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Solving boundary value problems (BVPs) for the fourth-order differential equations by the
reduction of them to BVPs for the second-order equations with the aim to use the achievements
for the latter ones attracts attention from many researchers. In this paper, using the technique
developed by ourselves in recent works, we construct iterative method for the second BVP for
biharmonic-type equation, which describes the deflection of a plate resting on a biparametric
elastic foundation. The convergence rate of the method is established. The optimal value of the
iterative parameter is found. Several numerical examples confirm the efficiency of the proposed
method.

1. Introduction

Solving BVPs for the fourth-order differential equations by the reduction of them to BVPs
for the second-order equations with the aim to use a lot of efficient algorithms for the latter
ones attracts attention from many researchers. Namely, for the biharmonic equation with
the Dirichlet boundary condition, there is intensively developed the iterative method, which
leads the problem to two problems for the Poisson equation at each iteration (see e.g., [1–
3]). Recently, Abramov and Ul’yanova [4] proposed an iterative method for the Dirichlet
problem for the biharmonic-type equation, but the convergence of the method is not proved.
In our previous works [5, 6]with the help of boundary or mixed boundary-domain operators
appropriately introduced, we constructed iterative methods for biharmonic and biharmonic-
type equations associated with the Dirichlet boundary condition. For the biharmonic-type
equation with Neumann boundary conditions in [7] an iterative method also was proposed.
It is proved that the iterative methods are convergent with the rate of geometric progression.
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In this paper we develop our technique in the above-mentioned papers for the second BVP
for the biharmonic-type equation. Namely, we consider the following problem

Δ2u − aΔu + bu = f in Ω, (1.1)

u = g1 on Γ, (1.2)

Δu = g2, on Γ, (1.3)

where Δ is the Laplace operator, Ω is a bounded domain in Rn (n ≥ 2), Γ is the sufficiently
smooth boundary of Ω, and a, b are nonnegative constants. This problem has not yet
considered in [4].

It should be noticed that when a = 0, b = 0 (1.1) is the equation for a thin plate, and
problem (1.1)–(1.3) is decomposed into two consecutive problems for the Poisson equations.

In this paper we suppose that a ≥ 0, b ≥ 0, a + b > 0. Then (1.1) describes
the deflection of a plate resting on biparametric elastic foundation. For solving this
equation several methods such as the boundary element, the finite element methods [8–
10], domain/boundary element technique [11], and boundary differential integral equation
(BDIE) method [12] were used. It should be noticed that at present the boundary element
method is intensively developed and is used for solving more complex problems of plates
and shells (see e.g., [13–15]).

In this paper we use completely different approach to (1.1). Two cases will be treated
in dependence on the sign of a2 −4b. In the case if a2 −4b ≥ 0 we can immediately decompose
the problem into two problems for second-order equations. In the opposite case we propose
an iterative method for reducing problem (1.1)–(1.3) to a sequence of second-order problems.
The convergence of the method is established and verified on examples.

2. Case a2 − 4b ≥ 0
In this case we always can lead the original problem (1.1)–(1.3) to two problems for second-
order equations. To do this, we put

μ =
1
2

(
a +

√
a2 − 4b

)
. (2.1)

Then problem (1.1)–(1.3) is reduced to the following problems:

μΔv − bv = f, in Ω,

v =
1
μ
g2 − g1, on Γ,

1
μ
Δu − u = v, in Ω,

u = g1, on Γ.

(2.2)

These Dirichlet problems can be solved by known methods such as finite element method,
boundary element method, or finite difference method. Some fast Poisson solvers in [16, 17]
can be applied for the above problems.
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3. Case a2 − 4b < 0

This case is very important in mechanics because (1.1) describes the bending plate on elastic
foundation (see [18]).

3.1. Construction of Iterative Method on Continuous Level

As in [6], we set

Δu = v, (3.1)

ϕ = −bu. (3.2)

Then problem (1.1)–(1.3) leads to the following second-order problems

Δv − av = f + ϕ, in Ω,

v = g2, on Γ,

Δu = v, in Ω,

u = g1, on Γ,

(3.3)

where all the functions u, v, and ϕ are unknown but they are related with each other by (3.2).
Now consider the following iterative process for finding ϕ and simultaneously for

finding v, u.

(1) Given ϕ(0) ∈ L2(Ω), for example,

ϕ(0) = 0 in Ω. (3.4)

(2) Knowing ϕ(k)(x) on Ω (k = 0, 1, . . .) solve consecutively two problems

Δv(k) − av(k) = f + ϕ(k) in Ω,

v(k) = g2 on Γ,
(3.5)

Δu(k) = v(k) in Ω,

u(k) = g1 on Γ.
(3.6)

(3) Compute the new approximation

ϕ(k+1) = (1 − τk+1)ϕ(k) − bτk+1u
(k) in Ω, (3.7)

where τk+1 is an iterative parameter to be chosen later.
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3.2. Investigation of Convergence

In order to investigate the convergence of the iterative process (3.4)–(3.7), firstly we rewrite
(3.7) in the canonical form of two-layer iterative scheme [19]

ϕ(k+1) − ϕ(k)

τk+1
+
(
ϕ(k) + bu(k)

)
= 0. (3.8)

Now, we introduce the operator A defined by the formula

Aϕ = u, (3.9)

where u is the function determined from the problems

Δv − av = ϕ in Ω,

v = 0 on Γ,
(3.10)

Δu = v in Ω,

u = 0 on Γ.
(3.11)

The properties of the operator A will be investigated in the sequel.
Now, let us return to the problem (3.3). We represent their solutions in the form

u = u1 + u2, v = v1 + v2, (3.12)

where u1, u2, v1, v2 are the solutions of the problems

Δv1 − av1 = ϕ in Ω,

v1 = 0 on Γ,

Δu1 = v1 in Ω,

u1 = 0 on Γ,

(3.13)

Δv2 − av2 = f in Ω,

v2 = g2 on Γ,

Δu2 = v2 in Ω,

u2 = g1 on Γ.

(3.14)

According to the definition of A we have

Aϕ = u1. (3.15)
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Since ϕ should satisfy the relation (3.2), taking into account the representation (3.12) we
obtain the equation

(I + bA)ϕ = F, (3.16)

where I is the identity operator, and

F = −bu2. (3.17)

Thus, we have reduced the original problem (1.1)–(1.3) to the operator equation (3.16),
whose right-hand side is completely defined by the data functions f, g, and h, and coefficients
a, b.

Proposition 3.1. The iterative process (3.4)–(3.7) is a realization of the two-layer iterative scheme

ϕ(k+1) − ϕ(k)

τk+1
+ (I + bA)ϕ(k) = F, k = 0, 1, 2, . . . (3.18)

for the operator equation (3.16).

Proof. Indeed, if in (3.5), (3.6)we put

u(k) = u
(k)
1 + u2, v(k) = v

(k)
1 + v2, (3.19)

where v2, u2 are the solutions of problem (3.14), then we get

Δv
(k)
1 − av

(k)
1 = ϕ(k) in Ω,

v
(k)
1 = 0 on Γ,

Δu
(k)
1 = v

(k)
1 in Ω,

u
(k)
1 = 0 on Γ.

(3.20)

From here it is easy to see that

Aϕ(k) = u
(k)
1 . (3.21)

Therefore, taking into account the first relation of (3.19), the above equality, and (3.17), from
(3.8) we obtain (3.18). Thus, the proposition is proved.

Proposition 3.1 enables us to lead the investigation of convergence of processs (3.4)–
(3.7) to the study of scheme (3.18). For this reason we need some properties of the operator
A.

Proposition 3.2. The operator A defined by (3.9)–(3.11) is linear, symmetric, positive, and compact
operator in the space L2(Ω).
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Proof. The linearity of A is obvious. To establish the other properties of A let us consider the
inner product (Aϕ, ϕ) for two arbitrary functions ϕ and ϕ in L2(Ω). Recall that the operator
A is defined by (3.9)–(3.11). We denote by u and v the solutions of (3.10) and (3.11), where
instead of ϕ there stands ϕ. We have

(
Aϕ, ϕ

)
=
∫

Ω
uϕdx =

∫

Ω
u(Δv − av)dx

=
∫

Ω
uΔvdx − a

∫

Ω
uvdx.

(3.22)

Applying the Green formula for the functions u and v, vanishing on the boundary Γ, we
obtain

∫

Ω
uΔvdx =

∫

Ω
vΔudx =

∫

Ω
vvdx,

∫

Ω
uv =

∫

Ω
uΔu = −

∫

Ω
∇u · ∇udx.

(3.23)

Hence,

(
Aϕ, ϕ

)
=
∫

Ω
vvdx + a

∫

Ω
∇u · ∇udx. (3.24)

Clearly,

(
Aϕ, ϕ

)
=
(
Aϕ, ϕ

)
,

(
Aϕ, ϕ

)
=
∫

Ω
v2dx + a

∫

Ω
|∇u|2dx ≥ 0

(3.25)

are due to a ≥ 0. Moreover, it is easy seen that (Aϕ, ϕ) = 0 if and only if ϕ = 0. So, we have
shown that the operator A is symmetric and positive in L2(Ω).

It remains to show the compactness of A. As is well known that if ϕ ∈ L2(Ω) then
problem (3.10) has a unique solution v ∈ H2(Ω), therefore, problem (3.11) has a unique
solution v ∈ H4(Ω). Consequently, the operator A maps L2(Ω) into H4(Ω). In view of the
compact imbedding H4(Ω) into L2(Ω) it follows that A is compact operator in L2(Ω).

Thus, the proof of Proposition 3.2 is complete.

Due to the above proposition the operator

B = I + bA (3.26)

is linear, symmetric, positive definite, and bounded operator in the space L2(Ω). More pre-
cisely, we have

γ1I < B ≤ γ2I, (3.27)
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where

γ1 = 1, γ2 = 1 + b‖A‖. (3.28)

Notice that since the operatorA is defined by (3.9)–(3.11) its norm ‖A‖ depends on the value
of a but not on b in (1.1).

From the theory of elliptic problems [20] we have the following estimates for the
functions v, u given by (3.10), (3.11):

‖v‖H2(Ω) ≤ C1
∥∥ϕ∥∥L2(Ω), ‖u‖H4(Ω) ≤ C2‖v‖H2(Ω), (3.29)

where C1, C2 are constants. Therefore,

‖u‖H4(Ω) ≤ C1C2
∥∥ϕ∥∥L2(Ω). (3.30)

Before stating the result of convergence of the iterative process (3.5)–(3.7) we assume the
following regularity of the data of the original problem (1.1)–(1.3):

f ∈ L2(Ω), g1 ∈ H7/2(Γ), g2 ∈ H5/2(Γ). (3.31)

Then the problem (1.1)–(1.3) has a unique solution u ∈ H4(Ω). For the function u2

determined by (3.14) we have also u2 ∈ H4(Ω).

Theorem 3.3. Let u be the solution of problem (1.1)–(1.3) and ϕ be the solution of (3.16). Then, if
{τk+1} is the Chebyshev collection of parameters, constructed by the bounds γ1 and γ2 of the operator
B, namely

τ0 =
2

γ1 + γ2
, τk =

τ0
ρ0tk + 1

, tk = cos
2k − 1
2M

π, k = 1, . . . ,M,

ρ0 =
1 − ξ

1 + ξ
, ξ =

γ1
γ2
,

(3.32)

we have
∥∥∥u(M) − u

∥∥∥
H4(Ω)

≤ CqM, (3.33)

where

C = C1C2

∥∥∥ϕ(0) − ϕ
∥∥∥
L2(Ω)

, (3.34)

with C1, C2 being the constant in (3.30),

qM =
2ρM1

1 + ρ2M1
, ρ1 =

1 −√
ξ

1 +
√
ξ
. (3.35)
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In the case of the stationary iterative process, τk = τ0 (k = 1, 2, . . . .) we have

∥∥∥u(k) − u
∥∥∥
H4(Ω)

≤ Cρk0 , k = 1, 2, . . . . (3.36)

Proof. According to the general theory of the two-layer iterative schemes (see [21]) for the
operator equation (3.16) we have

∥∥∥ϕ(M) − ϕ
∥∥∥
L2(Ω)

≤ qM
∥∥∥ϕ(0) − ϕ

∥∥∥
L2(Ω)

, (3.37)

if the parameter {τk+1} is chosen by the formulae (3.32) and

∥∥∥ϕ(k) − ϕ∗
∥∥∥
H4(Ω)

≤ ρk0

∥∥∥ϕ(0) − ϕ∗
∥∥∥
L2(Ω)

, k = 1, 2, . . . (3.38)

if τk = τ0 (k = 1, 2, . . .). In view of these estimates the corresponding estimates (3.33) and
(3.36) follow from (3.30) applied to the problems

Δ
(
v(k) − v

)
− a

(
v(k) − v

)
= ϕ(k) − ϕ, in Ω,

v(k) − v = 0 on Γ,

Δ
(
u(k) − u

)
= v(k) − v, in Ω,

u(k) − u = 0 on Γ,

(3.39)

which are obtained in the result of the subtraction of (3.3) from (3.5) and (3.6), respectively.
The theorem is proved.

Remark 3.4. From the above theorem it is easy to see that for each fixed value of a the numbers
ρ0 and qM characterizing the rate of convergence of the iterative method decrease with the
decrease of b. So, the smaller b is, the faster the iterative process converges. In the special case
when b = 0 the mentioned above numbers also are zero, hence the iterative process converges
at once and the original problem (1.1)–(1.3) is decomposed into two second-order problems.

3.3. Computation of the Norm ‖A‖
As we see in Theorem 3.3 for determining the iterative parameter τ we need the bounds γ1
and γ2 of the operator B, and in its turn the latter bound requires to compute ‖A‖. Therefore,
below we consider the problem of computation ‖A‖.

Suppose the domainΩ = [0, l1]×[0, l2] in the plane xOy. In this case by Fourier method
we found that the system of functions

emn

(
x, y

)
=

2√
l1l2

sin
mπx

l1
sin

nπy

l2
(m,n = 1, 2, . . .) (3.40)
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is the eigenfunctions of the spectral problem

Δu = λu in Ω,

u = 0 on Γ
(3.41)

corresponding to the eigenvalues

λmn = −π2

(
m2

l21
+
n2

l22

)
. (3.42)

Moreover, this system is orthogonal and complete in L2(Ω).
Now let a function ϕ ∈ L2(Ω) have the expansion

ϕ
(
x, y

)
=

∞∑
m,n=1

ϕmnemn

(
x, y

)
. (3.43)

Then we have

∥∥ϕ∥∥2 =
(
ϕ, ϕ

)
=

∞∑
m,n=1

∣∣ϕmn

∣∣2. (3.44)

Representing the solution v of (3.10) in the form of the double series

v
(
x, y

)
=

∞∑
m,n=1

vmnemn

(
x, y

)
(3.45)

we found

vmn =
ϕmn

λmn − a
. (3.46)

Next, we seek the solution of (3.11) in the form

u
(
x, y

)
=

∞∑
m,n=1

umnemn

(
x, y

)
. (3.47)

Then from (3.45) we find

umn =
vmn

λmn
. (3.48)
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From the definition of the operator ‖A‖ by (3.9)–(3.11) we have

(
Aϕ, ϕ

)
=
(
u, ϕ

)
=

( ∞∑
m,n=1

umnemn,
∞∑

m,n=1

ϕmnemn

)

=
∞∑

m,n=1

umnϕmn =
∞∑

m,n=1

∣∣ϕmn

∣∣2
λmn(λmn − a)

=
∞∑

m,n=1

∣∣ϕmn

∣∣2
[
π2

(
m2l−21 + n2l−22

)][
π2

(
m2l−21 + n2l−22

)
+ a

]

≤
∞∑

m,n=1

∣∣ϕmn

∣∣2
π2

(
l−21 + l−22

)[
π2

(
l−21 + l−22

)
+ a

]

(3.49)

due to the orthogonality of the system {emn} and (3.46), (3.48), and (3.42). Thus, there holds
the estimate

(
Aϕ, ϕ

) ≤ 1
π2

(
l−21 + l−22

)[
π2

(
l−21 + l−22

)
+ a

](ϕ, ϕ). (3.50)

The sign of equality occurs for ϕ = e11(x, y). Since A is shown to be symmetric and positive
in L2(Ω) it follows:

‖A‖ = sup
ϕ/= 0

(
Aϕ, ϕ

)
(
ϕ, ϕ

) =
1

π2
(
l−21 + l−22

)[
π2

(
l−21 + l−22

)
+ a

] . (3.51)

4. Numerical Realization of the Iterative Method

In the previous section we proposed and investigated an iterative method for problem (1.1)–
(1.3) in the case if a2 − 4b < 0. Now we study numerical realization of the method.

For simplicity we consider the case, where the domain Ω is a rectangle, Ω = [0, l1] ×
[0, l2] in the plane xOy. In this domain we construct an uniform grid

Ωh =
{(

x, y
)
, x = ih1, y = jh2, 0 ≤ i ≤ N1, 0 ≤ j ≤ N2

}
, (4.1)

where h1 = l1/N1, h2 = l2/N2.
Denote by Ωh the set of inner nodes, by Γh the set of boundary nodes of the grid, and

by vh, uh, . . . the grid functions defined on Ωh.
Now consider a discrete version of the iterative method (3.4)–(3.7) when τk ≡ τ .

(1) Given a starting ϕ
(0)
h
, for example,

ϕ
(0)
h = 0 in Ωh. (4.2)
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(2) Knowing ϕ
(k)
h on Ωh (k = 0, 1, . . .) solve consecutively two difference problems

Λv
(k)
h

− av
(k)
h

= fh + ϕ
(k)
h

in Ωh,

v
(k)
h

= g2h on Γh,
(4.3)

Λu
(k)
h = v

(k)
h in Ωh,

u
(k)
h

= g1h on Γh,
(4.4)

where Λ is the discrete Laplace operator,

(Λv)ij =
vi−1,j − 2vij + vi+1,j

h2
1

+
vi,j−1 − 2vij + vi,j+1

h2
2

. (4.5)

(3) Compute the new approximation

ϕ
(k+1)
h = (1 − τh)ϕ

(k)
h − bτhu

(k)
h in Ωh. (4.6)

It is easy to see that the convergence of the above iterative method is related to the discrete
version Ah of the operator A, defined by the formula

Ahϕh = uh, (4.7)

where uh is determined from the difference problems

Λvh − avh = ϕh in Ωh,

vh = 0 on Γh,

Λuh = vh in Ωh,

uh = 0 on Γh.

(4.8)

Using the results of the spectral problem for the discrete Laplace operator Λ (see [19]) we
find the bounds of Ah:

1
β2
(
β2 + a

)I ≤ Ah ≤ 1
β1
(
β1 + a

)I, (4.9)

where

β1 =
4
h2
1

sin2πh1

2l1
+

4
h2
2

sin2πh2

2l2
,

β2 =
4
h2
1

cos2
πh1

2l1
+

4
h2
2

cos2
πh2

2l2
.

(4.10)
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Table 1: Convergence of the method in Example 4.3 for a = 0.

b
Grid 65 × 65 Grid 129 × 129 Grid 257 × 257 E1/E2 E2/E3

k E1 k E2 k E3
0.3 5 3.7378e − 4 5 9.3527e − 5 5 2.3477e − 5 3.9965 3.9838
0.7 6 3.4125e − 4 6 8.4859e − 5 6 2.0771e − 5 4.0214 4.0855
1.0 7 3.2179e − 4 7 8.0793e − 5 7 2.0550e − 5 3.9829 3.9315
1.5 8 2.9118e − 4 8 7.2101e − 5 8 1.7337e − 5 4.0385 4.1588
2.0 9 2.6904e − 4 9 6.8215e − 5 9 1.8013e − 5 3.9440 3.7870
2.5 10 2.4561e − 4 10 6.0247e − 5 10 1.3909e − 5 4.0767 4.3315

Therefore, for the operator Bh, the discrete version of B, we obtain the estimate

γh1 I ≤ Bh ≤ γh2 I, (4.11)

where

γh1 = 1 +
b

β2
(
β2 + a

) , γh2 = 1 +
b

β1
(
β1 + a

) . (4.12)

Hence, we choose

τh =
2

γh1 + γh2
, (4.13)

which is the optimal parameter of the iterative process (4.2)–(4.6).
Now we study the deviation of u(k)

h from u(k) obtained by the iterative process (3.4)–
(3.7). In the future for short we will write ‖ · ‖ instead of ‖ · ‖∞.

Proposition 4.1. For any k = 0, 1, . . . there holds the estimate

∥∥∥ϕ(k)
h − ϕ(k)

∥∥∥ = O
(
h2
)
,

∥∥∥u(k)
h − u(k)

∥∥∥ = O
(
h2
)
, (4.14)

where h2 = h2
1 + h2

2, u
(k), ϕ(k) are computed by the process (3.4)–(3.7) and u

(k)
h

, ϕ
(k)
h

are computed
by (4.2)–(4.6).

Proof. We shall prove this proposition by induction in k.
For k = 0 we have ||ϕ(0)

h
−ϕ(0)|| = 0 and the second estimate in (4.14) is valid due to the

the second-order accuracy of the iterative schemes (4.3) and (4.4) for the problems (3.5) and
(3.6) (see [21]).

Now suppose (4.14) is valid for k − 1 ≥ 0. We shall show that it also is valid for k. For
this purpose we recall that ϕ(k) is computed by the formula

ϕ(k) = (1 − τ)ϕ(k−1) − bτu(k−1) on Ω, (4.15)
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Table 2: Convergence of the method in Example 4.3 for a = 0.5.

b
Grid 65 × 65 Grid 129 × 129 Grid 257 × 257

E1/E2 E2/E3
k E1 k E2 k E3

0.3 5 3.7378e − 4 5 8.5291e − 5 5 2.1354e − 5 3.9990 3.9941
0.7 6 3.4125e − 4 6 7.9097e − 5 6 1.9648e − 5 4.0069 4.0257
1.0 7 3.2179e − 4 7 7.5415e − 5 7 1.8938e − 5 3.9959 3.9822
1.5 8 2.9118e − 4 8 6.9316e − 5 8 1.7184e − 5 4.0086 4.0338
2.0 9 2.6904e − 4 9 6.4782e − 5 9 1.6374e − 5 3.9892 3.9564
2.5 9 2.4561e − 4 9 6.1521e − 5 9 1.6340e − 5 3.9378 3.7651

Table 3: Convergence of the method in Example 4.3 for a = 1.

b
Grid 65 × 65 Grid 129 × 129 Grid 257 × 257

E1/E2 E2/E3
k E1 k E2 k E3

0.3 5 3.1879e − 4 5 7.9702e − 5 5 1.9938e − 5 3.9998 3.9975
0.7 6 2.9968e − 4 6 7.4868e − 5 6 1.8672e − 5 4.0028 4.0096
1.0 6 2.8644e − 4 6 7.1267e − 5 6 1.7480e − 5 4.0193 4.0771
1.5 7 2.6823e − 4 7 6.7405e − 5 7 1.7204e − 5 3.9794 3.9180
2.0 8 2.5061e − 4 8 6.2346e − 5 8 1.5283e − 5 4.0197 4.0794
2.5 9 2.3658e − 4 9 5.9385e − 5 9 1.5090e − 5 3.9838 3.9354

where

τ =
2

(2 + b‖A‖) (4.16)

and ϕ
(k)
h

is computed by the formula

ϕ
(k)
h = (1 − τh)ϕ

(k−1)
h − bτhu

(k−1)
h on Ωh, (4.17)

τh being given by (4.13) and (4.12).
From (4.10)–(4.13), (4.16), and (3.51) it is possible to obtain the estimate

τh = τ +O
(
h2
)
. (4.18)

Next, subtracting (4.15) from (4.17) and taking into account the above formula we get

ϕ
(k)
h − ϕ(k) = (1 − τ)

(
ϕ
(k−1)
h − ϕ(k−1)

)
+ τb

(
u
(k−1)
h − u(k−1)

)
+O

(
h2
)
. (4.19)

By the assumptions of the induction

∥∥∥u(k−1)
h − u(k−1)

∥∥∥ = O
(
h2
)
,

∥∥∥ϕ(k−1)
h − ϕ(k−1)

∥∥∥ = O
(
h2
)

(4.20)
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Table 4: Convergence of the method in Example 4.4 for a = 0.

b
Grid 65 × 65 Grid 129 × 129 Grid 257 × 257

E1/E2 E2/E3
k E1 k E2 k E3

0.3 6 5.4815e − 4 6 1.3703e − 4 6 3.4247e − 5 4.0002 4.0012
0.7 7 5.0136e − 4 7 1.2555e − 4 7 3.1525e − 5 3.9933 3.9826
1.0 8 4.7101e − 4 8 1.1763e − 4 8 2.9257e − 5 4.0042 4.0206
1.5 9 4.2909e − 4 9 1.0770e − 4 9 2.7341e − 5 3.9841 3.9391
2.0 10 3.9191e − 4 10 9.7264e − 5 10 2.3582e − 5 4.0293 4.1245
2.5 11 3.6420e − 4 11 9.2141e − 5 11 2.4078e − 5 3.9526 3.8268

Table 5: Convergence of the method in Example 4.4 for a = 0.5.

b
Grid 65 × 65 Grid 129 × 129 Grid 257 × 257

E1/E2 E2/E3
k E1 k E2 k E3

0.3 5 5.1875e − 4 5 1.2985e − 4 5 3.2589e − 5 3.9950 3.9845
0.7 7 4.8209e − 4 7 1.2061e − 4 7 3.0184e − 5 3.9971 3.9958
1.0 7 4.5846e − 4 7 1.1495e − 4 7 2.9067e − 5 3.9883 3.9547
1.5 8 4.2213e − 4 8 1.0498e − 4 8 2.5687e − 5 4.0211 4.0869
2.0 9 3.9362e − 4 9 9.9099e − 5 9 2.5458e − 5 3.9720 3.8926
2.5 10 3.6555e − 4 10 9.0709e − 5 10 2.1945e − 5 4.0299 4.1335

from (4.19) it follows ‖ϕ(k)
h − ϕ(k)‖ = O(h2). Now, having in mind this estimate due to the

second-order approximation of the difference operators in (4.3) and (4.4) we get the second
estimate in (4.14). Thus, the proof of the proposition is complete.

In realization of the discrete iterative process (4.2)–(4.6) we shall stop iterations when
‖u(k)

h
− u

(k−1)
h

‖ < TOL, where TOL is a some given accuracy. Then for the total error of the dis-
crete solution u

(k)
h

there there holds the following theorem.

Theorem 4.2. For the total error of the discrete solution u
(k)
h from the exact solution u of the original

problem (1.1)–(1.3) there holds the estimate

∥∥∥u(k)
h − u

∥∥∥ ≤ TOL + C2h
2 + C1ρ

k−1
0 , (4.21)

where C1, C2 are some constants and ρ0 is the number in (3.36).

Proof. We have the following estimate
∥∥∥u(k)

h − u
∥∥∥ ≤

∥∥∥u(k)
h − u

(k−1)
h

∥∥∥ +
∥∥∥u(k−1)

h − u(k−1)
∥∥∥ +

∥∥∥u(k−1) − u
∥∥∥. (4.22)

Since the spaceH4(Ω) is continuously embedded to the space C(Ω) (see [20]) from (3.36)we
have

∥∥∥u(k−1) − u
∥∥∥ ≤ C1ρ

k−1
0 (4.23)

for some constant C1. Now using Proposition 4.1 and the above estimate, from (4.22) we
obtain (4.21). Thus, the theorem is proved.
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Table 6: Convergence of the method in Example 4.4 for a = 1.

b
Grid 65 × 65 Grid 129 × 129 Grid 257 × 257

E1/E2 E2/E3
k E1 k E2 k E3

0.3 5 4.9843e − 4 5 1.2472e − 4 5 3.1232e − 5 3.9964 3.9933
0.7 6 4.6839e − 4 6 1.1696e − 4 6 2.9067e − 5 4.0047 4.0238
1.0 7 4.4871e − 4 7 1.1229e − 4 7 2.8174e − 5 3.9960 3.9856
1.5 8 4.1852e − 4 8 1.0449e − 4 8 2.5970e − 5 4.0054 4.0235
2.0 9 3.9278e − 4 9 9.8369e − 5 9 2.4760e − 5 3.9929 3.9729
2.5 9 3.7068e − 4 9 9.3636e − 5 9 2.4338e − 5 3.9587 3.8473

Table 7: Convergence of the method in Example 4.5 for grid 65 × 65.

b
a = 0 a = 0.5 a = 1

k error k error k error
0.3 5 7.8052e − 9 5 3.7143e − 9 5 1.9460e − 9
0.7 6 1.7710e − 8 5 2.3933e − 7 5 1.2646e − 7
1.0 6 1.3959e − 7 6 5.8675e − 8 6 2.7519e − 8
1.5 7 1.0251e − 7 7 3.8079e − 8 6 2.8517e − 7
2.0 7 6.6466e − 7 7 2.5155e − 7 7 1.0720e − 7
2.5 8 3.2038e − 7 8 1.0795e − 7 7 4.5822e − 7

Belowwe report the results of some numerical examples for testing the convergence of
the iterative method. In all examples we test the iterative method for some values of a and b
with TOL = 10−5. The results of convergence of the method are given in tables, where k is the
number of iterations, E is the error of approximate solution u

(k)
h

, E = ||u(k)
h

− u||.

Example 4.3. We take an exact solution u = sinx siny in the rectangle [0, π] × [0, π] and cor-
responding boundary conditions. The right-hand side of (1.1) in this case is f = (4 + 2a +
b) sinx siny.

The results of convergence in the case of the uniform grids including 65×65, 129×129,
and 257×257 nodes for a = 0, a = 0.5 and a = 1 are presented in Tables 1, 2, and 3, respectively.

Example 4.4. We take an exact solution u = x siny + y sinx in the rectangle [−π,π] × [−π,π]
with corresponding boundary conditions. The the right-hand side of (1.1) is f = (1 + a +
b)(x siny + y sinx).

The results of convergence in the case of the grids including 65 × 65, 129 × 129, and
257 × 257 nodes for a = 0, a = 0.5, and a = 1 are presented in Tables 4, 5, and 6, respectively.

In the two above examples the grid step sizes are h = π/64, π/128, π/256. Therefore,
h2 = 0.0024, 6.0239e−4, 1.5060e−4. According to the estimate (4.21) the total error of the dis-
crete approximate solution depends on h2. The columns E1, E2, E3 in Tables 1–6 show this
fact. It is interesting to notice that in these tables E1/E2, E2/E3 ≈ 4 and (64×64)/(128×128) =
(128×128)/(256×256) = 4. It means that if the number of grid nodes increases in 4 times then
it is expected that the accuracy of the approximate solution increases in the same times. From
the tables we also observe that the number of iterations increases with the increase of the
parameter b for fixed values of parameter a. This confirms Remark 3.4. We also remark that
for each pair of the parameters a and b the number of iterations for achieving an accuracy
corresponding to the grid step size (or density of grid) does not depend on the grid step size.
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Table 8: Convergence of the method in Example 4.5 for grid 129 × 129.

b
a = 0 a = 0.5 a = 1

k error k error k error
0.3 5 7.7939e − 9 5 3.7094e − 9 5 1.9437e − 9
0.7 6 1.7679e − 8 5 2.3901e − 7 5 1.2630e − 7
1.0 6 1.3935e − 7 6 5.8579e − 8 6 2.7476e − 8
1.5 7 1.0231e − 7 7 3.8009e − 8 6 2.8474e − 7
2.0 7 6.6338e − 7 7 2.5109e − 7 7 1.0701e − 7
2.5 8 3.1968e − 7 8 1.0773e − 7 7 4.5744e − 7
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Figure 1: Variation of the value of u in the middle point with b for several values of a.

In general the error of discrete approximate solution strongly depends on the step size
of grid. So, it is not expected to get an approximate solution of higher accuracy on a grid of
low density. However, in some exceptional cases we can obtain very accurate approximate
solution on sparse grid. Below is an example showing this fact.

Example 4.5. We take an exact solution u = (x2 − 4)(y2 − 1) in the rectangle [−2, 2] × [−1, 1].
The the right-hand side of (1.1) is f = 8 − 2a(x2 + y2 − 5) + b(x2 − 4)(y2 − 1).

The results of convergence in the case of the grids including 65×65 and 129×129 nodes
are presented in Tables 7 and 8, respectively.

From Tables 7 and 8 we see a high accuracy even on the grid 65× 65. The reason of this
fact is that for quadratic function the approximation error of the central difference scheme is
zero for any grid step size.

The above three numerical examples demonstrate the fast convergence of the iterative
method (3.4)–(3.7) for problem (1.1)–(1.3).

Below, we consider an example for examining the variation of the solution of Prob.
(1.1)–(1.3) in dependence of the parameters a and b.
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Figure 2: Solution in the case of a = 0.5 and b = 1.

Example 4.6. We take the the right-hand side of (1.1) f = 1 and the boundary conditions g1 =
g2 = 0 and use the proposedmethod for finding approximate solution for different values of a
and b. In all experiments we use the grid of 65 × 65 nodes in the domainΩ = [−2, 2]× [−1, 1]
and TOL = 10−5. It turns out that the number of iterations in all cases of a and b does not
exceed 7 and the value of the solution at any fixed point is decreasing with the growth of a
and b. This fact is obvious from Figure 1. The graph of the solution in the case of a = 0.5 and
b = 1 is given in Figure 2.

5. Concluding Remark

In the paper an iterative method was proposed for reducing the second problem for bihar-
monic-type equation to a sequence of Dirichlet problems for second-order equations. The
convergence of the method was proved. In the case when the computational domain is a
rectangle the optimal iterative parameter was given. Several numerical examples in this case
show fast convergence of the method. When the computational domain consists of rectangles
the proposed iterative method can be applied successfully if combining with the domain
decomposition method.
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