contained in D), then

Int{n−1}(Ωp, DF ) is contained in D(p), by Proposition 2.6. The next
example shows that this containment can be strict.

Example 2.8. Let n = 2, Ω = {1, 3} ⊂ Z and p(X) = (X−1)(X−3).
Let f(X) = p(X)/3 ∈ Z(p). We have that Φ1(f)(1, 1) = −2/3, so

that f /∈ Int{1}(Ω,Z). Indeed, by Proposition 2.6, given any f ∈ Z(p),
Φ1(f) is integer-valued over {(1, 3), (3, 1)} ( Ω2.

We need to introduce more notation before the next theorem.

2.2. Notation. Let Ω be a subset ofD, and let n be a positive integer.
We denote by Pn(Ω) the set of monic polynomials q(X) over D of
degree n whose set of roots is contained in Ω (so, in particular, they
are split over D).

Theorem 2.9. Let Ω ⊆ D and n ∈ N. Then

Int{n−1}(Ω, D) =
∩

q∈Pn(Ω)

D(q).

Proof. (⊆). Let f ∈ Int{n−1}(Ω, D), and let q ∈ Pn(Ω). Since, for
all 0 ≤ k < n, we have Φk(f)(Ωk+1) ⊂ D, then for each sub-multi-set
{a1, . . . , ak+1} of Ωq of cardinality k+1 we have Φk(f)(a1, . . . , ak+1) ∈
D. Then, by Proposition 2.6 (see also Remark 2.7), we have that
f ∈ D(q).
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(⊇). Let f ∈ D(q), for all q ∈ Pn(Ω). Let k ∈ {0, . . . , n − 1},
and let (a1, . . . , ak+1) ∈ Ωk+1. We consider a polynomial q ∈ Pn(Ω)
such that the multi-set {a1, . . . , ak+1} is a sub-multi-set of the multi-set

of roots Ωq (that is,
∏k+1

i=1 (X − ai) divides q(X)). Then by Proposi-
tion 2.6, condition (ii), Φk(f)(a1, . . . , ak+1) ∈ D (see also Remark 2.7,
condition (ii′)). Since (a1, . . . , ak+1) was chosen arbitrarily, f(X) is in

Int{n−1}(Ω, D). �

In Example 2.8 above, we have that f(X) = q(X)/3 − 2/3(X − 1)
is not in Z(q), where q(X) = (X − 1)2 is a polynomial in P2(Ω) =
{(X − 1)(X − 3), (X − 1)2, (X − 3)2}.

Remark 2.10. By [16, Lemma 5.1], given a monic polynomial p ∈
D[X] of degree n which is split over D, the pullback ring D(p) is equal
to IntK(T p

n(D),Mn(D)), where T p
n(D) is the set of n × n triangular

matrices with characteristic polynomial equal to p(X). In particular,
we have this representation for the ring of integer-valued polynomials
over the algebra of n× n triangular matrices over D:

(2.4) IntK(Tn(D)) =
∩

p∈Ps
n(D)

D(p),

where Ps
n(D) is the set of monic polynomials over D of degree n which

are split over D; as we mentioned in the introduction, a similar result
holds for IntK(Mn(D)), see [16]. We note that this gives a positive
answer to [17, Question 31] for the algebra Tn(D). Similarly, given
any subset P of Ps

n(D), the intersection of the pullbacks D(p) as p(X)
ranges through P is the ring of polynomials which are integer-valued
over the set of triangular matrices whose characteristic polynomial

belongs to P. By Theorem 2.9, this ring is equal to Int{n−1}(Ω, D),
where Ω ⊆ D is the set of roots of the polynomials in P.

In the case Ω = D, [7, Theorem 16] proves that Int{n−1}(D) =
IntK(Tn(D)), which by (2.4) is also equal to the intersection of the pull-
backs D(p), as p(X) ranges through Ps

n(D). Therefore, Theorem 2.9
generalizes this result to any subset Ω of D.
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3. Integral closure of polynomial pullbacks.

Remark 3.1. Let Ω ⊂ K be a finite set. Let F = K(Ω), and let DF be
the integral closure of D in F . By [6, Proposition IV.4.1], Int(Ω, DF ) is
integrally closed. Hence, IntK(Ω, DF ) = Int(Ω, DF )∩K[X] is integrally
closed, too. The same remark was used in [17, Proposition 7].

Lemma 3.2. Let D be an integrally closed domain. Let p ∈ D[X]
be a non-constant polynomial of degree n and Ωp ⊂ K the multi-
set of its roots. Let f ∈ K[X] be integral-valued over Ωp, that is,

f ∈ IntK(Ωp, D). Then the polynomial

P (X) = Pf,p(X) +
∏

α∈Ωp

(X − f(α))

is in D[X]. Moreover, P (f(X)) is divisible by p(X) in K[X].

Proof. Notice that P (X) has degree n, because the product is over
the elements of the multi-set Ωp. We set g(X) + p(X)/lc (p) =∏

α∈Ωp
(X − α), where lc (p) is the leading coefficient of p(X). The

polynomial g(X) is in K[X] and is monic.

Let M ∈ Mn(K) be a matrix with characteristic polynomial equal
to g(X) (e.g., the companion matrix of g(X)). The multi-set of
eigenvalues of M over K is exactly Ωp. Notice that f(M) is in
Mn(K), so its characteristic polynomial is in K[X]. By [3, Chapter
VII, Proposition 10] (considering everything over K) the characteristic
polynomial of f(M) is precisely P (X). In particular, the set of
eigenvalues of f(M) is f(Ωp) = {f(α) | α ∈ Ωp}, which, by assumption

on f(X), is contained in D. Hence, the coefficients of P (X) are integral
over D (being the elementary symmetric functions of the roots), and
since D is integrally closed they are in D.

For the last statement, notice that, for each α ∈ Ωp, X − α divides
f(X)− f(α) over F = K(Ωp). Hence, p(X) =

∏
α∈Ωp

(X − α) divides

P (f(X)) =
∏

α∈Ωp
(f(X) − f(α)) over F . Since both polynomials are

in K[X], one divides the other over K, as we wanted. �

We now prove Theorem 1.3 of the introduction. For the sake of the
reader we repeat the statement here.
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Theorem 3.3. Let p ∈ D[X] be a monic non-constant polynomial, and
let Ωp ⊂ K be the multi-set of its roots. Then the integral closure of

D(p) is IntK(Ωp, D).

Notice that, by definition, IntK(Ωp, D) = IntK(Ω′
p,D), where Ω′

p is
the underlying set of Ωp, the set of distinct roots of p(X).

Proof. Remember that IntK(Ωp, D) is integrally closed by Re-
mark 3.1. If D′ is the integral closure of D in its quotient field K, then
D(p) ⊆ D′(p) is an integral ring extension, because D[X] ⊆ D′[X] is.
Since D(p) ⊆ D′(p) ⊆ IntK(Ωp, D) (because p(X) is monic, so Ωp is

contained in D), without loss of generality, we may assume that D is
integrally closed (that is, D = D′). To prove the statement, it suffices
to prove that D(p) ⊆ IntK(Ωp, D) is an integral ring extension.

Let f ∈ IntK(Ωp, D) and consider P (X) as defined in Lemma 3.2.
Then P (X) is a monic polynomial in D[X] such that P (f(X)) is
divisible by p(X) over K. Hence, P (f(X)) is in D(p), and this gives a
monic integral equation for f(X) over the pullback ring D(p). �

We prove now that the ring of polynomials in K[X] whose divided
differences of order up to n are integer-valued over a finite subset Ω
of D has integral closure equal to the ring of polynomials which are
integer-valued over Ω.

Corollary 3.4. Let D be an integrally closed domain. Let Ω ⊂ D be

a finite set, and let n ∈ N. Then the integral closure of Int{n}(Ω, D) is
Int(Ω, D).

Proof. As in the proof of Theorem 3.3, it is sufficient to show that

any f ∈ Int(Ω, D) satisfies a monic equation over the ring Int{n}(Ω, D).

By Theorem 2.9, Int{n}(Ω, D) is equal to the intersection of the
pullbacks D(p), as p(X) ranges through the finite family Pn+1(Ω) of
monic polynomials overD of degree n+1 whose set of roots is contained
in Ω. We consider the subset P of Pn+1(Ω) of those polynomials of the
form q(X) = (X − a)n+1, for a ∈ Ω. For each of them, we consider the
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polynomial Pf,q ∈ D[X] as defined in Lemma 3.2. Therefore,

Q(X) +
∏
q∈P

Pf,q(X)

is a monic polynomial in D[X] such that Q(f(X)) is in p(X)K[X] for
each p ∈ Pn+1(Ω). In fact, let p ∈ Pn+1(Ω). If a ∈ Ω is a root of p(X) of
multiplicity e ≤ deg(p) = n+1, then (X−a)e divides (f(X)−f(a))n+1

over K. Notice that the latter is a factor of Q(f(X)). Since this holds
for every root of p(X), then p(X) divides Q(f(X)) over K, that is,
Q(f(X)) ∈ pK[X] ⊂ D(p). Since this holds for every p ∈ Pn+1(Ω),
this concludes the proof of Corollary 3.4. �

Remark 3.5. If Ω ⊆ D is an infinite set and D has finite residue rings
(that is, D/dD is a finite ring for every non-zero d ∈ D), reasoning as

in [17] by means of the pullback representation of Int{n}(Ω, D) given
by Theorem 2.9, the same result of Corollary 3.4 holds. For Ω = D,
the result was given in [17, Corollary 17], where it is proved that the
integral closure of IntK(Tn+1(D)) is Int(D). Note that, by [7, Theorem

16], the former ring is equal to Int{n}(D) (see Remark 2.10).

4. Prüfer rings of integral-valued polynomials. The next lemma,
though easy, is a crucial step for establishing when IntK(Ω,D) is a
Prüfer domain, for a finite set Ω of integral elements over D.

Lemma 4.1. Let p ∈ D[X] be a monic non-constant polynomial and
K ⊆ F an algebraic extension. Let DF be the integral closure of D in
F . Then D(p) ⊆ DF (p) is an integral ring extension.

Proof. We use the well-known fact that the integral closure of D[X]
in F [X] is DF [X] ([2, Proposition 13, Chapter V]). Hence, given
f(X) = r(X) + p(X)q(X) ∈ DF (p), for some r ∈ DF [X] (r = 0 or
deg(r) < deg(p)) and q ∈ F [X], the polynomial r(X) is integral over
D[X], so in particular it is also integral over D(p). We now show that
h(X) = p(X)q(X) ∈ p(X) · F [X] is integral over D(p).

It is easy to see that, if Ψq(T,X) is the minimal polynomial of q(X)
over K[X], then the minimal polynomial of h(X) over K[X] is given
by Ψh(T,X) = pn ·Ψq(T/p,X), which is a monic polynomial in T over
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D. Notice that the coefficients of Ψh(T,X) − Tn are in p(X) · K[X],
so that Ψh(T,X) ∈ D(p)[T ]. This proves our assertion. �

We prove now Theorem 1.4 of the introduction.

Theorem 4.2. Assume that D is integrally closed, and let Ω be a finite
subset of D. Then IntK(Ω, D) is Prüfer if and only if D is Prüfer.

Proof. Given f(X) in IntK(Ω, D) and α ∈ Ω, f(X) is integral-valued
over all the conjugates of α over K (see Proposition 1.10). Hence,
without loss of generality, we can assume that Ω is equal to the set
of roots Ωp of a monic polynomial p(X) over D (more precisely, p(X)
is the product of all the minimal polynomials of the elements of Ω,
without repetitions).

Let F = K(Ωp) be the splitting field of p(X) over D, and let
DF be the integral closure of D in F . By assumption, Ωp ⊂ DF .

Remember that IntK(Ωp, D) = IntK(Ωp, DF ) (see the remarks after
Proposition 1.10). By the result of McQuillan ([13, Corollary 7]),
Int(Ωp, DF ) is a Prüfer domain if and only if DF is a Prüfer domain.
Since D is integrally closed, by [10, Theorem 22.3, 22.4] D is Prüfer if
and only if DF is Prüfer. We have the following diagram:

DF (p) // Int(Ωp, DF ) // F [X]

D(p)

OO

// IntK(Ωp, DF )

OO

// K[X]

OO

By Theorem 3.3, D(p) ⊆ IntK(Ωp, DF ) and DF (p) ⊆ Int(Ωp, DF ) are
integral ring extensions. Hence, by Lemma 4.1, Int(Ωp, DF ) is integral
over IntK(Ωp, DF ). Moreover, since the former ring is integrally closed,
it is the integral closure of the latter ring in F [X]. Finally, we have
these equivalences:

D Prüfer ⇐⇒ DF Prüfer ⇐⇒ Int(Ωp, DF ) Prüfer

⇐⇒ IntK(Ωp, DF ) Prüfer,

where the last equivalence follows again by [10, Theorem 22.3, 22.4]
(IntK(Ωp, DF ) is integrally closed by Remark 3.1). �
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As we recalled in the introduction, the intersection of the polynomial
pullbacks D(p) arises in many different contexts, especially those con-
cerning rings of integer-valued polynomials over algebras. In Section 2,
we saw that the ring of integer-valued polynomials whose divided dif-
ferences are also integer-valued can be represented as an intersection of
such pullbacks. We now investigate more deeply how these pullbacks
intersect with each other. As a corollary, we obtain a criterion for a
pullback D(p) to be integrally closed.

At the beginning of Section 1.3 we recalled that a monic irreducible
polynomial over an integrally closed domain D is still irreducible over
the quotient field K. Moreover, a monic polynomial p ∈ D[X] can be
uniquely factored into monic irreducible polynomials over D (see [12];
this is a sort of Gauss’s lemma for monic polynomials over an integrally
closed domain). Therefore, given a monic polynomial p(X) in D[X],
we have p(X) =

∏
i qi(X), where qi(X) are powers of monic irreducible

polynomials in D[X]. In particular, the qi(X)’s are pairwise coprime in
K[X] (but they may not be coprime over D, see below). A polynomial
p(X) is square-free exactly when each qi(X) is irreducible. Notice that
p(X)K[X] is an ideal of each pullback D(qi), for all i. In particular, it
is an ideal of the intersection of the rings D(qi).

The next proposition is a generalization of Lemma 1.6. Recall that
two ideals I, J of a commutative ring R are coprime if I + J = R (see
[2, Chapter 2, page 53]). For this statement, we do not require D to
be integrally closed. Given q1, q2 ∈ D[X], we simply say that q1(X)
and q2(X) are coprime (over D) if the corresponding principal ideals
q1(X)D[X] and q2(X)D[X] are coprime.

Proposition 4.3. Let p ∈ D[X] be a monic polynomial. Let p(X) =∏
i qi(X) be a factorization into monic polynomials over D which are

pairwise coprime when they are considered over K. Then∩
i D(qi)

p(X)K[X]
∼=

∏
i

D[X]

qi(X)D[X]
.

Moreover, D(p) =
∩

i D(qi) if and only if {qi(X)}i are pairwise coprime
over D.

Note that two polynomials q1, q2 ∈ D[X] may be coprime over
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K without being coprime over D: for example, q1(X) = X and
q2(X) = X − 2 over Z. However, under this condition, it is easy to
verify that q1(X)D[X] ∩ q2(X)D[X] = q1(X)q2(X)D[X].

Proof. It is sufficient to notice that
∩

i D(qi) is the pullback of∏
i

D[X]

qi(X)D[X]
⊂

∏
i

K[X]

qi(X)K[X]
∼=

K[X]

p(X)K[X]

with respect to the canonical residue mapping

π : K[X] � K[X]

p(X)K[X]
,

that is,

π−1

(∏
i

D[X]

qi(X)D[X]

)
=

∩
i

D(qi).

Indeed, by definition, we have

π−1

(∏
i

D[X]

qi(X)D[X]

)
=

{
f ∈ K[X] | f (mod qi(X)K[X])

∈ D[X]

qi(X)D[X]
, for all i

}
.

Since each qi(X) is monic, by Lemma 1.6, this is equivalent to the fact
that the remainder of the division of f(X) by qi(X) is in D[X], that
is, f(X) is in D(qi); hence, the statement regarding the isomorphism.
We then have the following pullback diagram:

D(p)

����

� � // ∩
i D(qi)

����
D[X]

p(X)D[X]
� � // ∏

i
D[X]

qi(X)D[X]

where the vertical arrows are the quotient map modulo the common
ideal p(X)K[X]. Note that the bottom horizontal arrow is injective
by the remark above before the proof. Then D(p) =

∩
i D(qi) if and

only if D[X]/p(X)D[X] and
∏

i D[X]/qi(X)D[X] are isomorphic. By
the converse of the Chinese remainder theorem (see [2, Chapter 2,
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Section 1, Proposition 5]) this holds if and only if the principal ideals
qi(X)D[X] are pairwise coprime. �

Recall that, given two polynomials p1, p2 ∈ D[X], the principal
ideals pi(X)D[X], i = 1, 2, are coprime if and only if the resultant
Res (p1, p2) is a unit of D if and only if p1, p2 have no common root
modulo any maximal ideal M ⊂ D. Notice that p1(X), p2(X) are
coprime in K[X] if and only if Res (p1, p2) ̸= 0.

The next proposition is a generalization of Remark 1.9: given a
monic non constant square-free polynomial p(X) inD[X], we determine
the quotient ring of IntK(Ωp, D) modulo the principal ideal p(X)K[X].

Note that, in the case Ωp ⊂ D, we have IntK(Ωp, D) = Int(Ωp, D), and
we are in the case already treated (essentially by McQuillan).

Proposition 4.4. Let p ∈ D[X] be a monic non-constant polynomial

which is square-free, say p(X) =
∏k

i=1 pi(X), where pi(X), for i =
1, . . . , k, are monic, distinct and irreducible polynomials over D. Then

IntK(Ωp, D)

p(X)K[X]
∼=

k∏
i=1

DKi ,

where DKi is the integral closure of D in the field Ki
∼= K[X]/pi(X)K[X],

for each i = 1, . . . , k.

Proof. For each i = 1, . . . , k, we set Ki + K[X]/(pi(X)) ∼= K[αi],
which is a finite field extension of K, where αi is a (fixed) root of pi(X).
Also let DKi be the integral closure of D in Ki, for i = 1, . . . , k. By
assumption on the pi(X)’s, D[X]/(pi(X)D[X]) ∼= D[αi] ⊂ K[αi]. Note
that IntK(Ωp, D) = IntK({α1, . . . , αk}, D): if f ∈ K[X] is integral-
valued on αi, then it is integral-valued on every conjugate root of α of
αi, that is on the set of roots Ωpi (see also Proposition 1.10).

As we remarked in the introduction, the rings IntK(Ωp, D) ⊂ K[X]

have the ideal p(X)K[X] in common, so that IntK(Ωp, D) is a pullback
with respect to the canonical residue map

π : K[X] � K[X]

p(X)K[X]
.
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The polynomial ring K[X] is mapped to

K[X]/(p(X)) ∼=
k∏

i=1

K[αi]

by the map which sends X to (α1, . . . , αk), so that a polynomial
f ∈ K[X] is mapped to (f(α1), . . . , f(αk)).

In the same way as in Proposition 4.3 we just have to prove that

IntK(Ωp,D) = π−1(
∏k

i=1 DKi
). By definition,

π−1

( k∏
i=1

DKi

)
= {f ∈ K[X] | f(αi) ∈ DKi , for all i = 1, . . . , k},

so that a polynomial f(X) is in this ring if and only if it is integral-
valued on every αi, that is, f ∈ IntK({α1, . . . , αk},D). �

An equivalent statement of Proposition 4.4 is the following: let Ω be
a finite subset of D, and let p ∈ D[X] be the product of the minimal
polynomials p1(X), . . . , pk(X) of the elements of Ω, without repetition.
Then the quotient of IntK(Ω, D) modulo p(X)K[X] is isomorphic to∏k

i=1 DKi , where DKi is as in the statement of Proposition 4.4. We
notice that a proof of Theorem 4.2 also follows in another way by [4,
Theorem 4.3], due to Proposition 4.4.

Theorem 4.5. Let p ∈ D[X] be a monic non-constant polynomial.
Suppose that p(X) =

∏
k=1,...,k pi(X)ei is the unique factorization of

p(X) into powers of monic irreducible polynomials in D[X], ei ≥ 1.
Then D(p) is integrally closed if and only if the following conditions
are satisfied :

(i) p(X) is squarefree (i.e., ei = 1 for all i).
(ii) For each i = 1, . . . , k, D[X]/(pi(X)) ∼= DKi , where the latter is

the integral closure of D in the field Ki
∼= K[X]/(pi(X)).

(iii) Res (pi, pj) ∈ D∗ for each i ̸= j.

If D is a Prüfer domain, D(p) is integrally closed if and only if D(p)
is a Prüfer domain, and in that case D(p) = IntK(Ωp, D).

Proof. Suppose that D(p) is integrally closed. If p(X) is not
squarefree, then some exponent ei is strictly greater than 1. Let



136 GIULIO PERUGINELLI

q(X) =
∏k

i=1 pi(X) be the square-free part of p(X). By assumption,
q(X) ̸= p(X) and q(X) divides p(X). So, by Lemma 1.7, D(p) ( D(q).
Since q(X) has the same set of roots of p(X), D(q) is contained in
IntK(Ωp, DF ). Hence, D(p) cannot be equal to IntK(Ωp, DF ), which is
in contradiction with Theorem 3.3. Then p(X) is square-free.

By Propositions 4.3 and 4.4 (we retain the same notation of those
Propositions) we have the following diagram of pullbacks (notice that

Ωp =
∪k

i=1 Ωpi and
∩k

i=1 IntK(Ωpi , D) = IntK(Ωp, D)), where the
vertical lines are the reduction map modulo p(X)K[X]:

(4.1) D(p)

����

� � // ∩
i D(pi)

����

� � // IntK(Ωp,D)

����

� � // K[X]

����
D[X]

p(X)D[X]
� � // ∏

i D[αi]
� � // ∏

i DKi

� � // ∏
i K[αi]

Obviously, D(p) is integrally closed if and only if D(p) =
∩k

i=1 D(pi)

and
∩k

i=1 D(pi) = IntK(Ωp, D).

SinceD(p) =
∩k

i=1 D(pi), by Proposition 4.3, this condition is equiv-

alent to condition (iii). Looking at the above diagram,
∩k

i=1 D(pi) =

IntK(Ωp,D) if and only if D[X]/pi(X)D[X] = DKi for all i = 1, . . . , k,
which is condition (ii).

Conversely, suppose conditions (i), (ii) and (iii) hold. Then looking
at the above pullback diagram again, we have that D(p) is equal to
IntK(Ωp,D); hence, by Theorem 3.3, D(p) is integrally closed.

Suppose now D is a Prüfer domain. If D(p) = IntK(Ωp,D), then
D(p) is a Prüfer domain by Theorem 4.2. Conversely, if D(p) is Prüfer,
then it is integrally closed. The very last assertion follows at once by
Theorem 3.3. �

In the next examples, we show that the theorem does not hold if we
remove one of the conditions.

Example 4.6. Let p1(X) = X2 + 1, p2(X) = X2 − 2 ∈ Z(X)
and p(X) = p1(X)p2(X). The resultant Res (p1, p2) is equal to 9.

Moreover, K1 = Q(i) ⊃ OK1 = Z(X)/(p1(X)) and K2 = Q(
√
2) ⊃

OK2 = Z(X)/(p2(X)). Then Z(p1) ∩ Z(p2) = IntQ(Ωp,Z) (see the
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proof of Theorem 4.5 and the diagram (4.1)) but Z(p1 · p2) = Z(p) (
Z(p1) ∩ Z(p2) (Proposition 4.3). Notice that Z(p1) and Z(p2) are
integrally closed: Z(pi) = IntQ(Ωpi ,Z) for i = 1, 2, but Z(p) is not
integrally closed. Here, condition (iii) of Theorem 4.5 is not satisfied.

Example 4.7. p1(X) = X2 − 5, p2(X) = X2 − 6. The resultant of
p1(X) and p2(X) is equal to 1. Then

K1 = Q(
√
5) ⊃ OK1 = Z

[
1 +

√
5

2

]
) Z[

√
5] ∼= Z[X]/(p1(X))

and

K2 = Q(
√
6) ⊃ OK2 = Z[X]/(p2(X)).

Then Z(p1) ∩ Z(p2) ( IntQ(Ωp,Z), but Z(p) = Z(p1) ∩ Z(p2). Hence,
Z(p) is not integrally closed, because condition (ii) of Theorem 4.5 is
not satisfied.

Corollary 4.8. Let p ∈ D[X] be a monic polynomial over D which is
split in D. Then D(p) is integrally closed if and only if the discriminant
of p(X) is a unit in D.

Notice that, if the latter condition holds, in particular p(X) is
separable, it has no repeated roots. We denote by ∆(p) the discriminant
of p(X).

Proof. Let Ωp = {α1, . . . , αn} ⊂ D be the multi-set of roots of
p(X). By Theorem 3.3, the integral closure of D(p) is Int (Ωp, D) =∩

i D(X − αi).

It is enough to observe that ∆(p) =
∏

i<j(αi − αj)
2 and that, if

pi(X) = X−αi, for i = 1, . . . , n, then Res (pi, pj) = ±(αj −αi). Then,
by Theorem 4.5, Corollary 4.8 is proved. �

Remark 4.9. The statement is false if we do not assume that p(X)
is split over D. For example, let D = Z and p(X) = X2 − 2. Then
Z(p) is integrally closed by Proposition 1.10 (see also Theorem 4.5),

because Z[
√
2] is the ring of integers OK of K = Q(

√
2), so Z(p) =

IntQ({±
√
2}, OK). However, ∆(p) = 8. This implies that the pullback
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OK(p) ⊂ K[X] is not integrally closed: the polynomial f(X) =

(X −
√
2)/(2

√
2) is in Int ({±

√
2}, OK) and not in OK(p), and by

Theorem 3.3 f(X) is integral over OK(p).

Remark 4.10. We can prove Theorem 3.3 by means of a pullback
diagram argument. By Lemma 1.6 and Proposition 4.4, looking at
the diagram (4.1), by [8, Lemma 1.1.4 (8)], IntK(Ωp, D) is the integral
closure of D(p), since

∏
i DKi is the integral closure of D[X]/p(X)D[X]

in K[X]/p(X)K[X]. Indeed, it is known that K[X]/p(X)K[X] is the
total quotient ring of D[X]/p(X)D[X] (see the proof of [14, Theorem
10.15]). Hence, by [10, Proposition 2.7], K[X]/p(X)K[X] is the total
quotient ring of every subring containing D[X]/p(X)D[X], and, in

particular, of
∏

i D[αi]. By [2, Proposition 9, Chapter V],
∏k

i=1 DKi

is the integral closure of D in
∏k

i=1 K[αi]. Since each αi is integral

over D, it follows that
∏k

i=1 DKi
is the integral closure of

∏k
i=1 D[αi]

in
∏k

i=1 K[αi].

5. General case of a finite set of integral elements over D.
We show in this section how to apply the previous results to the
more general setting mentioned in the introduction, namely, when the
finite set of integral elements over D is not necessarily contained in an
algebraic extension of K. We recall the assumptions we mentioned in
the introduction.

For simplicity, we assume that D is integrally closed. Let A be
a D-algebra, possibly non-commutative and with zero-divisors, which
is finitely generated and torsion-free as a D-module. Note that every
element a of A is integral overD. Let µa(X) be the minimal polynomial
of a overD, which is not necessarily irreducible. To be precise, µa(X) is
the monic generator of the ideal ofK[X] of those polynomials which are
zero on a. Since D is supposed integrally closed and a is integral over
D, µa ∈ D[X] (so that µa(X) is also the generator of the ideal of D[X]
of those polynomials which are zero at a). For short, we set Ωa = Ωµa ,

the set of roots in D of µa(X). We may evaluate polynomials of K[X]
at the elements of A in the extended K-algebra B = A ⊗D K (note
that, by assumption, K and A embed into B). Given a subset S of A,
we consider the ring of integer-valued polynomials over S:

IntK(S,A) = {f ∈ K[X] | f(S) ⊂ A}.
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For S = A, we have the ring IntK(A,A) = IntK(A) of integer-valued
polynomials over A. For more details about this setting we refer to
[17]. As in [17], we consider polynomials over K whose evaluation at
the elements of S are not necessarily in A but are still integral over
D. For this reason, we call them integral-valued polynomials over S,
since they preserve the integrality of the elements of S. We retain the
notation introduced in [17].

Definition 5.1. Let K[S] be the K-subalgebra of B = A ⊗D K
generated by K and the elements of S. Also let S′ be the subset
of K[S] of those elements which are integral over D. We set

IntK(S, S′) = {f ∈ K[X] | f(S) ⊂ S′},

which we call integral-valued polynomials over S.

Note that, in general, S′ does not form a ring, if A is non-
commutative (even if S is a ring; for example, consider the case
A = Mn(D)). Nevertheless, IntK(S, S′) does form a ring by the ar-
gument given in [17, Proposition 6]: in order to show that IntK(S, S′)
is closed under addition and multiplication, it is sufficient to con-
sider what happens point-wise and use the fact that, for each s ∈ S,
K[s] is a commutative K-algebra. We note that the ring IntK(S, S′)
is equal to the ring of polynomials in K[X] such that f(s) (which
a priori is in K[s] ⊆ B) is integral over D for each s ∈ S. Clearly,
IntK(S,A) ⊆ IntK(S, S′), because every element of A is integral over
D. The key result which links the ring of integral-valued polynomi-
als IntK(S, S′) to a previous ring of integral-valued polynomials over a
subset Ω of D is the following.

Theorem 5.2. [17, Theorem 9]. Let S be a subset of A, and set
ΩS =

∪
s∈S Ωs ⊂ D. Then

IntK(S, S′) = IntK(ΩS , D).

Proof. For the sake of the reader we give the proof. Since 1 ∈ D ⊂ B,
we may embed B into the endomorphism ring EndK(B), via the map
given by multiplication on the left by b ∈ B. In particular, A is a sub-D-
algebra of EndK(B), and for s ∈ S, Ωs is the set of eigenvalues (inK) of
s considered as a K-endomorphism of B. Since A is finitely generated
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as a D-module, by [3, Chapter VII, Section 5, Proposition 10], for
any polynomial f ∈ K[X], f(Ωs) = {f(α) | α ∈ Ωs} is the set of
eigenvalues of f(s), so that in our notation f(Ωs) = Ωf(s). Given
f ∈ K[X] and s ∈ S, f(s) is integral over D if and only if the elements
of Ωf(s) = f(Ωs) are integral over D (because D is integrally closed).
The claim is then proved. �

We are ready to give the proof of the last main result of the paper,
see Corollary 1.5 of the introduction.

Corollary 5.3. Let S be a finite subset of A and ΩS =
∪

s∈S Ωs ⊂ D.

Then the integral closure of IntK(S,A) is IntK(ΩS ,D).

Proof. Let p(X) =
∏

s∈S µs(X) ∈ D[X]. By the above, we have the
following inclusions:

D(p) ⊆ IntK(S,A) ⊆ IntK(S, S′) = IntK(ΩS , D),

and the claim follows by Theorem 3.3. �

Note that, by Theorem 4.2, the ring IntK(S,A) has Prüfer integral
closure if and only if D is Prüfer.
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