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PROBABILITY MEASURES ON ALMOST CONNECTED
AMENABLE LOCALLY COMPACT GROUPS AND SOME

RELATED IDEALS IN GROUP ALGEBRAS

WOJCIECH JAWORSKI

Abstract. Given a locally compact group G let Ja(G) denote the set
of all closed left ideals J in L1(G) which have the form J = [L1(G) ∗
(δe − µ)] where µ is an absolutely continuous probability measure on
G. We explore the order structure of Ja(G) when Ja(G) is ordered
by inclusion. When G is connected and amenable we prove that every

nonempty family F ⊆ Ja(G) admits both a minimal and a maximal
element; in particular, every ideal in Ja(G) contains an ideal that is
minimal in Ja(G). Furthermore, we obtain that every chain in Ja(G)
is necessarily finite. A natural generalization of these results to almost

connected amenable groups is discussed. Our proofs use results from
the theory of boundaries of random walks.

1. Introduction

Given a probability measure µ on a locally compact group G consider the
set

Jµ = {ϕ− ϕ ∗ µ ; ϕ ∈ L1(G)}
where the bar means closure with respect to the L1-norm. Jµ is a left ideal in
the group algebra L1(G). As shown by Willis [15], ideals of this form appear
naturally in connection with the theory of random walks on G, in the study
of amenability, and in certain factorization questions in group algebras.

Let P (G), Pa(G), and Pd(G) denote, respectively, the sets of probability
measures on G, absolutely continuous probability measures on G, and discrete
probability measures on G. Define

J (G) = {Jµ ; µ ∈ P (G)}, Ja(G) = {Jµ ; µ ∈ Pa(G)},
Jd(G) = {Jµ ; µ ∈ Pd(G)}.
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Each of the sets J (G), Ja(G), and Jd(G) is partially ordered by inclusion.
Willis [15] showed that for a locally compact second countable group every
ideal in J (G), Ja(G), or Jd(G) is contained in a maximal one. When G is
amenable there is only one maximal element in J (G), Ja(G), and Jd(G) – it
is the ideal L1

0(G) = {ϕ ∈ L1(G) ;
∫
G
ϕ = 0}. When G is not amenable, L1

0(G)
is not a member of J (G) and maximal ideals are not unique. The purpose of
the present work is to provide more details about the order structure of the
ideal space J (G) in the case when G is an almost connected amenable locally
compact second countable group. We hope that our results in this special
case can help to uncover an interesting structure of J (G) in wider classes of
groups.

The ideal space J (G) has, trivially, the smallest element {0} corresponding
to the point measure δe where e is the identity of G. Suppose now that G is
connected and different from the singleton {e}. Then δe /∈ Pa(G) and one can
ask whether Ja(G) admits any minimal elements. We will show that, when
G is amenable and second countable, the answer to this question is positive:
every element of Ja(G) contains an element that is minimal in Ja(G). More
is true: every nonempty family F ⊆ Ja(G) admits both a minimal and a
maximal element. Furthermore, every chain in Ja(G) is necessarily finite.

It is not difficult to see that, when G is only almost connected but not
connected, then Ja(G) need not have any minimal elements (see Section 4).
Recall that a probability measure on G is called adapted if the smallest closed
subgroup of G containing the support suppµ is G itself. Let

Jaa(G) = {Jµ ; µ ∈ Pa(G), µ is adapted}.

We will prove that the results mentioned above remain true for the ideal space
Jaa(G) of an almost connected amenable locally compact second countable
group. We note that every absolutely continuous probability measure on a
connected locally compact group is automatically adapted; in this case we
therefore have Ja(G) = Jaa(G).

We conjecture that the above or similar results hold also without the re-
striction that G be amenable. This is so when G is a connected semisimple
Lie group with finite centre. Some special examples of semisimple Lie groups
with infinite centre also support our conjecture. However, as we explain in
the sequel, semisimple Lie groups with possibly infinite centre and general
nonamenable groups introduce certain nontrivial complications which call for
a much more subtle and complex argument than the one used here.

The proofs that we provide below are based on a detailed knowledge of
boundaries of random walks on almost connected locally compact groups [8].
The boundaries form a subclass of the class of what we call contractive ho-
mogeneous spaces. The results about the ideals Jµ follow from analogous
results about contractive homogeneous spaces (which we obtain in Section
3). It would be interesting to know whether there is another route to our
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results, perhaps resembling the abstract approach of Willis [15] used to prove
the existence of maximal elements in J (G).

Our paper is organized as follows. Section 2 contains preliminary material;
for the convenience of the reader we collect here relevant results about bound-
aries, µ-boundaries, contractive homogeneous spaces, and strongly approxi-
mately transitive group actions, and explain the connection between those
and the ideals Jµ. In most cases proofs are omitted as they can be found else-
where. In Section 3 we study the class of contractive homogeneous spaces of
an almost connected amenable locally compact group: the order relation ‘Y
is an equivariant image of X ’ and equivariant isometries L∞(Y) → L∞(X )
are investigated. The results of Section 3 are then used in Section 4 to study
the order structure of the ideal space Jaa(G).

2. Preliminaries

2.1. Measures. Given a Borel space X we shall denote by M(X ) the space
of complex measures on X and by P (X ) the set of probability measures. ‖ · ‖
will stand for the total variation norm. When F : X → Y is a Borel map
from X into a Borel space Y and µ is a measure or a complex measure on
X , we shall write Fµ for the measure (Fµ)(B) = µ

(
F−1(B)

)
on Y. When

X is a topological space, by the weak topology on M(X ) we shall mean the
σ
(
M(X ), Cb(X )

)
- topology where Cb(X ) is the algebra of bounded continuous

functions on X .
Given a measure space (X , α) we shall always identify L1(X ) = L1(X , α)

with the space of complex measures that are absolutely continuous with re-
spect to α . L1

1(X ) ⊆ L1(X ) will stand for the subset of probability measures.
When ϕ ∈ L1(X ) and f ∈ L∞(X ) = L∞(X , α), we shall write 〈ϕ, f〉 for∫
f dϕ. By the weak* topology on L∞(X ) we shall mean the σ(L∞, L1)-

topology.

2.2. SAT G-spaces. Let G be a group. A Borel G-space X with a
σ-finite quasi-invariant measure α is called strongly approximately transitive
(SAT) if it admits a probability measure ρ � α such that the convex hull of
the orbit Gρ is norm dense in L1

1(X ). A measure ρ with this property is called
a SAT measure. The following result is proven in [10, Proposition 2.2]. Here
B(G) denotes the space of bounded complex functions on G equipped with
the sup norm.

Proposition 2.2.1. Let X be a Borel G-space with a σ-finite quasi-
invariant measure α. The following conditions are equivalent for a probability
measure ρ ∈ L1

1(X ) :
(i) ρ is a SAT measure ;
(ii) for every Borel set A with α(A) > 0 and every ε > 0 there exists

g ∈ G such that ρ(gA) > 1− ε ;
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(iii) the map R : L∞(X )→ B(G) given by (Rf)(g) = 〈gρ, f〉 is an isome-
try.

Let X be a homogeneous space of a locally compact second countable (lcsc)
group G. A probability measure ν ∈ P (X ) is called contractible if the weak
closure of the orbit Gν contains a point measure δx. For the next result see
[10, proof of Corollary 2.5].

Proposition 2.2.2. An absolutely continuous probability measure ν on a
homogeneous space X of a lcsc group G is a SAT measure if and only if it is
contractible.

2.3. Boundaries. We will call a homogeneous space X of a lcsc group G
a boundary of G if every probability measure ν ∈ P (X ) is contractible.

Proposition 2.3.1. A homogeneous space X of a lcsc group G is a bound-
ary of G if and only if it admits a quasi-invariant SAT measure.

Proof. The ‘only if’ part is a trivial consequence of Proposition 2.2.2.
Suppose ρ is a quasi-invariant SAT measure on X and ν ∈ P (X ). Since ρ

is contractible, by Lemma 6.5 in [8] there exists x0 ∈ X , a Borel set B ⊆ X
and a sequence {hn}∞n=1 such that ρ(B) = 1 and limn→∞ hnb = x0 for every
b ∈ B. Let α0 be a probability measure on G equivalent to the Haar measure.
Then α = α0 ∗ ν is a quasi-invariant probability measure on X , and hence
equivalent to ρ. Consequently,

α(B) =
∫
G

(gν)(B)α0(dg) = 1.

So (gν)(B) = ν
(
g−1(B)

)
= 1 for some g ∈ G. Put gn = hng. Then

limn→∞ gnx = x0 for every x ∈ g−1B. This implies that w- limn→∞ gnν =
δx0 . �

Proposition 2.3.2. Let X be a boundary of a lcsc group G. Then the
centre C of G and every compact normal subgroup K ⊆ G stabilize every point
of X .

Proof. Let ρ be a quasi-invariant SAT measure. Recall that the function
G 3 g → ‖gρ − ρ‖ is continuous with respect to the total variation norm.
By the 0-2 law [10, Proposition 3.1], for every g ∈ G the number a(g) =
suph∈G ‖h−1ghρ − ρ‖ is either 0 or 2. When g ∈ C, a(g) = ‖gρ − ρ‖. When
g ∈ K, using compactness and normalcy of K, and the continuity, it follows
that a(g) = ‖g′ρ − ρ‖ for some g′ ∈ K. In any case, due to quasi-invariance
of ρ we obtain that gρ = ρ for every g ∈ CK. Since the convex hull co(Gρ) is
dense in L1

1(X ), it follows that CK acts trivially on L1(X ) and, hence, also
on L∞(X ). As X is a homogeneous space this implies that elements of CK
stabilize every point of X . �



PROBABILITY MEASURES ON LOCALLY COMPACT GROUPS 199

2.4. Contractive homogeneous spaces. A subset U of a homogeneous
space X of a lcsc group G is called contractible if for every nonempty open
V ⊆ X there exists g ∈ G with gU ⊆ V . The homogeneous space X is called
contractive if it admits a nonempty open contractible subset.

Proposition 2.4.1. A contractive homogeneous space of a lcsc group is
SAT. A homogeneous space of an almost connected lcsc group is SAT if and
only if it is contractive. In particular, every boundary of an almost connected
lcsc group is contractive.

Proof. The first statement is proven in [10, Corollary 2.5]. For a proof of
the second see [8, Theorem 4.6]. �

The proofs of the next two results can be found in [8, Corollary 5.2 and
Lemma 4.5].

Proposition 2.4.2. If X is a contractive homogeneous space of an almost
connected lcsc group G then :

(i) X consists of finitely many open orbits of Ge , the connected compo-
nent of the identity e.

(ii) Every orbit of Ge is a contractive homogeneous space of Ge.
(iii) Every SAT measure is supported on one of the orbits of Ge.

Proposition 2.4.3. Let X and Y be contractive homogeneous spaces of
an almost connected lcsc group G. Then there exists a compact normal sub-
group K ⊆ G such that G/K is a Lie group and that K stabilizes every point
of X and every point of Y.

2.5. Contractive homogeneous spaces of connected amenable Lie
groups. Let G be a connected amenable Lie group with Lie algebra g. Choose
a Levi decomposition g = r⊕ s where r is the radical and s a Levi subalgebra.
Denote by R the radical of G and by S the Levi subgroup corresponding to
s. Then G = RS and S is compact (because G is amenable).

Let p be a Cartan subalgebra [3, Chap. VII, §2.1] of Cr(s), the centralizer
of s in r, and P the connected Lie subgroup corresponding to p. Consider the
adjoint representation ρ of P on the complexification g̃ of g. Recall that a
function ξ : P → C is called a weight of ρ if g̃ξ =

⋂
g∈P Ker

(
ρ(g)−ξ(g)

)
d 6= {0}

where d is the dimension of g. Every weight is an analytic homomorphism
of P into C − {0}. Let Σ denote the set of weights. We have g̃ =

⊕
ξ∈Σ g̃ξ,

g̃ξ = g̃ξ where the bar means the complex conjugation, [g̃ξ, g̃η] ⊆ g̃ξη, and
each g̃ξ is invariant under ρ. (These facts are immediate consequences of the
well known results about representations of nilpotent Lie algebras [3, Chap.
VII, §1].)
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Given p ∈ P let

Σ+(p) = {ξ ∈ Σ ; |ξ(p)| ≥ 1} and Σ−(p) = {ξ ∈ Σ ; |ξ(p)| < 1}.
Define

g̃±(p) =
⊕

ξ∈Σ±(p)

g̃ξ.

Then g̃± are subalgebras of g̃ invariant under complex conjugation. There
exist (unique) subalgebras g±(p) ⊆ g such that g̃±(p) = g±(p) ⊕ ig±(p).
Denote by G±(p) the connected Lie subgroups corresponding to g±(p). The
following proposition is a special case of Proposition 3.5 in [8] (see also Remark
3.6 in [8]).

Proposition 2.5.1. G+(p) and G−(p) are closed subgroups of G and the
mapping G−(p) × G+(p) 3 (g−, g+) → g−g+ ∈ G is a homeomorphism of
G−(p) × G+(p) onto G. Moreover G−(p) is a simply connected subgroup of
the nilradical of G, while G+(p) contains S and every connected nilpotent Lie
subgroup containing P .

For the next result see [8, Theorem 5.5 and Proposition 3.7].

Proposition 2.5.2. A homogeneous space X of a connected amenable
Lie group is contractive if and only if there exist p ∈ P and x0 ∈ X such
that the stabilizer Gx0 of x0 contains G+(p). If Gx0 contains G+(p) for some
p ∈ P , then for every x ∈ X , limn→∞ pnx = x0.

Corollary 2.5.3. A contractive homogeneous space of a connected ame-
nable lcsc group is a boundary. A contractive homogeneous space of an almost
connected amenable lcsc group G is a boundary if and only if it consists of a
single orbit of Ge.

Proof. By Proposition 2.4.3 a contractive homogeneous space of a con-
nected amenable lcsc group can be considered as a contractive homogeneous
space of a connected amenable Lie group. Then the first claim follows from
the last statement of Proposition 2.5.2. The ‘if’ part of the second claim
is then a direct consequence of Proposition 2.4.2(ii). The ‘only if’ part is a
consequence of Proposition 2.3.1 and Proposition 2.4.2(iii). �

2.6. µ-boundaries and ideals Jµ. Let G be a lcsc group and µ a
probability measure on G. A bounded Borel function h : G → C is called
µ-harmonic if it satisfies

h(g) =
∫
G

h(gg′)µ(dg′), g ∈ G.

Let Hµ denote the space of equivalence classes, modulo the Haar measure λ,
of the bounded µ-harmonic functions.
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The formula

(Pµf)(g) =
∫
f(gg′)µ(dg′) (modλ)

defines a positive, weak* continuous contraction Pµ : L∞(G) → L∞(G). Hµ
is precisely the subspace of fixed points of Pµ [5, Proposition 2]. The adjoint
of Pµ is a positive contraction P ∗µ : L1(G)→ L1(G) given by

P ∗µϕ = ϕ ∗ µ.

The ideal Jµ is the norm closure of the range of the operator I − P ∗µ . Hµ is
the anihilator of Jµ in L∞(G):

Hµ = J⊥µ = {f ∈ L∞(G) ; 〈ϕ, f〉 = 0 for all ϕ ∈ Jµ}.

A homogeneous space Xµ is called a µ-boundary if there exists a probability
measure ρµ on Xµ such that the Poisson formula

(2.6.1) h(g) =
∫
X
f(gx) ρµ(dx), f ∈ L∞(Xµ),

defines an isometry, Rµ, of L∞(Xµ) onto Hµ. We note that the measure ρµ,
called the Poisson kernel, necessarily satisfies ρµ = µ ∗ ρµ. The µ-boundary,
if exists, is unique up to an equivariant isomorphism [12, §3]. 1

The isometry Rµ defined by (2.6.1) is weak* continuous, its adjoint R∗µ :
L1(G)→ L1(Xµ) is given by

(2.6.2) R∗µϕ = ϕ ∗ ρµ.

Since, Jµ = H⊥µ , it is clear that Jµ coincides with the kernel of R∗µ. Thus,

(2.6.3) Jµ = {ϕ ∈ L1(G) ; ϕ ∗ ρµ = 0}.

Recall that a probability measure µ on G is called spread out if for some n the
n-th convolution power µn is nonsingular with respect to the Haar measure.
For the next two results see [11, §2.2] and [8, Corollary 4.7], respectively.

Proposition 2.6.1. The µ-boundary of a spread out probability measure
on a lcsc group is a SAT G-space and the Poisson kernel is a SAT measure.

Proposition 2.6.2. The µ-boundary exists for every spread out prob-
ability measure on an almost connected lcsc group G and is a contractive
homogeneous space of G.

Proposition 2.6.3. The µ-boundary of an adapted spread out probability
measure on an almost connected amenable lcsc group G is a boundary of G.

1In this work the µ-boundary is, by definition, a homogeneous space. In general, such a

µ-boundary need not exist; there always exists a µ-boundary in a wider sense, defined as a

Borel G-space.
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Proof. By Corollary 5.4 in [8] the µ-boundary of an adapted spread out
probability measure on G consists of a single orbit of Ge. We conclude by
Corollary 2.5.3. �

For a nondiscrete group the class of spread out probability measures is con-
siderably larger than Pa(G). However, due to a result of Willis [15, Propo-
sition 2.6], from the point of view of the theory of the ideals Jµ spread out
measures provide no greater generality than the absolutely continuous ones:

Proposition 2.6.4. For every lcsc group G,

Ja(G) = {Jµ ; µ ∈ P (G), µ is spread out },
Jaa(G) = {Jµ ; µ ∈ P (G), µ is spread out and adapted }.

Proof. The first equality follows trivially from [15, Proposition 2.6]. To
get the second one it then suffices to show that if Jµ = Jν and µ is adapted
then ν is also adapted. Let Hν be the closed subgroup generated by supp ν
and π : G → G/Hν denote the canonical mapping. Then for every f ∈
Cb(G/Hν) the function f ◦ π is ν-harmonic and therefore also µ-harmonic.
Hence, f(π(e)) =

∫
G
f ◦ π dµ =

∫
G/Hν

f d(πµ). Consequently, πµ = δHν . So
µ(Hν) = 1 and Hν = G by the adaptedness of µ. �

3. More on contractive homogeneous spaces

Given two homogeneous spaces X and Y of a lcsc group G we shall write
X � Y if Y is an equivariant image of X , and X ∼= Y if X and Y are isomorphic
(as G-spaces). In general, as the following elementary example shows, X � Y
and Y � X does not imply X ∼= Y. Our first goal will be to show that, in
the class of contractive homogeneous spaces of an almost connected amenable
lcsc group, X � Y and Y � X does imply X ∼= Y.

Example 3.1. Consider the semidirect product G = Q ×τ Z where τ is
the automorphism τ(x) = 4x. For k ∈ N, let Hk = kZ× {0}. Then the Hk’s
are subgroups of G and H8 = (0, 1)H2(0, 1)−1 ⊆ H4 ⊆ H2. Consequently,
G/H2 � G/H4 and G/H4 � G/H2. But H2 and H4 are not conjugate; hence,
G/H2 � G/H4.

Lemma 3.2. Let X be a contractive homogeneous space of a connected
amenable Lie group G. Then the stabilizer subgroups Gx, x ∈ X , are connected
and coincide with their normalizers.

Proof. We will work in the setting of Section 2.5. By Proposition 2.5.2 there
exist x0 ∈ X and p ∈ P such that H = Gx0 contains G+(p). It suffices to show
that H is connected and coincides with its normalizer NG(H). Denote by h the
Lie algebra of H. Clearly, H ⊆ NG(H) ⊆ NG(He) = nG(h) where He denotes
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the connected component of e in H and nG(h) = {g ∈ G ; Ad(g)h = h}. It
suffices to show that nG(h) ⊆ He.

Let L and l denote the nilradicals of G and g, respectively. Since g = r + s
and r = l + p [14, Lemme 1.9], we have G = LPS. Hence, as He ⊇ SP
(see Proposition 2.5.1), it suffices to show that if g ∈ L and Ad(g)h = h
then g ∈ He. But g = exp(X) for some X ∈ l, because L is a connected
nilpotent Lie group. It follows that (eadX − I )h ⊆ h. As adX is nilpotent [2,
Corollaire 7, p. 67], it can be expressed as a polynomial in (eadX−I ). Hence,
X normalizes h and, consequently, also h ∩ r. Now, by [8, Lemma 3.8], p is
contained in a Cartan subalgebra p′ of r. By Proposition 2.5.1, the connected
Lie subgroup P ′ corresponding to p′ is contained in H, so p′ ⊆ h ∩ r. Then
X ∈ h∩ r ⊆ h by [3, Corollaire 4, p. 20], and therefore g = exp(X) ∈ He. �

Corollary 3.3. Let X be a contractive homogeneous space of an almost
connected amenable Lie group G. If G has n connected components then each
stabilizer subgroup Gx, x ∈ X , has at most n connected components.

Proof. By Proposition 2.4.2(ii) Gex is a contractive homogeneous space of
Ge. So (Ge)x = Ge ∩ Gx is connected . As (Gx)e ⊆ Ge ∩ Gx it follows that
(Gx)e = Ge ∩Gx. Hence, Gx/(Gx)e = Gx/(Ge ∩Gx) ∼= Gx/Ge ⊆ G/Ge. �

Lemma 3.4. Let X be a homogeneous space of a Lie group G and suppose
that the stabilizers Gx, x ∈ X , are almost connected. Then every equivariant
map F : X → X is a bijection.

Proof. F is surjective because G acts transitively on X . To prove that
F is injective choose x ∈ X . Then Gx ⊆ GF (x). It suffices to show that
Gx = GF (x). Now, F (x) = gx for some g ∈ G. Thus Gx ⊆ gGxg

−1. But
Gx and gGxg

−1 have the same dimensions and the same (finite) number of
connected components. Hence, (Gx)e =

(
gGxg

−1
)
e and, consequently, Gx =

gGxg
−1. �

Theorem 3.5. Let X and Y be contractive homogeneous spaces of an
almost connected amenable lcsc group G. Suppose there exist equivariant maps
F1 : X → Y and F2 : Y → X . Then both F1 and F2 are homeomorphism. In
particular, X � Y and Y � X implies X ∼= Y.

Proof. F1 and F2 are surjective by transitivity and it is well known that
they are continuous open mappings. Form F = F2 ◦ F1. F is then an equi-
variant map of X into X . By Proposition 2.4.3 X can be considered as a
contractive homogeneous space of an almost connected amenable Lie group.
Then Corollary 3.3 and Lemma 3.4 yield that F is a bijection. Hence, F1 and
F2 must be injective. �
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Given a family F of homogeneous spaces of a lcsc group G, an element
X ∈ F will be called maximal (resp., minimal ) in F if for every Y ∈ F ,
Y � X (resp., Y ≺ X ) implies Y ∼= X .

Proposition 3.6. Let F be a nonempty family of contractive homoge-
neous spaces of an almost connected amenable Lie group G. Then F admits
both a minimal and a maximal element.

Proof. Let us define

A = {H ⊆ G ; H is a closed subgroup with G/H ∼= X for some X ∈ F },
d∗ = min{dimH ; H ∈ A}, d∗ = max{dimH ; H ∈ A},
A∗ = {H ∈ A ; dimH = d∗}, A∗ = {H ∈ A ; dimH = d∗}.

By Corollary 3.3, c∗ = min{#(H/He);H ∈ A∗} and c∗ = max{#(H/He);
H ∈ A∗} are well defined integers. Choose H∗ ∈ A∗ with #

(
H∗/(H∗)e

)
= c∗

and H∗ ∈ A∗ with #
(
H∗/(H∗)e

)
= c∗. By definition there exist X∗ ∈ F

with X∗ ∼= G/H∗ and X ∗ ∈ F with X ∗ ∼= G/H∗. It is easy to see that X∗ is
maximal while X ∗ is minimal in F . �

Corollary 3.7. Every contractive homogeneous space of an almost con-
nected amenable Lie group is an equivariant image of a maximal contractive
homogeneous space.

Proof. Apply Proposition 3.6 to the family

{Y ; Y is a contractive homogeneous space and Y � X},
where X is the given contractive homogeneous space. �

Proposition 3.8. Let F be a nonempty family of contractive homoge-
neous spaces of an almost connected amenable Lie group G, linearly ordered
by ≺ . Then F/∼= is finite.

Proof. For every X ∈ F let m(X ) and n(X ) denote the dimension and
the number of connected components of the stabilizer subgroups Gx, x ∈
X , respectively. Define γ : F → N × N by γ(X ) =

(
m(X ), n(X )

)
. Due

to Corollary 3.3, the range of γ is finite. Hence it suffices to show that if
X1,X2 ∈ F and γ(X1) = γ(X2) then X1

∼= X2.
Since F is linearly ordered we may assume that X1 � X2. But this means

that Gx1 ⊆ Gx2 for some x1 ∈ X1 and x2 ∈ X2. The equality γ(X1) = γ(X2)
implies (as in the proof of Lemma 3.4) that Gx1 = Gx2 . �

Theorem 3.9. Let F be a nonempty family of boundaries of an almost
connected amenable lcsc group G. Then F contains a minimal and a maximal
element. If F is linearly ordered by ≺ then F/∼= is finite. Every boundary
of G is an equivariant image of a maximal boundary.
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Proof. An almost connected locally compact group admits the largest com-
pact normal subgroup K (which is the intersection of all maximal compact
subgroups). By Proposition 2.3.2 we can consider F as a family of contractive
homogeneous spaces of the Lie group G/K. Then Propositions 3.6 and 3.8
apply. �

Remark 3.10. Even for very elementary connected solvable Lie groups
the class of boundaries can contain uncountably many nonisomorphic mem-
bers [9, Example 5.10]. Finiteness of F/∼= in Proposition 3.8 and Theorem
3.9 is a nontrivial property of the contractive homogeneous spaces.

Remark 3.11. Our definition of the boundary is motivated by a more
restrictive definition given by Furstenberg [6, 7]. He defines the boundary of
G (let us call it the F-boundary) as a compact minimal G-space X with the
property that every probability measure on X is contractible [7, Definition
4.1]. For an amenable locally compact group every F-boundary is a single-
ton [7, Proposition 4.3]. In general, every F-boundary of a locally compact
group is an equivariant image of a maximal F-boundary (called the univer-
sal boundary in [7]) which is unique up to an isomorphism [7, Proposition
4.6]. For a connected semisimple Lie group our definition of the boundary
and Furstenberg’s coincide; in this case every boundary is an equivariant im-
age of the unique maximal boundary G/MAN where MAN is a minimal
parabolic subgroup. However, in general, maximal boundaries need not be
unique: Example 5.4 in [9] shows that a connected solvable Lie group can
have nonisomorphic maximal boundaries of different dimensions.

Remark 3.12. It is easy to see that Proposition 3.6, Corollary 3.7 and
Proposition 3.8 do not hold for almost connected lcsc groups that are not Lie.
When H is an open subgroup of a lcsc group, G/H is trivially a contractive
homogeneous space. When G is abelian the only contractive homogeneous
spaces possible are of this trivial form [10, Theorem 3.3]. Recall that for a
totally disconnected G open-closed subgroups form a neighbourhood base at e.
Hence, when G is infinite, abelian, totally disconnected, and compact, then G
is almost connected but the family of contractive homogeneous spaces does not
have any maximal elements and there exist infinite chains of nonisomorphic
contractive homogeneous spaces.

Propositions 3.6 and 3.8 also fail for some connected nonamenable Lie
groups. Let G be a connected semisimple Lie group with an Iwasawa decom-
position G = KAN and let M denote the centralizer of A in K. Then a
homogeneous space G/H is contractive if and only if H contains a conjugate
of MeAN [8, Corollary 5.8]. Thus the class of contractive homogeneous spaces
has the largest element G/MeAN . However, consider the universal covering
G of SL(n,R). In this case M coincides with the centre of G and is isomor-
phic to Z so that Me is trivial. Since Z admits infinite descending chains of
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subgroups it is easy to see that there exist infinite chains of nonisomorphic
contractive homogeneous spaces without any maximal elements.

Our next proposition is motivated by an analogous result of Furstenberg
[7, Proposition 4.2] on the compact F-boundaries mentioned in Remark 3.11.
It will lead us to Theorem 3.16 that will be crucial in Section 4 in establishing
a connection between the order relation � on the space of µ-boundaries and
the order structure of the ideal space Ja(G).

Proposition 3.13. Let X and Y be homogeneous spaces of an almost
connected amenable lcsc group G such that X is contractive while Y is a
boundary. Then every equivariant map ϕ : X → P (Y) has δY as its range.
Moreover, there exists at most one equivariant map F : X → Y.

Proof. By Proposition 2.4.3 it suffices to deal with the case when G is a
Lie group. Consider the action of Ge. Working in the setting of Section
2.5 (with G replaced by Ge) and appealing to Proposition 2.4.2 there exist
x0 ∈ X and y0 ∈ Y such that P ⊆ (Ge)x0 and P ⊆ (Ge)y0 . Since Y is a
boundary, by Corollary 2.5.3 and Proposition 2.5.2 there exists p ∈ P such
that limn→∞ pny = y0 for every y ∈ Y. Now, ϕ(x0) = ϕ(pnx0) = pnϕ(x0).
Hence, ϕ(x0) = w- limn→∞ pnϕ(x0) = δy0 . Since G acts transitively on X this
proves the first statement.

To obtain the second statement suppose that Fi : X → Y are equivariant
maps. Then ϕ(x) = 1

2 (δF1(x) + δF2(x)) is an equivariant map into P (Y). As
ϕ(X ) = δY we get F1 = F2. �

Corollary 3.14. Let X and Y be contractive homogeneous spaces of an
almost connected amenable lcsc group G and ϕ : X → P (Y) an equivariant
map. If for some sequence {xn}∞n=1 ⊆ X the sequence ϕ(xn) converges weakly
to a point measure then ϕ(X ) = δY .

Proof. Again, it suffices to consider the case when G is a Lie group. Let
x0 ∈ X . We can write xn = gnx0 with gn ∈ G. Since G/Ge is finite there
exists a subsequence gnk such that gnkGe is constant, say gnkGe = g0Ge. Put
hk = g−1

0 gnk . Then hk ∈ Ge and w- limk→∞ hkϕ(x0) = δy0 for some y0 ∈ Y.
Now, by Proposition 2.4.2 Y is a union of finitely many open orbits of Ge.

We have 1 = δy0(Gey0) = limk→∞
(
hkϕ(x0)

)
(Gey0) = ϕ(x0)(Gey0) because

hk ∈ Ge. It follows that the restriction of ϕ to Gex0 can be considered as an
equivariant map into P (Gey0). As Gey0 is a boundary of Ge (see Corollary
2.5.3), Proposition 3.13 and transitivity imply that ϕ(X ) = δY . �

Lemma 3.15. Let X and Y be homogeneous spaces of a lcsc group G
and Φ : L∞(Y)→ L∞(X ) a positive, equivariant, weak* continuous, identity
preserving contraction. Then there exists a transition probability T from X to
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Y such that

(Φf)(x) =
∫
Y
T (x, dy) f(y) (a.e.)

and such that the mapping X 3 x→ T (x, ·) ∈ P (Y) is equivariant. If Φ is an
isometry then there is also a sequence {xn}∞n=1 ⊆ X such that the sequence
T (xn, ·) converges weakly to a point measure.

Proof. For a proof of the existence of T see, e.g., [13, Lemma 3.7]. Suppose
Φ is an isometry. Let y ∈ Y and {Vn}∞n=1 be a decreasing base of open
neighbourhoods of y. Since the characteristic function χ

Vn
has norm 1 in

L∞(Y), there is xn with T (xn, Vn) > 1− 1
n . Hence, T (xn, ·)→ δy. �

Theorem 3.16. Let X and Y be contractive homogeneous spaces of an
almost connected amenable lcsc group and Φ : L∞(Y) → L∞(X ) a positive,
equivariant, identity preserving, weak* continuous isometry. Then there exists
an equivariant map F : X → Y which induces Φ, i.e., which satisfies Φf =
f ◦ F for every f ∈ L∞(Y).

Proof. Combine Lemma 3.15 with Corollary 3.14. �

Remark 3.17. When Y is a boundary of G, Proposition 3.13 and Lemma
3.15 imply that every positive, equivariant, identity preserving, weak* con-
tinuous contraction Φ : L∞(Y) → L∞(X ) is, in fact, an isometry. Therefore
when Y is a boundary the conclusion of Theorem 3.16 remains in force un-
der the weaker assumption that Φ be a contraction. Note also that in this
case there exists at most one positive, equivariant, identity preserving, weak*
continuous contraction Φ : L∞(Y)→ L∞(X ).

4. Ideals Jµ and µ-boundaries

Before turning to our main topic, the order structure of the ideal space
Jaa(G) = {Jµ ; µ ∈ Pa(G), µ is adapted} of an almost connected amenable
lcsc group G, we wish to mention an interesting fact about the ideals in Jaa(G)
which follows from Propositions 2.6.3 and 2.3.2.

Let H be a closed subgroup of a lcsc group G, and let L1
0(G,H ) denote

the kernel of the canonical mapping of L1(G) onto L1(G/H ). Thus

L1
0(G,H ) = {ϕ ∈ L1(G) ; πϕ = 0} = {ϕ ∈ L1(G) ; ϕ ∗ δH = 0},

where π : G→ G/H is the canonical mapping. Recall that when H is normal
then

(4.1) L1
0(G,H )⊥ = {f ∈ L∞(G) ; gf = f for every g ∈ H}.

Lemma 4.1. Let H be a closed normal subgroup of G, µ ∈ P (G), and Xµ
the µ-boundary. Then L1

0(G,H ) ⊆ Jµ if and only if H stabilizes every point
of Xµ.
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Proof. L1
0(G,H) ⊆ Jµ is equivalent to Hµ = J⊥µ ⊆ L1

0(G,H)⊥. Hence, by
(4.1) we have L1

0(G,H) ⊆ Jµ if and only if every h ∈ Hµ is invariant under the
action of H. Since Hµ ∼= L∞(Xµ) this means that H acts trivially on L∞(Xµ).
As Xµ is a homogeneous space the latter is equivalent to the condition that
H stabilizes every point of Xµ. �

According to Proposition 5.2 in [15], given a compact normal subgroup K
of a lcsc group G and an adapted probability measure µ ∈ Pa(G), there exists
an open subgroup L of K, which is normal in G and such that L1

0(G,L) ⊆ Jµ.
When G is almost connected and amenable a considerably stronger result
holds:

Theorem 4.2. Let G be an almost connected amenable lcsc group, C the
centre of G and K the largest compact normal subgroup. Then L1

0(G,CK ) ⊆
Jµ for every adapted spread out probability measure µ.

Proof. Combine Lemma 4.1 with Propositions 2.3.2 and 2.6.3. �

Remark 4.3. Theorem 4.2 fails without the assumption that G be ame-
nable. It is well known that when µ is a spread out probability measure on
a connected semisimple Lie group with finite centre C, then, in general, the
centre (which is also a compact normal subgroup) does not stabilize points of
the µ-boundary [1, 6].

Lemma 4.4. Let µ and ν be probability measures on a lcsc group G, Xν
the ν-boundary, and ρν the Poisson kernel. Then Jµ ⊆ Jν if and only if
µ ∗ ρν = ρν .

Proof. Let {εn}∞n=1 be a sequence of probability measures in L1(G) weakly
convergent to δe. If Jµ ⊆ Jν then by (2.6.3) and the definition of Jµ, εn ∗ρν−
εn ∗ µ ∗ ρν = 0 for every n. Since the mapping M(G) 3 ϕ→ ϕ ∗ ρν ∈M(Xν)
is weakly continuous, the equality µ ∗ ρν = ρν follows by taking the limit
n→∞.

Conversely, if µ ∗ ρν = ρν then (ϕ − ϕ ∗ µ) ∗ ρν = 0 for every ϕ ∈ L1(G).
Hence, Jµ ⊆ Jν by (2.6.3) and the definition of Jµ. �

Lemma 4.5. Let (X , α) and (Y, β) be σ-finite measure spaces and Φ :
L∞(X )→ L∞(Y) a positive, weak* continuous, identity preserving isometry.
Then the range H of Φ is weak* closed and the inverse Φ−1 : H → L∞(X) is
positive, weak* continuous, and identity preserving.

Proof. That the range of Φ is weak* closed and that Φ−1 is weak* con-
tinuous follows by a routine application of the Krein-Smulian Theorem (see
[4, Theorem 7, Chap. V.5 and Corollary 11, Chap. V.3]). Next, since Φ
preserves identity and complex conjugation, so does Φ−1. Using the fact that
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a real element of an L∞-space is positive if and only if ‖f‖ = ‖2f −‖f‖‖, one
concludes that Φ−1 preserves positivity too. �

Lemma 4.6. Let µ be a spread out probability measure on an almost con-
nected amenable lcsc group G, Xµ the µ-boundary, and ρµ the Poisson kernel.
If X is a homogeneous space of G supporting a contractible probability measure
ν such that ν = µ ∗ ν then X is contractive and there exists an equivariant
map F : Xµ → X such that Fρµ = ν.

Proof. Due to the equality ν = µ ∗ ν, for every bounded Borel function
f : X → C the function (f ∗ ν)(g) =

∫
X f(gx) ν(dx) is µ-harmonic. Now,

for spread out µ the µ-harmonic functions are continuous [1, Proposition I.6,
p.23]. This implies that ν is absolutely continuous: indeed, when α0 is a
finite measure equivalent to the Haar measure then α0 ∗ ν is a quasi-invariant
measure on X ; if (α0 ∗ ν)(A) =

∫
G

(χ
A
∗ ν)(g)α0(dg) = 0 then continuity of

χ
A
∗ ν gives (χ

A
∗ ν)(e) = ν(A) = 0. Applying Proposition 2.2.2 we conclude

that ν is a SAT measure. By Proposition 2.4.1 X is a contractive homogeneous
space.

Next, since ν is SAT, the mapping Φ : L∞(X )→ Hµ given by (Φf) = f ∗ν
is a positive equivariant, weak* continuous, identity preserving isometry. Let
Rµ : L∞(Xµ) → Hµ be the isometry given by (2.6.1). Using Lemma 4.5
we get that Ψ = R−1

µ Φ : L∞(X )→ L∞(Xµ) is a positive, equivariant, weak*
continuous, identity preserving isometry. Then Theorem 3.16 shows that there
exists an equivariant map F : Xµ → X inducing Φ. For f ∈ L∞(X ) we have∫

X
f(gx) ν(dx) = (Φf)(g) = (RµΨf)(g) =

∫
Xµ
f
(
F (gx)

)
ρµ(dx)

=
∫
Xµ
f(gx) (Fρµ)(dx) (a.e.).

Using the fact that the µ-harmonic functions are continuous one easily con-
cludes that ν = Fρµ. �

Corollary 4.7. Let µ be a spread out probability measure on an almost
connected amenable lcsc group and X a boundary of G. Then X supports at
most one probability measure ν such that ν = µ∗ν. If X supports such ν then
X is an equivariant image of the µ-boundary.

Proof. By Proposition 3.13 there is at most one equivariant map F : Xµ →
X . �

Theorem 4.8. Let µ and ν be spread out probability measures on an
almost connected amenable lcsc group G, Xµ the µ-boundary and Xν the ν-
boundary. If Jµ ⊆ Jν then Xµ � Xν .
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Proof. Let ρµ and ρν be the Poisson kernels. By Lemma 4.4, µ ∗ ρν = ρν .
Then Lemma 4.6 yields the desired conclusion. �

Theorem 4.9. Let µ and ν be spread out probability measures on an
almost connected amenable lcsc group G, Xµ the µ-boundary and Xν the ν-
boundary. If Jµ ⊆ Jν and Xµ ≺ Xν then Jµ = Jν and Xµ ∼= Xν .

Proof. By Lemmas 4.4 and 4.6 there exists an equivariant function F :
Xµ → Xν such that Fρµ = ρν . Since Xµ ≺ Xν Theorem 3.5 yields that
Xµ ∼= Xν and that F is a homeomorphism. Thus F−1ρν = ρµ. Since F−1 is
equivariant, it follows that ν ∗ ρµ = ρµ. Then Jν ⊆ Jµ by Lemma 4.4 and,
consequently, Jµ = Jν . �

Theorem 4.10. Let G be an almost connected amenable lcsc group and
F ⊆ Jaa(G) a nonempty family. Then F admits a maximal and a minimal
element.

Proof. For every Jµ ∈ F let XJµ be the corresponding µ-boundary. Then
{XJ}J∈F is a family of boundaries of G (see Proposition 2.6.3). Hence, by
Theorem 3.9, it admits a minimal element XJ∗ and a maximal element XJ∗ .
Theorems 4.8 and 4.9 imply that J∗ is maximal while J∗ is minimal in F . �

Corollary 4.11. If G is an almost connected amenable lcsc group then
every ideal J in Jaa(G) contains an ideal that is minimal in Jaa(G).

Proof. Apply Theorem 4.10 to the family {J ′ ∈ Jaa(G) ; J ′ ⊆ J}. �

Theorem 4.12. If G is an almost connected amenable lcsc group then
every chain in Jaa(G) is finite.

Proof. Let C be a chain in Jaa(G). For every Jµ ∈ C let XJµ be the
corresponding µ-boundary. By Theorem 4.8 the family F = {XJ ; J ∈ C} is
linearly ordered. Hence, by Theorem 3.9 F/∼= is finite. But by Theorem 4.9
distinct members of F give rise to distinct elements of F/∼= . �

Remark 4.13. When X is a maximal boundary of an almost connected
amenable lcsc group G, it can be shown, similarly to [9, Proposition 5.8] that
there exists an adapted µ ∈ Pa(G) such that X is the µ-boundary. It is
clear from Theorems 4.8 and 4.9 that for such µ the ideal Jµ is minimal in
Jaa(G). Although all examples of minimal ideals that we know correspond
to maximal boundaries, it is not clear whether the µ-boundary of a minimal
ideal is necessarily a maximal boundary.

Remark 4.14. Amenability of G implies that L1
0(G) is the largest mem-

ber Jaa(G) [15, Theorem 1.2]. Since a given maximal boundary can serve as
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the µ-boundary for infinitely many measures µ (see [9, Lemma 5.7 and Propo-
sition 5.8]), it is not hard to see that a given member of Jaa(G) (e.g., L1

0(G))
can contain infinitely many minimal ideals and that one can have chains of
length 2. Example 5.10 in [9] can be used to construct chains of length 3. In
general, examples of chains of arbitrary (finite) length can be found in con-
nected solvable Lie groups. We refrain from going into the details here as this
would require a lengthy digression into the theory of the µ-boundaries.

Remark 4.15. Using Propositions 3.6 and 3.8 one can see that Theorems
4.10, 4.12 and Corollary 4.11 remain valid for the ideal space Ja(G) of an
almost connected amenable Lie group. However, this is no longer true when
G is not a Lie group. When G is abelian, then for every µ ∈ P (G), Jµ =
L1

0(G,Hµ) where Hµ is the closed subgroup generated by suppµ. Hence, if
G is infinite, abelian, totally disconnected, and compact, then it is almost
connected, but using a neighbourhood base at e consisting of open subgroups
it is easy to see that there are no minimal elements in Ja(G) and one can
have infinite descending chains of ideals in Ja(G).

Remark 4.16. It is natural to inquire whether or to what extent the
results described in Theorems 4.10, 4.12 and Corollary 4.11 remain true with-
out the assumption that G be amenable. When G is a connected semisimple
Lie group the µ-boundaries of spread out probability measures are, up to
isomorphisms, the homogeneous spaces G/H where H is a closed subgroup
contained in the minimal parabolic subgroup MAN and containing the con-
nected component (MAN)e [8, Corollary 5.8 and below]. When G has finite
centre it is well known that this family of homogeneous spaces is finite mod-
ulo isomorphisms [1, 6]; Theorems 4.10, 4.12 and Corollary 4.11 can then be
established proceeding similarly as in the present work. However, when G
has infinite centre the family of µ-boundaries can be infinite, as, e.g., for the
universal covering of SL(2,R). This particular group admits infinite chains of
µ-boundaries (see Remark 3.11). Nevertheless, a rather lengthy and intricate
proof shows that it is still true that every ideal in Ja(G) contains a minimal
ideal.

Another difficulty in studying nonamenable groups stems from the fact
that the µ-boundary of an adapted spread out probability measure on an
almost connected nonamenable lcsc group need not be a boundary [1, 6], in
contrast to what is described in Propositions 2.6.3. This, in particular, makes
the reduction to the Lie group case more delicate than for amenable groups
(where a “global” reduction is possible due to Propositions 2.3.2 and 2.6.3).

References

[1] R. Azencott, Espaces de Poisson des groupes localement compacts, Lecture Notes in

Math., vol. 148, Springer-Verlag, New York, 1970.



212 WOJCIECH JAWORSKI
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