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By integrating the cardinality balancedmultitargetmulti-Bernoulli (CBMeMBer) filter with the interactingmultiplemodels (IMM)
algorithm, an MM-CBMeMBer filter is proposed in this paper for tracking multiple maneuvering targets in clutter. The sequential
Monte Carlo (SMC) method is used to implement the filter for generic multi-target models and the Gaussian mixture (GM)
method is used to implement the filter for linear-Gaussian multi-target models. Then, the extended Kalman (EK) and unscented
Kalmanfiltering approximations for theGM-MM-CBMeMBer filter to accommodatemildly nonlinearmodels are described briefly.
Simulation results are presented to show the effectiveness of the proposed filter.

1. Introduction

Recently, the random-finite-set-(RFS-) based multitarget
tracking approaches [1] have attracted extensive attention.
Although theoretically solid, the RFS-based approaches usu-
ally are involved with intractable computations. By introduc-
ing the finite-set statistics (FISST) [2], Mahler developed the
probability hypothesis density (PHD) [3] and cardinalized
PHD (CPHD) [4] filters, which have been shown to be a
computationally tractable alternative to full multitarget Bayes
filters in the RFS framework. The sequential Monte Carlo
(SMC) implementations for the PHD and CPHD filters were
devised by Zajic and Mahler [5], Sidenbladh [6], and Vo
et al. [7]. Vo et al. and Zhang et al. [8–10] devised the
Gaussian mixture (GM) implementations for the PHD and
CPHDfilters under the linear-Gaussian assumption on target
dynamics, birth process, and sensor model. The PHD-based
approaches have been successfully used for many real-world
problems [11–13]. However, the SMC-PHD and SMC-CPHD
approaches require clustering to extract state estimates from
the particle population, which is expensive and unreliable
[14, 15].

In 2007,Mahler proposed themultitargetmulti-Bernoulli
(MeMBer) [2] recursion, which is an approximation to the
full multitarget Bayes recursion using multi-Bernoulli RFSs

under low clutter density scenarios. In 2009, Vo et al. showed
that the MeMBer filter overestimates the number of targets
and proposed a cardinality-balanced MeMBer (CBMeMBer)
filter [16] to reduce the cardinality bias. Then, the SMC
and GM implementations for the MeMBer and CBMeMBer
filters were, respectively, proposed for generic and linear-
Gaussian dynamic and measurement models. The MeMBer
and CBMeMBer recursions propagate not the moments and
cardinality distributions which are propagated by the PHD
and CPHD filters but rather the approximate multitarget
multi-Bernoulli posterior density. Therefore, the key advan-
tage of the SMC-CBMeMBer filter over the SMC-PHD and
SMC-CPHD filters is that the multi-Bernoulli representation
of the posterior density allows reliable and inexpensive
extraction of state estimates. The CBMeMBer filter has been
applied for tracking multiple targets according to their audio
and visual information [17].

The original CBMeMBer filter does not consider the
targetmaneuvers.Maneuvering targetsmight switch between
different models of operation, so tracking using a single-
model CBMeMBer filter might fail since the filter does not
match the actual system dynamics. It is well known that
the interacting multiple models (IMM) approaches [18] have
been proven to be very effective and have better performance
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than the single-model filters in tracking a singlemaneuvering
target without clutter. In the IMM approaches, a bank of
filters, each matched with a different target motion model,
operate in parallel. In general, there are three key steps
in the IMM estimators: (1) mixing the model-conditioned
estimates; (2) model-conditioned base-state estimation; (3)
deriving the overall state estimate by combining the estimates
from each model-conditioned base-state filters.

By integrating the CBMeMBer filter with the IMM algo-
rithm, an MM-CBMeMBer filter is proposed to address the
problem of tracking multiple maneuvering targets in clutter,
which is much more difficult than the problem of tracking a
single maneuvering target without clutter since the associa-
tion between the measurements and the targets is unknown.
The SMC method is used to implement the filter for generic
multitarget models while the GM method is used to imple-
ment the filter for linear-Gaussian multitarget models. Then,
the extended Kalman (EK) [19] and unscented Kalman (UK)
[20] filtering approximations for the GM-MM-CBMeMBer
filter to accommodate mildly nonlinear models are described
briefly. Nonlinear and linear-Gaussian examples of multiple
maneuvering targets tracking are, respectively, presented for
comparing the performance of the MM-CBMeMBer filter
with that of the single-model CBMeMBer filters, MM-PHD
filter [21–24], and MM-CPHD filter [25]. The simulation
results show that (1) the proposed filter can estimate the num-
ber and states of multiple maneuvering targets effectively,
whereas the performance of the single-model CBMeMBer
filters is rather poor; (2) under relatively low clutter density,
the SMC-MM-CBMeMBer filter outperforms the SMC-MM-
PHDand SMC-MM-CPHDfilters; (3) the performance of the
GM-MM-CBMeMBer filter is similar to that of theGM-MM-
PHD filter and hence is inferior to that of GM-MM-CPHD
filter.

The rest of the paper is organized as follows. Section 2
describes the problem ofmultiple maneuvering targets track-
ing. In Section 3, theMM-CBMeMBer recursion is given.The
generic SMC implementation of the MM-CBMeMBer filter
is described in Section 4. The analytic GM implementation
of the MM-CBMeMBer filter for linear-Gaussian multitarget
models and its EK and UK extensions for nonlinear multi-
target models are, respectively, given in Section 5. Numerical
studies are shown in Section 6.The conclusions and the future
work are given in Section 7.

2. Problem Statement for Multiple
Maneuvering Targets Tracking

The multiple maneuvering targets appear and disappear
randomly against time over an observation region. At time
𝑘, let x𝑘 ∈ R𝑛 denote the kinematical state of a target and
𝑛𝑘 ∈ N the label of the model in effect, whereN is the discrete
set of all model labels. The models follow a discrete Markov
chain with transition probability ℎ𝑘|𝑘−1(𝑛𝑘 | 𝑛𝑘−1). Let y𝑘 =
(x𝑘, 𝑛𝑘) ∈ R𝑛 × N denote the augmented state vector, whose
transition is governed by the density

𝑓𝑘|𝑘−1 (y𝑘 | y𝑘−1) = 𝑓𝑘|𝑘−1 (x𝑘 | x𝑘−1, 𝑛𝑘) ℎ𝑘|𝑘−1 (𝑛𝑘 | 𝑛𝑘−1) ,
(1)

where 𝑓𝑘|𝑘−1(x𝑘 | x𝑘−1, 𝑛𝑘) is the kinematical state transition
density conditioned on model 𝑛𝑘.

The measurement originates either from target or from
random clutter (false alarm). Moreover, the target-generated
measurements are indistinguishable from the clutter. At time
𝑘, let z𝑘 ∈ R𝑚 denote the measurement vector received by
a sensor. The single-measurement single-target likelihood is
described by the density conditioned on model 𝑛𝑘

𝑔𝑘 (z𝑘 | y𝑘) = 𝑓𝑘|𝑘 (z𝑘 | x𝑘, 𝑛𝑘) . (2)

At time 𝑘, let 𝑇𝑘 denote the number of the existing targets
and 𝑆𝑘 the number of the measurements. Then, multiple
augmented states and unlabelled sensor measurements can
be represented as finite sets 𝑌𝑘 = {(x(𝑖)

𝑘
, 𝑛
(𝑖)

𝑘
)}
𝑇𝑘

𝑖=1
and 𝑍𝑘 =

{z(𝑠)
𝑘
}
𝑆𝑘

𝑠=1
, respectively. In addition, let𝑍1:𝑘 ≜ 𝑍1, . . . , 𝑍𝑘 denote

a sequence of the measurement sets available up to and
including time 𝑘.

3. MM-CBMeMBer Filter

A Bernoulli RFS 𝑌𝑘 has probability 1 − 𝑟𝑘 of being empty and
probability 𝑟𝑘 (0 ≤ 𝑟𝑘 ≤ 1) of being a singleton whose only
element is distributed according to a probability density 𝑝𝑘.
The probability density of 𝑌𝑘 is

𝜋 (𝑌𝑘) = {
1 − 𝑟𝑘, 𝑌𝑘 = 0,

𝑟𝑘𝑝𝑘 (x𝑘, 𝑛𝑘) , 𝑌𝑘 = {(x𝑘, 𝑛𝑘)} .
(3)

A multi-Bernoulli RFS 𝑌𝑘 is a union of a fixed number
of independent Bernoulli RFSs 𝑌(𝑖)

𝑘
, 𝑖 = 1, . . . , 𝑀𝑘, that is,

𝑌𝑘 = ⋃
𝑀𝑘

𝑖=1
𝑌
(𝑖)

𝑘
. 𝑌𝑘 is thus completely described by the multi-

Bernoulli parameter set {(𝑟(𝑖)
𝑘
, 𝑝
(𝑖)

𝑘
(x𝑘, 𝑛𝑘))}

𝑀𝑘

𝑖=1
with the mean

cardinality∑𝑀𝑘
𝑖=1
𝑟
(𝑖)

𝑘
and the probability density [2]

𝜋 (𝑌𝑘) =

𝑀𝑘

∏

𝑗=1

(1 − 𝑟
(𝑗)

𝑘
) ∑

1≤𝑖1 ̸= ⋅⋅⋅ ̸= 𝑖|𝑌𝑘|
≤𝑀𝑘

|𝑌𝑘|

∏

𝑗=1

𝑟
(𝑖𝑗)

𝑘
𝑝
(𝑖𝑗)

𝑘
(x𝑘, 𝑛𝑘)

1 − 𝑟
(𝑖𝑗)

𝑘

,

(4)

where | ⋅ | denotes the cardinality of a set.
Throughout this paper, we abbreviate a probability den-

sity of the form (4) by 𝜋(𝑌𝑘) = {(𝑟
(𝑖)

𝑘
, 𝑝
(𝑖)

𝑘
(x𝑘, 𝑛𝑘))}

𝑀𝑘

𝑖=1
.

Let𝑝𝑆,𝑘(y𝑘−1)denote the probability that themaneuvering
target with augmented state y𝑘−1 survives at time 𝑘; let
𝑝𝐷,𝑘(y𝑘) denote the probability that the maneuvering target
with augmented state y𝑘 generates an observation at time 𝑘.
RFS modeling the multiple maneuvering targets state 𝑌𝑘 and
the sensor measurement 𝑍𝑘 are, respectively, given by the
union

𝑌𝑘 =
[

[

⋃

y𝑘−1∈𝑌𝑘−1
Ω𝑘|𝑘−1 (y𝑘−1)]

]

∪ Γ𝑘,

𝑍𝑘 = [ ⋃

y𝑘∈𝑌𝑘
Θ𝑘 (y𝑘)] ∪ 𝐾𝑘,

(5)
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where Γ𝑘 denotes the multi-Bernoulli RFS of spontaneous
births; the Bernoulli RFS Ω𝑘|𝑘−1(y𝑘−1) with 𝑟𝑘 = 𝑝𝑆,𝑘(y𝑘−1)
and 𝑝𝑘(y𝑘) = 𝑓𝑘|𝑘−1(y𝑘 | y𝑘−1) is used to model the dynamic
behavior of y𝑘−1 ∈ 𝑌𝑘−1; the Bernoulli RFS Θ𝑘(y𝑘) with
𝑟𝑘 = 𝑝𝐷,𝑘(y𝑘) and 𝑝𝑘(z𝑘) = 𝑔𝑘(z𝑘 | y𝑘) is used to model the
observation behavior of y𝑘 ∈ 𝑌𝑘; the clutter is modeled as a
PoissonRFS𝐾𝑘 with the intensity 𝜅𝑘(z𝑘) = 𝜆𝑐,𝑘𝑓𝑐,𝑘(z𝑘), where
𝜆𝑐,𝑘 and 𝑓𝑐,𝑘(⋅) are, respectively, the average clutter number
and the probability density of clutter spatial distribution at
time 𝑘.

Based on the above RFS models of the multiple maneu-
vering targets and the method of Mahler’s FISST, the MM-
CBMeMBer filter, which implicitly requires a finite number of
single-model CBMeMBer filters operate in parallel, is derived
by introducing the mixing and combination strategies in the
IMMapproaches [18]. As themultiple-model approaches, the
MM-CBMeMBer filter does not need a maneuver detection
decision and undergoes a soft switching between the models.
One cycle of the recursiveMM-CBMeMBer algorithm can be
described as follows.

(1) The Mixing and Prediction Stage. If at time 𝑘 − 1, the pos-
terior density is a multi-Bernoulli of the form 𝜋𝑘−1(𝑌𝑘−1 |

𝑍1:𝑘−1) = {(𝑟
(𝑖)

𝑘−1
, 𝑝
(𝑖)

𝑘−1
(x𝑘−1, 𝑛𝑘−1))}

𝑀𝑘−1

𝑖=1
, then the mixed multi-

Bernoulli density is

⌣

𝜋
𝑘−1 (

⌣

𝑌𝑘−1 | 𝑍1:𝑘−1) = {(𝑟
(𝑖)

𝑘−1
, 𝑝
(𝑖)

𝑘−1
(x𝑘−1, 𝑛𝑘))}

𝑀𝑘−1

𝑖=1
, (6)

where

𝑝
(𝑖)

𝑘−1
(x𝑘−1, 𝑛𝑘) = ∑

𝑛𝑘−1

𝑝
(𝑖)

𝑘−1
(x𝑘−1, 𝑛𝑘, 𝑛𝑘−1)

= ∑

𝑛𝑘−1

𝑝
(𝑖)

𝑘−1
(𝑛𝑘 | x𝑘−1, 𝑛𝑘−1) 𝑝

(𝑖)

𝑘−1
(x𝑘−1, 𝑛𝑘−1) .

(7)

Since themodels switching is only decided by themodel tran-
sition probability and is independent of the target kinematical
state:

= ∑

𝑛𝑘−1

ℎ𝑘|𝑘−1 (𝑛𝑘 | 𝑛𝑘−1) 𝑝
(𝑖)

𝑘−1
(x𝑘−1, 𝑛𝑘−1) (8)

is a combination of the previous model-dependent densities.
Finally, the mixed and predicted density is also a multi-
Bernoulli and is given by

𝜋𝑘|𝑘−1 (𝑌𝑘 | 𝑍1:𝑘−1)

= {(𝑟
(𝑖)

𝑃,𝑘|𝑘−1
, 𝑝
(𝑖)

𝑃,𝑘|𝑘−1
(x𝑘, 𝑛𝑘))}

𝑀𝑘−1

𝑖=1

∪ {(𝑟
(𝑖)

Γ,𝑘
, 𝑝
(𝑖)

Γ,𝑘
(x𝑘, 𝑛𝑘))}

𝑀Γ,𝑘

𝑖=1
,

(9)

where {(𝑟(𝑖)
Γ,𝑘
, 𝑝
(𝑖)

Γ,𝑘
(x𝑘, 𝑛𝑘))}

𝑀Γ,𝑘

𝑖=1
are the parameters of themulti-

Bernoulli RFS of births at time 𝑘:

𝑟
(𝑖)

𝑃,𝑘|𝑘−1

= 𝑟
(𝑖)

𝑘−1
∑

𝑛𝑘

∑

𝑛𝑘−1

ℎ𝑘|𝑘−1 (𝑛𝑘 | 𝑛𝑘−1)

× ⟨𝑝
(𝑖)

𝑘−1
(⋅, 𝑛𝑘−1) , 𝑝𝑆,𝑘 (⋅, 𝑛𝑘−1)⟩ ,

𝑝
(𝑖)

𝑃,𝑘|𝑘−1
(x𝑘, 𝑛𝑘)

= (∑

𝑛𝑘−1

ℎ𝑘|𝑘−1 (𝑛𝑘 | 𝑛𝑘−1)

× ⟨𝑓𝑘|𝑘−1 (x𝑘 | ⋅, 𝑛𝑘) , 𝑝
(𝑖)

𝑘−1
(⋅, 𝑛𝑘−1) 𝑝𝑆,𝑘 (⋅, 𝑛𝑘−1)⟩)

× (∑

𝑛𝑘

∑

𝑛𝑘−1

ℎ𝑘|𝑘−1 (𝑛𝑘 | 𝑛𝑘−1)

× ⟨𝑝
(𝑖)

𝑘−1
(⋅, 𝑛𝑘−1) , 𝑝𝑆,𝑘 (⋅, 𝑛𝑘−1)⟩)

−1

,

(10)

where ⟨⋅, ⋅⟩ defines the integral inner product, that is,

⟨𝑝
(𝑖)

𝑘−1
(⋅, 𝑛𝑘−1) , 𝑝𝑆,𝑘 (⋅, 𝑛𝑘−1)⟩

= ∫𝑝
(𝑖)

𝑘−1
(x𝑘−1, 𝑛𝑘−1) 𝑝𝑆,𝑘 (x𝑘−1, 𝑛𝑘−1) 𝑑x𝑘−1.

(11)

(2) The Update Stage. If at time 𝑘, the mixed and predicted
density is a multi-Bernoulli of the form 𝜋𝑘|𝑘−1(𝑌𝑘 | 𝑍1:𝑘−1) =

{(𝑟
(𝑖)

𝑘|𝑘−1
, 𝑝
(𝑖)

𝑘|𝑘−1
(x𝑘, 𝑛𝑘))}

𝑀𝑘|𝑘−1

𝑖=1
, then the posterior density can

be approximated by a multi-Bernoulli as follows:

𝜋𝑘 (𝑌𝑘 | 𝑍𝑘) ≈ {(𝑟
(𝑖)

𝐿,𝑘
, 𝑝
(𝑖)

𝐿,𝑘
(x𝑘, 𝑛𝑘))}

𝑀𝑘|𝑘−1

𝑖=1

∪ {(𝑟𝑈,𝑘 (z𝑘) , 𝑝𝑈,𝑘 (x𝑘, 𝑛𝑘; z𝑘))}z𝑘∈𝑍𝑘 ,
(12)

where

𝑟
(𝑖)

𝐿,𝑘
= 𝑟

(𝑖)

𝑘|𝑘−1

1 − ∑
𝑛𝑘
⟨𝑝

(𝑖)

𝑘|𝑘−1
(⋅, 𝑛𝑘) , 𝑝𝐷,𝑘 (⋅, 𝑛𝑘)⟩

1 − 𝑟
(𝑖)

𝑘|𝑘−1
∑
𝑛𝑘
⟨𝑝

(𝑖)

𝑘|𝑘−1
(⋅, 𝑛𝑘) , 𝑝𝐷,𝑘 (⋅, 𝑛𝑘)⟩

,
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𝑝
(𝑖)

𝐿,𝑘
(x𝑘, 𝑛𝑘) =

(1 − 𝑝𝐷,𝑘 (x𝑘, 𝑛𝑘)) 𝑝
(𝑖)

𝑘|𝑘−1
(x𝑘, 𝑛𝑘)

1 − ∑
𝑛𝑘
⟨𝑝

(𝑖)

𝑘|𝑘−1
(⋅, 𝑛𝑘) , 𝑝𝐷,𝑘 (⋅, 𝑛𝑘)⟩

,

𝑟𝑈,𝑘 (z𝑘) = (
𝑀𝑘|𝑘−1

∑

𝑖=1

(1 − 𝑟
(𝑖)

𝑘|𝑘−1
) 𝑟
(𝑖)

𝑘|𝑘−1
∑
𝑛𝑘
⟨𝑝

(𝑖)

𝑘|𝑘−1
(⋅, 𝑛𝑘) , 𝑔𝑘 (z𝑘 | ⋅, 𝑛𝑘) 𝑝𝐷,𝑘 (⋅, 𝑛𝑘)⟩

(1 − 𝑟
(𝑖)

𝑘|𝑘−1
∑
𝑛𝑘
⟨𝑝

(𝑖)

𝑘|𝑘−1
(⋅, 𝑛𝑘) , 𝑝𝐷,𝑘 (⋅, 𝑛𝑘)⟩)

2
)

×(𝜅𝑘(z𝑘) +
𝑀𝑘|𝑘−1

∑

𝑖=1

𝑟
(𝑖)

𝑘|𝑘−1
∑
𝑛𝑘
⟨𝑝

(𝑖)

𝑘|𝑘−1
(⋅, 𝑛𝑘) , 𝑔𝑘 (z𝑘 | ⋅, 𝑛𝑘) 𝑝𝐷,𝑘 (⋅, 𝑛𝑘)⟩

1 − 𝑟
(𝑖)

𝑘|𝑘−1
∑
𝑛𝑘
⟨𝑝

(𝑖)

𝑘|𝑘−1
(⋅, 𝑛𝑘) , 𝑝𝐷,𝑘 (⋅, 𝑛𝑘)⟩

)

−1

,

𝑝𝑈,𝑘 (x𝑘, 𝑛𝑘; z𝑘) =
∑
𝑀𝑘|𝑘−1

𝑖=1
(𝑟
(𝑖)

𝑘|𝑘−1
/ (1 − 𝑟

(𝑖)

𝑘|𝑘−1
)) 𝑝

(𝑖)

𝑘|𝑘−1
(x𝑘, 𝑛𝑘) 𝑔𝑘 (z𝑘 | x𝑘, 𝑛𝑘) 𝑝𝐷,𝑘 (x𝑘, 𝑛𝑘)

∑
𝑀𝑘|𝑘−1

𝑖=1
(𝑟
(𝑖)

𝑘|𝑘−1
/ (1 − 𝑟

(𝑖)

𝑘|𝑘−1
))∑

𝑛𝑘
⟨𝑝

(𝑖)

𝑘|𝑘−1
(⋅, 𝑛𝑘) , 𝑔𝑘 (z𝑘 | ⋅, 𝑛𝑘) 𝑝𝐷,𝑘 (⋅, 𝑛𝑘)⟩

.

(13)

(3) The Multitarget State Estimation. For the multi-Bernoulli
representation 𝜋𝑘(𝑌𝑘 | 𝑍𝑘) = {(𝑟

(𝑖)

𝑘
, 𝑝
(𝑖)

𝑘
(x𝑘, 𝑛𝑘))}

𝑀𝑘

𝑖=1
, the

extraction of multitarget number and state estimates are
straightforward since the probability 𝑟(𝑖)

𝑘
indicates how likely

the 𝑖th hypothesized track is a true track, and the posterior
density 𝑝(𝑖)

𝑘
(x𝑘, 𝑛𝑘) describes the distribution of the estimated

augmented state of the track. The state estimation proce-
dure for the MM-CBMeMBer filter [8] is summarized in
Algorithm 1.

4. SMC-MM-CBMeMBer Filter

In this section, a generic SMC implementation of the
proposed MM-CBMeMBer filter is presented for accom-
modating nonlinear dynamic and measurement models. In
this implementation, the samples or particles, which are
used to represent the multi-Bernoulli density of multiple
maneuvering targets, consists of the kinematical state and
model information with associated weights. One cycle of the
recursive SMC-MM-CBMeMBer algorithm can be described
as follows.

(1) The SMC Mixing and Prediction Stage. Suppose that at
time 𝑘 − 1 the multi-Bernoulli posterior density �̃�𝑘−1(𝑌𝑘−1 |
𝑍1:𝑘−1) = {(𝑟

(𝑖)

𝑘−1
, 𝑝
(𝑖)

𝑘−1
(x𝑘−1, 𝑛𝑘−1))}

𝑀𝑘−1

𝑖=1
is given and each

𝑝
(𝑖)

𝑘−1
(x𝑘−1, 𝑛𝑘−1), 𝑖 = 1, . . . ,𝑀𝑘−1, is composed of a set of

weighted samples {𝜔(𝑖,𝑙)
𝑘−1
, x(𝑖,𝑙)
𝑘−1
, 𝑛
(𝑖,𝑙)

𝑘−1
}
𝐿
(𝑖)

𝑘−1

𝑙=1
,

𝑝
(𝑖)

𝑘−1
(x𝑘−1, 𝑛𝑘−1) =

𝐿
(𝑖)

𝑘−1

∑

𝑙=1

𝜔
(𝑖,𝑙)

𝑘−1
𝛿 (x𝑘−1 − x(𝑖,𝑙)

𝑘−1
, 𝑛𝑘−1 − 𝑛

(𝑖,𝑙)

𝑘−1
) ,

(14)

where 𝛿(x − x(𝑐)) is Dirac delta function centered at x(𝑐).
Then, the mixed and predicted multi-Bernoulli density
�̃�𝑘|𝑘−1(𝑌𝑘 | 𝑍1:𝑘−1) = {(𝑟

(𝑖)

𝑃,𝑘|𝑘−1
, 𝑝
(𝑖)

𝑃,𝑘|𝑘−1
(x𝑘, 𝑛𝑘))}

𝑀𝑘−1

𝑖=1
∪

{(𝑟
(𝑖)

Γ,𝑘
, 𝑝
(𝑖)

Γ,𝑘
(x𝑘, 𝑛𝑘))}

𝑀Γ,𝑘

𝑖=1
can be computed as follows:

𝑟
(𝑖)

𝑃,𝑘|𝑘−1
= 𝑟

(𝑖)

𝑘−1

𝐿
(𝑖)

𝑘−1

∑

𝑙=1

𝜔
(𝑖,𝑙)

𝑘−1
𝑝𝑆,𝑘 (x

(𝑖,𝑙)

𝑘−1
, 𝑛
(𝑖,𝑙)

𝑘−1
)
ℎ𝑘|𝑘−1 (𝑛

(𝑖,𝑙)

𝑃,𝑘|𝑘−1
| 𝑛
(𝑖,𝑙)

𝑘−1
)

𝛼
(𝑖)

𝑘
(𝑛
(𝑖,𝑙)

𝑃,𝑘|𝑘−1
| 𝑛
(𝑖,𝑙)

𝑘−1
)
,

𝑟
(𝑖)

Γ,𝑘
= parameter given by birth model,

𝑝
(𝑖)

𝑃,𝑘|𝑘−1
(x𝑘, 𝑛𝑘) =

𝐿
(𝑖)

𝑘−1

∑

𝑙=1

𝜔
(𝑖,𝑙)

𝑃,𝑘|𝑘−1
𝛿 (x𝑘 − x(𝑖,𝑙)

𝑃,𝑘|𝑘−1
, 𝑛𝑘 − 𝑛

(𝑖,𝑙)

𝑃,𝑘|𝑘−1
) ,

𝑝
(𝑖)

Γ,𝑘
(x𝑘, 𝑛𝑘) =

𝐿
(𝑖)

Γ,𝑘

∑

𝑙=1

𝜔
(𝑖,𝑙)

Γ,𝑘
𝛿 (x𝑘 − x(𝑖,𝑙)

Γ,𝑘
, 𝑛𝑘 − 𝑛

(𝑖,𝑙)

Γ,𝑘
) ,

(15)

where the particles x(𝑖,𝑙)
𝑃,𝑘|𝑘−1

, 𝑛(𝑖,𝑙)
𝑃,𝑘|𝑘−1

corresponding to the sur-
viving maneuvering targets can be derived by sampling from
the proposal densities 𝑞(𝑖)

𝑘
(⋅ | x𝑘−1, 𝑛𝑘, 𝑍𝑘) and 𝛼

(𝑖)

𝑘
(⋅ | 𝑛𝑘−1)

𝑛
(𝑖,𝑙)

𝑃,𝑘|𝑘−1
∼ 𝛼

(𝑖)

𝑘
(⋅ | 𝑛

(𝑖,𝑙)

𝑘−1
)

x(𝑖,𝑙)
𝑃,𝑘|𝑘−1

∼ 𝑞
(𝑖)

𝑘
(⋅ | x(𝑖,𝑙)

𝑘−1
, 𝑛
(𝑖,𝑙)

𝑃,𝑘|𝑘−1
, 𝑍𝑘)

𝑙 = 1, . . . , 𝐿
(𝑖)

𝑘−1

(16)
with the associated weights

𝜔
(𝑖,𝑙)

𝑃,𝑘|𝑘−1
=

�̆�
(𝑖,𝑙)

𝑃,𝑘|𝑘−1

∑
𝐿
(𝑖)

𝑘−1

𝑙=1
�̆�
(𝑖,𝑙)

𝑃,𝑘|𝑘−1

,

�̆�
(𝑖,𝑙)

𝑃,𝑘|𝑘−1
=
𝑓𝑘|𝑘−1 (x

(𝑖,𝑙)

𝑃,𝑘|𝑘−1
| x(𝑖,𝑙)
𝑘−1
, 𝑛
(𝑖,𝑙)

𝑃,𝑘|𝑘−1
) 𝑝𝑆,𝑘 (x

(𝑖,𝑙)

𝑘−1
, 𝑛
(𝑖,𝑙)

𝑘−1
)

𝑞
(𝑖)

𝑘
(x(𝑖,𝑙)
𝑃,𝑘|𝑘−1

| x(𝑖,𝑙)
𝑘−1
, 𝑛
(𝑖,𝑙)

𝑃,𝑘|𝑘−1
, 𝑍𝑘)

⋅
ℎ
(𝑖)

𝑘|𝑘−1
(𝑛
(𝑖,𝑙)

𝑃,𝑘|𝑘−1
| 𝑛
(𝑖,𝑙)

𝑘−1
)

𝛼
(𝑖)

𝑘
(𝑛
(𝑖,𝑙)

𝑃,𝑘|𝑘−1
| 𝑛
(𝑖,𝑙)

𝑘−1
)

⋅ 𝜔
(𝑖,𝑙)

𝑘−1

(17)

and the particles x(𝑖,𝑙)
Γ,𝑘

, 𝑛(𝑖,𝑙)
Γ,𝑘

corresponding to the new born
maneuvering targets can be derived by sampling from the
proposal densities 𝑏(𝑖)

𝑘
(⋅ | 𝑛𝑘, 𝑍𝑘) and 𝛽

(𝑖)

𝑘
(⋅)

𝑛
(𝑖,𝑙)

Γ,𝑘
∼ 𝛽

(𝑖)

𝑘
(⋅)

x(𝑖,𝑙)
Γ,𝑘

∼ 𝑏
(𝑖)

𝑘
(⋅ | 𝑛

(𝑖,𝑙)

Γ,𝑘
, 𝑍𝑘)

𝑙 = 1, . . . , 𝐿
(𝑖)

Γ,𝑘
(18)
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given 𝜋𝑘(𝑌𝑘 | 𝑍𝑘) = {(𝑟
(𝑖)

𝑘
, 𝑝
(𝑖)

𝑘
(x𝑘, 𝑛𝑘))}

𝑀𝑘

𝑖=1
; set �̂�𝑘 = 0,𝑋𝑘 = ⌀

for 𝑖 = 1, . . . ,𝑀𝑘,
if 𝑟(𝑖)

𝑘
> a given threshold (i.e. 0.5);

�̂�𝑘 = �̂�𝑘 + 1,

x̂(�̂�𝑘)
𝑘

= ∑

𝑛𝑘

probability of model 𝑛𝑘
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑝
(𝑖)

𝑘
(𝑛𝑘) ⋅

state estimation conditioned on model 𝑛𝑘
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

∫ x𝑘𝑝
(𝑖)

𝑘
(x𝑘|𝑛𝑘)𝑑x𝑘 = ∑

𝑛𝑘

∫ x𝑘𝑝
(𝑖)

𝑘
(x𝑘, 𝑛𝑘)𝑑x𝑘,

𝑋𝑘 := [𝑋𝑘, x̂
(�̂�𝑘)

𝑘
];

end;
end;

output:𝑋𝑘 = {x̂
(𝑖)

𝑘
}
�̂�𝑘

𝑖=1

Algorithm 1: Multitarget state estimation procedure for the MM-CBMeMBer filter.

with the associated weights

𝜔
(𝑖,𝑙)

Γ,𝑘
=

�̆�
(𝑖,𝑙)

Γ,𝑘

∑
𝐿
(𝑖)

Γ,𝑘

𝑙=1
�̆�
(𝑖,𝑙)

Γ,𝑘

,

�̆�
(𝑖,𝑙)

Γ,𝑘
=

𝑝
(𝑖)

Γ,𝑘
(x(𝑖,𝑙)
Γ,𝑘
, 𝑛
(𝑖,𝑙)

Γ,𝑘
)

𝑏
(𝑖)

𝑘
(x(𝑖,𝑙)
Γ,𝑘

| 𝑛
(𝑖,𝑙)

Γ,𝑘
, 𝑍𝑘) 𝛽

(𝑖)

𝑘
(𝑛
(𝑖,𝑙)

Γ,𝑘
)
.

(19)

(2) The SMC Update Stage. Suppose that at time 𝑘 the mixed
and predicted multi-Bernoulli density �̃�𝑘|𝑘−1(𝑌𝑘 | 𝑍1:𝑘−1) =

{(𝑟
(𝑖)

𝑘|𝑘−1
, 𝑝
(𝑖)

𝑘|𝑘−1
(x𝑘, 𝑛𝑘))}

𝑀𝑘|𝑘−1

𝑖=1
is given and each 𝑝(𝑖)

𝑘|𝑘−1
(x𝑘, 𝑛𝑘),

𝑖 = 1, . . . ,𝑀𝑘|𝑘−1, is composed of a set of weighted samples

{𝜔
(𝑖,𝑙)

𝑘|𝑘−1
, x(𝑖,𝑙)
𝑘|𝑘−1

, 𝑛
(𝑖,𝑙)

𝑘|𝑘−1
}
𝐿
(𝑖)

𝑘|𝑘−1

𝑙=1
,

𝑝
(𝑖)

𝑘|𝑘−1
(x𝑘, 𝑛𝑘) =

𝐿
(𝑖)

𝑘|𝑘−1

∑

𝑙=1

𝜔
(𝑖,𝑙)

𝑘|𝑘−1
𝛿 (x𝑘 − x(𝑖,𝑙)

𝑘|𝑘−1
, 𝑛𝑘 − 𝑛

(𝑖,𝑙)

𝑘|𝑘−1
) .

(20)

Then, the multi-Bernoulli approximation of the updated
density �̃�𝑘(𝑌𝑘 | 𝑍1:𝑘) ≈ {(𝑟

(𝑖)

𝐿,𝑘
, 𝑝
(𝑖)

𝐿,𝑘
(x𝑘, 𝑛𝑘))}

𝑀𝑘|𝑘−1

𝑖=1
∪ {(𝑟𝑈,𝑘(z𝑘),

𝑝𝑈,𝑘(x𝑘, 𝑛𝑘; z𝑘))}z𝑘∈𝑍𝑘 can be computed as follows:

𝑟
(𝑖)

𝐿,𝑘
= 𝑟

(𝑖)

𝑘|𝑘−1

1 − ∑
𝐿
(𝑖)

𝑘|𝑘−1

𝑙=1
𝜔
(𝑖,𝑙)

𝑘|𝑘−1
𝑝𝐷,𝑘 (x

(𝑖,𝑙)

𝑘|𝑘−1
, 𝑛
(𝑖,𝑙)

𝑘|𝑘−1
)

1 − 𝑟
(𝑖)

𝑘|𝑘−1
∑
𝐿
(𝑖)

𝑘|𝑘−1

𝑙=1
𝜔
(𝑖,𝑙)

𝑘|𝑘−1
𝑝𝐷,𝑘 (x

(𝑖,𝑙)

𝑘|𝑘−1
, 𝑛
(𝑖,𝑙)

𝑘|𝑘−1
)

,

𝑝
(𝑖)

𝐿,𝑘
(x𝑘, 𝑛𝑘) =

𝐿
(𝑖)

𝑘|𝑘−1

∑

𝑙=1

𝜔
(𝑖,𝑙)

𝐿,𝑘
𝛿 (x𝑘 − x(𝑖,𝑙)

𝑘|𝑘−1
, 𝑛𝑘 − 𝑛

(𝑖,𝑙)

𝑘|𝑘−1
) ,

𝑟𝑈,𝑘 (z𝑘) = (
𝑀𝑘|𝑘−1

∑

𝑖=1

(1 − 𝑟
(𝑖)

𝑘|𝑘−1
) 𝑟
(𝑖)

𝑘|𝑘−1
∑
𝐿
(𝑖)

𝑘|𝑘−1

𝑙=1
𝜔
(𝑖,𝑙)

𝑘|𝑘−1
𝑔𝑘 (z𝑘 | x

(𝑖,𝑙)

𝑘|𝑘−1
, 𝑛
(𝑖,𝑙)

𝑘|𝑘−1
) 𝑝𝐷,𝑘 (x

(𝑖,𝑙)

𝑘|𝑘−1
, 𝑛
(𝑖,𝑙)

𝑘|𝑘−1
)

(1 − 𝑟
(𝑖)

𝑘|𝑘−1
∑
𝐿
(𝑖)

𝑘|𝑘−1

𝑙=1
𝜔
(𝑖,𝑙)

𝑘|𝑘−1
𝑝𝐷,𝑘 (x

(𝑖,𝑙)

𝑘|𝑘−1
, 𝑛
(𝑖,𝑙)

𝑘|𝑘−1
))

2
)

×(𝜅𝑘 (z𝑘) +
𝑀𝑘|𝑘−1

∑

𝑖=1

𝑟
(𝑖)

𝑘|𝑘−1
∑
𝐿
(𝑖)

𝑘|𝑘−1

𝑙=1
𝜔
(𝑖,𝑙)

𝑘|𝑘−1
𝑔𝑘 (z𝑘 | x

(𝑖,𝑙)

𝑘|𝑘−1
, 𝑛
(𝑖,𝑙)

𝑘|𝑘−1
) 𝑝𝐷,𝑘 (x

(𝑖,𝑙)

𝑘|𝑘−1
, 𝑛
(𝑖,𝑙)

𝑘|𝑘−1
)

1 − 𝑟
(𝑖)

𝑘|𝑘−1
∑
𝐿
(𝑖)

𝑘|𝑘−1

𝑙=1
𝜔
(𝑖,𝑙)

𝑘|𝑘−1
𝑝𝐷,𝑘 (x

(𝑖,𝑙)

𝑘|𝑘−1
, 𝑛
(𝑖,𝑙)

𝑘|𝑘−1
)

)

−1

,

𝑝𝑈,𝑘 (x𝑘, 𝑛𝑘; z𝑘) =
𝑀𝑘|𝑘−1

∑

𝑖=1

𝐿
(𝑖)

𝑘|𝑘−1

∑

𝑙=1

𝜔
(𝑖,𝑙)

𝑈,𝑘
(z𝑘) 𝛿 (x𝑘 − x(𝑖,𝑙)

𝑘|𝑘−1
, 𝑛𝑘 − 𝑛

(𝑖,𝑙)

𝑘|𝑘−1
) ,

(21)
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where

𝜔
(𝑖,𝑙)

𝐿,𝑘
=

�̆�
(𝑖,𝑙)

𝐿,𝑘

∑
𝐿
(𝑖)

𝑘|𝑘−1

𝑙=1
�̆�
(𝑖,𝑙)

𝐿,𝑘

,

�̆�
(𝑖,𝑙)

𝐿,𝑘
= 𝜔

(𝑖,𝑙)

𝑘|𝑘−1

1 − 𝑝𝐷,𝑘 (x
(𝑖,𝑙)

𝑘|𝑘−1
, 𝑛
(𝑖,𝑙)

𝑘|𝑘−1
)

1 − ∑
𝐿
(𝑖)

𝑘|𝑘−1

𝑙=1
𝜔
(𝑖,𝑙)

𝑘|𝑘−1
𝑝𝐷,𝑘 (x

(𝑖,𝑙)

𝑘|𝑘−1
, 𝑛
(𝑖,𝑙)

𝑘|𝑘−1
)

,

𝜔
(𝑖,𝑙)

𝑈,𝑘
(z𝑘) =

�̆�
(𝑖,𝑙)

𝑈,𝑘
(z𝑘)

∑
𝑀𝑘|𝑘−1

𝑖=1
∑
𝐿
(𝑖)

𝑘|𝑘−1

𝑙=1
�̆�
(𝑖,𝑙)

𝑈,𝑘
(z𝑘)

,

�̆�
(𝑖,𝑙)

𝑈,𝑘
(z𝑘) =

𝑟
(𝑖)

𝑘|𝑘−1

1 − 𝑟
(𝑖)

𝑘|𝑘−1

𝜔
(𝑖,𝑙)

𝑘|𝑘−1
𝑔𝑘

× (z𝑘 | x
(𝑖,𝑙)

𝑘|𝑘−1
, 𝑛
(𝑖,𝑙)

𝑘|𝑘−1
) 𝑝𝐷,𝑘 (x

(𝑖,𝑙)

𝑘|𝑘−1
, 𝑛
(𝑖,𝑙)

𝑘|𝑘−1
) .

(22)

(3) The Resampling and Pruning Stage. It is the same as the
resampling and pruning stage of the SMC-CBMeMBer filter
[16].

(4) The SMC Multitarget State Estimation. Given the SMC
multi-Bernoulli posterior density

�̃�𝑘 (𝑌𝑘 | 𝑍1:𝑘) = {(𝑟
(𝑖)

𝑘
, 𝑝
(𝑖)

𝑘
(x𝑘, 𝑛𝑘))}

𝑀𝑘

𝑖=1

with 𝑝(𝑖)
𝑘
(x𝑘, 𝑛𝑘) =

𝐿
(𝑖)

𝑘

∑

𝑙=1

𝜔
(𝑖,𝑙)

𝑘
𝛿 (x𝑘 − x(𝑖,𝑙)

𝑘
, 𝑛𝑘 − 𝑛

(𝑖,𝑙)

𝑘
) ,

(23)

from the method described in Algorithm 1, the SMC multi-
target state estimation can be easily obtained as

𝑋𝑘 = {x̂
(𝑖)

𝑘
}
�̂�𝑘

𝑖=1
with x̂(𝑖)

𝑘
=

𝐿
(𝑖)

𝑘

∑

𝑙=1

x(𝑖,𝑙)
𝑘
𝜔
(𝑖,𝑙)

𝑘
, 𝑖 = 1, . . . , �̂�𝑘.

(24)

Note that the MCMC move step [26] can be introduced
for increasing the particle variety after the resample step
without affecting the validity of the SMC approximation.

5. GM-MM-CBMeMBer Filter and
Its EK and UK Extensions

An analytic solution to the MM-CBMeMBer recursion for
linear-Gaussian multiple maneuvering targets models is pre-
sented in this section. The resulting filter propagates the GM
multi-Bernoulli density against time. Some certain assump-
tions about the linear-Gaussianmultiplemaneuvering targets
models are firstly summarized below.

(A) The dynamic and measurement models for the
augmented state of each maneuvering target have the form

𝑓𝑘|𝑘−1 (x𝑘, 𝑛𝑘 | x𝑘−1, 𝑛𝑘−1)

=N (x𝑘; 𝐹𝑘 (𝑛𝑘) x𝑘−1, Α 𝑘 (𝑛𝑘) 𝑄𝑘 (𝑛𝑘) (Α 𝑘 (𝑛𝑘))
𝑇
)

× ℎ𝑘|𝑘−1 (𝑛𝑘 | 𝑛𝑘−1) ,

𝑔𝑘 (z𝑘 | x𝑘, 𝑛𝑘)

=N (z𝑘; 𝐻𝑘 (𝑛𝑘) x𝑘, Β𝑘 (𝑛𝑘) 𝑅𝑘 (𝑛𝑘) (Β𝑘 (𝑛𝑘))
𝑇
) ,

(25)

whereN(⋅;m, 𝑃) denotes the density ofGaussian distribution
with the mean m and covariance 𝑃; 𝐹𝑘(𝑛𝑘), 𝑄𝑘(𝑛𝑘), and
Α 𝑘(𝑛𝑘) are, respectively, the kinematical state transition, pro-
cess noise covariance, and process noise coefficient matrixes
conditioned on model 𝑛𝑘; 𝐻𝑘(𝑛𝑘), 𝑅𝑘(𝑛𝑘), and Β𝑘(𝑛𝑘) are,
respectively, the observation, observation noise covariance,
and observation noise coefficient matrixes conditioned on
model 𝑛𝑘.

(B) The probabilities of maneuvering target survival
and maneuvering target detection are independent of the
kinematical state:

𝑝𝑆,𝑘 (x𝑘−1, 𝑛𝑘−1) = 𝑝𝑆,𝑘 (𝑛𝑘−1) ,

𝑝𝐷,𝑘 (x𝑘, 𝑛𝑘) = 𝑝𝐷,𝑘 (𝑛𝑘) .
(26)

(C) The birth model for the maneuvering targets is a
multi-Bernoulli with parameter set {(𝑟(𝑖)

Γ,𝑘
, 𝑝
(𝑖)

Γ,𝑘
(x𝑘, 𝑛𝑘))}

𝑀Γ,𝑘

𝑖=1
,

where 𝑝(𝑖)
Γ,𝑘
(x𝑘, 𝑛𝑘), 𝑖 = 1, . . . ,𝑀Γ,𝑘, are GM of the form

𝑝
(𝑖)

Γ,𝑘
(x𝑘, 𝑛𝑘) = 𝑝

(𝑖)

Γ,𝑘
(x𝑘 | 𝑛𝑘) ℎ

(𝑖)

Γ,𝑘
(𝑛𝑘)

= ℎ
(𝑖)

Γ,𝑘
(𝑛𝑘)

𝐽
(𝑖)

Γ,𝑘
(𝑛𝑘)

∑

𝑗=1

𝜛
(𝑖,𝑗)

Γ,𝑘
(𝑛𝑘)

×N (x𝑘;m
(𝑖,𝑗)

Γ,𝑘
(𝑛𝑘) , 𝑃

(𝑖,𝑗)

Γ,𝑘
(𝑛𝑘)) ,

(27)

where ℎ(𝑖)
Γ,𝑘
(𝑛𝑘) is the distribution ofmodel births and𝑝(𝑖)

Γ,𝑘
(x𝑘 |

𝑛𝑘) is the distribution of the birth kinematical state given
model 𝑛𝑘. 𝑝

(𝑖)

Γ,𝑘
(x𝑘 | 𝑛𝑘) is GM of the form with the parameter

set {𝜛(𝑖,𝑗)
Γ,𝑘
(𝑛𝑘),m

(𝑖,𝑗)

Γ,𝑘
(𝑛𝑘), 𝑃

(𝑖,𝑗)

Γ,𝑘
(𝑛𝑘)}

𝐽
(𝑖)

Γ,𝑘
(𝑛𝑘)

𝑗=1
.

According to the above Assumptions A, B, andC, a closed
form solution to the MM-CBMeMBer recursion, namely, the
GM-MM-CBMeMBer filter, can be derived by applying the
following two standard results for Gaussian functions:

∫N (x; 𝐹x, 𝑄)N (x;m, 𝑃) 𝑑x =N (x; 𝐹m, 𝑄 + 𝐹𝑃𝐹𝑇) ,

N (z; 𝐻x, 𝑅)N (x;m, 𝑃)

=N (z; 𝐻m, 𝑅 + 𝐻𝑃𝐻𝑇
)N(x; ⌣m,

⌣

𝑃) ,

(28)
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where

𝐾 = 𝑃𝐻
𝑇
(𝐻𝑃𝐻

𝑇
+ 𝑅)

−1

,

⌣m= m + 𝐾 (z − 𝐻m) ,
⌣

𝑃= (𝐼 − 𝐾𝐻)𝑃.

(29)

One cycle of the recursive GM-MM-CBMeMBer algo-
rithm can be described as follows.

(1) The GM Mixing and Prediction Stage. Suppose that at
time 𝑘 − 1 the multi-Bernoulli posterior density 𝜋𝑘−1(𝑌𝑘−1 |
𝑍1:𝑘−1) = {(𝑟

(𝑖)

𝑘−1
, 𝑝
(𝑖)

𝑘−1
(x𝑘−1, 𝑛𝑘−1))}

𝑀𝑘−1

𝑖=1
is given and each

𝑝
(𝑖)

𝑘−1
(x𝑘−1, 𝑛𝑘−1), 𝑖 = 1, . . . ,𝑀𝑘−1, is composed of GM of the

form

𝑝
(𝑖)

𝑘−1
(x𝑘−1, 𝑛𝑘−1)

=

𝐽
(𝑖)

𝑘−1
(𝑛𝑘−1)

∑

𝑗=1

𝜛
(𝑖,𝑗)

𝑘−1
(𝑛𝑘−1)

×N (x𝑘−1;m
(𝑖,𝑗)

𝑘−1
(𝑛𝑘−1) , 𝑃

(𝑖,𝑗)

𝑘−1
(𝑛𝑘−1)) .

(30)

Then, the mixed and predicted multi-Bernoulli density
𝜋𝑘|𝑘−1(𝑌𝑘 | 𝑍1:𝑘−1) = {(𝑟

(𝑖)

𝑃,𝑘|𝑘−1
, 𝑝
(𝑖)

𝑃,𝑘|𝑘−1
(x𝑘, 𝑛𝑘))}

𝑀𝑘−1

𝑖=1
∪

{(𝑟
(𝑖)

Γ,𝑘
, 𝑝
(𝑖)

Γ,𝑘
(x𝑘, 𝑛𝑘))}

𝑀Γ,𝑘

𝑖=1
can be computed as follows:

𝑟
(𝑖)

𝑃,𝑘|𝑘−1
= 𝑟

(𝑖)

𝑘−1
∑

𝑛𝑘

∑

𝑛𝑘−1

𝐽
(𝑖)

𝑘−1
(𝑛𝑘−1)

∑

𝑗=1

ℎ𝑘|𝑘−1 (𝑛𝑘 | 𝑛𝑘−1)

× 𝑝𝑆,𝑘 (𝑛𝑘−1) 𝜛
(𝑖,𝑗)

𝑘−1
(𝑛𝑘−1) ,

𝑝
(𝑖)

𝑃,𝑘|𝑘−1
(x𝑘, 𝑛𝑘) = ∑

𝑛𝑘−1

𝐽
(𝑖)

𝑘−1
(𝑛𝑘−1)

∑

𝑗=1

𝜛
(𝑖,𝑗)

𝑃,𝑘|𝑘−1
(𝑛𝑘, 𝑛𝑘−1)

×N (x𝑘;m
(𝑖,𝑗)

𝑃,𝑘|𝑘−1
(𝑛𝑘, 𝑛𝑘−1) ,

𝑃
(𝑖,𝑗)

𝑃,𝑘|𝑘−1
(𝑛𝑘, 𝑛𝑘−1)) ,

{(𝑟
(𝑖)

Γ,𝑘
, 𝑝
(𝑖)

Γ,𝑘
(x𝑘, 𝑛𝑘))}

𝑀Γ,𝑘

𝑖=1
= given by the birthmodel (27) ,

(31)

where

m(𝑖,𝑗)

𝑃,𝑘|𝑘−1
(𝑛𝑘, 𝑛𝑘−1) = 𝐹𝑘 (𝑛𝑘)m

(𝑖,𝑗)

𝑘−1
(𝑛𝑘−1) ,

𝑃
(𝑖,𝑗)

𝑃,𝑘|𝑘−1
(𝑛𝑘, 𝑛𝑘−1) = 𝐹𝑘 (𝑛𝑘) 𝑃

(𝑖,𝑗)

𝑘−1
(𝑛𝑘−1) (𝐹𝑘 (𝑛𝑘))

𝑇

+ Α 𝑘 (𝑛𝑘) 𝑄𝑘 (𝑛𝑘) (Α 𝑘 (𝑛𝑘))
𝑇
,

𝜛
(𝑖,𝑗)

𝑃,𝑘|𝑘−1
(𝑛𝑘, 𝑛𝑘−1)

= (ℎ𝑘|𝑘−1 (𝑛𝑘 | 𝑛𝑘−1) 𝑝𝑆,𝑘 (𝑛𝑘−1) 𝜛
(𝑖,𝑗)

𝑘−1
(𝑛𝑘−1))

× (∑

𝑛𝑘

∑

𝑛𝑘−1

𝐽
(𝑖)

𝑘−1
(𝑛𝑘−1)

∑

𝑗=1

ℎ𝑘|𝑘−1 (𝑛𝑘 | 𝑛𝑘−1)

×𝑝𝑆,𝑘 (𝑛𝑘−1) 𝜛
(𝑖,𝑗)

𝑘−1
(𝑛𝑘−1))

−1

.

(32)

(2) The GM Update Stage. Suppose that at time 𝑘 the mixed
and predicted multi-Bernoulli density 𝜋𝑘|𝑘−1(𝑌𝑘 | 𝑍1:𝑘−1) =
{(𝑟

(𝑖)

𝑘|𝑘−1
, 𝑝
(𝑖)

𝑘|𝑘−1
(x𝑘, 𝑛𝑘))}

𝑀𝑘|𝑘−1

𝑖=1
is given and each 𝑝(𝑖)

𝑘|𝑘−1
(x𝑘, 𝑛𝑘),

𝑖 = 1, . . . ,𝑀𝑘|𝑘−1, is composed of GM of the form

𝑝
(𝑖)

𝑘|𝑘−1
(x𝑘, 𝑛𝑘)

=

𝐽
(𝑖)

𝑘|𝑘−1
(𝑛𝑘)

∑

𝑗=1

𝜛
(𝑖,𝑗)

𝑘|𝑘−1
(𝑛𝑘)

×N (x𝑘;m
(𝑖,𝑗)

𝑘|𝑘−1
(𝑛𝑘) , 𝑃

(𝑖,𝑗)

𝑘|𝑘−1
(𝑛𝑘)) .

(33)

Then, the multi-Bernoulli approximation of the updated
density 𝜋𝑘(𝑌𝑘 | 𝑍1:𝑘) ≈ {(𝑟

(𝑖)

𝐿,𝑘
, 𝑝
(𝑖)

𝐿,𝑘
(x𝑘, 𝑛𝑘))}

𝑀𝑘|𝑘−1

𝑖=1
∪ {(𝑟𝑈,𝑘(z𝑘),

𝑝
𝑈,𝑘
(x𝑘, 𝑛𝑘; z𝑘))}z𝑘∈𝑍𝑘 can be computed as follows:

𝑟
(𝑖)

𝐿,𝑘
= 𝑟

(𝑖)

𝑘|𝑘−1

1 − ∑
𝑛𝑘
∑
𝐽
(𝑖)

𝑘|𝑘−1
(𝑛𝑘)

𝑗=1
𝜛
(𝑖,𝑗)

𝑘|𝑘−1
(𝑛𝑘) 𝑝𝐷,𝑘 (𝑛𝑘)

1 − 𝑟
(𝑖)

𝑘|𝑘−1
∑
𝑛𝑘
∑
𝐽
(𝑖)

𝑘|𝑘−1
(𝑛𝑘)

𝑗=1
𝜛
(𝑖,𝑗)

𝑘|𝑘−1
(𝑛𝑘) 𝑝𝐷,𝑘 (𝑛𝑘)

,

𝑟𝑈,𝑘 (z𝑘) = (
𝑀𝑘|𝑘−1

∑

𝑖=1

(1 − 𝑟
(𝑖)

𝑘|𝑘−1
) 𝑟
(𝑖)

𝑘|𝑘−1
∑
𝑛𝑘
∑
𝐽
(𝑖)

𝑘|𝑘−1
(𝑛𝑘)

𝑗=1
𝜛
(𝑖,𝑗)

𝑘|𝑘−1
(𝑛𝑘) 𝑝𝐷, 𝑘 (𝑛𝑘)Q

(𝑖,𝑗)

𝑘
(𝑛𝑘; z𝑘)

(1 − 𝑟
(𝑖)

𝑘|𝑘−1
∑
𝑛𝑘
∑
𝐽
(𝑖)

𝑘|𝑘−1
(𝑛𝑘)

𝑗=1
𝜛
(𝑖,𝑗)

𝑘|𝑘−1
(𝑛𝑘) 𝑝𝐷,𝑘(𝑛𝑘))

2
)
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×(𝜅𝑘 (z𝑘) +
𝑀𝑘|𝑘−1

∑

𝑖=1

𝑟
(𝑖)

𝑘|𝑘−1
∑
𝑛𝑘
∑
𝐽
(𝑖)

𝑘|𝑘−1
(𝑛𝑘)

𝑗=1
𝜛
(𝑖,𝑗)

𝑘|𝑘−1
(𝑛𝑘) 𝑝𝐷,𝑘 (𝑛𝑘)Q

(𝑖,𝑗)

𝑘
(𝑛𝑘; z𝑘)

1 − 𝑟
(𝑖)

𝑘|𝑘−1
∑
𝑛𝑘
∑
𝐽
(𝑖)

𝑘|𝑘−1
(𝑛𝑘)

𝑗=1
𝜛
(𝑖,𝑗)

𝑘|𝑘−1
(𝑛𝑘) 𝑝𝐷,𝑘 (𝑛𝑘)

)

−1

𝑝
(𝑖)

𝐿,𝑘
(x𝑘, 𝑛𝑘) =

∑
𝐽
(𝑖)

𝑘|𝑘−1
(𝑛𝑘)

𝑗=1
(1 − 𝑝𝐷,𝑘 (𝑛𝑘)) 𝜛

(𝑖,𝑗)

𝑘|𝑘−1
(𝑛𝑘)N (x𝑘;m

(𝑖,𝑗)

𝑘|𝑘−1
(𝑛𝑘) , 𝑃

(𝑖,𝑗)

𝑘|𝑘−1
(𝑛𝑘))

1 − ∑
𝑛𝑘
∑
𝐽
(𝑖)

𝑘|𝑘−1
(𝑛𝑘)

𝑗=1
𝜛
(𝑖,𝑗)

𝑘|𝑘−1
(𝑛𝑘) 𝑝𝐷,𝑘 (𝑛𝑘)

,

𝑝
𝑈,𝑘
(x𝑘, 𝑛𝑘; z𝑘) =

𝑀𝑘|𝑘−1

∑

𝑖=1

𝐽
(𝑖)

𝑘|𝑘−1
(𝑛𝑘)

∑

𝑗=1

𝜛
(𝑖,𝑗)

𝑈,𝑘
(𝑛𝑘; z𝑘)N (x𝑘;m

(𝑖,𝑗)

𝑈,𝑘
(𝑛𝑘; z𝑘) , 𝑃

(𝑖,𝑗)

𝑈,𝑘
(𝑛𝑘)) ,

(34)

where

Q
(𝑖,𝑗)

𝑘
(𝑛𝑘; z𝑘) =N (z𝑘; 𝐻𝑘 (𝑛𝑘) m(𝑖,𝑗)

𝑘|𝑘−1
(𝑛𝑘) ,

Β𝑘 (𝑛𝑘) 𝑅𝑘 (𝑛𝑘) (Β𝑘 (𝑛𝑘))
𝑇

+𝐻𝑘 (𝑛𝑘) 𝑃
(𝑖,𝑗)

𝑘|𝑘−1
(𝑛𝑘) (𝐻𝑘 (𝑛𝑘))

𝑇
)

𝜛
(𝑖,𝑗)

𝑈,𝑘
(𝑛𝑘; z𝑘)

= (
𝑟
(𝑖)

𝑘|𝑘−1

1 − 𝑟
(𝑖)

𝑘|𝑘−1

𝜛
(𝑖,𝑗)

𝑘|𝑘−1
(𝑛𝑘) 𝑝𝐷,𝑘 (𝑛𝑘)Q

(𝑖,𝑗)

𝑘
(𝑛𝑘; z𝑘))

×(

𝑀𝑘|𝑘−1

∑

𝑖=1

∑

𝑛𝑘

𝐽
(𝑖)

𝑘|𝑘−1
(𝑛𝑘)

∑

𝑗=1

𝑟
(𝑖)

𝑘|𝑘−1

1 − 𝑟
(𝑖)

𝑘|𝑘−1

𝜛
(𝑖,𝑗)

𝑘|𝑘−1
(𝑛𝑘) 𝑝𝐷,𝑘

× (𝑛𝑘)Q
(𝑖,𝑗)

𝑘
(𝑛𝑘; z𝑘))

−1

,

𝐾
(𝑖,𝑗)

𝑈,𝑘
(𝑛𝑘) = 𝑃

(𝑖,𝑗)

𝑘|𝑘−1
(𝑛𝑘) (𝐻𝑘 (𝑛𝑘))

𝑇

× (𝐻𝑘 (𝑛𝑘) 𝑃
(𝑖,𝑗)

𝑘|𝑘−1
(𝑛𝑘) (𝐻𝑘 (𝑛𝑘))

𝑇

+Β𝑘 (𝑛𝑘) 𝑅𝑘 (𝑛𝑘) (Β𝑘 (𝑛𝑘))
𝑇
)
−1

,

m(𝑖,𝑗)

𝑈,𝑘
(𝑛𝑘; z𝑘) = m(𝑖,𝑗)

𝑘|𝑘−1
(𝑛𝑘) + 𝐾

(𝑖,𝑗)

𝑈,𝑘
(𝑛𝑘)

× (z𝑘 − 𝐻𝑘 (𝑛𝑘)m
(𝑖,𝑗)

𝑘|𝑘−1
(𝑛𝑘)) ,

𝑃
(𝑖,𝑗)

𝑈,𝑘
(𝑛𝑘) = (𝐼 − 𝐾

(𝑖,𝑗)

𝑈,𝑘
(𝑛𝑘)𝐻𝑘 (𝑛𝑘)) 𝑃

(𝑖,𝑗)

𝑘|𝑘−1
(𝑛𝑘) .

(35)

(3) The Pruning and Merging Stage. It is the same as the
pruning andmerging stage of the GM-CBMeMBer filter [16].

(4) The GM Multitarget State Estimation. Given the GM
multi-Bernoulli posterior density

𝜋𝑘 (𝑌𝑘 | 𝑍1:𝑘) = {(𝑟
(𝑖)

𝑘
, 𝑝
(𝑖)

𝑘
(x𝑘, 𝑛𝑘))}

𝑀𝑘

𝑖=1
with

𝑝
(𝑖)

𝑘
(x𝑘, 𝑛𝑘) =

𝐽
(𝑖)

𝑘
(𝑛𝑘)

∑

𝑗=1

𝜛
(𝑖,𝑗)

𝑘
(𝑛𝑘)N (x𝑘;m

(𝑖,𝑗)

𝑘
(𝑛𝑘) , 𝑃

(𝑖,𝑗)

𝑘
(𝑛𝑘))

(36)

from the method described in Algorithm 1, the GMmultitar-
get state estimation can be easily obtained as

𝑋𝑘 = {x̂
(𝑖)

𝑘
}
�̂�𝑘

𝑖=1
with x̂(𝑖)

𝑘
= ∑

𝑛𝑘

𝐽
(𝑖)

𝑘
(𝑛𝑘)

∑

𝑗=1

𝜛
(𝑖,𝑗)

𝑘
(𝑛𝑘)m

(𝑖,𝑗)

𝑘
(𝑛𝑘) ,

𝑖 = 1, . . . , �̂�𝑘.

(37)

Now turn to considering the extension of the GM-MM-
CBMeMBer filter to nonlinear dynamical and observation
models using the EK filtering approximation. Assumptions
B and C are still required, but the dynamic and observation
processes can be relaxed to the nonlinear models

x𝑘 = 𝑎𝑘 (x𝑘−1,w𝑘 (𝑛𝑘) , 𝑛𝑘) ,

z𝑘 = 𝑢𝑘 (x𝑘, v𝑘 (𝑛𝑘) , 𝑛𝑘) ,
(38)

where 𝑎𝑘(⋅, ⋅, 𝑛𝑘) and 𝑢𝑘(⋅, ⋅, 𝑛𝑘) are known model-dependent
nonlinear functions, and w𝑘(𝑛𝑘) and v𝑘(𝑛𝑘) are model-
dependent process and observation noise vectors of known
statistics.

For the EK-GM-MM-CBMeMBer filter, the closed form
expressions for the mixing, prediction, and update of indi-
vidual Gaussian components are approximated by replacing
𝐹𝑘(𝑛𝑘), Α 𝑘(𝑛𝑘), 𝐻𝑘(𝑛𝑘), Β𝑘(𝑛𝑘) in the corresponding recur-
sive equations (30)–(35) of the GM-MM-CBMeMBer filter
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with the corresponding local linearization of the nonlinear
dynamical and observation models

𝐹
EK
𝑘
(𝑛𝑘) =

𝜕𝑎𝑘 (x𝑘−1,w𝑘 (𝑛𝑘) , 𝑛𝑘)
𝜕x𝑘−1


x𝑘−1=x̂𝑘−1
w𝑘(𝑛𝑘)=0

,

Α
EK
𝑘
(𝑛𝑘) =

𝜕𝑎𝑘 (x𝑘−1,w𝑘 (𝑛𝑘) , 𝑛𝑘)
𝜕w𝑘 (𝑛𝑘)


x𝑘−1=x̂𝑘−1
w𝑘(𝑛𝑘)=0

,

𝐻
EK
𝑘
(𝑛𝑘) =

𝜕𝑢𝑘 (x𝑘, v𝑘 (𝑛𝑘) , 𝑛𝑘)
𝜕x𝑘


x𝑘−1=x̂𝑘|𝑘−1
v𝑘(𝑛𝑘)=0

,

Β
EK
𝑘
(𝑛𝑘) =

𝜕𝑢𝑘 (x𝑘, v𝑘 (𝑛𝑘) , 𝑛𝑘)
𝜕v𝑘(𝑛𝑘)


x𝑘−1=x̂𝑘|𝑘−1
v𝑘(𝑛𝑘)=0

.

(39)

Note that the unscented Kalman version for the GM-
MM-CBMeMBer filter can be derived by approximating the
mean and covariance of individual Gaussian components
with a set of sigma points and the unscented transform [20].
Because of the space limitation, the details of the UK-GM-
MM-CBMeMBer filter are not presented here.

6. Simulations

6.1. Nonlinear Example Using SMC Implementations. In this
nonlinear example, we evaluate the performance of the
proposed MM-CBMeMBer filter by benchmarking it against
the single-model CBMeMBer filters, theMM-PHD filter, and
the MM-CPHD filter using the SMC implementations.

Consider a two-dimensional scenario with an unknown
and time varying number of the maneuvering targets
observed over the region [−1000, 1000] × [−1000, 1000] (m)
for a period of 𝑁 = 50 time steps. The sampling interval is
Δ𝑡 = 1 (s). Each of the targets may move at a nearly constant
velocity or execute a coordinated turn in the surveillance
period. Therefore, the model set designed for this example
can be composed of a constant velocity (CV) model and a
coordinated turn (CT)model with varying turn rate [27].The
target kinematical state is x𝑘 = [𝑥𝑘 �̇�𝑘 𝑦𝑘 ̇𝑦𝑘 𝜗𝑘]

𝑇, where
[𝑥𝑘 𝑦𝑘]

𝑇 and [�̇�𝑘 ̇𝑦𝑘]
𝑇, respectively, represent the position

and the velocity in 𝑥 and 𝑦 coordinates and 𝜗𝑘 represents the
turn rate. For the turn rate 𝜗𝑘, let the anticlockwise direction
be positive and the clockwise direction be negative.

The model-dependent dynamics for the individual
maneuvering target is given by the linear-Gaussian model

𝑓𝑘|𝑘−1 (x𝑘 | x𝑘−1, 𝑛𝑘) =N (x𝑘; 𝐹𝑘 (𝑛𝑘) x𝑘−1, 𝑄𝑘 (𝑛𝑘)) .
(40)

Let 𝑛𝑘 = 1denote theCVmodel and 𝑛𝑘 = 2 theCTmodel;
then

𝐹𝑘 (𝑛𝑘 = 1) = [
𝐹CV

0
] ,

𝐹𝑘 (𝑛𝑘 = 2) = [
𝐹CT (𝜗𝑘−1)

1
] ,

𝑄𝑘 (𝑛𝑘 = 1) = 𝜎
2

𝑤
(𝑛𝑘 = 1) [

𝑄

0
] ,

𝑄𝑘 (𝑛𝑘 = 2) = [
𝜎
2

1,𝑤
(𝑛𝑘 = 2)𝑄

Δ𝑡
2
𝜎
2

2,𝑤
(𝑛𝑘 = 2)

]

(41)

with

𝐹CV =
[
[
[

[

1 Δ𝑡 0 0

0 1 0 0

0 0 1 Δ𝑡

0 0 0 1

]
]
]

]

,

𝐹CT (𝜗𝑘−1) =

[
[
[
[
[
[
[
[
[

[

1
Δ𝑡 sin 𝜗𝑘−1
𝜗𝑘−1

0 −
1 − Δ𝑡 cos 𝜗𝑘−1

𝜗𝑘−1

0 Δ𝑡 cos 𝜗𝑘−1 0 −Δ𝑡 sin 𝜗𝑘−1

0
1 − Δ𝑡 cos 𝜗𝑘−1

𝜗𝑘−1

1
Δ𝑡 sin 𝜗𝑘−1
𝜗𝑘−1

0 Δ𝑡 sin 𝜗𝑘−1 0 Δ𝑡 cos 𝜗𝑘−1

]
]
]
]
]
]
]
]
]

]

,

𝑄 =

[
[
[
[
[
[
[
[
[
[
[
[

[

Δ𝑡
4

4

Δ𝑡
3

2
0 0

Δ𝑡
3

2
Δ𝑡
2

0 0

0 0
Δ𝑡
4

4

Δ𝑡
3

2

0 0
Δ𝑡
3

2
Δ𝑡
2

]
]
]
]
]
]
]
]
]
]
]
]

]

,

(42)

where 𝜎𝑤(𝑛𝑘) is the level of the power spectral density of the
process noise for model 𝑛𝑘. In this example, they are given
by 𝜎𝑤(𝑛𝑘 = 1) = 0.1 (m/s2), 𝜎1,𝑤(𝑛𝑘 = 2) = 0.2 (m/s2),
𝜎2,𝑤(𝑛𝑘 = 2) = 1 × 10

−3 (rad/s2).
The Markovian model transition probability matrix is

taken as

[ℎ𝑘|𝑘−1 (𝑛𝑘| 𝑛𝑘−1)] = [
0.8 0.2

0.2 0.8
] . (43)

At time 𝑘, the range 𝜌𝑘 and bearing 𝜑𝑘 measurements
of the targets are generated by a sensor located at [0 0]

𝑇.
The measurement noise is independent and identically dis-
tributed (IID) zero-mean Gaussian white noise with covari-
ance matrix 𝑅𝑘 = diag (𝜎2𝜌 𝜎

2

𝜑), where diag(⋅) denotes the
diagonal matrix, and 𝜎𝜌 and 𝜎𝜑 are, respectively, standard
deviations (STDs) of the range and bearing measurements.
In this example, they are taken as 𝜎𝜌 = 10 (m) and
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𝜎𝜑 = 0.01 (rad). The single-measurement single-target likeli-
hood density is

𝑔𝑘 (z𝑘 | y𝑘) =N(z𝑘;
[
[

[

√𝑥2
𝑘
+ 𝑦2

𝑘

arctan
𝑦𝑘

𝑥𝑘

]
]

]

, 𝑅𝑘). (44)

The detection probability and the survival probability
are, respectively, taken as 𝑝𝐷,𝑘(x𝑘, 𝑛𝑘) = 𝑝𝐷 = 0.95 and
𝑝𝑆,𝑘(x𝑘−1, 𝑛𝑘−1) = 𝑝𝑆 = 0.95 in this example.

The clutter is modeled as a Poisson RFS with the intensity
𝜅𝑘(z𝑘) = 𝜆𝑐,𝑘𝑓𝑐,𝑘(z𝑘). In this example, we take 𝜆𝑐,𝑘 = 20 and
𝑓𝑐,𝑘(⋅) = U(⋅), whereU(⋅) denotes the density of the uniform
distribution over the observation region.

Figure 1 shows the true trajectories for the maneuvering
targets and sensor location.

In Figure 1, “∘” denotes the locations at which targets are
born and “◻” denotes the locations atwhich targets die. Target
1 is born at 1 s anddies at 30 s. It firstmoves at a nearly constant
velocity from the first second to the 15th second and then
executes a coordinated turn in the anticlockwise direction
from the 16th second to the 30th second. Target 2 is born
at 1 s and dies at 35 s. It first executes a coordinated turn in
the anticlockwise direction from the first second to the 20th
second and then moves at a nearly constant velocity from the
21st second to the 35th second. Target 3 is born at 10 s and dies
at 42 s. It first executes a coordinated turn in the anticlockwise
direction from the 10th second to the 30th second and then
moves at a nearly constant velocity from the 31st second to the
42nd second. Target 4 is born at 20 s and dies at 50 s. It first
moves at a nearly constant velocity from the 20th second to
the 30th second and then executes a coordinated turn in the
clockwise direction from the 31st second to the 50th second.
The motions of the targets are summarized in Table 1.

The birth process is a multi-Bernoulli RFS with density
𝜋Γ,𝑘(𝑌𝑘) = {(𝑟

(𝑖)

Γ,𝑘
, 𝑝
(𝑖)

Γ,𝑘
(x𝑘, 𝑛𝑘))}

3

𝑖=1
, where 𝑟(1)

Γ,𝑘
= 0.04, 𝑟(2)

Γ,𝑘
=

𝑟
(3)

Γ,𝑘
= 0.02, 𝑝(𝑖)

Γ,𝑘
(x𝑘, 𝑛𝑘) = ℎ

(𝑖)

Γ,𝑘
(𝑛𝑘)N(x𝑘;m

(𝑖)

Γ,𝑘
, 𝑃
(𝑖)

Γ,𝑘
) with

m(1)

Γ,𝑘
= [−600 0 800 0 0]

𝑇
,

m(2)

Γ,𝑘
= [−650 0 −800 0 0]

𝑇
,

m(3)

Γ,𝑘
= [400 0 −400 0 0]

𝑇
,

𝑃
(1)

Γ,𝑘
= 𝑃

(2)

Γ,𝑘
= 𝑃

(3)

Γ,𝑘
= diag (400 400 400 400 0.01)

(45)

and the distribution of the model births

[ℎ
(𝑖)

Γ,𝑘
(𝑛𝑘)] = [0.5 0.5] . (46)

For the purpose of comparison, we estimate the num-
ber and states of the maneuvering targets using the pro-
posed SMC-MM-CBMeMBer filter, the CV model SMC-
CBMeMBer filter, the CT model SMC-CBMeMBer filter,
the SMC-MM-PHD filter, and the SMC-MM-CPHD filter,
respectively. At each time step in the SMC implementations
of the CBMeMBer-based filters, a maximum of 𝐿max = 1000
and minimum of 𝐿min = 300 particles per hypothesized
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Figure 1: The true trajectories for the maneuvering targets and
sensor location.

Table 1: The motions of the targets.

Born
time

Die
time CV motion CT motion

Target 1 1 s 30 s 1 s–15 s 16 s–30 s, anticlockwise
Target 2 1 s 35 s 21 s–35 s 1 s–20 s, anticlockwise
Target 3 10 s 42 s 31 s–42 s 10 s–30 s, anticlockwise
Target 4 20 s 50 s 20 s–30 s 31 s–50 s, clockwise

track are imposed, and pruning of hypothesized tracks is
performed with a threshold of 𝑟threshold = 0.001. At each time
step in the SMC implementations of the PHD-based filters,
1000 particles are used to represent one target and 𝐾-means
method [14] is used to cluster the resampled particles to
extract the multitarget states. The proposal densities 𝛼(𝑖)

𝑘
(𝑛𝑘 |

𝑛𝑘−1), 𝛽
(𝑖)

𝑘
(𝑛𝑘), 𝑞

(𝑖)

𝑘
(x𝑘 | x𝑘−1, 𝑛𝑘, 𝑍𝑘), and 𝑏

(𝑖)

𝑘
(x𝑘 | 𝑛𝑘, 𝑍𝑘)

in (16) and (18) are, respectively, taken as ℎ𝑘|𝑘−1(𝑛𝑘 | 𝑛𝑘−1),
ℎ
(𝑖)

Γ,𝑘
(𝑛𝑘), 𝑓𝑘|𝑘−1(x𝑘 | x𝑘−1, 𝑛𝑘) and N(x𝑘;m

(𝑖)

Γ,𝑘
, 𝑃
(𝑖)

Γ,𝑘
). We now

conduct 500 Monte Carlo (MC) simulation experiments
on the same clutter intensity and target trajectories, but
with independently generated clutter and target-generated
measurements in each trial.

The MC averages of the mean and STD of the cardinality
distribution for the five methods at each time step are shown
along with the true target number in Figure 2, respectively.

Figures 2(a)–2(e) demonstrate that the target number
estimates from the SMC-MM-PHD, SMC-MM-CPHD, and
SMC-MM-CBMeMBer filters converge to the ground truth,
whereas the CV model SMC-CBMeMBer and CT model
SMC-CBMeMBer filters produce significant bias in esti-
mating the target number. This is because the SMC-MM-
PHD, SMC-MM-CPHD, and SMC-MM-CBMeMBer filters
can effectively capture the model switching property of the
maneuvering targets, so their performance is significantly
better than that of the two single-model SMC-CBMeMBer
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Figure 2: The 500 MC run averages of cardinality statistics versus time for the (a) CV model SMC-CBMeMBer filter, (b) CT model SMC-
CBMeMBer filter, (c) SMC-MM-PHD filter, (d) SMC-MM-CPHD filter, and (e) SMC-MM-CBMeMBer filter.
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filters, which show poor adaptation to target maneuvers and
yield larger estimation errors.

Moreover, as plotted in Figures 2(c)–2(e), the STD of
the cardinality distribution from the SMC-MM-CBMeMBer
filter is lower than that of the SMC-MM-PHDfilter, but larger
than that of SMC-MM-CPHD filter. In addition, the STDs
of the cardinality distributions from the three MM-based
filters increase in different degrees at the instances when
the maneuver occurs (i.e., 16 (s), 21 (s), and 31 (s)). The
STD plots of the SMC-MM-PHD and SMC-MM-CPHD
filters seem to fluctuate more obviously than the SMC-
MM-CBMeMBer filter. This phenomenon indicates that the
performance of the SMC-MM-CBMeMBer filter may be
more stable and robust at the maneuver instances than that
of the SMC-MM-PHD and SMC-MM-CPHD filters.

The optimal subpattern assignment (OSPA) metric [28],
which can jointly capture differences in cardinality and indi-
vidual elements between two finite sets, is used to evaluate
the performance of the five methods. Given the actual and
estimated multitarget state sets 𝑋𝑘 = {x(𝑖)

𝑘
}
𝑇𝑘

𝑖=1
and 𝑋𝑘 =

{x̂(𝑖)
𝑘
}
�̂�𝑘

𝑖=1
, the OSPA metric of order 𝑝 = 2 with cut-off 𝑐

between the two sets is defined by

OSPA(𝑐)
2,𝑘
(𝑋𝑘, 𝑋𝑘)

= (
1

�̂�𝑘

(min
𝜋∈Π
�̂�𝑘

𝑇𝑘

∑

𝑖=1

min (𝑐, x
(𝑖)

𝑘
− x̂(𝜋(𝑖))

𝑘

2
)
2

+𝑐
2
(�̂�𝑘 − 𝑇𝑘)))

1/2

(47)

if 𝑇𝑘 ≤ �̂�𝑘 and OSPA(𝑐)
2,𝑘
(𝑋𝑘, 𝑋𝑘) = OSPA(𝑐)

2,𝑘
(𝑋𝑘, 𝑋𝑘) if 𝑇𝑘 >

�̂�𝑘.Π�̂�𝑘 denotes the set of permutations on {1, 2, . . . , �̂�𝑘}. ‖ ⋅ ‖2
denotes the 2-norm. In this example, we take 𝑐 = 100 (m).

The MC averages of the OSPA metric for the target
position estimates, derived by the five methods, are shown in
Figure 3.

The OSPA metric is composed of two components each
separately accounting for “localization” and “cardinality”
errors. This results in high peaks in OSPA metric at the
instances where the estimated number is incorrect. Figure 3
shows that (1) both the single-model SMC-CBMeMBer filters
perform significantly worse than the other MM-based filters
because of the large cardinality errors produced by the two
filters as seen in Figures 2(a) and 2(b); (2) although the
SMC-MM-CPHD filter can estimate the target number most
accurately, the OSPA metric of the SMC-MM-CBMeMBer
filter is smaller than that of the SMC-MM-CPHDfilter, which
is in turn smaller than that of the SMC-MM-PHD filter.
This phenomenon indicates that the SMC-MM-CBMeMBer
filter outperforms the SMC-MM-CPHD (and hence SMC-
MM-PHD) filter in jointly estimating themultitarget number
and states. A reason for this is that the additional errors
could be introduced in the clustering processes of the SMC-
MM-PHD and SMC-MM-CPHD filters to extract state esti-
mates from the particle population; (3) the OSPA plots of
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Figure 3: The 500 MC run averages of OSPA against time.

the three MM-based filters in Figure 3 fluctuate against time
due to the varying target number, the target maneuvers,
and clutter. However, increase of the OSPA from the SMC-
MM-CBMeMBer filter seems to be smallest at the maneuver
instances (i.e., 16 (s), 21 (s), and 31 (s)) among the three
MM-based methods. This phenomenon also indicates that
the performance of the SMC-MM-CBMeMBer filter may be
more stable and robust at themaneuver instances than that of
the SMC-MM-PHD and SMC-MM-CPHD filters.

For comparing the overall performance of the threeMM-
based filters, the 500 MC trial averages of the OSPA distance
(time-averaged over the duration of the scenario) for the
three MM-based filters are shown in Table 2 against the
clutter rate from 𝜆𝑐,𝑘 = 20 to 𝜆𝑐,𝑘 = 100. The result of
time-averaging can be viewed as a broad indication of filter
performance, although the average is likely to be scenario
dependent.

Table 2 shows that the OSPA distances of the three MM-
based filters increase with higher 𝜆𝑐,𝑘. It reflects that the
performance of the three MM-based algorithms degrades by
different degrees as the 𝜆𝑐,𝑘 increases. Among the three MM-
based algorithms, the SMC-MM-PHD filter always works
the worst. The SMC-MM-CBMeMBer filter outperforms the
SMC-MM-CPHD filter when 𝜆𝑐,𝑘 is relatively lower (𝜆𝑐,𝑘 ≤
60). However, as the 𝜆𝑐,𝑘 increases, the OSPA distance of
SMC-MM-CBMeMBer filter increasesmore rapidly than that
of the SMC-MM-CPHD filter. Therefore, as 𝜆𝑐,𝑘 continues
to increase until it reaches 𝜆𝑐,𝑘 = 80, the OSPA distance of
SMC-MM-CBMeMBer filter is very close to that of the SMC-
MM-CPHD filter. When 𝜆𝑐,𝑘 is relatively higher (i.e., 𝜆𝑐,𝑘 =
80), the SMC-MM-CPHD filter outperforms the SMC-MM-
CBMeMBer filter. A possible reason for this is that, compared



Journal of Applied Mathematics 13

Table 2: Time-averaged OSPA distance (𝑚) in various 𝜆𝑐,𝑘.

𝜆𝑐,𝑘 = 20 𝜆𝑐,𝑘 = 40 𝜆𝑐,𝑘 = 60 𝜆𝑐,𝑘 = 80 𝜆𝑐,𝑘 = 100

SMC-MM-PHD filter 38.3 48.2 60.5 74.3 88.1
SMC-MM-CPHD filter 32.8 35.9 39.4 43.4 47.8
SMC-MM-CBMeMBer filter 25.6 31.3 37.4 43.2 48.9

with the SMC-MM-CBMeMBer filter, the advantage of the
target number estimate for the SMC-MM-CPHD filter is
more obvious as the 𝜆𝑐,𝑘 increases and it finally leads that the
OSPA distance of the SMC-MM-CPHD filter is smaller than
that of the SMC-MM-CBMeMBer filter when 𝜆𝑐,𝑘 is relatively
higher (i.e., 𝜆𝑐,𝑘 = 80).

6.2. Linear-Gaussian Example Using GM Implementations. In
this linear-Gaussian example, we evaluate the performance
of the proposed MM-CBMeMBer filter by benchmarking it
against the single-model CBMeMBer filters, the MM-PHD
filter, and the MM-CPHD filter using the GM implementa-
tions.

The simulation scenario and true trajectories for the
maneuvering targets are the same as those of Example
1. The target kinematical state now turns into x𝑘 =

[𝑥𝑘 �̇�𝑘 𝑦𝑘 ̇𝑦𝑘]
𝑇. The model set for this example is designed

as follows. Model 𝑛𝑘 = 1 is a CV model with linear-
Gaussian dynamics given byN(x𝑘; 𝐹CVx𝑘−1, 𝜎2CV,𝑤𝑄); models
𝑛𝑘 = 2, 3, 4, 5 are, respectively, CT models with turn rates
of 𝜗 = 𝜋/30, −𝜋/30, 𝜋/20, 𝜋/15 (rad/s) with linear-Gaussian
dynamics given by N(x𝑘; 𝐹CT(𝜗)x𝑘−1, 𝜎2CT,𝑤𝑄). In this exam-
ple, 𝜎CV,𝑤 and 𝜎CT,𝑤 are given by 𝜎CV,𝑤 = 0.1 (m/s

2), 𝜎CT,𝑤 =
0.2 (m/s2).

The Markovian model transition probability matrix now
turns into

[ℎ𝑘|𝑘−1 (𝑛𝑘 | 𝑛𝑘−1)] =

[
[
[
[
[

[

0.6 0.1 0.1 0.1 0.1

0.1 0.6 0.1 0.1 0.1

0.1 0.1 0.6 0.1 0.1

0.1 0.1 0.1 0.6 0.1

0.1 0.1 0.1 0.1 0.6

]
]
]
]
]

]

. (48)

The 𝑥-position and 𝑦-position measurements z𝑘 =

[𝑥𝑘 𝑦𝑘]
𝑇 of the maneuvering targets are generated by the

linear-Gaussian single-measurement single-target likelihood
density given byN(z𝑘; 𝐻𝑘x𝑘, 𝑅𝑘) with

𝐻𝑘 = [
1 0 0 0

0 0 1 0
] (49)

and 𝑅𝑘 = diag (𝜎2𝑥 𝜎
2

𝑦). In this example, they are taken as
𝜎𝑥 = 𝜎𝑦 = 8 (m), and the kinematical state independent
survival and detection probabilities are taken as 𝑝𝐷,𝑘(𝑛𝑘) =
𝑝𝐷 = 0.95 and 𝑝𝑆,𝑘(𝑛𝑘−1) = 𝑝𝑆 = 0.95.

The experiment settings of the clutter and birthmodel are
also the same as those of Example 1 except that them(𝑖)

Γ,𝑘
, 𝑃
(𝑖)

Γ,𝑘
,

𝑖 = 1, 2, 3, and [ℎ(𝑖)
Γ,𝑘
(𝑛𝑘)] turn into

m(1)

Γ,𝑘
= [−600 0 800 0]

𝑇
,

m(2)

Γ,𝑘
= [−650 0 −800 0]

𝑇
,

m(3)

Γ,𝑘
= [400 0 −400 0]

𝑇
,

𝑃
(1)

Γ,𝑘
= 𝑃

(2)

Γ,𝑘
= 𝑃

(3)

Γ,𝑘
= diag (400 400 400 400) ,

[ℎ
(𝑖)

Γ,𝑘
(𝑛𝑘)] = [0.2 0.2 0.2 0.2 0.2] .

(50)

For the purpose of comparison, we estimate the number
and states of the maneuvering targets using the proposed
GM-MM-CBMeMBer filter, the CV model GM-CBMeMBer
filter, the CT model GM-CBMeMBer filter with turn rate
of 𝜗 = 𝜋/20 (rad/s), (this turn rate seems to be most
suitable for the scenario among the above four turn rates),
the GM-MM-PHD filter, and the GM-MM-CPHD filter,
respectively. At each time step in the GM implementations
of the CBMeMBer-based filters, pruning of hypothesized
tracks is performed with a threshold of 𝑟threshold = 0.001. In
addition, the pruning and merging of Gaussian components
are performed for each hypothesized track using a weight
threshold of 10−5, a merging threshold of 4 (m), and a
maximum of 𝐽max = 100 components, which are also used
in the GM implementations of the PHD-based filters.

The MC averages of the mean and STD of the cardinality
distribution for the five methods at each time step are shown
along with the true target number in Figure 4, respectively.

Similar to the SMC implementations, Figures 4(a)–4(e)
demonstrate that the GM implementations of the three MM-
based filters are unbiased in the target number estimates,
whereas the GM implementations of the two single-model
GM-CBMeMBer filters are significantly biased. Moreover,
the GM-MM-CBMeMBer filter has a lower STD of the
estimated cardinality than the GM-MM-PHD filter but has a
larger STD than the GM-MM-CPHD filter. Again, The STD
plots of the GM-MM-PHD andGM-MM-CPHD filters seem
to fluctuate more obviously than the GM-MM-CBMeMBer
filter at the maneuver instances (i.e., 16 (s), 21 (s), and 31 (s)).

The MC averages of the OSPA metric for the target
position estimates, derived by the five methods, are shown in
Figure 5.

In contrast to the SMC case, Figure 5 shows that (1)
the rather poor performance of the two single-model GM-
CBMeMBer filters can be expected as the direct results of
their significant cardinality biase as seen in Figures 4(a) and
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Figure 4: The 500 MC run averages of cardinality statistics versus time for the (a) CV model GM-CBMeMBer filter, (b) CT model GM-
CBMeMBer filter, (c) GM-MM-PHD filter, (d) GM-MM-CPHD filter, and (e) GM-MM-CBMeMBer filter.
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Table 3: Time-averaged OSPA distance (𝑚) in various 𝜆𝑐,𝑘.

𝜆𝑐,𝑘 = 20 𝜆𝑐,𝑘 = 40 𝜆𝑐,𝑘 = 60 𝜆𝑐,𝑘 = 80 𝜆𝑐,𝑘 = 100

GM-MM-PHD filter 22.8 28.2 34.5 40.9 47.1
GM-MM-CPHD filter 20.0 24.8 30.3 36.1 41.9
GM-MM-CBMeMBer filter 22.6 27.7 34.1 40.6 46.7
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Figure 5: The 500MC run averages of OSPA against time.

4(b); (2) the OSPA metric of the GM-MM-CBMeMBer filter
is similar to that of the GM-MM-PHD filter but is larger
than that of the GM-MM-CPHD filter. This is because that,
like the MM-CBMeMBer filter, the GM implementations
of the MM-PHD and MM-CPHD filters also allow state
estimates to be extracted from the posterior intensity in
a much more efficient and reliable manner than particle
clustering in the SMC-based approach. As a result, the GM-
MM-CPHD filter, which has the lowest STD of the estimated
cardinality, performs best among the three MM-based filters.
Although the GM-MM-CBMeMBer filter has a lower STD of
the estimated cardinality than the GM-MM-PHD filter, the
performance of the two filters is similar. A reason for this is
that the GM-MM-PHD filter may have more of an advantage
than the GM-MM-CBMeMBer filter in the relatively high
signal to noise ratio (SNR) of this scenario.

Although the GM-MM-CPHD filter outperforms the
proposed GM-MM-CBMeMBer filter, it can be only used
in the linear-Gaussian condition. In the nonlinear non-
Gaussian conditions, both the MM-CPHD filter and MM-
CBMeMBer filter must be implemented by the SMCmethod.
In this case, the GM-MM-CBMeMBer filter outperforms
the GM-MM-CPHD filter significantly, which is shown in
Section 6.1.

The 500 MC trial averages of the OSPA distance (time-
averaged over the duration of the scenario) for the three

MM-based filters are shown in Table 3 against the clutter rate
from 𝜆𝑐,𝑘 = 20 to 𝜆𝑐,𝑘 = 100.

Similar to the SMC implementations, Table 3 shows that
the OSPA distances of the GM implementations of the three
MM-based filters increase with higher 𝜆𝑐,𝑘. However, in
various 𝜆𝑐,𝑘, the GM-MM-CPHD filter always has the best
performance among the threeMM-based algorithms, and the
GM-MM-CBMeMBer filter has the similar performancewith
the GM-MM-PHD filter.

7. Conclusions and Future Work

AnMM-CBMeMBer filter, which is a multiple-model exten-
sion to the CBMeMBer filter, is proposed for tracking
multiple maneuvering targets in clutter. The SMC and GM
implementations of the proposed filter are, respectively,
presented for genericmodels and for linear-Gaussianmodels.
Then, the EK and UK filtering approximations for the GM-
MM-CBMeMBer filter in nonlinear condition are described
briefly. Simulation results show that (1) the proposed MM-
CBMeMBer filter significantly outperforms the single-model
CBMeMBer filters in tracking multiple maneuvering tar-
gets; (2) under relatively low clutter density, the SMC-
MM-CBMeMBer filter outperforms the SMC-MM-PHD and
SMC-MM-CPHD filters; (3) the performance of the GM-
MM-CBMeMBer filter is similar to that of theGM-MM-PHD
filter and hence is inferior to that of GM-MM-CPHD filter.

The future work is focused on the following three aspects.
First, the track labeling problem in the proposed approach
needs to be considered. Second, practical data need to be used
for the performance evaluation of the proposed approaches.
Third, the multiple-sensor versions of the CBMeMBer and
MM-CBMeMBer filters need to be proposed for improving
the performance of the single-sensor CBMeMBer and MM-
CBMeMBer filters.
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