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Efficient estimation in the semiparametric
normal regression-copula model with
a focus on QTL mapping
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University of Zagreb and University of Amsterdam and EURANDOM

Abstract: The semiparametric normal copula model is studied with a cor-
relation matrix that depends on a covariate. The bivariate version of this
regression-copula model has been proposed for statistical analysis of Quantita-
tive Trait Loci (QTL) via twin data. Appropriate linear combinations of Van
der Waerden’s normal scores rank correlation coefficients yield \/n-consistent
estimators of the coefficients in the correlation function, i.e. of the regression
parameters. They are used to construct semiparametrically efficient estimators
of the regression parameters.

1. Normal regression-copula model

Identification of the location of genes contributing to so-called quantitative traits
is an important problem in genetics. Quantitative traits are phenotypes that can
be measured numerically and show continuous variation in living organisms, such
as height or cholesterol level in humans. One of the first steps in this identifica-
tion process is linkage analysis. In human studies this is typically performed using
the normal variance components approach; see e.g. Cherny, Sham and Cardon [3].
Basrak et al. [1] have proposed to incorporate not necessarily normally distributed
traits using the semiparametric normal regression-copula model discussed in the
present paper.

We consider a so-called sib-pair study, where the siblings form twins, but non-
identical twins. Data are collected about n independent sib-pairs and we measure
a particular quantitative trait for each person in the pair, resulting in (Y7,Y2), say.
Additionally, the IBD (Identical By Descent) status of the two siblings is determined
at a given marker (or a ‘gene’ loosely speaking). It is the number Z’ of alleles that
the siblings have in common by descent. So, if they inherited the same alleles both
from their mother and their father, then Z’ equals 2. This happens with probability
1/4. With the same probability they inherited different alleles from both parents;
so, P(Z' = 0) = 1/4. For any two individuals this number is an element of the
set {0,1,2} and hence P(Z’ = 1) = 1/2. The number Z’ represents the degree of
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relatedness between the two siblings at the given marker. Note, however, that the
siblings could have both alleles the same, but the IBD status Z’ still equal to 0.

In practice Z’ has to be estimated, so geneticists sometimes work with an esti-
mate of it that can take any value in the interval [0,2]. For convenience, we will
assume the IBD status can be determined exactly and we will work with the num-
bers Z=2'—1¢€ {-1,0,1} instead.

Let G(-) be the distribution function of ¥7 and Y5, and let us assume this distri-
bution function is continuous. Consequently, the random variables

(L) T =¢(Y) =2 (G(¥) and Tb = (¥a) = 2 (G(Y2))

have a standard normal distribution. The fundamental assumption is that, condi-
tionally on Z, the 2-vector T = (T, T)T has a bivariate normal distribution with
correlation coefficient p 4+ vZ, more precisely,

o e(S)19) ()| ()

Since Z takes its values in {—1,0,1}, we assume that the unknown values of the
parameters ¢ and v satisfy |o| + |v| < 1.

The main assumption of our statistical model is that there is a monotone, dif-
ferentiable, and invertible transformation 1 : R — R such that we observe n i.i.d.
copies of the random vector X = (YT, Z)T = (Y1,Ys, Z)T with

(1.3) L((p(),4(Ya), 2)) = L((T1, T3, Z)) .

The main problem of linkage analysis in this setting, is inference about the regres-
sion parameter 7y, which tells us if higher IBD status translates into closer pheno-
typic values. More specifically, one would like to determine if for a certain marker,
the parameter v differs from 0. A test for the null hypothesis v = 0 has been pro-
posed, and the appropriate approximate significance levels have been found; see
Basrak et al. [1] and cf. Dupuis and Siegmund [6]. Here we will focus on semipara-
metrically efficient estimation of the regression parameters v and p.

In Section 2 we will construct an asymptotic bound on the performance of es-
timators of these parameters. Based on the Van der Waerden normal scores rank
correlation coefficient we will construct /n-consistent estimators in Section 3. We
also need an estimator of the transformation () that has a sufficiently high con-
vergence rate in an appropriate squared distance. We present such an estimator
in Section 4. Finally, by a sample splitting technique and based on the prelimi-
nary +/n-consistent estimators of the regression parameters and the estimator of
the transformation, we are able to construct estimators that attain the bound from
Section 2. A technical result about empirical distributions is proved in the Ap-
pendix.

2. Asymptotic bound

, which means that, in fact, we
Y2)T with

o () am-e(1) ~6.1)

Let us consider model (1.2) and (1.3) with ~
observe n i.i.d. copies of the random vector X =
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for |o| < 1. This classic semiparametric normal copula model has been studied
in Klaassen and Wellner [9]. They show that at (go,%o(:)) with |go| < 1 the
least favorable parametric submodel of the semiparametric model from (2.1) for
estimating the correlation coefficient ¢ is the correlation-scale model that we get by
restricting the nonparametric class of transformations ¢ (-) to the one-dimensional
parametric class of transformations vg(-)/o with o > 0. So, (Y1,Y2)? is ruled by
this parametric model, if

e e ((Rae) = £((2) =~ (. (1))

or equivalently

oo () (oo (1)) tal<t s

where (09, 00) with og = 1 corresponds to (0o, %o(*))-

In the terminology of Drost, Klaassen and Werker [4, 5] one may say that in the
presence of the nuisance parameter ¢ the parameter of interest g can be estimated
adaptively. The Van der Waerden normal scores rank correlation coefficient is such
an adaptive estimator of g in the presence of o, as has been shown by Klaassen and
Wellner [9].

One wonders if the semiparametric normal regression-copula model has an anal-
ogous structure, i.e., if at (Yo, 00, %o(-)) with |00 | + |70| < 1 the least favorable
parametric submodel of the semiparametric model from (1.2) for estimating the
correlation coefficients v and g is the regression-correlation-scale model

(0] 2)

1 A
24 (0.0 (, L)) deeni<t oo

at ("}/0, Qo,Uo) with g — 1.

Least favorable or not, this parametric submodel (2.4) yields an asymptotic
lowerbound to the performance of estimators by e.g. the Hajek-LeCam convolution
theorem. This bound is determined by the Fisher information matrix, which we will
compute first.

For notational convenience we write p(Z) = o +vZ and we take 1o(-) to be the
identity function. We study the density of (Y1, Y2, Z)T with respect to Lebesgue
measure on R? times counting measure on {—1,0,1}. The score functions or loga-
rithmic derivatives of this density with respect to +, o, and o2 equal

0, =2i,,

. 1 ) , ,

be= 21— p2(2))? {-p(2)[Y2+Y3] + (1 +p*(2)) Y2
by = Wllﬂ(z)) {[Y? +Y3] —2p(2)V1Y>

—20% (1-p*(2))}.
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The Fisher information matrix is the covariance matrix of these score functions
and equals

E( 1+p%(Z) ZQ) E( 1+p%(Z) Z) —#E( p(2) Z)

(1-p%(2))? (1-p%(2))? 1-p2(Z)
_ 1+p%(2) 1+p(2) 1 (2)
(2.6) I= E (mﬁw Z) E (u,p@w) —2 kb (1—pp2(Z)>
_ 1 p(Z) _ 1 p(Z) 1
02E (lpr(Z) Z) 02E <17p2(Z)) ot

Taking 0 = 0y = 1 we denote this information matrix by

M2 p1 —V1
(27) 1= n1 Mo —lo
—UV1 —1lp 1

We note that the score functions from (2.5) are linear combinations of Y +
Y2, Y1Ys, and 1 with coefficients that are rational functions of Z,~, and p. In
view of formulae (2.4.3) and (2.4.4) of Bickel, Klaassen, Ritov and Wellner [2] we
may conclude that the efficient influence functions for estimation of the regression
parameters v and g are also linear combinations of Y + Y2, Y1Y5, and 1 with
coefficients that are functions of Z, v, and g. Therefore, we may write the efficient
influence function for v as

(2.8) by = ay(Z;7,0) Y7 + Y51+ by (Z;7,0)Y1Y2 + ¢, (Z; 7, 0)
and the efficient influence function for g as

(2.9) ly = ay(Z;7,0)IYT + Y5 +by(Z3 7, 0)Y1Y2 + ¢,(Z3 7, 0).
Some computation shows that with

(2.10) D = popa — povi + pavors — paly

the coefficients satisfy

Day(Z;7,0) =—(po — Vﬁ)% + (11 — vorn) i _/);22()2))2
o1 = 100 3 7y
Z(1+p*(2)) +p%(2)

Db,y(Z;v,0) = (0 — VS)W (1 = ”0”1)W
(

— (pov1 — MIVO)#QZ)’
D ey (Z;v,0) = (ko — yg)% — (- V0V1)1 p(gzz)
— pov1 + p1lo,
' = Zn(2) 2 p(Z)
DGQ(Z777 :Q) — (/1“1 - VOVI)W _ (/1'2 _ Vl)m
(2.11) — (pav1 — paro) 1

21— 2(2))
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2 2
+ (pv1 — MWO)#EEZ)’

+ piv1 — palyp.

We will not compute these coefficients explicitly as functions of v and p, but we

just mention that in the special case of o =0

2y _ 41 -7

2.12 E(?)= "~
( ) ( 7) 2472

holds.
Notice that (2.6), (2.7), and (2.11) imply
Ecy(Z;v,0) = Eco(Z;7,0) = 0.

Since an influence function has mean zero, this yields in view of (2.8) and (2.9) the
equalities

(2.13) E (2a,(Z;7,0) + p(Z2)by(Z;7,0)) =0
and
(2.14) E(2ay(Z;7,0) + p(Z)bo(Z;7, 0)) = 0,

respectively. These equalities may also be derived straightforwardly.

The functions in (2.8) and (2.9) are called efficient influence functions, since
any estimators of v and ¢ that are efficient within the parametric submodel in the
sense of e.g. the convolution theorem, are asymptotically linear in these influence
functions.

The regression-correlation-scale model is least favorable for the normal regres-
sion-copula model if there exist estimators in this semiparametric model that are
asymptotically linear in the influence functions from (2.8) and (2.9) with Y} replaced

by o (Y;).

3. +/n-consistent estimators

In the normal regression-copula model of (1.2) the Van der Waerden normal scores
rank correlation coefficient p,(z) that is based on all observations with Z; = z,
is semiparametrically efficient in estimating o + vz, z = —1,0, 1, as follows from
Klaassen and Wellner [9]. One would guess then that

(3.1) Y = % {6n(1) = pu(—1)}

estimates 7 efficiently, because this is the linear combination of the p,(z)s with
minimal asymptotic variance in estimating ~. If 4,, were efficient at (v, o, 9(+)), it
would be asymptotically linear in the efficient influence function (2.8) with Y; re-
placed by 1(Y}), and its asymptotic variance would equal (2.12) for p = 0. However,
at p = 0 the asymptotic variance of 7, equals

4(1 —~%)?

(32) 2(1-7%)" 2 =500

= E((?),
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which is an equality only at v = 0. We conclude that either 7,, is not semiparamet-
rically asymptotically efficient or the bound in terms of (2.8) is not sharp, i.e., the
regression-correlation-scale model is not least favorable.

However, we will show that there exist estimators of the regression parameters
v and p that are asymptotically linear in (2.8) and (2.9) with Y replaced by ¥(Y;),
and hence that the regression-correlation-scale model (2.4) is least favorable.

To this end we need +/n-consistent estimators of both v and g. Since /1 (%, —7)
is asymptotically normal, ¥, is \/n-consistent. Similarly,

(3.3) 60 = 1 {Pn(=1) +200(0) + pu(1)}

is a preliminary /n-consistent estimator of .

4. Estimator of the transformation

In the next Section 5 we will present semiparametrically efficient estimators of the
regression parameters. For their construction we need estimators of the efficient
influence functions (2.8) and (2.9) with Y; replaced by v(Y;), based on n i.i.d.
copies of the random vector X = (Yi,Ya,Z)T for the artificial situation that we
know the true values of v and o. Let us denote by

(41) E’Y(X7’Y7 Q7¢) and ZQ(vaYa va)

the efficient influence functions (2.8) and (2.9) with Y; replaced by ¥(Y;).

Let Xl, ey Xn with Xi = (Yu, )/27;, ZZ)T be the n i.i.d. copies of X = (Yl, )/27 Z)T
that represent the observations. Fix vy and go with | 0o |+]| 70 | < 1, and let () and
(0n) be local sequences, in the sense that \/n(vy, — v) = O(1) and v/n(e, — 00) =
O(1) hold. We need an estimator é%n(m; ~,0; X1,...,X,) for Ey(x; v, 0, 1) satisfying
the consistency condition

~ =~ 2 P’Y’an )
(4'2) / [ey,n(x;'ynvgn;Xlw"an) _e’y(x;’ynagmw)} dP’yn,gn,w(x) ey 0

and the \/n-unbiasedness condition
N Py o,
(4.3) \/ﬁ/ew(x;%, oni X1, Xn) APy, 5, p(x) 570,

as n — o0o. We also need an estimator lﬁgyn(x;’y, 0; X1,...,X,) for ll,(x;’y, 0,v)
satisfying the analogous consistency and y/n-unbiasedness conditions.

Studying (2.5), (2.6), (2.8), and (2.9) we conclude that the a, b, and ¢ coefficients
in (4.1) are known rational, continuous functions of Z,v, and p, which do not
depend on the unknown transformation (-). Consequently it suffices to construct
an estimator ¢, (+; X1,..., Xpn) = ¥n(-) of ¥(-) such that

g’YJI((yla Y2, Z)v v 0; Xla cee 7Xn)
(4.4) = ay(Z; v, 0)[n (Y1) + 95 (Y2)]
+b,(Z; 7, 0)n (V1) ¥n(Y2) + ¢4(Z57, 0)

and
g@m((yh Y2, Z);77 05 Xla oo 7Xn)
(4.5) = a,(Z;7, 0)[7 (V1) + ¥2(V2)]
+bo(Z37, Q)i’n(yl)ﬂ;n(m) +co(Z;7, 0)
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satisfy (4.2) and (4.3). In view of (1.1) we need an appropriate estimator of the
marginal distribution G(-) of Y7 and Y3. We choose a modification of the empirical
distribution function, namely

(4.6) Gn(y) n 4+ 2 { + Z Y17<y ]+ 1[Y2,<y])} yeR,

which yields the following result.

Theorem 4.1. The estimator

(4.7) "[}n(y) :"ﬁn(%Xlw“vXn) :@71(Gn(y))v y €R,

based on (4.6) of the transformation () in the semiparametric normal regression-
copula model (1.3) yields estimators (4.4) and (4.5) of the semiparametrically ef-
ficient influence functions for the regression parameters v and o that satisfy the
consistency and \/n-unbiasedness conditions (4.2) and (4.3).

Proof. In order to prove consistency (4.2) for the efficient influence function for
both v and ¢ we show that the expectation of the left hand side of (4.2) converges
to 0, and for this it suffices to prove

~ 2
(4.8) Tim By, g0 (0200) —w2(1)) " =0,
49) i By (1002000 00) P 6a(00)5(¥2) — w000 [ ) =0,

and similarly for b,(Z;vn, 0,), where we have taken X = (Y1,Y2, Z)7 independent
of X1,...,X,. By Cauchy-Schwarz and the triangle inequality the square of the
expectation in (4.8) may be bounded by

Erpgnis (0n(Y1) = (Y1) Ery g (9n (Y1) + (V1))

(4.10) < By ons (9n(Y1) — < 7))’
[ i,if‘gn (n (Y1) — (1)) " + 25 (v (1) "] ™.

In view of Eg(¥(Y1))* = 3, this shows that for (4.8) to hold it is sufficient to prove

(4.11) lim By, o 5 (0 (Y1) —9(¥1))" = 0.

n—oo

Writing ¢ (Y1)¥n (Y2) = ¥(Y1)$(Y2) = [n (Y1) = ¢ (Y1)]thn(Ya) + &(Y1) [n(Y2) —
¥ (Y2)] we see that independence of Y7 and Z and of Y> and Z shows that (4.11)
also suffices to prove (4.9).

For j =1,2 let

. 1 -
(4.12) Ginly) = -— {1+Zl[yﬁgy]}, yER,
i=1

be a modified empirical distribution function based on Yji,...,Y},. The Glivenko-

Cantelli theorem implies

(4.13) lim sup| Gin(y) — G(y) |=0 as,

n—oo GR
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and, since G, (-) is the average of éln() and Gan (+),

(4.14) lim sup| Gl Gly)| =0 as.

n—oo GR

This yields

(4.15) hﬁm |G (Y1) -G(11)| =0 as.
and hence
(4.16) Lim | (Y1) —9(Y1) | =0 as.

Since u + [®~1(u)]* is convex, we obtain

(E[zﬁln(Yl)}“ + [Eﬂzzn(yl)]zl)

FEl ()] (oo

LS ()] < [

where the first equality follows by taking the conditional expectation given G(Y1) =
u. Combining (4.16) and (4.17) we obtain (4.11) and hence (4.2) by Vitali’s theorem;
see Lemma A.7.5 of Bickel et al. [2].

Since ®~1(-) is monotone, we have

DN | =

E"/annvd) ['l[)n (ifl)]él S

(4.17)

{271 (Culy) — 2 (GW))
={ ( G >+ézn<y>])—¢>—1<a<y>>}
4.18
(4.18) < (|27 (Cra(w) — 21 G ()| V |27 (Can () — 2 (G (y))|}2
< {271 (Crnly )} 4 {07 (Gan () — 271G ()}

By Proposition 6.1 and the integral transform this yields

(4.19) i & (Vi [ [a0) - 0t)]” a6 =o.

n—oQ

By the independence of Y7 and Z and of Y5 and Z and by symmetry this implies

E%,Qmw (/ g%n(fﬂﬂm On; X1,.-. ,Xn) den,gmw(x)>

= Bron it (Cy (X590 003 X5 -, X)) — 04 ( X579, 00, )
= Brpon0 (04279, 00) [0 (Y1) = 02 (V1) + 47 (Ya) — 4%(Y2)]
+ by (Z59m 0n) [0 (Y1) (Y2) — (Y1) (Y2)])
= 2E5, 0.0 (a’v(Z; Yns On) [Q;Z;TL(Yl) - 7//(Y1)]2)
— Eqy g (0y(Z59m, 00) [Un (Y1) — 0(Y1)] [Uhn (Y2) — ¥(Y2)])

(4.20) ror( =)
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=4E5, 0,9 (GW(Z3 Yns On) [¢H<Y1) - 1#(Y1)]¢(Y1))

+ 2By, o0 (0y(Z5 9, 00) [P (Y1) — 0 (Y1)]$(Y2)) + op (%)

OP(\/lﬁ>a

where the last equality holds in view of (2.13). The analogous result holds for the
efficient influence function for p. This completes the proof of the y/n-unbiasedness
condition (4.3) and of the theorem. O

Unlike the consistency condition, the \/n-unbiasedness condition can be satisfied
only if the structure of the normal regression-copula model is used. This structure
is captured by (2.13) and (2.14), apparently.

5. Efficient estimators
By the technique of sample splitting efficient estimators of the regression parameters
can be constructed now.

Theorem 5.1. In the semiparametric normal regression-copula model of (1.2) and
(1.3) there exist efficient estimators of the regression parameters vy and g, i.e. there
exist v, and g, satisfying

(5.1) vn (% -

1~ -
Tn T E ZE’Y(X’“’V”’ Qn”l/))‘|> = O'Y'ru@n;w(l)?
=1

and

(5-2) vn (@n -

1~
On T E ZKQ(X’L;’Y”’ Q’I’L7w)‘|> = O'Y'n7@'n;w(1>7
=1

for every vo and oo with |oo| + || < 1 and for all sequences (v,) and (on)
satisfying v/n(yn — v0) = O(1) and v/n(on — 00) = O(1).

Proof. Note that Theorem 7.8.1 of Bickel et al. [2] can be applied and the paragraph
below it; cf. Klaassen [7]. Contiguity and smoothness follow from the regularity of
the least favorable parametric submodel (2.4), preliminary estimators have been
constructed in Section 3, and appropriate estimators of the efficient influence func-
tions have been presented in Section 4. O

The asymptotic linearity in the efficient influence function from (5.1) suggests
that

S|

(5.3) Yo =Tn+ = 3 y(Xis9m, 005 X1, ., Xn)
1=1

might work as an estimator of v satisfying (5.1). Typically, this works in practice
indeed. However, because of the dependence between 7, and the estimator of the
influence function, this is difficult to prove; cf. Schick [10, 11]. Although sample
splitting might look artificial at first sight, it will hardly influence the asymptotic
performance, as suggested by Edgeworth expansions in Klaassen [8].
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6. Appendix

The following result is crucial to our proof of the main result of the paper.

Proposition 6.1. Let Uy,Us, ... be i.i.d. random variables with the uniform dis-
tribution on the unit interval. With the modified empirical distribution function
defined by

* 1 -
(6.1) Gulu) = —— {1+;1[Ui<u]}
we have

(6.2) lim E (ﬁ/ol {o71(G% (u) — @ ()} du> =0.

n— 00

Proof. To prove this convergence we need a bound on the distance between quantiles
of the standard normal distribution. We prove that the standard normal distribution
is less spread out than a logistic distribution with variance 73 /6, and we also present
another bound on the distance between standard normal quantiles in the following
Lemma.

Lemma 6.1. For all u,v € [0,1 we have

03 -] < foe (1) s (7))

and
o) =l < o —f (5 )

We notice that u +— log(u/(1 —u
bution with mean 0 and variance

~— N

) is the quantile function of the logistic distri-

/3.

V)

Proof of Lemma 6.1. First note
(6.5) 1—®(z) < %e*fﬁ/?, x> 0.
Indeed, by differentiation we see that

= Y(x) = %e‘xQ/Q —14+9(x)

is increasing-decreasing on [0, c0) with 1(0) = ¥(oc0) = 0.
By symmetry of the standard normal density (6.5) implies

o000 2 2 wn 1)

and hence

e
L
=
|
<
S
]

:\e
AN
LS
L=
g
Q.
_&
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MEIE
:\d
A/~ &
gl >
_l’_
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[ | =
E
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Similarly the Cauchy-Schwarz inequality implies

2

|<I>71(v)—q>*1(u)|2§g /:de
(6.7) < g(v—u)/: <$+ﬁ> dw
=3 (Gt amonsy) o

Let 0 = Uy < Uy < - < Uy < Ugngq) = 1 denote uniform order statistics.
We note that the expectation in (6.2) equals

\/ﬁzn:/l {qu (“;12) —é_l(u)}2P(U(i) <u < Ugigr)) du

_\/—Z/{ ( +2> CI>_1(u)}2 (?)ui(l—u)”_idu.

Note that this expression is symmetric under the map v — 1 —u, i — n — i.
Consequently, in view of (6.4) and (6.3) expression (6.8) may be bounded by

g\/ﬁnzj/o (:;12 _“>2 (uZ:Ql) T —u?(:fiﬂ))

(6.8)

(6.9) x (’Z)uu —w)" i du
+7rf/ log< +u1)>(1—u)”du.

Tedious computation shows that the first term from (6.9) equals

n—1 . .
s 1 n—1+1 ++1
§ﬁ;(n—|—1)(n—|—2)< i +n—i)

n—1 . n—1
/N n—i+1 mT/nn 1
6.10 = < -
(6.10) (n+1)(n+2); i _(n+1)(n+2);i
7T\/_ 1 m/n
1 — =—— (141
n+2<+/1 xdx) n+2( +logn),
which converges to 0 as n — oco.
The second term from (6.9) may be bounded by
1
(6.11) 37r\/ﬁ/ (log?(1 — u) +log® u + log®(n + 1)) (1 — u)" du.
0
Note
1 1 u 1 2
/ log“(1 —u) (1 —w) du:/ {/ dy} (1—w)"du
0 0 o 1—y
1 u 1
6.12 S/ u/ dy (1 —u)" du
( ) 0 o (1—y)?
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b —w)n "
S/o / TEER

1 ! o 1
G =

For positive a we have

—a 1

1 n
/ log?u (1 —u)" du < / log? u du + o loan/ (1—w)"du
0 0 n

—a

o o2 log2 n

6.13 < [ulog?u — 2ul 2u]

( ) _[uogu ulogu + u]o + i
_a210g2n+2alogn+2+a210g2n
N ne n+1 °

Choosing « larger than 1/2 and combining (6.11), (6.12), and (6.13), we see that
also the second term from (6.9) converges to 0 as n — oo. O
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