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KURANISHI SPACES OF MEROMORPHIC CONNECTIONS

FRANCOIS-XAVIER MACHU

Abstract. We construct the Kuranishi spaces, or in other words,
the versal deformations, for the following classes of connections

with fixed divisor of poles D: all such connections, as well as for

its subclasses of integrable, integrable logarithmic and integrable

logarithmic connections with a parabolic structure over D. The

tangent and obstruction spaces of deformation theory are defined

as the hypercohomology of an appropriate complex of sheaves,
and the Kuranishi space is a fiber of the formal obstruction map.

0. Introduction

We construct the Kuranishi space, or in other words, the versal deforma-
tion, of connections belonging to each one of the following classes:

meromorphic connections with fixed divisor of poles D;
integrable meromorphic connections with fixed divisor of poles D;
integrable logarithmic connections with fixed divisor of poles D;
integrable logarithmic connections on curves with parabolic structure at
singular points.
The interest in versal deformations is twofold. First, a versal deformation is

a kind of a local moduli space which exists in a much wider range of situations
than the moduli spaces in the proper sense do. Second, versal deformations
are usually easier to write down than the moduli spaces, and one can use the
versal deformation to determine the germ of the moduli space up to analytic,
formal or étale equivalence.

Historically, versal deformations were introduced for the first time in late
50s in the work of Kodaira and Spencer ([KS-1], [KS-2]), and Kuranishi ([Ku-
1], [Ku-2]). In the beginning, this theory was only concerned with defor-
mations of compact complex manifolds and was viewed as a replacement for
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Riemann’s insight of moduli of compact complex curves in higher dimensions.
But since then, the theory has been significantly formalized and extended to
a much wider range of domains: singularities [Ar], [Schl-2], [AGZV], vector
bundles and sheaves [Rim-1], [Rim-2], [Artam-1], [Artam-2], singular complex
spaces [Gro], [Illu-1], [Illu-2], [Pa-1], [Pa-2], and morphisms of varieties or
complex spaces [Fl], [Bi], [Ran-1], [Ran-2].

Recently, many people believe that a deformation theory over a field of char-
acteristic 0 should be taken over by a differential graded Lie algebra (denoted
DGLA). This principle deriving from researches regarding homotopy theory,
quantization, mirror symmetry, etc. (see, for instance, [Kon]). One proto-
type example to this principle is the deformation theory of compact complex
manifold via Maurer–Cartan equation on the vector field valued (0,1) forms.
This is the Newlander–Nirenberg theorem (or rather Kuranishi’s proof of the
existence of the Kuranishi space). If we restrict to infinitesimal deformations,
we can describe the situation as a bijection between

{Maurer–Cartan solutions in KS1
X ⊗ mA}

gauge equivalence
� {deformations of X on A}

isomorphisms
,

where A is a local Artinian C-algebra and KS•
X = (A0,•

X (ΘX), ∂, [−, −]) the
Kodaira–Spencer algebra on X . This isomorphism is functorial in A. The left-
hand side is the deformation functor associated to the Kodaira–Spencer DGLA
KS•

X , denoted by DefKSX
, and the right-hand side is the usual deformation

functor DefX of X .
All the constructions are enclosed in the paradigm of the Kuranishi space

associated to a “good” deformation theory. A “good” deformation theory
for some type of object X consists in determining a triple (T 1

X , T 2
X , f), where

T 1
X is the tangent space to deformations of X , T 2

X is the obstruction space,
f : T̂ 1

X → T̂ 2
X a formal map without linear terms, called the Kuranishi map

(ˆ denotes the formal completion at zero). Then the formal scheme f −1(0) is
the Kuranishi space, or a formal germ of the versal deformation of X .

We provide the triples (T 1
X , T 2

X , f) for the above four classes of connections.
In all the 4 cases, T i

X = Hi(C •), the hypercohomology of an appropriate com-
plex of sheaves, and the initial component f2 of f is the Yoneda square map.
For instance, in the case X = (E , ∇) is a meromorphic connection with fixed
divisor of poles D, the complex C • is a two-term one and is

C • =
[

E nd(E ) ∇ E nd(E ) ⊗ Ω1(D)
]
.

A similar situation occurs in the deformation theory of Higgs bundles or
Hitchin pairs [B-R], where T 1

X = H
1(C •) with complex

C • =
[

E nd(E )
adϕ E nd(E ) ⊗ Ω1(D)

]
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defined by the Higgs field ϕ : E → E ⊗ Ω1(D); contrary to our case, adϕ is
OX -linear.

Let X be a complete scheme of finite type over k or a compact complex
space (then k = C). The existence of a versal deformation and the theoretical
approach to its construction are known for coherent sheaves on X . The con-
struction of the Kuranishi space (= versal deformation) for coherent sheaves
is done in using the injective resolutions. We are studying vector bundles E
with an additional structure (a connection ∇), and in this case the deformation
theory of both E and (E , ∇) can be stated in terms of the Čech cohomology
of a sufficiently fine open covering of X . This approach is easier than the
one via injective resolutions. We start by the construction of the Kuranishi
space of vector bundles serving as a model for that of the pairs (E , ∇). This
is done in Section 1, where it is also explained how the versal deformations
can be used to construct analytic moduli spaces of simple vector bundles. In
Section 2, we introduce connections with fixed divisor of poles and show that
their isomorphism classes of first order deformations are classified by the hy-
percohomology H1(C •) of some two-term complex of sheaves. In Section 3, we
show that the first obstruction to lifting the first order deformation is given by
the Yoneda square and construct the Kuranishi space. We also define several
versions of the Atiyah class. In Section 4, we describe the construction of the
Kuranishi space for integrable and integrable logarithmic connections. The
last Section 5 treats the Kuranishi space of parabolic connections.

0.1. Deformation theory. In this section, we follow [Ma], and [H-L] to
remind the framework of the deformation theory.

Let Art be the category of local Artinian C-algebra A such that A/mA � C,
where mA is the maximal ideal of A. We mean by a functor of Artinian rings
[Schl-1] a covariant functor

D : Art → Set such that D(C) is the one-point set. The tangent space TD

to a functor of Artinian rings D is defined by TD = D(C[ε]), where C[ε] is the
ring of dual numbers C[x]/(x2).

Let A, B, C be local artinian C-algebras and η : D(B ×A C) → D(B) ×D(A)

D(C) be the natural map. We call a functor of Artinian rings D a deformation
functor if it satisfies (i) if B → A is onto, so is η, and (ii) if A = C, η is
bijective [Ma], Definition 2.5. Note that these conditions are closely related
to Schlessinger’s criterion of existence of a hull (see Remark to Definition 2.7
in [F-M]).

An obstruction theory of a functor of Artinian rings D is a pair (U,ob(−)),
consisting of a finite dimensional C-vector space U , the obstruction space, and
a map ob(α) : D(A′) → U ⊗ a, the obstruction map such that for any small
extension

α : 0 → a → A → A′ → 0,

with kernel a such that mAa = 0, the following conditions are satisfied:
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1. If x′ ∈ D(A′) lifts to D(A), then ob(α)(x′) = 0.
2. For any morphism ϕ of small extensions

α1 : 0 −→ a1 −→ A1 −→ A′
1 −→ 0⏐⏐�ϕa

⏐⏐�ϕ

⏐⏐�ϕ′

α2 : 0 −→ a2 −→ A2 −→ A′
2 −→ 0,

we have the compatibility ob(α2)(ϕ′
∗(x′)) = (idU ⊗ ϕa)(ob(α1)(x′)), for every

x′ ∈ D(A′
1). Moreover, if ob(α)(x′) = 0 implies the existence of a lifting of x′

to D(A), the obstruction is called complete.
In the sequel, we always assume that k is an algebraically closed field or

k = C. For instance, if X is a smooth projective variety over k, and let F
be a coherent OX -module which is simple. If A ∈ Art/k, let DF (A) be
the set of isomorphim classes of pairs (FA, ϕ) where FA is a flat family of
coherent sheaves on X parameterized by Spec(A) and ϕ : FA ⊗A k → F is an
isomorphism of OX -modules. Following [H-L], the map DF (α) : DF (A) →
DF (A′) has for fibers affine spaces with affine group Ext1(F,F ) ⊗k a, and the
image of DF (α) lies in the kernel of the obstruction map ob(α) : DF (A′) →
Ext2(F,F ) ⊗k a.

Proposition 0.1 (See [Ma], Proposition 2.17). Let D1 and D2 be defor-
mation functors and ϕ : D1 → D2 a morphism of functors, (V1,obD1) and
(V2,obD2) obstruction theories for D1 and D2, respectively. Assume that

(i) ϕ induces a surjection (resp. bijection) on the tangent spaces TD1 →
TD2 .

(ii) There is an injective linear map between obstruction spaces Φ : V1 →
V2 such that obD2 ◦ ϕ = Φ ◦ obD1 .

(iii) The obstruction theory (V1,obD1) is complete.
Then, the morphism ϕ is smooth (resp étale).

1. Construction of the Kuranishi space in the case of vector
bundles over any base

Let X be a complete scheme of finite type over k or a complex space (then
k = C), U = (Uα) be an open covering of X , eα a trivialization of E |Uα

. The
transition functions gαβ relate the trivializations by the formula eβ = eαgαβ

over Uαβ = Uα ∩ Uβ and satisfy the following relations

(1) gαβ = g−1
βα , gαβgβγgγα = 1.

In other words, (gαβ) ∈ Č1(U,GL(r, OX)) is a skew-symmetric multiplicative
1-cocycle.
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1.1. Construction of the Kuranishi space in the case of simple vector
bundles over any base.

Definition 1.1. A vector bundle E on X is simple if and only if H0(X,
E nd(E )) = k id.

In the case of a simple vector bundle, the versal deformation is in fact
universal and this is a local version of the moduli space.

Proposition 1.2. Let E be a simple vector bundle on a scheme X of
finite type on k or a complex space (in which case k = C). Then there exists
an analytic space M(E ) with a reference point ∗ and a vector bundle E on
X × M(E ) which satisfy the following properties:

(1) E|X× ∗ � E .
(2) If T is an analytic space with a reference point ∗ and E′ a vector

bundle on X × T such that E′ |X× ∗ � E , then there is a holomorphic mapping
Φ : T → M(E ) such that Φ(∗) = ∗ and E′ � (1 × Φ)∗(E).

(3) The above mapping Φ is unique as a germ of a holomorphic mapping
from (T, ∗) to (M(E ), ∗). (M(E ), ∗) and E are called the Kuranishi space and
the Kuranishi family of E , respectively.

Proof. See [Mu-1]. �

We define SVX as the set of isomorphism classes of simple vector bundles
on X . Using Proposition 1.2, we can endow it with an analytic structure so
that SVX has a universal family only locally in the étale or classical topology.
Then there exists a sufficiently small open set U of SVX in the classical
or étale topology and a vector bundle E on X × U satisfiying the following
property: For any analytic space S, there exists a functorial bijection between
the sets {morphisms S → U } → {vector bundles E on X × S such that ∀s ∈
S,Es is simple and its class belongs to U }/ ∼ given by ϕ �→ (1 × ϕ)∗(E).

Proposition 1.3. Let X, E be as in Proposition 1.2. Every obstruction to
the smoothness of SVX at [E ] lies in ker(H2(Tr) : H2(X, E nd(E )) → H2(X,
OX)). In particular, SVX is smooth at [E ] if H2(Tr) is injective.

Proof. See [Mu-1]. �

Note, however, that SVX , even if it is smooth, is not a nice concept of
moduli space: it is non-separated in many examples.

We now treat the case of vector bundles over any base.

1.2. First order deformations. Deform the transition functions: g̃αβ =
gαβ + εgαβ,1, where gαβ,1 ∈ Γ(Uαβ ,Mr(OX)) and ε2 = 0. We have gαβ,1 =
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dg̃αβ

dε . Differentiating (1), we obtain:

gβα,1 =
dg̃−1

αβ

dε
= −g−1

αβgαβ,1g
−1
αβ ,

(2)
gαβ,1gβγgγα + gαβgβγ,1gγα + gαβgβγgγα,1 = 0,

and by (2), gγα,1 = −g−1
αγ gαγ,1g

−1
αγ . Plugging this into the previous formula,

we get
gαβ,1gβγgγα + gαβgβγ,1gγα = gαβgβγg−1

αγ gαγ,1g
−1
αγ .

Multiply by gαγ on the right:

(3) gαβ,1gβγ + gαβgβγ,1 = gαγ,1.

We want to represent this in the form aαβ + aβγ = aαγ for an appropriate ad-
ditive 1-cocycle a = (aαβ) ∈ Č1(U, E nd(E )), associated with (gαβ,1) and skew-
symmetric: aαβ = −aβα. Define aαβ ∈ Γ(Uαβ , E nd(E )) by its matrix: g−1

αβgαβ,1

in the basis eβ and gαβ,1g
−1
αβ in the basis eα. Then (2) gives gαβgβα,1 +

gαβ,1g
−1
αβ = 0, written in terms of matrices with respect to the basis eα, and

(3) amounts to aαβ + aβγ = aαγ . Thus the first order deformations of E are
classified by the 1-cocycles a = (aαβ) ∈ Č1(U, E nd(E )). Such a deformation is
trivial if the vector bundle Ẽ defined over X × SpecC[ε]/(ε2) by the 1-cocycle
g̃αβ = gαβ + εgαβ,1 is isomorphic to pr∗

1(E ), where pr1 : X × SpecC[ε]/(ε2) →
X is the natural projection. This means that there exists a change of ba-
sis eα �→ ẽα = eα(1 + εhα) which transforms g̃αβ into gαβ . We compute ẽβ =
eβ(1+εhβ) = eαgαβ(1+εhβ) = ẽα(1 − εhα)gαβ(1+εhβ) and we want that this
coincides with ẽβ = ẽαg̃αβ . That is: gαβ + εgαβ,1 = (1 − εhα)gαβ(1 + εhβ), or
gαβ,1 = −hαgαβ +gαβhβ . Interpreting hα as the matrix of bα ∈ Γ(Uα, E nd(E ))
with respect to the basis eα, we obtain aα,β = −bα + bβ which is written in
the basis eα in the form gαβ,1g

−1
αβ = −hα + gαβhβg−1

αβ . Thus the equivalence
classes of first order deformations of E over V = SpecC[ε]/(ε2) are classified
by

Ȟ1
(
U, E nd(E )

)
=

{1-cocycles (aαβ) ∈ Č1(U, E nd(E ))}
{coboundaries aαβ = bβ − bα, where (bα) ∈ Č0(U, E nd(E ))}

.

1.3. First obstruction. We denote Vk = SpecC[ε]/(ε)k+1. We will investi-
gate the following question: which of the deformations of E over V1 lift to V2?

Let Gαβ = gαβ,0 + εgαβ,1 + ε2gαβ,2 be a deformation of the cocycle gαβ =
gαβ,0 over V2.

We want to prove, in other words that Gαβ gives a valid 2nd-order defor-
mation if and only if it satisfies the cocycle condition.

Assume that Gαβ mod ε2 is a 1-cocycle, then (2) and (3) are verified, and
compute the coefficient Kαβγ,2 of ε2 in GαβGβγGγα, which will be denoted
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Kαβγ,2:

Kαβγ,2 = gαβ,0gβγ,1gγα,1 + gαβ,1gβγ,0gγα,1 + gαβ,1gβγ,1gγα,0(4)
+ gαβ,2gβγ,0gγα,0 + gαβ,0gβγ,2gγα,0 + gαβ,0gβγ,0gγα,2.

Similar to the above, introduce the sections aαβ,i (i = 1,2), of the endomor-
phism sheaf E nd(E |(Uαβ)) having gαβ,ig

−1
αβ for their matrices in the bases eα.

Then, as above, gαβ,2gβγ,0gγα,0 + gαβ,0gβγ,2gγα,0 + gαβ,0gβγ,0gγα,2 is the ma-
trix of aαβ,2 +aβγ,2 +aγα,2 in the basis eα, and gαβ,0gβγ,1gγα,1 + gαβ,1gβγ,0 ×
gγα,1 + gαβ,1gβγ,1gγα,0 is the matrix of

(5) aβγ,1aγα,1 + aαβ,1aγα,1 + aαβ,1aβγ,1

in the basis eα. Let a1 denote the cocycle (aαβ,1) and [a1] its class in
Ȟ1(U, E nd(E )). Then aβγ,1aγα,1 = cβγα represents the Yoneda product [a1] ◦
[a1] = [c] ∈ Ȟ2(U, E nd(E )); see for instance 10.1.1. of [H-L] for the definition
of the Yoneda product

Ȟi
(
U, E nd(E )

)
× Ȟj

(
U, E nd(E )

)
→ Ȟi+j

(
U, E nd(E )

)
.

The whole expression (5) is the skew-symmetrization ĉαβγ of cβγα, hence it
represents the same cohomology class [c]. Let also a2 denote the Čech cochain
(aαβ,2). We can rewrite K2 = (Kαβγ,2) in the form

(6) K2 = ĉ + ďa2.

We now see that we can find a2 in such a way that (Gαβ) is a cocycle over V2

if and only if ĉ is ď-exact. We have proved the following proposition.

Proposition 1.4. Let X be a complete scheme of finite type over k or a
complex space (and then k = C), E a vector bundle on X , [a] ∈ H1(X, E nd(E )).
Then the first order deformation of E over V1 defined by [a] lifts to a deforma-
tion over V2 if and only if the Yoneda square [a] ◦ [a] is zero in H2(X, E nd(E )).

Definition 1.5. The map

H1
(
X, E nd(E )

)
→ H2

(
X, E nd(E )

)
,(7) (

[a]
)

�→ [a] ◦ [a]

will be called first obstruction, and denoted ob(2).

Thus ob(2) is the map of taking the Yoneda square. We will now con-
struct a universal first order deformation of E on X . Let W = H1(X, E nd(E )),
t1, . . . , tN a coordinate system on W , Wk = Speck[t1, . . . , tN ]/(t1, . . . , tN )k+1

the k-th infinitesimal neighborhood of the origin in W . The universal first
order deformation E1 of E over W1 can be described as follows.

Choose an open covering of X as above, so that E is defined by a 1-
cocyle (gαβ). We deform E by specifying a family Gαβ(t1, . . . , tN ) of 1-cocyles
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over X × W1. Pick up N cocycles ai = (a(i)
αβ) ∈ Č1(U, E nd(E )) whose co-

homology classes [a1], . . . , [aN ] form a basis of W dual to the coordinates
t1, . . . , tN . Then we set g

(i)
αβ = a

(i)
αβgαβ , where a

(i)
αβ is represented by its ma-

trix in the basis eα and write Gαβ(t1, . . . , tN ) = gαβ +
∑N

i=1 g
(i)
αβti. Then Gαβ

is a 1-cocycle and defines a vector bundle E1 over X × W1 called a univer-
sal first order deformation of E . The whole universal deformation over W1

cannot be lifted to a deformation on W2. Proposition 1.4 implies the follow-
ing.

Proposition 1.6. There is a maximal subscheme K2 ⊂ W2 with the prop-
erty that E1 extends as a vector bundle from X × W1 to X × K2. This maximal
subscheme K2 is the (second infinitesimal neighborhood of the origin in the
cone) defined by the equation ob(2)(z) = 0 in W2.

We will now prove the following theorem, providing a construction of the
formal Kuranishi space.

Theorem 1.7. Let X, E be as above, W = H1(X, E nd(E )), (δ1, . . . , δN ) a
basis of W and (t1, . . . , tN ) the dual coordinates on W . Let Wk = Speck[t1, . . . ,
tN ]/(t1, . . . , tN )k+1 be the k-th infinitesimal neighborhood of the origin in W ,
E1 a universal first order deformation of E over X × W1 as above. Then there
exists a formal power series

f(t1, . . . , tN ) =
∞∑

k=2

fk(t1, . . . , tN ) ∈ H2
(
X, E nd(E )

)
[[t1, . . . , tN ]],

where fk is homogeneous of degree k, with the following property. Let I
be the ideal of k[[t1, . . . , tN ]] generated by the image of the map f ∗ : H2(X,
E nd(E ))∗ → k[[t1, . . . , tN ]], adjoint to f . Then for any k ≥ 2, the univer-
sal first deformation E1 of E over X × W1 extends to a vector bundle Ek

on X × Kk, where Kk is a closed subscheme of Wk defined by the ideal
I ⊗ k[[t1, . . . , tN ]]/(t1, . . . , tN )k+1.

Definition 1.8. The inverse limit K = lim←− Kk is called the formal Kuran-
ishi space of E , and E = lim←− Ek the formal universal bundle over K.

Proof of Theorem 1.7. Let U = (Uk) be an open covering, sufficiently fine
so that E|Uα

is trivialized by a basis eα, and the groups Hi(X, E nd(E )) are
computed by the Čech complex (Č•(U, E nd(E )), ď). Let Ži(U, E nd(E )), B̌i(U,
E nd(E )) denote the subspaces of cocycles and coboundaries in Či(U, E nd(E ))
respectively. Let us fix some cross-sections σi : Hi(X, E nd(E )) → Ži(U,
E nd(E )) and τ : B̌2(U, E nd(E )) → Č1(U, E nd(E )) of the natural maps in the
opposite direction. Let ai = (a(i)

αβ) = σ1(δi), and denote, as above, by (gαβ)
the 1-cocycle defining E , so that eβ = eαgαβ . We will construct by induction



KURANISHI SPACES OF MEROMORPHIC CONNECTIONS 517

on k ≥ 0 the homogeneous forms of degree k in t1, . . . , tN

Gαβ,k(t1, . . . , tN ) ∈ Γ
(
Uαβ ,Mr(OX)

)
⊗ k[t1, . . . , tN ],(8)

Fαβγ,k(t1, . . . , tN ) ∈ Γ
(
Uαβγ , E nd(E )

)
⊗ k[t1, . . . , tN ],

fk(t1, . . . , tN ) ∈ H2
(
X, E nd(E )

)
⊗ k[t1, . . . , tN ]

with the following properties:

(i) Gαβ,0 = gαβ ,Gαβ,1 =
∑N

i=1 a
(i)
αβgαβti, where a

(i)
αβ are represented by

their matrices in the basis eα.
(ii) fk = 0, Fαβγ,k = 0 for k = 0,1.
(iii) For each k ≥ 1, let f (k) =

∑
i≤k fi, and let I(k+1) be the ideal gen-

erated by (t1, . . . , tN )k+2 and the image of the adjoint map f (k)∗ : H2(X,
E nd(E ))∗ → k[t1, . . . , tN ]. Then (Fαβγ,k+1) is a cocycle modulo I(k+1) and
fk+1 is a lift to H2(X, E nd(E )) ⊗ k[t1, . . . , tN ] of the cohomology class
[(Fαβγ,k+1 mod I(k+1))] ∈ H2(X, E nd(E )) ⊗ k[t1, . . . , tN ]/I(k+1).

(iv) For any k ≥ 1, set G
(k)
αβ =

∑
i≤k Gαβ,i. Then G

(k)
αβ G

(k)
βγ G

(k)
γα ≡ (1 +

Fαβγ,k+1) mod I(k+1). Properties (i), (ii) determine Gαβ,k, Fαβγ,k for k ≤ 1.

The proof of Proposition 1.4 allows us to see that (iii), (iv) are verified for
k = 1 with

Fαβγ,2 =
N∑

i,j=1

(
a
(i)
βγa(j)

γα + a
(i)
αβa(j)

γα + a
(i)
αβa

(j)
βγ

)
titj

and to determine Gαβ,2 we proceed as follows. Let f2 = [(Fαβγ,2)], and I(2)

be the ideal of K2, that is the ideal generated by (t1, . . . , tN )3 and the image
of the adjoint map f (2)∗ : H2(X, E nd(E ))∗ → k2[t1, . . . , tN ] = Sym2(W ∗) (the
degree-2 homogeneous part of k[t1, . . . , tN ]). Then the reduction mod I(2)

of F2 = (Fαβγ,2) is an element F̄2 = (Fαβγ,2) mod I(2) ∈ B̌2(U, E nd(E )) ⊗
(Sym2(W ∗)/I(2) ∩ Sym2(W ∗)). We define a skew-symmetric 1-cochain a2 =
aαβ,2 ∈ Č1(U, E nd(E )) ⊗ Sym2(W ∗) as an arbitrary lift of (τ ⊗ id)(F̄2) ∈ Č1(U,

E nd(E )) ⊗ (Sym2(W ∗)/I(2) ∩ Sym2(W ∗)) under the quotient map. Next we
define Gαβ,2 by Gαβ,2 = aαβ,2gαβ , where the matrix of aαβ,2 is taken in the
basis eα.

Likewise, assuming that G
(k−1)
αβ , F

(k)
αβ are already fixed, we can choose

Fαβγ,k+1 and Gαβ,k as follows. By the induction hypothesis, we have G
(k−1)
αβ ×

G
(k−1)
βγ G

(k−1)
γα ≡ (1 + Fαβγ,k) mod I(k). Then (Fαβγ,k) is a cocycle mod-

ulo I(k), and is a coboundary modulo I(k+1) : F̄k = (Fαβγ,k mod I(k+1)) ∈
B̌2(U, E nd(E )) ⊗ (Symk(W ∗)/I(k+1) ∩ Symk(W ∗)). We define Gαβ,k = aαβ,k ×
gαβ with (aαβ,k) ∈ Č1(U, E nd(E )) ⊗ Symk(W ∗) an arbitrary skew-symmetric
lift to Symk(W ∗) of (τ ⊗ id)(F̄k). Then G

(k)
αβ G

(k)
βγ G

(k)
γα ≡ 1 mod (I(k+1) + (t1,

. . . , tN )(k+1)), and we can define Fαβγ,k+1 as the degree-(k + 1) homogeneous
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component of G
(k)
αβ G

(k)
βγ G

(k)
γα . To end this inductive construction of the se-

quences Gαβ,k, Fαβγ,k+1, we need only to prove that Fk+1 = (Fαβγ,k+1) is a
2-cocycle modulo I(k+1) with values in E nd(E ). �

The latter is proved in Lemma 1.9 below.

Lemma 1.9. The 2-cochain (Fαβγ,k+1), constructed in the proof of Theo-
rem 1.7 as the degree-(k + 1) homogeneous component of G

(k)
αβ G

(k)
βγ G

(k)
γα , is a

2-cocycle modulo I(k+1) with values in E nd(E ).

Proof. The hypotheses, under which we have to prove the assertion of
Lemma 1.9, are the following: G

(k)
αβ =

∑k
i=0 Gαβ,i ∈ Γ(Uαβ ,Mr(OX)) ⊗ k[t1,

. . . , tN ] are the matrix polynomials of degree ≤ k in t1, . . . , tN and there is
an ideal J ⊂ (t1, . . . , tN )2 such that G

(k)
αβ G

(k)
βα ≡ 1 mod J and G

(k)
αβ G

(k)
βγ G

(k)
γα ≡

1 mod (J +(t1, . . . , tN )k+1). The ideal J in Theorem 1.7 is I(k+1). The collec-
tion (Fαβγ,k) is considered not as a 2-cochain in Mr(OX), but as a 2-cochain
in E nd(E ), E being defined by the multiplicative cocycle (gαβ) = Gαβ,0 ∈
Ž1(U,GLr(OX)). Thus, Fαβγ = Fαβγ,k+1 is a certain section of E nd(E ) over
Uαβγ given by its matrix in the basis eα of E |Uαβγ

. We want to show that

(9) Fαβγ − Fαβδ + Fαγδ − Fβγδ ≡ 0 mod J.

We will replace it by a slightly different identity

(10) Fαβγ + Fαγδ + Fαδβ + Fβδγ ≡ 0 mod J,

which is the same as (9) as soon as we know that (Fαβγ) is skew symmetric.
We have:

Fαβγ = [GαβGβγGγα]k+1, Fαγδ = [GαγGγδGδα]k+1,

Fαδβ = [GαδGδβGβα]k+1,

Fβδγ = Gαβ,0

(
[GβδGδγGγβ ]k+1

)
G−1

αβ,0 = [GαβGβδGδγGγβGβα]k+1,

where we omitted the superscript k in G
(k)
αβ , [. . .]k+1 stands for the homoge-

neous component of degree k +1 in t1, . . . , tN , and all the four terms are given
by their matrices in the basis eα. Now

Fαβγ + Fαγδ + Fαδβ + Fβδγ

= [GαβGβγGγα + GαγGγδGδα + GαδGδβGβα + GαβGβδGδγGγβGβα]k+1

≡ [GαβGβγGγα × GαγGγδGδα × GαδGδβGβα × GαβGβδGδγGγβGβα]k+1

≡ 0 mod J.

The skew symmetry of (Fαβγ) is a particular case of (10) when δ = γ. �
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2. Connections

Let X, E be as above. A rational (or meromorphic in the case when X is
a complex space) connection on E is a k-linear morphism of sheaves ∇ : E →
E ⊗ Ω1

X(D) satisfying the Leibniz rule:

∀p ∈ X, ∀f ∈ Op, ∀s ∈ Ep, ∇(fs) = f ∇s + s ⊗ df.

We assume that D is an effective Cartier divisor and call D the divisor of
poles of ∇. We can extend ∇ in a natural way to

E ⊗ Ω•(∗D) = lim−→
n

⊕
i≥0

E ⊗ Ωi(nD)

as a k-linear map ∇ : E ⊗ Ωi(∗D) → E ⊗ Ωi+1(∗D) satisfying the Leibniz rule
∇(s ⊗ ω) = ∇s ∧ ω + s ⊗ dω. The connection is integrable if ∇2 = 0. In this
case, ∇ defines the generalized de Rham complex

(11) 0 → E (∗D) ∇ E ⊗ Ω1(∗D) ∇ E ⊗ Ω2(∗D) ∇
. . . .

If X is smooth at all the points of X \ D, then this complex is exact over
X \ D in all degrees different from 0 by the Poincaré lemma. Under the
same assumption, the subsheaf E h of sections s of E |X\D satisfying ∇(s) = 0
is a local system of rank r, that is a vector bundle with constant transition
functions, and E |X\D = E h ⊗ OX\D; the sections of E h are called horizontal
sections of (E , ∇). The complex defined above, when restricted to X \ D, is a
resolution of E h.

A connection ∇ on E induces natural connections on E ∗, E nd(E ), (E ∗)⊗m ⊗
E ⊗n, and more generally, on any Schur functor of E or E ∗. We will use in the
sequel the induced connection ∇End(E) on E nd(E ). Taking a local section ϕ
of E nd(E ), we can think of ϕ as a sheaf homomorphism E → E over an open
set U ⊂ X , and ∇End(E) is defined by

∇End(E)(ϕ) = ∇ ◦ ϕ − ϕ ◦ ∇,

∇End(E) : E nd(E ) → E nd(E ) ⊗ Ω1(D).

If ∇ is integrable, then ∇End(E) is also integrable, and E nd(E )h = E nd(E h).
Let now U = (Uα) be a sufficiently fine open covering of X , eα a trivial-

ization of E over Uα, (gαβ) the transition functions of E with respect to the
trivilizations (eα). The connection matrices Aα ∈ Γ(Uα,Mr(OX) ⊗ Ω1(D)) of
∇ are defined by ∇(eα) = eαAα. The transition rule for the matrices Aα is

(12) Aβ = g−1
αβdgαβ + g−1

αβAαgαβ

over Uαβ . This equation can be given a cohomological interpretation. To this
end, introduce the cochains A = (Aα) ∈ Č0(U, E nd(E ) ⊗ Ω1(D)), G = (Gαβ) ∈
Č1(U, E nd(E ) ⊗ Ω1) by saying that the matrix of Aα (resp. Gαβ) in the basis
eα is Aα (resp. dgαβg−1

αβ ). Then G is a cocycle.
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Definition 2.1. The cohomology class [G] of G in H1(X, E nd(E ) ⊗ Ω1)
does not depend on the choice of trivializations (eα) and is called the Atiyah
class of E . We will denote this class by At(E ) and its image in H1(X, E nd(E ) ⊗
Ω1(D)), in H1(X, E nd(E ) ⊗ Ω1(∗D)) by AtD(E ), (resp. At∗D(E )).

Now we can write (12) in the form

G = ďA,

and we get the following assertion.

Proposition 2.2. Let X, E be as above, D an effective Cartier divisor in
X . Then E admits a connection with divisor of poles D if and only if AtD(E )
vanishes in H1(X, E nd(E ) ⊗ Ω1(D)).

Informally speaking, this property is expressed by saying that the Atiyah
class is the obstruction to the existence of a connection on a vector bundle.
For future use, we also provide the integrability condition of ∇ in terms of
the local data Aα:

(13) dAα + Aα ∧ Aα = 0.

2.1. First order deformations of connections with fixed divisor of
poles D. Let (E , ∇) be defined as above and V1 = Speck[ε]/(ε2). We repre-
sent the deformed pair (Ẽ , ∇̃) over V1 by the local data

g̃αβ = gαβ + εgαβ,1, Ãα = Aα + εAα,1.

We have already studied the compatibility conditions which guarantee that
g̃αβ ia a cocycle; they can be stated by saying that the cochain a = (aαβ) ∈
Č1(U, E nd(E )), defined over Uαβ by the matrix gαβ,1g

−1
αβ in the basis eα, is a

cocycle. Now, we fix this cocycle and search for a cochain (Aα,1) compatible
with a. Expanding (12) to order 1, we obtain:

(14) Aβ,1 = gβα,1dgαβ +gβαdgαβ,1+gβα,1Aαgαβ +gβαAα,1gαβ +gβαAαgαβ,1.

Lemma 2.3. Define the 0-cochain A1 = (Aα,1) in E nd(E ) ⊗ Ω1
X(D) whose

matrix over Uα is Aα,1 in the basis eα. Then (14) implies:

(15) (ďA1)αβ = Aβ,1 − Aα,1 = daαβ + [Aα, aαβ ].

Proof. Conjugate (14) by gαβ :

gαβAβ,1g
−1
αβ = g−1

βαgβα,1dgαβg−1
αβ + dgαβ,1g

−1
αβ(16)

+ gαβgβα,1Aα + Aα,1 + Aαgαβ,1g
−1
αβ .

Then gαβAβ,1g
−1
αβ , Aα,1 are the matrices of Aβ,1, Aα,1 respectively in the

basis eα; we will also interpret all the remaining terms of (16) as matrices of
some sections of E nd(E ) ⊗ Ω1(D). We have

(17) g−1
βαgβα,1 = aβα = −aαβ ; gαβ,1g

−1
βα = aαβ ,
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so that

(18) gαβgβα,1Aα + Aαgαβ,1g
−1
αβ = [Aα, aαβ ].

Next, gαβ,1 = aαβgαβ , so that

(19) dgαβ,1 = daαβgαβ + aαβdgαβ .

Further, by (17),

(20) g−1
βαgβα,1dgαβg−1

αβ = −aαβdgαβg−1
αβ .

Combining (19), (20), we obtain

g−1
βαgβα,1dgαβg−1

αβ + dgαβ,1g
−1
αβ(21)

= −aαβdgαβg−1
αβ + daαβ + aαβdgαβg−1

αβ = daαβ .

Substituting (18), (21) into (16), we obtain (15). �

Corollary 2.4. The pair (g̃αβ), (Ãα) defines a first order deformation of
(E , ∇) if and only if the cochains a = (aαβ) = (gαβ,1g

−1
αβ ), Aα,1 = Aα,1 (both

given in the basis eα) satisfy the relations ď(aαβ) = 0, ď(Aα,1) = (daαβ +
[Aα, aαβ ]).

We will interpret the latter result in terms of the induced connection on
E nd(E ). As we saw, given a connection ∇ : E → E ⊗ Ω1(D) on E , we can define
a connection ∇End(E) : E nd(E ) → E nd(E ) ⊗ Ω1(D) by ∇End(E)(ϕ) = ∇ ◦ ϕ −
ϕ ◦ ∇. If we represent ϕ by its matrix Mα in the basis eα, then ∇End(E)(ϕ) =
dMα + [Aα,Mα]. Now, we can reformulate Corollary 2.4 as follows.

Proposition 2.5. The first order deformations of (E , ∇) with fixed divisor
of poles D are classified by the pairs (a, A1) ∈ Č1(U, E nd(E )) × Č0(U, E nd(E ) ⊗
Ω1(D)) such that

(22) ď(a) = 0, ď(A1) = ∇End(E)(a).

Now, let us assume in addition that the initial connection is integrable.
Then the condition that the deformed connection (Ẽ , ∇̃), given by the data
(a, A1) as in Proposition 2.5 , remains integrable, can be written in the form:

(23) dAα,1 = −Aα,1 ∧ Aα − Aα ∧ Aα,1,

or in an invariant form, ∇End(E)(A1) = 0. We remark that here we consider
∇End(E) extended to E nd(E ) ⊗ Ω•(∗D) in the same way as was explained for
∇ = ∇E .

Proposition 2.6. The first order deformations of integrable connections
(E , ∇) with fixed divisor of poles D are classified by the pairs (a, A1) as above
satisfying three relations

(24) ď(a) = 0, ď(A1) = ∇End(E)(a), ∇End(E)(A1) = 0.
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2.2. Hypercohomology. Let K• = (Kp, dK) be a complex of sheaves over
X , and U = (Uα) a sufficiently fine open covering of X . The Čech complex of
K• is the double complex

(25)
(
Čp

(
U,Kq

)
, ď, (−1)pdK

)
.

The hypercohomology group Hi(X,K•) is by definition the i-th cohomology
of the simple complex (L•,D) associated to (25):

Ln =
⊕

p+q=n

Čp
(
U,Kq

)
, D|Čp(U,Kq)

= ď + (−1)pdK ,

H
i
(
X,K•

)
:= Hi

(
L•,D

)
.

A hypercohomology class c ∈ H
i(X,K•) is represented by a cocycle c ∈ Li,

c = (. . . , cp−1,q+1, cp,q, cp+1,q−1, . . .), where p + q = i, and the cocycle condi-
tion is (. . . , ďcp−1,q+1 + (−1)pdKcp,q = 0, ďcp,q + (−1)p+1dKcp+1,q−1 = 0, . . .).
A cocycle (cp,q)p+q=n is a coboundary if there exists a cochain (bp,q)p+q=n−1

such that
cp,q = ďbp−1,q + (−1)pdKbp,q−1.

We denote the i-cocycles Ži(U,K•) and the i-coboundaries B̌i(U,K•), so that

H
i
(
X,K•

)
= Ži

(
U,K•

)
/B̌i

(
U,K•

)
.

Let now come back to the setting of Proposition 2.5. Define the two-term
complex of sheaves

(26) C • =
[

C0 → C1
]
,

where C0 = E nd(E ), C1 = E nd(E ) ⊗ Ω1(D), and differential dC = ∇End(E). Then
the equations (22) express the fact that (a, A1) ∈ Ž1(U, C •). Changing the
bases eα over V1 = Speck[ε]/(ε2) by the rule ẽα = eα(1 + εhα), where h =
(hα) ∈ Č0(U, E nd(E )) = Č0(U, C0), we obtain the transformation rule of the
cocycle (a, A1) in the following form: (a, A1) → (a + ďh, A1 + dC h), so that
isomorphic first order deformations differ by a 1-coboundary. We deduce the
following theorem.

Theorem 2.7. Let X be a complete scheme of finite type over k or a com-
plex space (then k = C). Let E be a vector bundle on X and ∇ a rational
(or meromorphic) connection on E with divisor of poles D. Then the isomor-
phism classes of first order deformations of (E , ∇) with fixed divisor of poles
are classified by H1(X, C •).

In order to characterize the first order deformations of integrable connec-
tions, we introduce two other complexes:

R• =
[

E nd(E ) → E nd(E ) ⊗ Ω1(D) → E nd(E ) ⊗ Ω2(∗D) → . . .
]
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with differential dR = ∇End(E), and

(27) F • =
[

F 0 dF F 1
]
,

where F 0 = E nd(E ), dF = ∇End(E), and F 1 = ker(E nd(E ) ⊗ Ω1(D)) →
E nd(E ) ⊗ Ω2(∗D)). It is easy to see that these complexes have the same
1-cocycles and 1-coboundaries, so that

H
1
(
X, F •

)
= H

1
(
X, R •

)
.

The formulas (20) express the fact that the pair (a, A1) is a 1-cocycle in either
one of the complexes F •, R •.

Theorem 2.8. Let X be a scheme of finite type over k or a complex space
(then k = C). Let E a vector bundle on X and ∇ a rational (or meromorphic)
integrable connection on E with fixed divisor of poles D. Then the isomor-
phism classes of first order deformations of (E , ∇) in the class of integrable
connections with fixed divisor of poles D are classified by

H
1
(
X, F •

)
= H

1
(
X, R •

)
.

3. Obstructions

3.1. First obstruction. Let X, E , ∇, (a, A1) be as in Theorem 2.7, and
let (E1, ∇1) be the first order deformation of (E , ∇) over V1 associated to
(a, A1). We want to determine the obstruction to extend (E1, ∇1) to (E2, ∇2)
over V2 = Speck[ε]/(ε3). As before, we only consider deformations with fixed
divisor of poles D. We search for the extended data

Gαβ =
(
1 + εaαβ + ε2aαβ,2

)
gαβ = gαβ + εgαβ,1 + ε2gαβ,2,

Ãα = Aα + εAα,1 + ε2Aα,2, Aα,1 = Aα,1,

with respect to the basis eα. We assume that they satisfy the cocycle condition
modulo ε2. Then the cocycle condition modulo ε3 has two counterparts:
the one expressing the extendability of E1, which we have already treated in
Section 2, and the other expressing the extendability of the connection. The
latter has the following form:

Aβ,2 = gβα,2dgαβ + gβα,1dgαβ,1 + gβαdgαβ,2(28)
+ gβα,2Aαgαβ + gβαAα,2gαβ + gβαAαgαβ,2

+ gβα,1Aα,1gαβ + gβα,1Aαgαβ,1 + gβαAα,1gαβ,1.

Introduce the cochain A2 ∈ Č0(U, E nd(E ) ⊗ Ω1(D)) given over Uα by the ma-
trix Aα,2 in the basis eα. By transformations similar to those used in the
proof of (10), and in using formulas (22) and aβα,2 − (aαβ,1)2 + aαβ,2 = 0, we
reduce (28) to the following equation:

∇End(E)(aαβ,2) − ∇End(E)(aαβ,1)aαβ,1 − [aαβ,1, Aβ,1](29)
= ∇ End(E)(aαβ,2) + Aα,1aαβ,1 − aαβ,1Aβ,1 = Aβ,2 − Aα,2.
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Let us denote

(30) kαβ = ∇End(E)(aαβ,2) + Aα,1aαβ,1 − aαβ,1Aβ,1.

We consider k = (kαβ) as a cochain in Č1(U, E nd(E ) ⊗ Ω1(D)).

Lemma 3.1. k is a skew-symmetric cocycle.

Proof. A straightforward calculation using the relations

(31) aαβ,2 + aβγ,2 + aγα,2 = −aαβ,1aβγ,1 − aβγ,1aγα,1 − aαβ,1aγα,1

and ∇End(E)(XY ) = ∇End(E)(X)Y +Y ∇End(E)(X), for any local sections X,Y
of E nd(E ). �

Proposition 3.2. Let (a, A1) ∈ Ž1(U, C •), and let (E1, ∇1) be the defor-
mation of (E , ∇) over V1 defined by (a, A1). Then (E1, ∇1) extends to a de-
formation (E2, ∇2) over V2 if and only if the following two conditions are
verified:

(i) The Yoneda square [a1] ◦ [a1] ∈ H2(X, E nd(E )) vanishes.
(ii) Provided (i) holds, let a2 = (aαβ,2) ∈ Č1(U, E nd(E )) be a solution of

(31), and let k = (kαβ) be the cocycle (30) determined by this choice of a2.
Then [k] ∈ H1(X, E nd(E ) ⊗ Ω1(D)) vanishes.

The expression Aα,1aαβ,1 − aαβ,1Aβ,1 entering (30) is a component c1,1

of the Čech cocycle (c1,1, c2,0) ∈ Ž2(U, C •) representing the Yoneda square
[a1, A1] ◦ [a1, A1]. The other component is c2,0

αβγ = aαβ,1aβγ,1 + aβγ,1aγα,1 +
aαβ,1aγα,1. Hence, we have the following proposition.

Proposition 3.3. Under the assumptions of Proposition 3.2, (E1, ∇1) ex-
tends to (E2, ∇2) over V2 with fixed divisor of poles D if and only if the Yoneda
square [a1, A1] ◦ [a1, A1] vanishes in H

2(X, C •).

3.2. Infinitesimal deformations of the Atiyah class. We fix a vector
bundle E on X given by a cocycle gαβ . Recall that we defined the Atiyah
class of E as the cohomology class of the cocycle Gαβ = dgαβg−1

αβ (here Gαβ is
considered as a section of E nd(E ) ⊗ Ω1(D) given by the matrix dgαβg−1

αβ in
the basis eα).

If Ei is an extension of E (as a vector bundle) to X × Vi, where Vi =
Speck[ε]/(εi+1), then we can define the Atiyah class At(Ei) ∈ H1(X, E nd(Ei) ⊗
Ω1) by the cocycle Gi,αβ = dgi,αβg−1

i,αβ , where (gi,αβ) is a cocycle defining Ei,
gi,αβ ∈ Γ(Uαβ ,Mr(OX) ⊗ k[ε]/(εi+1)). The following assertion is obvious.

Lemma 3.4. Assume that E admits a connection ∇ with fixed divisor of
poles D. Then ∇ extends to a connection ∇i on Ei with fixed divisor of poles
D if and only if the image AtD(Ei) of At(Ei) in H1(X, E nd(Ei) ⊗ Ω1(D)) is
zero.
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Corollary 3.5. Let j > 0, and assume E extends to a vector bundle Ej

over X × Vj . For any i ≥ 0, i ≤ j, denote by Ei the restriction of Ej to X × Vi.
The following assertions hold:

(i) if ∇j is a connection with fixed divisor D of poles on Ej , then ∇i =
∇j | Ei is such a connection on Ei. Thus AtD(Ej) = 0 ⇒ AtD(Ei) = 0 (i ≤ j).

(ii) Let AtD(Ej) = 0. Introduce the natural restriction map

resji : H0
(

E nd(Ej) ⊗ Ω1(D)
)

→ H0
(

E nd(Ei) ⊗ Ω1(D)
)
;

ϕ �→ ϕ ⊗ k[ε]/
(
εi+1

)
.

Then any connection with fixed divisor of poles D on Ei extends to such a
connection on Ej if and only if resji is surjective.

Proof. (i) is obvious. To prove (ii), we use the following observation: for two
connections ∇j , ∇′

j on Ej with fixed divisor D of poles, the difference ∇j − ∇′
j

is an element of H0(E nd(Ej) ⊗ Ω1(D)) and (∇j − ∇′
j)| Ei = resji(∇j − ∇′

j) ∈
H0(E nd(Ei) ⊗ Ω1(D)). �

In this corollary, it is possible that both Ei, Ej admit connections with fixed
divisor of poles D, but not every connection with the same D on Ei extends to
such a connection on Ej . To produce an example, set D = 0, i = 0, j = 1,X an
elliptic curve, E = O ⊕2

X . Define E1 as a nontrivial extension of vector bundles

0 → OX×V1

μ E1
ν OX×V1 → 0.(32)

Such extensions are classified by Ext1(OX×V1 , OX×V1) = H1(OX×V1) � k[ε]/
(ε2), and we choose an extension class in the form ε[f ], so that the exten-
sion is trivial modulo ε2. We can describe [f ] and the associated exten-
sion explicitly as follows. Let U = {U+− } be an open covering of X, and
f ∈ Γ(U±, OX) a function whose cohomology class [f ] generates H1(X, OX).
Let e± = (e±1, e±2) be a basis of E |U+− , and define the transition matrix over
U+− by (

1 εf
0 1

)
.(33)

Define the maps μ, ν in (32) by μ : 1 �→ e±1, ν : (e±1, e±2) �→ (0,1). To be
more explicit, we will give X by the Legendre equation

y2 = x(x − 1)(x − t)
(
t ∈ k \ {0,1}

)
,

and define an open covering U of X by U+ = X \ {∞},U− = X \ {0}. Then
we can choose f = y

x as a function having two simple poles at 0 and ∞ and
no other singularities. The Residue theorem implies that it is impossible to
represent f as the difference of two functions, one regular on U+ and the
other on U−, so the cohomology class of f considered as a Čech cocycle of the
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covering U with coefficients in OX is nonzero. We now verify that At(E1) = 0.
It is represented by the cocycle

dg+−g−1
+− =

(
0 εdf
0 0

)
,(34)

and

df = d
(

y

x

)
=

dy

x
− y

dx

x2
= ω+ − ω−,

where

ω+ = 2
dy

x
− y

dx

x2
, ω− =

dy

x
,

ω+ (resp. w−) being regular on U+ (resp. U−). Hence,

dg+−g−1
+− =

(
0 εω+

0 0

)
−

(
0 εω−
0 0

)
(35)

is a Čech coboundary, and At(E1) = 0. Thus, E1 has a regular connection.
Now, we will show that the map res10 defined in the last corollary is not

surjective, so not every regular connection on E extends to a regular connec-
tion on E1. We remark that in our case Ω1

X is trivial, D = 0, so res10 is just
the restriction map res10 : H0(E nd(E1)) → H0(E nd(E0)). Consider E1 as an
extension of another kind:

0 → εE → E1 → E → 0,

where εE � O ⊕2
X and E � E1/εE � O ⊕2

X . Apply to it Hom(E1, ·) (the Hom-
sheaf as OX×V1 -modules):

0 → Hom(E1, E ) → E nd(E1) → Hom(E1, E ) → 0.

As E � O ⊕2
X , the first and the third terms of the last triple are described as

follows:
Hom(E1, E ) � E nd(E ) = M2(OX).

Take an element in H0(Hom(E1, E )) � M2(k) given by the matrix(
0 0
0 1

)
(36)

(as above, E1, E are trivialized by the bases e± = (e±1, e±2)). We will see that
it is not in the image of the restriction map res1,0.

Indeed, assume there is a lift of(
0 0
0 1

)
(37)

to H0(E nd(E1)). Then it is given in the basis e+ by a matrix of the form

A+ =
(

0 0
0 1

)
+ εB,(38)
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B ∈ M2(k[U+]). Transforming it to the basis e−, we obtain the matrix

A− =
(

0 −εf
0 1

)
+ εB,(39)

which has to be regular in U−. Thus εf = εb12 − a−12, where b12 is regular in
U+ and a−12 is regular in U−. This contradicts the fact that f is not a Čech
coboundary in Č(U, OX), and this ends the proof.

3.3. Kuranishi space for deformations of connections.

Theorem 3.6. Let X be a complete scheme of finite type over k or a
complex space (in which case k = C), C • the 2-term complex of sheaves on X
defined by (26), W = H

1(X, C •),(δ1, . . . , δN ) a basis of W and (t1, . . . , tN ) the
dual coordinates on W . Let Wk denote the k-th infinitesimal neighborhood of
0 in W , and (E1, ∇1) the universal first order deformation over X × W1 of
a connection (E , ∇) on X with fixed divisor of poles D. Then there exists a
formal power series

f(t1, . . . , tN ) =
∞∑

k=2

fk(t1, . . . , tN ) ∈ H
2
(
X, C •

)
[[t1, . . . , tN ]],

where fk is homogeneous of degree k (k ≥ 2), with the following property. Let
I be the ideal of k[[t1, . . . , tN ]] generated by the image of the map f ∗ : H

2(X,
C •)∗ → k[[t1, . . . , tN ]], adjoint to f . Then for any k ≥ 2, the pair (E1, ∇1)
extends to a connection (Ek, ∇k) on X × Vk, where Vk is the closed subscheme
of Wk defined by the ideal I ⊗ k[[t1, . . . , tN ]]/(t1, . . . , tN )k+1.

Proof. We will start by fixing a particular choice of coordinates (t1, . . . , tN ),
coming from the spectral sequence Ep,q

1 = Hq(Cp) ⇒ Hp+q(C •). The latter is
supported on two vertical strings p = 0 and p = 1 (see Figure 1).

Thus the spectral sequence degenerates in the second term E2, and we have
the long exact sequence

0 −→ H
0
(
X, C •

)
−→ H0

(
X, E nd(E )

) d1
H0

(
X, E nd(E ) ⊗ Ω1

X(D)
)

−→ H
1
(
X, C •

)
−→ H1

(
X, E nd(E )

) d1
H1

(
X, E nd(E ) ⊗ Ω1

X(D)
)

−→ H
2
(
X, C •

)
−→ H2

(
X, E nd(E )

) d1
H2

(
X, E nd(E ) ⊗ Ω1

X(D)
)

→ . . . .

We deduce the exact triple

0 → W ′ → W → W ′ ′ → 0,

with

W ′ =
H0(X, E nd(E ) ⊗ Ω1

X(D))
imd1

, W = H
1
(
X, C •

)
,

W ′ ′ = ker(H1
(
X, E nd(E )

)
→ H1

(
X, E nd(E ) ⊗ Ω1

X(D)
)
.
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Figure 1. The spectral sequence is supported on 2 vertical
strings p = 0, p = 1.

Let N ′ = dimW ′, N ′ ′ = dimW ′ ′; choose t1, . . . , tN in such a way that s1 =
tN ′+1, . . . , sN ′ ′ = tN ′+N ′ ′ (N = N ′ +N ′ ′), are coordinates on W ′ ′ and t1, . . . , tN ′

restrict to W ′ as coordinates on W ′. We will construct by induction on k ≥ 0
the homogeneous forms

Gαβ,k(s1, . . . , sN ′ ′ ) ∈ Γ
(
Uαβ , E nd(E )

)
⊗ k[s1, . . . , sN ′ ′ ],

Fαβγ,k(s1, . . . , sN ′ ′ ) ∈ Γ
(
Uαβγ , E nd(E )

)
⊗ k[s1, . . . , sN ′ ′ ],

f̄k(s1, . . . , sN ′ ′ ) ∈ H2
(
X, E nd(E )

)
⊗ k[s1, . . . , sN ′ ′ ],

(40)
Aα,k(t1 . . . , tN ) ∈ Γ

(
Uα, E nd(E ) ⊗ Ω1

X(D)
)

⊗ k[t1, . . . , tN ],

κk(t1 . . . , tN ) ∈ H1
(
X, E nd(E ) ⊗ Ω1

X(D)
)

⊗ k[t1, . . . , tN ],

Kαβ,k(t1 . . . , tN ) ∈ Γ
(
Uαβ , E nd(E ) ⊗ Ω1

X(D)
)

⊗ k[t1, . . . , tN ]

with the following properties:
(i) Gαβ,0 = gαβ , and Aα,0 define E and resp. ∇ with respect to the local

trivializations eα of E on Uα.
(ii) f̄k = 0, Fαβγ,k = 0 for k = 0,1, and Kαβ,0 = 0.
(iii) For each k ≥ 1, let f̄ (k) =

∑
i≤k f̄i, and let Ī(k+1) be the ideal gen-

erated by (s1, . . . , sN ′ ′ )k+2 and the image of the adjoint map f̄ (k)∗ : H2(X,
E nd(E ))∗ → k[s1, . . . , sN ′ ′ ]. Then (Fαβγ,k+1) is a cocycle modulo Ī(k+1) and
f̄k+1 is a lift to W ′ ′ ⊗ k[s1, . . . , sN ′ ′ ] of the cohomology class[(

Fαβγ,k+1 mod Ī(k+1)
)]

∈ W ′ ′ ⊗ k
[
s1, . . . , s

′ ′
N

]
/Ī(k+1).

(iv) For any k ≥ 1, set G
(k)
αβ =

∑
i≤k Gαβ,i. Then

(41) G
(k)
αβ G

(k)
βγ G(k)

γα ≡ (1 + Fαβγ,k+1) mod Ī(k+1).
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(v) For each k ≥ 1, set κ(k) =
∑

i≤k κi, and let J (k+1) be the ideal gen-
erated by (t1, . . . , tN )k+2 and by the image of the adjoint map κ(k)∗ : H1(X,
E nd(E ) ⊗ Ω1(D))∗ → k[t1, . . . , tN ]. Then (Kαβ,k+1) is a cocycle modulo
J (k+1) + Ī(k+2) and κk+1 is a lift of the cohomology class[

(Kαβ,k+1 mod
(
Jk+1 + Ī(k+2)

)]
∈ H1

(
X, E nd(E ) ⊗ Ω1(D)

)
⊗ k[[t1, . . . , tN ]]/

(
Jk+1 + Ī(k+1)

)
in H1(X, E nd(E ) ⊗ Ω1(D)) ⊗ k[t1, . . . , tN ].

(vi) For any k ≥ 0, set A
(k)
α =

∑
i≤k Aα,i. Then

(42) Kαβ,k+1 ≡ dG
(k+1)
αβ − G

(k+1)
αβ A

(k)
β + A(k)

α G
(k+1)
αβ mod

(
Jk+1 + Ī(k+2)

)
.

In these properties, G
(k)
αβ is considered as an endomorphism of Ek over Uαβ × Vk

given by its matrix with respect to two bases: eα for the source, eβ for the
target, where Ek is the vector bundle over X × Vk defined by the 1-cocycle
(G(k)

αβ ). Similarly (A(k)
α ) is understood as a 1-cochain with values in E nd(Ek) ⊗

Ω1(D), and in formula (42), A
(k)
α (resp. A

(k)
β ) is represented by its matrix in

the basis eα (resp. eβ). The base changes Gαβ,k+1 acting on both sides of (42),
reduce to Gαβ,0, since the only nonzero terms in (42) are of degree k +1, and
everything is reduced modulo (t1, . . . , tN )k+2. Thus (42) defines (Kαβ,k+1)
as a 1-cochain with values in E nd(E ) ⊗ Ω1(D). Going over to the proof, we
first remark that Gαβ,0,Aα,0 are already known, and we have to indicate the
choice of Gαβ,k,Aα,k inductively on k ≥ 0, the other data Fαβγ,k, f̄k,Kαβ,k, κk

being recovered via formulas (41), (42). To initialize the induction, first look
at (41) with k = 0. Then Fαβγ,1 = 0 by (ii), which implies

(43) Gαβ,1Gβγ,0Gγα,0 + Gαβ,0Gβγ,1Gγα,0 + Gαβ,0Gβγ,0Gγα,1 = 0.

The latter equation expresses the fact that (Gαβ,1) is a 1-cocycle with values
in E nd(E ) ⊗ (W ′ ′)∗. As in Section 2, we can write Gαβ,1 =

∑
a
(i)
αβgαβsi, where

[(a(i)
αβ)] for i = 1, . . . ,N ′ ′ form the basis of W ′ ′ dual to s1, . . . , sN ′ ′ . Here and

further on, we adopt the following convention: all the Gαβ,k (resp. G
(k)
αβ )

are regarded as 1-cochains with values in E nd(E ) (resp. E nd(Ek)) given by
matrices with respect to two bases: eα for the source, eβ for the target. We
denote by Ek the vector bundle over X × Vk defined by the cocycle G

(k)
αβ .

Hence, looking at the first term Gαβ,1Gβγ,0Gγα,0 of the sum in (43), we
see that it represents the matrix of Gαβ,1 with respect to one and the same
basis eα for the source and the target. The same applies to the other two
summands in (43), thus (43) is the cocycle condition

aαβ + aβγ + aγα = 0

put down via matrices of the three summands in the basis eα.
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We will adopt the same convention for cochains with values in E nd(E ) ⊗
Ω1(D) or in E nd(Ek) ⊗ Ω1(D). The Aα,k (resp A

(k)
α ) will be considered as

matrices representing cochains in E nd(E ) ⊗ Ω1(D) (resp. E nd(Ek) ⊗ Ω1(D))
in the basis eα over Uα. Now write (42) for k = 0:

(44) Kαβ,1 = dGαβ,1 − Gαβ,1Aβ,0 + Aα,0Gαβ,1;

we take into account that I(1) = J (1) = 0 and that dGαβ,0 − Gαβ,0Aβ,0 +
Aα,0Gαβ,0 = 0, the latter equation being a form of (12) in which Gαβ,0 are
considered as matrices of endomorphisms of E written with respect to two
bases: eα for the source, eβ for the target, and (dGαβ,0) is a cocycle repre-
senting AtD(E ).

The r.h.s. of (44), with the same convention that Gαβ,1 are matrices
of endormorphisms of E with respect to the two bases, is just the cochain
(daαβ + [Aα, aαβ ]) ∈ Č1(U, E nd(E ) ⊗ Ω1(D)). As in (22), we can rewrite it as
∇End(E)(a), where a = (Gαβ,1), and this representation makes obvious that
(Kαβ,1) is a 1-cocycle. The differential d1 of the spectral sequence being in-
duced by ∇End(E), we see that the cocycle (Kαβ,1) is a coboundary if and only
if

[a] = [Gαβ,1] ∈ ker
(
H1

(
X, E nd(E )

)
⊗

(
W ′ ′)∗

→ H1
(
X, E nd(E ) ⊗ Ω1(D)

)
⊗

(
W ′ ′)∗)

.

Assuming that (Kαβ,1) is a coboundary, we choose (Aα,1) as a solution to

(45) K̃αβ,1 = Gαβ,0Aβ,1 − Aα,1Gαβ,0.

Such a solution can be chosen as a linear form in s1, . . . , sN ′ ′ . Single out
one such solution and denote it (A′ ′

α,1) = (A′ ′
α,1(s1, . . . , sN ′ ′ )). Let (A′(i)

α,1), i =
1, . . . ,N ′ be a basis of H0(U, E nd(E ) ⊗ Ω1(D)) dual to the coordinates t1,
. . . , tN ′ on W ′. Then set

Aα,1 = A′ ′
α,1(s1, . . . , sN ′ ′ ) +

N ′∑
i=1

A
′(i)
α,1ti.

Now assume that the forms (40) have been constructed up to degree k ≥ 0
and define them for degree k + 1. Start by Fαβγ,k+1, which we define, as in
the proof of Theorem 1.7, to be a lift to Ž2(U, E nd(E )) ⊗ k[s1, . . . , sN ′ ′ ], of the
homogeneous component of degree k + 1 in G

(k)
αβ G

(k)
βγ G

(k)
γα , which is a cocycle

modulo Ī(k+1) + (s1, . . . , sN ′ ′ )k+1 by the proof of Lemma 1.9.
Then we set f̄k+1 equal to any lift of the cohomology class (Fαβγ,k+1) ∈

H2(X, E nd(E )) ⊗ k[[s1, . . . , sN ′ ′ ]]/Ī(k+1) to H2(X, E nd(E )) ⊗ k[s1, . . . , sN ′ ′ ]. By
construction, (Fαβγ,k+1) is a coboundary modulo Ī(k+2) +(s1, . . . , sN ′ ′ )k+2, so
there exists a cochain in

Č1
(
U, E nd(E )

)
⊗ k[s1, . . . , sN ′ ′ ]/

(
Ī(k+2) + (s1, . . . , sN ′ ′ )k+2

)
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whose coboundary is (Fαβγ,k+1) mod (Ī(k+2) + (s1, . . . , sN ′ ′ )k+2), and
(Gαβ,k+1) is defined as any lift of this cochain to Č1(U, E nd(E ))⊗k[s1, . . . , sN ′ ′ ]
which is homogeneous of degree k + 1 in s1, . . . , sN ′ ′ . Consider now the ex-
pression

K̃αβ,k+1 = dG
(k+1)
αβ − G

(k+1)
αβ A

(k)
β + A(k)

α G
(k+1)
αβ

= dG
(k)
αβ − G

(k)
αβ A

(k−1)
β + A(k−1)

α G
(k)
αβ + dGαβ,k+1

− Gαβ,k+1A
(k−1)
β + A(k−1)

α Gαβ,k+1 − G
(k+1)
αβ Aβ,k + Aα,kG

(k+1)
αβ .

By the induction hypothesis, K̃αβ,k = dG
(k)
αβ − G

(k)
αβ A

(k−1)
β + A

(k−1)
α G

(k+1)
αβ is

a cocycle modulo Jk + Ī(k+1) and is a coboundary modulo Jk+1 + Ī(k+1) +
(t1, . . . , tN )k+1. From (42), in order that K̃αβ,k+1 has no homogeneous com-
ponents of order < k + 1 modulo Jk+1 + Ī(k+1) + (t1, . . . , tN )k+1, we have to
set (Aα,k) to be a solution of

G
(k+1)
αβ Aβ,k − Aα,kG

(k+1)
αβ(46)

≡ K̃αβ,k mod
(
Jk+1 + Īk+1 + (t1, . . . , tN )k+1

)
,

where G
(k+1)
αβ can be replaced by Gαβ,0, so that (46) is an equation for

the cochain (Gαβ,0Aβ,k) with values in E nd(E ) ⊗ Ω1(D). Thus, we come
to the following inductive procedure: define Kαβ,k+1 as the homogeneous
form of degree k + 1 in K̃αβ,k+1. Assuming it is a cocycle modulo (Jk+1 +
Ī(k+2)), we define κk+1 as a lift to H1(X, E nd(E ) ⊗ Ω1(D)) ⊗ k[t1, . . . , tN ]
of the cohomology class [(Kαβ,k+1) mod Jk+1 + Ī(k+2)]. Then J (k+2) is
well-defined and (Kαβ,k+1) becomes a coboundary modulo J (k+2) + Ī(k+2) +
(t1, . . . , tN )k+2. Hence, we can construct (Aα,k+1) as a lift to Č0(U, E nd(E ) ⊗
Ω1(D)) ⊗ k[t1, . . . , tN ] of a solution (Aα,k+1) of the equation

Gαβ,0Aβ,k+1 − Aα,k+1Gαβ,0

≡ K̃αβ,k+1 mod
(
Jk+2 + Ī(k+2) + (t1, . . . , tN )k+2

)
.

Thus, we have to verify that (Kαβ,k+1) is a cocycle. �
Lemma 3.7. (Kαβ,k+1) defined as the homogeneous component of degree

k + 1 of K̃αβ,k+1, is a 1-cocycle modulo Jk+1 + Ī(k+2).

Proof. By the induction hypothesis, we have

dG
(k)
αβ ≡ G

(k)
αβ A

(k−1)
β − A(k−1)

α G
(k)
αβ mod

(
Jk + Ī(k+1)

)
,

G
(k)
αβ G

(k)
βγ G(k)

γα ≡ 1 + Fαβγ,k+1 mod Ī(k+1),

and by construction,

Gαβ,k+1G
(k)
βγ G(k)

γα + G
(k)
αβ Gβγ,k+1G

(k)
γα + G

(k)
αβ G

(k)
βγ Gγα,k+1

≡ −Fαβγ,k+1 mod
(
Ī(k+2) + (s1, . . . , sN ′ ′ )k+2

)
,
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Kαβ,k+1 ≡ dG
(k+1)
αβ − G

(k+1)
αβ A

(k)
β + A(k)

α G
(k+1)
αβ mod

(
Jk+1 + Ī(k+1)

)
.

Denote G
(k+1)
αβ ,G

(k)
αβ ,Gαβ,k+1,A

(k)
α ,Kαβ,k+1 by Gαβ ,G′

αβ ,G′ ′
αβ ,Aα,Kαβ , re-

spectively.
We have

KαβGβγGγα + GαβKβγGγα + GαβGβγKγα(47)
≡ dGαβGβγGγα + GαβdGβγGγα + GαβGβγdGγα − GαβAβGβγGγα

+ AαGαβGβγGγα − GαβGβγAγGγα + GαβAβGβγGγα

− GαβdGβγGγαAα + GαβdGβγAγGγα

≡ dG′
αβG′

βγG′
γα + G′

αβdG′
βγG′

γα + G′
αβG′

βγdG′
γα + dG′ ′

αβG′
βγG′

γα

+ G′
αβdG′ ′

βγG′
γα + G′

αβG′
βγdG′ ′

γα + dG′
αβG′ ′

βγG′
γα + dG′

αβG′
βγG′ ′

γα

+ G′ ′
αβdG′

βγG′
γα + G′

αβdG′
βγG′ ′

γα + G′ ′
αβG′

βγdG′
γα

≡ d
(
G′

αβG′
βγG′

γα

)
− G′

αβG′ ′
βγdG′

γα + d
(
G′ ′

αβG′
βγG′

γα

+ G′
αβG′ ′

βγG′
γα + G′

αβG′
βγG′ ′

γα

)
≡ d(Fαβγ,k+1) − d(Fαβγ,k+1)

≡ 0 mod
(
Jk+1 + Ī(k+2)

)
.

This ends the proof. �

Coming back to the proof of the theorem, we define fk as any lift to
H2(C •) ⊗ k[t1, . . . , tN ], homogeneous of degree k in t1, . . . , tN , of the coho-
mology class of the cochain(

(Kαβ,k), (Fαβγ,k)
)

mod
(
Jk + Īk+1

)
(48)

∈ Č2
(
U, C •

)
⊗ k[[t1, . . . , tN ]]/

(
Jk + Ī(k+1)

)
,

which we are assuming to be a cocycle. Then quotienting by I makes (48) a
coboundary of ((Aα,k), (Gαβ,k)), and the pair (G(k)

αβ , (A(k)
α )) defines (Ek, ∇k)

over X × Vk. It remains to prove that (48) is a cocycle with values in C • ⊗
k[t1, . . . , tN ]/(Jk + Īk+1). One part of this, namely, the equation

ď(Kαβ,k) = ∇End(E)(Fαβγ,k)

is verified by the computation (47). The second part ď(Fαβγ,k) = 0 is guaran-
teed by Lemma 1.9.

4. Integrable connections

4.1. Higher order deformations of integrable connections. From now
on, we take into account the fact that (E , ∇) is an integrable connection with
fixed divisor of poles D and consider deformations of (E , ∇) preserving the
integrability and the divisor of poles. In Theorem 2.8, we characterized the
first order deformations of (E , ∇) in terms of the hypercohomology group
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H
1(X, F •) = H

1(X, R•). Now we will consider the second order deformation
and respectively, the first obstruction. So, we search for the extension

g̃αβ =
(
1 + εaαβ,1 + ε2aαβ,2

)
gαβ ,

(49)
Ãα = Aα + εAα,1 + ε2Aα,2

of (gαβ ,Aα) to V = Speck[ε]/(ε3). To order 1, we have the conditions (24):

(50) ď(aαβ,1) = 0, ď(Aα,1) = ∇(aαβ,1), ∇(Aα,1) = 0.

Expanding (13) to order 2, we obtain in addition to (6) and (23), the equation

(51) ∇Aα,2 = −Aα,1 ∧ Aα,1.

Note that ∇(Aα,1) = 0 implies that ∇(Aα,1 ∧ Aα,1) = 0. One easily verifies
the following relations

∇(Aα,1 ∧ Aα,1) = 0,

ď(Aα,1 ∧ Aα,1) = −∇(Aα,1aαβ,1 − aαβ,1Aβ,1),

ď(Aα,1aαβ,1 − aαβ,1Aβ,1) = ∇(aαβ,1aβγ,1 �),

where � denotes the skew-symmetrization on the subscripts α,β, γ. These
three equations express the fact that the triple(

(aαβ,1aβγ,1 �), (Aα,1aαβ,1 − aαβ,1Aβ,1), (Aα,1 ∧ Aα,1)
)

∈ Č2
(
U, R •

)
is a cocycle with respect to the differential D = ∇ ± ď. Then the conditions
saying that (49) is an integrable connection with fixed divisor of poles D
modulo ε3, that is, formulas (29), (31) and (51), mean that the cocycle defined
above is the coboundary of the cochain ((aαβ,2), (Aα,2)):

D(a2, A2) =
(
(aαβ,1aβγ,1 �), (Aα,1aαβ,1 − aαβ,1Aβ,1), (Aα,1 ∧ Aα,1)

)
.

As the cocycle (52) represents the Yoneda square of [a1, A1], we deduce the
following proposition.

Proposition 4.1. The first order deformation (E1, ∇1) of (E , ∇) defined
by the cocycle ((aαβ,1), (Aα,1)) extend to an integrable connection (E2, ∇2)
over X × V2 with fixed divisor of poles D if and only if the Yoneda square
[a1, A1] ◦ [a1, A1] is zero in H

2(R •).

Thus, the integrable case looks similar to the non-integrable one (compare
to Proposition 1.6), provided we replace the 2-term complex C • by R •. As far
as only the hypercohomology H

1 and H
2 are concerned, we can also truncate

R• at the level 2: H
i(R •) = H

i(R̃ •), for i = 0,1,2, where R̃ • = [R0 → R1 →
ker(R2 → R3)].
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4.2. Kuranishi space of integrable connections. Now, we turn to the
construction of the Kuranishi space of integrable connections with fixed divisor
of poles D. Its construction is completely similar to the one in the non-
integrable case, so instead of giving a proof of the next theorem, we will only
supply some remarks indicating modifications that should be brought to the
proof of Theorem 3.6 in order to get the proof in the integrable case.

The spectral sequence Ep,q
1 = Hq(X, Rp) converging to H

•(R •) is not con-
centrated on two vertical strings, so here H

2(R •) has a filtration consist-
ing of three nonzero summands which are subquotients of H0(X, E nd(E ) ⊗
Ω2

X(∗D)),H1(X, E nd(E ) ⊗ Ω1
X(D),H2(X, E nd(E )). Hence, we have to add to

the forms (40) two more homogeneous forms of degree k, say

Lα,k(t1, . . . , tN ) ∈ Γ
(
Uα, E nd(E ) ⊗ Ω2

X(∗D)
)

⊗ k[t1, . . . , tN ],
(52)

lk(t1, . . . , tN ) ∈ H0
(
X, E nd(E ) ⊗ Ω2

X(∗D)
)

⊗ k[t1, . . . , tN ],

and modify according the conditions (i),. . . ,(vi) to which the forms (40), (52)
should satisfy. Remark also that the long exact cohomology sequence for C •

introduced in the proof of Theorem 3.6 remains exact only in its 4 terms when
C • is replaced by R•.

Theorem 4.2. Let X be a complete scheme of finite type over k or a
complex space (in which case k = C), ∇ an integrable connection on E with
fixed divisor of poles D, R • the complex of sheaves on X defined above, W =
H

1(X, R•), (δ1, . . . , δN ) a basis of W and (t1, . . . , tN ) the dual coordinates on
W . Let Wk denote the k-th infinitesimal neighborhood of 0 in W , and (E1, ∇1)
the universal first deformation of (E , ∇) over X × W1 in the class of integrable
connections with fixed divisor of poles D. Then there exists a formal power
series

f(t1, . . . , tN ) =
∞∑

k=2

fk(t1, . . . , tN ) ∈ H
2
(
X, R •

)
[[t1, . . . , tN ]],

where fk is homogeneous of degree k (k ≥ 2), with the following property. Let
I be the ideal of k[[t1, . . . , tN ]] generated by the image of the map f ∗ : H2(X,
R •)∗ → k[[t1, . . . , tN ]], adjoint to f . Then for any k ≥ 2, the pair (E1, ∇1)
extends to an integrable connection (Ek, ∇k) on X × Vk, where Vk is the closed
subscheme of Wk defined by the ideal I ⊗ k[[t1, . . . , tN ]]/(t1, . . . , tN )k+1.

Remark 4.3. The complex R• may be replaced by its subcomplex 0 →
E nd(E ) → E nd(E ) ⊗ Ω1

X(D) → E nd(E ) ⊗ Ω2
X(2D) → . . . . Theorem 3.6 will re-

main valid if we replace R • in its statement by this smaller complex.

In the case where ∇ is an integrable logarithmic connection, we can re-
duce R• further to L • = [0 → E nd(E ) → E nd(E ) ⊗ Ω1

X(logD) → E nd(E ) ⊗
Ω2

X(logD) → . . .]. We now go over to integrable logarithmic connections.
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4.3. Integrable logarithmic connections.

Definition 4.4. Let X be a nonsingular complex projective variety, S a
normal crossing divisor with smooth components. An integrable logarithmic
connection E on X is a pair (E , ∇) where E is a torsion free coherent sheaf
of OX -modules on X and ∇ : E → E ⊗ Ω1

X(logS) is C-linear and satisfies the
Leibniz rule and the integrability condition ∇2 = 0 (see in the beginning of
Section 2).

Let DX be the sheaf of algebraic differential operators on X and let
DX [logS] be the OX -subalgebra generated by the germs of tangent vector
fields which preserve the ideal sheaf of the reduced scheme S. According
to [Ni], a logarithmic connection on X with singularities over S can be in-
terpreted as a DX [logS]-module which is coherent and torsion free as an
OX -module.

Remark 4.5. A nonsingular integrable connection on X is simply a DX -
module which is coherent as an OX -module.

Definition 4.6. An infinitesimal deformation of an integrable logarithmic
connection E is a pair (EV , α), where EV is a family of logarithmic connections
parameterized by V = Spec(C[ε])/ε2, with an isomorphism α : EV /εEV → E .

We define TE as the set of all equivalence classes of infinitesimal deforma-
tions of E . Let the sheaf K E be the kernel of ∇ : E nd(E ) ⊗ Ω1(logS) →
E nd(E ) ⊗ Ω2(logS). As the curvature of ∇ is 0, the image of ∇ : E →
E ⊗ Ω1(logS), is contained in K E . If A ∈ H0(X, K E ), then ∇ + εA is a family
of logarithmic connections on the underlying sheaf E parameterized by V .
This gives a linear map p : H0(X, K E ) → TE .

Theorem 4.7. If an integrable logarithmic connection E is locally free,
the vector space TE of infinitesimal deformations of E (which equals the tan-
gent space at [E ] to the moduli scheme M of stable integrable logarithmic
connections when E is stable) is canonically isomorphic to the first hyperco-
homology H

1(CE ) of the complex C E = (∇ : E nd(E ) → K E ), which is in turn
equal to the first hypercohomology of the logarithmic de Rham complex L• =
(E nd(E ) ⊗ Ω•

X(logS), ∇) associated to E nd(E ).

Proof. See [Ni]. �
We deduce the construction of the Kuranishi space of integrable logarithmic

connections over X .

4.4. Kuranishi space of integrable logarithmic connections.

Theorem 4.8. Let X be a smooth projective variety over an algebraically
closed field k (or on C), E a vector bundle on X , ∇ an integrable logarithmic
connection on E , L • the complex of sheaves on X defined in Theorem 4.7,
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W = H
1(X, L •), (δ1, . . . , δN ) a basis of W and (t1, . . . , tN ) the dual coordinates

on W . Let Wk denote the k-th infinitesimal neighborhood of 0 in W , and
(E1, ∇1) the universal first order deformation of (E , ∇) over X × W1 in the
class of integrable logarithmic connections with fixed divisor of poles D. Then
there exists a formal power series

f(t1, . . . , tN ) =
∞∑

k=2

fk(t1, . . . , tN ) ∈ H
2
(
X, L •

)
[[t1, . . . , tN ]],

where fk is homogeneous of degree k (k ≥ 2), with the following property. Let
I be the ideal of k[[t1, . . . , tN ]] generated by the image of the map f ∗ : H

2(X,
L •)∗ → k[[t1, . . . , tN ]], adjoint to f . Then for any k ≥ 2, the pair (E1, ∇1)
extends to an integrable logarithmic connection (Ek, ∇k) on X × Vk, where
Vk is the closed subscheme of Wk defined by the ideal I ⊗ k[[t1, . . . , tN ]]/
(t1, . . . , tN )k+1.

5. Parabolic connections

Let X be a smooth projective curve of genus g. We set

Tn :=
{
(t1, . . . , tn) ∈

n︷ ︸︸ ︷
X × · · · × X

∣∣ ti �= tj for i �= j
}

for a positive integer n. For integers d, r with r > 0, we set

Λ(n)
r (d) :=

{(
λ

(i)
j

)1≤i≤n

0≤j≤r−1
∈ C

nr
∣∣∣ d +

∑
i,j

λ
(i)
j = 0

}
.

Take an element t = (t1, . . . , tn) ∈ Tn and λ = (λ(i)
j )1≤i≤n,0≤j≤r−1 ∈ Λ(n)

r (d).

Definition 5.1. (E, ∇, {l
(i)

∗ }1≤i≤n) is said to be a (t, λ)-parabolic connec-
tion of rank r if

(1) E is a rank r algebraic vector bundle on X , and
(2) ∇ : E → E ⊗ Ω1

C(log(t1 + · · · + tn) is a connection, and
(3) for each ti, l

(i)
∗ is a filtration of E|ti = l

(i)
0 ⊃ l

(i)
1 ⊃ · · · ⊃ l

(i)
r−1 ⊃ l

(i)
r = 0

such that dim(l(i)j /l
(i)
j+1) = 1 and (Resti(∇) − λ

(i)
j idE|ti

)(l(i)j ) ⊂ l
(i)
j+1 for j =

0, . . . , r − 1.

Remark 5.2. By condition (3) above and [EV-1], we have

degE = deg
(
det(E)

)
= −

n∑
i=1

TrResti(∇) = −
n∑

i=1

r−1∑
j=0

λ
(i)
j = d.

Let T be a smooth algebraic scheme which is a covering of the moduli stack
of n-pointed smooth projective curves of genus g over C and take a universal
family (C, t̃1, . . . , t̃n) over T .
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Definition 5.3. We denote the pull-back of C and t̃ with respect to the
morphism T × Λ(n)

r (d) → T by the same characters C and t̃ = (t̃1, . . . , t̃n).
Then D(t̃) := t̃1 + · · · + t̃n becomes a family of Cartier divisors on C flat
over T × Λ(n)

r (d). We also denote by λ̃ the pull-back of the universal family
on Λ(n)

r (d) by the morphism T × Λ(n)
r (d) → Λ(n)

r (d). We define a functor
Mα

C/T (t̃, r, d) from the category of locally noetherian schemes over T × Λ(n)
r (d)

to the category of sets by

Mα
C/T (t̃, r, d)(S) :=

{(
E, ∇,

{
l
(i)
j

})}
/ ∼,

where

(1) E is a vector bundle on CS = C ×
T ×Λ

(n)
r (d)

S of rank r,

(2) ∇ : E → E ⊗ Ω1
CS/S(D(t̃)S) is a relative connection,

(3) E|(t̃i)S
= l

(i)
0 ⊃ l

(i)
1 ⊃ · · · ⊃ l

(i)
r−1 ⊃ l

(i)
r = 0 is a filtration by subbundles

such that (Res(t̃i)S
(∇) − (λ̃(i)

j )S)(l(i)j ) ⊂ l
(i)
j+1 for 0 ≤ j ≤ r − 1, i = 1, . . . , n,

(4) for any geometric point s ∈ S, dim(l(i)j /l
(i)
j+1) ⊗ k(s) = 1 for any i, j and

(E, ∇, {l
(i)
j }) ⊗ k(s) is α-stable.

Here (E, ∇, {l
(i)
j }) ∼ (E′, ∇′, {l

′(i)
j }) if there exist a line bundle L on S and

an isomorphism σ : E
∼→ E′ ⊗ L such that σ|ti(l

(i)
j ) = l

′(i)
j for any i, j and the

diagram

E
∇−−−−→ E ⊗ Ω1

C/T

(
D(t̃)

)
σ

⏐⏐� σ ⊗ id

⏐⏐�
E′ ⊗ L ∇ ′

−−−−→ E′ ⊗ Ω1
C/T

(
D(t̃)

)
⊗ L

commutes.

We now can construct the moduli space of this functor.

Theorem 5.4. There exists a relative fine moduli scheme

Mα
C/T (t̃, r, d) → T × Λ(n)

r (d)

of α-stable parabolic connections of rank r and degree d, which is smooth,
irreducible and quasi-projective and has an algebraic symplectic structure. The
fiber Mα

Cx
(t̃x, λ) over (x,λ) ∈ T × Λ(n)

r (d) is the irreducible moduli space of α-
stable (t̃x, λ) parabolic connections whose dimension is 2r2(g − 1) + nr(r −
1) + 2 if it is nonempty.

Proof. See [I]. �
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Let (Ẽ, ∇̃, {l̃
(i)
j }) be a universal family on C ×T Mα

C/T (t̃, r, d). We define a
complex G • by

G0 :=
{
s ∈ E nd(Ẽ)|s|t̃i ×Mα

C/T (t̃,r,d)

(
l̃
(i)
j

)
⊂ l̃

(i)
j for any i, j

}
,

G1 :=
{
s ∈ E nd(Ẽ) ⊗ Ω1

C/T

(
D(t̃)

) ∣∣
Rest̃i ×Mα

C/T (t̃,r,d)(s)
(
l̃
(i)
j

)
⊂ l̃

(i)
j+1 for any i, j

}
,

∇G • : G0 −→ G1; ∇G • (s) = ∇̃ ◦ s − s ◦ ∇̃.

As in the previous section, we can construct the Kuranishi space of (t, λ)-
parabolic connections on a smooth projective curve in using the hypercoho-
mology of G •.

Theorem 5.5. Let X be a smooth projective curve over k, (E , ∇, {l
(i)

∗ })
a (t, λ)-parabolic connection on X , G • the complex of sheaves on X defined
above, W = H

1(X, G •), (δ1, . . . , δN ) a basis of W and (t1, . . . , tN ) the dual
coordinates on W . Let Wk denote the k-th infinitesimal neighborhood of 0 in
W , and (E1, ∇1, {l

(i)
∗ }1) the universal first order deformation of (E , ∇, {l

(i)
∗ })

over X × W1 in the class of (t, λ)-parabolic connections. Then there exists a
formal power series

f(t1, . . . , tN ) =
∞∑

k=2

fk(t1, . . . , tN ) ∈ H
2
(
X, G •

)
[[t1, . . . , tN ]],

where fk is homogeneous of degree k (k ≥ 2), with the following property. Let
I be the ideal of k[[t1, . . . , tN ]] generated by the image of the map f ∗ : H

2(X,
G •) → k[[t1, . . . , tN ]], adjoint to f . Then for any k ≥ 2, the triple (E1, ∇1,

{l
(i)

∗ }1) extends to a (t, λ)-parabolic connection (Ek, ∇k, {l
(i)

∗ }k) on X × Vk,
where Vk is the closed subscheme of Wk defined by the ideal I ⊗ k[[t1, . . . , tN ]]/
(t1, . . . , tN )k+1.

We now want to construct the Kuranishi space of T -parabolic bundles. Let
T be a finite set of smooth points {P1, . . . , Pn} of X and W a vector bundle
on X .

Definition 5.6. By a quasi-parabolic structure on a vector bundle W at
a smooth point P of X , we mean a choice of a flag

WP = F1(W )P ⊃ F2(W )P ⊃ · · · ⊃ Fl(W )P = 0,

in the fibre WP of W at P . A parabolic structure at P is a pair consisting
of a flag as above and a sequence 0 ≤ α1 < α2 < · · · < αl < 1 of weights of W
at P .

The integers k1 = dimF1(W )P − dimF2(W )P , . . . , kl = dim(Fl(W )P ) are
called the multiplicities of α1, . . . , αl. A T -parabolic structure on W is the
triple consisting of a flag at P , some weights αi, and their multiplicities ki.
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A vector bundle W endowed with a T -parabolic structure is called a T -
parabolic bundle.

Definition 5.7. A T -parabolic bundle W1 on X is a T -parabolic subbun-
dle of a T -parabolic bundle W2 on X , if W1 is a subbundle of W2 and at each
smooth point P of T , the weights of W1 are a subset of those of W2. Further,
if we take the weight αj0 such that 1 ≤ j0 ≤ m, and the weight βk0 for the
greatest integer k0 such that Fj0(W1)P ⊂ Fk0(W2)P , then αj0 = βk0 .

Definition 5.8. The parabolic degree of a T -parabolic vector bundle W
on X is

pardeg(W ) := deg(W ) +
∑
P ∈I

r∑
i=1

ki(P )αi(P ).

Definition 5.9. A T -parabolic bundle W is stable (resp. semistable) if
for any proper nonzero T -parabolic subbundle W ′ ⊂ W the inequality

pardegW ′ < (resp. ≤)
pardegW rk(W ′)

rkW

holds.

We have a forgetful map g from (t, λ) parabolic connections to T -parabolic
bundles. We thus can construct the Kuranishi space of T -parabolic bundles
by following an analogous argument to the one given above. We first introduce
the Higgs field Φ : E → E ⊗ Ω1

X(D) defined as follows:

∀p ∈ X, ∀f ∈ OX,p, ∀s ∈ EP , Φ(fs) = fΦ(s).

We afterwards consider a parabolic bundle E with fixed weights and parabolic
points P1, . . . , PN . We set L = K ⊗ O(P1, . . . , PN ), the line bundle associated
to the canonical divisor together with the divisor of poles D = P1 + · · · + PN .
The sheaf of rational 1-forms on X is identified with the sheaf of rational
sections of the canonical bundle having single poles at points P1, . . . , PN . We
replace ti by Pi, for i = 1, . . . ,N and Mα

C/T (t̃, r, d) by Ms
T . We define a complex

B • by

B0 :=
{
s ∈ E nd(Ẽ)|s|P̃i ×Ms

Z,C/T (P̃ ,r,d)

(
l̃
(i)
j

)
⊂ l̃

(i)
j for any i, j

}
,

B1 :=
{
s ∈ E nd(Ẽ) ⊗ Ω1

C/T

(
D(P̃ i)

) ∣∣
ResP̃i ×Ms

Z,C/T (P̃ ,r,d)(s)
(
l̃
(i)
j

)
⊂ l̃

(i)
j+1 for any i, j

}
,

adΦB • : B0 −→ B1; adΦB • (s) = Φ̃ ◦ s − s ◦ Φ̃.

From this, we deduce the construction of the Kuranishi space of T -parabolic
bundles on a smooth projective curve.
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Theorem 5.10. Let X be a smooth projective curve over k or a complex
space (in which case k = C), E a T -parabolic bundle on X , B • the complex of
sheaves on X defined as above, W = H

1(X, B •), (δ1, . . . , δN ) a basis of W and
(t1, . . . , tN ) the dual coordinates on W . Let Wk denote the k-th infinitesimal
neighborhood of 0 in W , and E1 the universal first order deformation of E
over X × W1. Then there exists a formal power series

f(t1, . . . , tN ) =
∞∑

k=2

fk(t1, . . . , tN ) ∈ H
2
(
X, B •

)
[[t1, . . . , tN ]],

where fk is homogeneous of degree k (k ≥ 2), with the following property. Let
I be the ideal of k[[t1, . . . , tN ]] generated by the image of the map f ∗ : H2(X,
B •)∗ → k[[t1, . . . , tN ]], adjoint to f . Then for any k ≥ 2, E1 extends to a T -
parabolic bundle Ek on X × Vk, where Vk is the closed subscheme of Wk defined
by the ideal I ⊗ k[[t1, . . . , tN ]]/(t1, . . . , tN )k+1.
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