MINIMAL RELATIVE HILBERT-KUNZ MULTIPLICITY

KEI-ICHI WATANABE AND KEN-ICHI YOSHIDA

Abstract

In this paper we ask the following question: What is the minimal value of the difference $e_{\mathrm{HK}}(I)-e_{\mathrm{HK}}\left(I^{\prime}\right)$ for ideals $I^{\prime} \supseteq I$ with $l_{A}\left(I^{\prime} / I\right)=1$? In order to answer to this question, we define the notion of minimal relative Hilbert-Kunz multiplicity for strongly F-regular rings. We calculate this invariant for quotient singularities and for the coordinate rings of Segre embeddings: $\mathbb{P}^{r-1} \times \mathbb{P}^{s-1} \hookrightarrow \mathbb{P}^{r s-1}$.

Introduction

Throughout this paper, let A be a Noetherian ring containing a field of characteristic $p>0$. The purpose of this paper is to introduce the notion of minimal relative Hilbert-Kunz multiplicity, which is a new invariant of local rings in positive characteristic.

The notion of Hilbert-Kunz multiplicity has been introduced by Kunz [Ku1] in 1969, and has been studied in detail by Monsky [Mo]; see also, e.g., [BC], [BCP], [Co], [HaM], [Se], [WaY1], [WaY2], [WaY3].

Further, Hochster and Huneke [HH2] have pointed out that the tight closure I^{*} of I is the largest ideal containing I having the same Hilbert-Kunz multiplicity as I; see Lemma 1.3 . Thus it seems to be important to understand Hilbert-Kunz multiplicities well. For example, the authors [WaY1] have proved that an unmixed local ring whose Hilbert-Kunz multiplicity is one is regular. Also, they [WaY3] have given a formula for $e_{\mathrm{HK}}(I)$ for any integrally closed ideal I in a two-dimensional F-rational double point using McKay correspondence and the Riemann-Roch formula.

One of the most important conjectures about Hilbert-Kunz multiplicities is that it is always a rational number. Let A be a local ring and I, J be \mathfrak{m}-primary ideals in A. Also, suppose that J is a parameter ideal. Then it is known that $e_{\mathrm{HK}}(J)=e(J)$, the usual multiplicity (and hence $e_{\mathrm{HK}}(J)$ is an

[^0]integer). In order to investigate the value of $e_{\mathrm{HK}}(I)$, we study the difference " $e_{\mathrm{HK}}(J)-e_{\mathrm{HK}}(I)$ ". Then it is natural to ask the following question.

Question. What is the minimal value of the difference $e_{\mathrm{HK}}(I)-e_{\mathrm{HK}}\left(I^{\prime}\right)$ for \mathfrak{m}-primary ideals $I^{\prime} \supseteq I$ with $l_{A}\left(I^{\prime} / I\right)=1$?

To answer to this question, we introduce the notion of minimal relative Hilbert-Kunz multiplicity $m_{\mathrm{HK}}(A)$ as follows:

$$
m_{\mathrm{HK}}(A)=\liminf _{e \rightarrow \infty} \frac{l_{A}\left(A / \mathrm{ann}_{A} z^{p^{e}}\right)}{p^{e d}}
$$

where z is a generator of the socle of the injective hull $E_{A}(A / \mathfrak{m})$. Then we can show that $m_{\mathrm{HK}}(A) \leq e_{\mathrm{HK}}(I)-e_{\mathrm{HK}}\left(I^{\prime}\right)$ for (m-primary) ideals $I \subseteq I^{\prime}$ with $l_{A}\left(I^{\prime} / I\right)=1$. Also, we believe that equality holds for some pair $\left(I, I^{\prime}\right)$. This is true if A is a Gorenstein local ring. Namely, if A is a Gorenstein local ring, then

$$
e_{\mathrm{HK}}(J)-e_{\mathrm{HK}}(J: \mathfrak{m})=m_{\mathrm{HK}}(A)
$$

for any parameter ideal J of A; see Theorem 2.1 for details.
In general, if A is not weakly F-regular, then $m_{\mathrm{HK}}(A)=0$. Thus it suffices to consider weakly F-regular local rings in our context.

In Section 3, we will give a formula for minimal relative Hilbert-Kunz multiplicities of the canonical cover of \mathbb{Q}-Gorenstein F-regular local rings:

Theorem 1 (see Theorem 3.1). Let A be a \mathbb{Q}-Gorenstein strongly F regular local ring of characteristic $p>0$. Also, let $B=A \oplus K_{A} t \oplus K_{A}^{(2)} t^{2} \oplus$ $\cdots \oplus K_{A}^{(r-1)} t^{r-1}$, the canonical cover of A, where $r=\operatorname{ord}\left(\operatorname{cl}\left(K_{A}\right)\right), K_{A}^{(r)}=f A$ and $\mathrm{ft}^{r}=1$. Also, suppose that $(r, p)=1$. Then we have

$$
m_{\mathrm{HK}}(B)=r \cdot m_{\mathrm{HK}}(A)
$$

In Section 4, as an application of Theorem 3.1, we will give a formula for minimal relative Hilbert-Kunz multiplicities of quotient singularities.

Theorem 2 (see Theorem 4.2). Let k be a field of characteristic $p>0$, and let $A=k\left[x_{1}, \ldots, x_{d}\right]^{G}$ be the invariant subring by a finite subgroup G of $G L(d, k)$ with $(p,|G|)=1$. Also, assume that G contains no pseudoreflections. Then $m_{\mathrm{HK}}(A)=1 /|G|$.

In Section 5, we will give a formula for minimal relative Hilbert-Kunz multiplicities of normal toric rings and Segre products.

Theorem 3 (see Theorem 5.8). Let $A=k\left[x_{1}, \ldots, x_{r}\right] \# k\left[y_{1}, \ldots, y_{s}\right]$, where $2 \leq r \leq s$, and put $d=r+s-1$. Then

$$
m_{\mathrm{HK}}(A)=\frac{r!}{d!} S(d, r)+\frac{1}{d!} \sum_{k=1}^{r-1} \sum_{j=1}^{r-k}\binom{r}{k+j}\binom{s}{j}(-1)^{r+k} k^{d},
$$

where $S(n, k)$ denotes the Stirling number of the second kind (see Section 5).
In particular,

$$
e_{\mathrm{HK}}(A)+m_{\mathrm{HK}}(A)=\frac{r!\cdot S(d, r)+s!\cdot S(d, s)}{d!}
$$

Huneke and Leuschke [HuL] (see also [AL]) defined the notion of " F signature" as follows: Let (A, \mathfrak{m}, k) be an F-finite reduced local ring of characteristic $p>0$. Put $\alpha(A)=\log _{p}\left[k: k^{p}\right]$. For each $q=p^{e}$, decompose $A^{1 / q}$ as a direct sum of finitely generated A-modules $A^{a_{q}} \oplus M_{q}$, where M_{q} has no nonzero free direct summands. The F-signature $s(A)$ of A is

$$
s(A)=\lim _{q \rightarrow \infty} \frac{a_{q}}{q^{d+\alpha(A)}}
$$

provided the limit exists.
The referee pointed out that Yao [Ya] recently proved that the F-signature coincides with our minimal relative Hilbert-Kunz multiplicity.

Acknowledgement. The authors wish to thank the referee for many valuable comments.

1. Minimal relative Hilbert-Kunz multiplicity

In this section, we define the notion of minimal relative Hilbert-Kunz multiplicity and give its fundamental properties. In the following, we let (A, \mathfrak{m}, k) be a Noetherian excellent reduced local ring containing an infinite field of characteristic $p>0$, unless specified. We let E_{A} denote the injective hull of the residue field $k=A / \mathfrak{m}$, and $H_{\mathfrak{m}}^{i}(A)$ the i th local cohomology module of A with support in $\{\mathfrak{m}\}$. We always suppose that A is a homomorphic image of a Gorenstein local ring, and we let K_{A} denote a canonical module of A.
1.1. Peskine-Szpiro functor. First, let us recall the definition of the Peskine-Szpiro functor. Let ${ }^{e} A$ denote the ring A viewed as an A-algebra via $F^{e}: A \rightarrow A\left(a \mapsto a^{p^{e}}\right)$. Then $\mathbb{F}_{A}^{e}(-)={ }^{e} A \otimes_{A}-$ is a covariant functor from the category of A-modules to itself. Since ${ }^{e} A$ is isomorphic to A as rings (via F^{e}), we can regard \mathbb{F}_{A}^{e} as a covariant functor from A-modules to themselves. We call this functor \mathbb{F}_{A}^{e} the Peskine-Szpiro functor of A. The A-module structure on $\mathbb{F}_{A}^{e}(M)$ is such that $a^{\prime}(a \otimes m)=a^{\prime} a \otimes m$. On the other hand, $a^{\prime} \otimes a m=a^{\prime} a^{q} \otimes m$; see, e.g., $[\mathrm{PS}],[\mathrm{Hu}]$. Suppose that an A-module M has a finite presentation $A^{m} \xrightarrow{\phi} A^{n} \rightarrow M \rightarrow 0$, where the map ϕ is defined by a matrix $\left(a_{i j}\right)$. Then $\mathbb{F}_{A}^{e}(M)$ has a finite presentation $A^{m} \xrightarrow{\phi_{q}} A^{n} \rightarrow \mathbb{F}_{A}^{e}(M) \rightarrow 0$, where the map ϕ_{q} is defined by the matrix $\left(a_{i j}^{q}\right)$. For example, $\mathbb{F}_{A}^{e}(A / I)=A / I^{\left[p^{e}\right]}$, where $I^{\left[p^{e}\right]}$ is the ideal generated by $\left\{a^{p^{e}}: a \in I\right\}$.

Also, one can identify the Frobenius map $F^{e}: A \rightarrow{ }^{e} A$ with the embedding $A \hookrightarrow A^{1 / q}\left(q=p^{e}\right)$.
1.2. Tight closure, Hilbert-Kunz multiplicity. Using the PeskineSzpiro functor, we define the notion of tight closure.

Definition 1.1 ([HH1], [HH2], [Hu]).
(1) Let M be an A-module, and let N be an A-submodule of M. Put $N_{M}^{\left[p^{e}\right]}=\operatorname{Ker}\left(\mathbb{F}_{A}^{e}(M) \rightarrow \mathbb{F}_{A}^{e}(M / N)\right)$, and denote by $x^{q}\left(q=p^{e}\right)$ the image of x under the Frobenius map $M \rightarrow \mathbb{F}_{A}^{e}(M)(x \mapsto 1 \otimes x)$. Then the tight closure N_{M}^{*} of N (in M) is the submodule generated by elements for which there exists an element $c \in A^{0}:=A \backslash \bigcup_{P \in \operatorname{Min}(A)} P$ such that for all sufficiently large $q=p^{e}, c x^{q} \in N_{M}^{[q]}$. By definition, we put $I^{*}=I_{A}^{*}$. Also, we say that N is tightly closed (in M) if $N_{M}^{*}=N$.
(2) A local ring A in which every ideal is tightly closed is called weakly F-regular. A ring whose localization is always weakly F-regular is called F-regular.
(3) Suppose that A is F-finite, that is, ${ }^{1} A$ is finitely generated as an A module. A is said to be strongly F-regular if for any element $c \in A^{0}$ there exists $q=p^{e}$ such that the A-linear map $A \rightarrow A^{1 / q}$ defined by $a \rightarrow c^{1 / q} a$ is split injective.
(4) A Noetherian ring R is F-regular (resp. weakly F-regular, strongly F-regular) if and only if so is $R_{\mathfrak{m}}$ for every maximal ideal \mathfrak{m}.

Remark 1. Strongly F-regular rings are F-regular. In general, it is not known whether the converse is true, but it is known that F-finite \mathbb{Q} Gorenstein weakly F-regular rings are always strongly F-regular; see [AM], [Mc], [Wi].

The notion of Hilbert-Kunz multiplicity plays the central role in this paper.
Definition 1.2 ([Ku2], [Mo]). Let I be an \mathfrak{m}-primary ideal in A and M a finite A-module. Then we define the Hilbert-Kunz multiplicity $e_{\mathrm{HK}}(I, M)$ of I with respect to M as

$$
e_{\mathrm{HK}}(I, M):=\lim _{e \rightarrow \infty} \frac{l_{A}\left(M / I^{\left[p^{e}\right]} M\right)}{p^{d e}}
$$

By definition, we put $e_{\mathrm{HK}}(I):=e_{\mathrm{HK}}(I, A)$ and $e_{\mathrm{HK}}(A):=e_{\mathrm{HK}}(\mathfrak{m})$.
Also, the multiplicity $e(I)$ of I is defined as

$$
e(I)=\lim _{n \rightarrow \infty} \frac{d!\cdot l_{A}\left(A / I^{n}\right)}{n^{d}}
$$

Let $I \subseteq I^{\prime}$ be \mathfrak{m}-primary ideals in A. Then it is known that I^{\prime} and I have the same integral closure (i.e., $\overline{I^{\prime}}=\bar{I}$) if and only if $e(I)=e\left(I^{\prime}\right)$. A similar result holds for tight closures and the Hilbert-Kunz multiplicities.

Lemma 1.3 (cf. [HH2, Theorem 8.17]). Let $I \subseteq I^{\prime}$ be \mathfrak{m}-primary ideals in A.
(1) If $I^{\prime} \subseteq I^{*}$, then $e_{\mathrm{HK}}(I)=e_{\mathrm{HK}}\left(I^{\prime}\right)$.
(2) Assume further that A is equidimensional. Then the converse of (1) is also true.
1.3. Minimal relative Hilbert-Kunz multiplicity. Our work is motivated by the following question.

Question 1.4. What is the minimal value of the difference $e_{\mathrm{HK}}(I)-$ $e_{\mathrm{HK}}\left(I^{\prime}\right)$ for \mathfrak{m}-primary ideals $I^{\prime} \supseteq I$ with $l_{A}\left(I^{\prime} / I\right)=1$?

In order to represent the "difference", we define the following notion.
Definition 1.5 (Relative Hilbert-Kunz multiplicity). Let L be an A module, and let $N \subseteq M$ be finite A-submodules of L with $l_{A}(M / N)<\infty$. Then we set

$$
e_{\mathrm{HK}}(N, M ; L):=\liminf _{e \rightarrow \infty} \frac{l_{A}\left(M_{L}^{\left[p^{e}\right]} / N_{L}^{\left[p^{e}\right]}\right)}{p^{d e}}
$$

We call $e_{\mathrm{HK}}(N, M ; L)$ the relative Hilbert-Kunz multiplicity with respect to $N \subseteq M$ of L. In particular, $e_{\mathrm{HK}}\left(I, I^{\prime} ; A\right)=e_{\mathrm{HK}}(I)-e_{\mathrm{HK}}\left(I^{\prime}\right)$ for \mathfrak{m}-primary ideals $I \subseteq I^{\prime}$ in A.

Using the notion of relative Hilbert-Kunz multiplicity, we introduce the following two notions.

Definition 1.6 (Minimal relative Hilbert-Kunz multiplicity). Let z be a generator of the socle $\operatorname{Soc}\left(E_{A}\right):=\left\{x \in E_{A} \mid \mathfrak{m} x=0\right\}$ of E_{A}. Then we put

$$
m_{\mathrm{HK}}(A):=e_{\mathrm{HK}}\left(0, \operatorname{Soc}\left(E_{A}\right) ; E_{A}\right)=\liminf _{e \rightarrow \infty} \frac{l_{A}\left(A / \operatorname{ann}_{A}\left(z^{p^{e}}\right)\right)}{p^{e d}}
$$

where $z^{p^{e}}=\mathbb{F}_{A}^{e}(z) \in \mathbb{F}_{A}^{e}\left(E_{A}\right)$. We call $m_{\mathrm{HK}}(A)$ the minimal relative HilbertKunz multiplicity of A. Also, we put

$$
\widetilde{m}_{\mathrm{HK}}(A):=\inf \left\{e_{\mathrm{HK}}\left(I, I^{\prime} ; A\right) \mid I \subseteq I^{\prime} \subseteq A \text { such that } l_{A}\left(I^{\prime} / I\right)=1\right\}
$$

We call $\widetilde{m}_{\mathrm{HK}}(A)$ the minimal relative Hilbert-Kunz multiplicity for cyclic modules of A.

The following proposition justifies our definition of minimal relative HilbertKunz multiplicity.

Proposition 1.7. $m_{\mathrm{HK}}(A)$ is the minimal number among all relative Hilbert-Kunz multiplicities of all A-modules. That is,

$$
m_{\mathrm{HK}}(A)=\inf \left\{\begin{array}{l|l}
e_{\mathrm{HK}}(N, M ; L) & \begin{array}{l}
L: A \text {-module } \\
N \subseteq M: \text { finite } A \text {-submodules of } L \\
\text { with } l_{A}(M / N)=1
\end{array}
\end{array}\right\}
$$

In particular, $m_{\mathrm{HK}}(A) \leq \widetilde{m}_{\mathrm{HK}}(A)$.
Proof. Since $E_{A} \cong E_{\hat{A}}, m_{\mathrm{HK}}(A)=m_{\mathrm{HK}}(\hat{A})$. Also, since $e_{\mathrm{HK}}\left(\widehat{N}, \widehat{M} ; L \otimes_{A}\right.$ $\widehat{A})=e_{\mathrm{HK}}(N, M ; L)$, we may assume A is complete. Let L be an A-module and let $N \subseteq M$ be A-submodules of L with $l_{A}(M / N)=1$.

Let z be a generator of the socle of E_{A} and take an element $x \in M \backslash N$ such that $M=N+A x$ with $\mathfrak{m} x \subseteq N$. By Matlis duality, one can take a nonzero homomorphism $\phi \in \operatorname{Hom}_{A}\left(M, E_{A}\right)$ such that $\phi(N)=0$ and $\phi(M) \neq 0$. Then we may assume $\phi(x)=z$, since $\phi(x)$ is a generator of $\operatorname{Soc}\left(E_{A}\right)$.

It suffices to show that $\operatorname{ann}_{A}\left(x^{q}+N^{[q]}\right) \subset \operatorname{ann}_{A}\left(z^{q}\right)$. But this is clear, since if $a x^{q}=0$, then $a z^{q}=a \phi\left(x^{q}\right)=\phi\left(a x^{q}\right)=0$.

Now let (A, \mathfrak{m}, k) be a d-dimensional Cohen-Macaulay local ring of characteristic $p>0$. Then the highest local cohomology $H_{\mathrm{m}}^{d}(A)$ may be identified with $\underset{\longrightarrow}{\lim } A /\left(a_{1}^{n}, \ldots, a_{d}^{n}\right) A$, where $a_{1}, a_{2}, \ldots, a_{d}$ is a system of parameters for A and the maps in the direct limit system are given by multiplication by $a=\prod_{i=1}^{d} a_{i}$. Any element $\eta \in H_{\mathfrak{m}}^{d}(A)$ can be represented as the equivalence class $\left[x+\left(a_{1}^{n}, \ldots, a_{d}^{n}\right)\right]$ for some $x \in A$ and some integer $n \geq 1$.

Considering the Frobenius action to $H_{\mathfrak{m}}^{d}(A)$, we have

$$
\mathbb{F}_{A}^{e}\left(H_{\mathfrak{m}}^{d}(A)\right) \cong \underset{\longrightarrow}{\lim } A /\left(a_{1}^{n q}, \ldots, a_{d}^{n q}\right)=H_{\mathfrak{m}}^{d}(A),
$$

where $q=p^{e}$. Then $\eta^{q}=\left[x^{q}+\left(a_{1}^{n q}, \ldots, a_{d}^{n q}\right)\right] \in H_{\mathfrak{m}}^{d}(A)$ for $\eta=[x+$ $\left.\left(a_{1}^{n}, \ldots, a_{d}^{n}\right)\right] \in H_{\mathfrak{m}}^{d}(A)$; see $[\mathrm{Sm}]$ for more details.

The following properties of $m_{\text {HK }}$ follows from [WaY1, Theorem 1.5].
Proposition 1.8. The following statements hold.
(1) $0 \leq m_{\mathrm{HK}}(A) \leq \widetilde{m}_{\mathrm{HK}}(A) \leq 1$.
(2) $\widetilde{m}_{\mathrm{HK}}(A)=1$ (resp. $m_{\mathrm{HK}}(A)=1$) if and only if A is regular.
(3) If $\widetilde{m}_{\mathrm{HK}}(A)>0$, then A is weakly F-regular.
(4) Suppose that A is F-finite. If $m_{\mathrm{HK}}(A)>0$, then A is strongly F regular.

Proof. If A is not weakly F-regular, there exists an \mathfrak{m}-primary ideal I such that $I \neq I^{*}$. Taking an ideal I^{\prime} with $I \subseteq I^{\prime} \subseteq I^{*}$ and $l_{A}\left(I^{\prime} / I\right)=1$, we have $e_{\mathrm{HK}}(I)=e_{\mathrm{HK}}\left(I^{\prime}\right)$ by Lemma $1.3(1)$. Hence $\widetilde{m}_{\mathrm{HK}}(A)=0$. Also, if A is F-finite and not strongly F-regular, then $m_{\mathrm{HK}}(A)=0$.

If A is regular, then $e_{\mathrm{HK}}(I)=l_{A}(A / I)$ for any \mathfrak{m}-primary ideal of A. Hence $m_{\mathrm{HK}}(A)=\widetilde{m}_{\mathrm{HK}}(A)=1$. Conversely, if $\widetilde{m}_{\mathrm{HK}}(A) \geq 1$, then A is weakly F regular and thus is Cohen-Macaulay (cf. [HH3]). Take a parameter ideal J of A. Then $e_{\mathrm{HK}}(J)=e(J)=l_{A}(A / J)$. By the assumption that $\widetilde{m}_{\mathrm{HK}}(A) \geq 1$, we get

$$
e_{\mathrm{HK}}(\mathfrak{m}) \leq e_{\mathrm{HK}}(J)-l_{A}(\mathfrak{m} / J)=l_{A}(A / J)-l_{A}(\mathfrak{m} / J)=1
$$

Hence A is regular by [WaY1, Theorem 1.5].

In Section 3, we will give an affirmative answer to the following question in case of \mathbb{Q}-Gorenstein F-regular local rings.

Question 1.9. Is the converse of Proposition 1.8(3) true?
Remark 2. Aberbach and Leuschke [AL] proved that an F-finite local ring A is strongly F-regular if and only if its F-signature $s(A)$ (which is equal to $m_{\mathrm{HK}}(A)$ by Yao's result) is positive provided $s(A)$ exists.

The following question is related to the localization problem of F-regularity.
Question 1.10. When does $\widetilde{m}_{\mathrm{HK}}(A)=m_{\mathrm{HK}}(A)$ hold?
We expect that this always holds. We will give a proof for Gorenstein local rings in the next section. See also [Ya] for a stronger result.

2. Gorenstein local rings

In this section, we prove that if (A, \mathfrak{m}) is a Gorenstein local ring, then $e_{\mathrm{HK}}(J)-e_{\mathrm{HK}}(J: \mathfrak{m})$ is independent of the choice of parameter ideal J of A. In fact, this invariant is equal to $m_{\mathrm{HK}}(A)$, defined in the previous section.

In the following, let (A, \mathfrak{m}, k) be an excellent reduced local ring containing an infinite field of characteristic $p>0$, unless specified.

Theorem 2.1. Suppose that A is Gorenstein. Then for any \mathfrak{m}-primary ideal J of A such that $\operatorname{pd}_{A} A / J<\infty$ and A / J is Gorenstein, we have

$$
e_{\mathrm{HK}}(J)-e_{\mathrm{HK}}(J: \mathfrak{m})=m_{\mathrm{HK}}(A) .
$$

In particular, $\widetilde{m}_{\mathrm{HK}}(A)=m_{\mathrm{HK}}(A)$.
Proof. First, we consider the case of parameter ideals. Put $J=\left(a_{1}, \ldots, a_{d}\right)$. Since A is Gorenstein, $E_{A} \cong H_{\mathfrak{m}}^{d}(A)$. The generator z of $\operatorname{Soc}\left(E_{A}\right)$ can be written as $z=[b+J]$, where b is a generator of $\operatorname{Soc}(A / J)$. For any element $c \in A$ and for all $q=p^{e}$,

$$
c z^{q}=c F_{A}^{e}([b+J])=\left[c b^{q}+J^{[q]}\right]=0 \in H_{\mathfrak{m}}^{d}(A)
$$

if and only if there exists an integer $n \geq 1$ such that

$$
c b^{q} \in\left(a_{1}^{n q}, \ldots, a_{d}^{n q}\right):\left(a_{1}^{n-1} \cdots a_{d}^{n-1}\right)^{q}=J^{[q]}
$$

It follows that $\operatorname{ann}_{A} z^{q}=J^{[q]}: b^{q}$. Hence we get

$$
\begin{aligned}
m_{\mathrm{HK}}(A) & =\lim _{e \rightarrow \infty} \frac{l_{A}\left(A / J^{[q]}: b^{q}\right)}{q^{d}}=\lim _{e \rightarrow \infty} \frac{l_{A}\left((J: \mathfrak{m})^{[q]} / J^{[q]}\right)}{q^{d}} \\
& =e_{\mathrm{HK}}(J)-e_{\mathrm{HK}}(J: \mathfrak{m}),
\end{aligned}
$$

as required.

Next we consider the general case. Let J be an \mathfrak{m}-primary ideal such that $\operatorname{pd}_{A} A / J<\infty$ and A / J is Gorenstein. Take a parameter ideal \mathfrak{q} which is contained in J. Then it is enough to show the following claim:

CLAim. $\quad e_{\mathrm{HK}}(J)-e_{\mathrm{HK}}(J: \mathfrak{m})=e_{\mathrm{HK}}(\mathfrak{q})-e_{\mathrm{HK}}(\mathfrak{q}: \mathfrak{m})$.
As $\mathfrak{q} \subseteq J$, there exists a natural surjective $\operatorname{map} A / \mathfrak{q} \rightarrow A / J$. Also, since both A / \mathfrak{q} and A / J are Artinian Gorenstein local rings, we have the following commutative diagram:

where the horizontal sequences are minimal free resolutions of A / \mathfrak{q} and A / J, respectively. In particular, the map $F_{d}^{\prime} \rightarrow F_{d}$ is given by the multiplication of an element (say δ). Then we have $J=\mathfrak{q}: \delta$. If we apply the Peskine-Szpiro functor to the above diagram, then we also get $J^{[q]}=\mathfrak{q}^{[q]}: \delta^{q}$ for all $q=p^{e}$.

Since $l_{A}(J: \mathfrak{m} / J)=1$, there exists an element $a \in J: \mathfrak{m} \backslash J$ such that $J: \mathfrak{m}=J+a A$. Then one can easily see that $\mathfrak{m} \delta a \subseteq \mathfrak{q}$ and $\delta a \notin \mathfrak{q}$; thus $\mathfrak{q}: \mathfrak{m}=\mathfrak{q}+\delta a A$. Then, since $J^{[q]}: a^{q}=\left(\mathfrak{q}^{[q]}: \delta^{q}\right): a^{q}=\mathfrak{q}^{[q]}:(\delta a)^{q}$, we get

$$
\begin{aligned}
l_{A}\left((J: \mathfrak{m})^{[q]} / J^{[q]}\right) & =l_{A}\left(A /\left(J^{[q]}: a^{q}\right)\right)=l_{A}\left(A /\left(\mathfrak{q}^{[q]}:(\delta a)^{q}\right)\right) \\
& =l_{A}\left((\mathfrak{q}: \mathfrak{m})^{[q]} / \mathfrak{q}^{[q]}\right)
\end{aligned}
$$

for all $q=p^{e}$. The required assertion easily follows from this.
By virtue of Theorem 2.1, we can prove that the converse of Proposition $1.8(3)$ is also true for Gorenstein local rings.

Corollary 2.2. Let $e(A)$ denote the usual multiplicity of A. If A is weakly F-regular and Gorenstein, then $\widetilde{m}_{\mathrm{HK}}(A)=m_{\mathrm{HK}}(A)>0$. If, in addition, $e(A) \geq 2$, then

$$
m_{\mathrm{HK}}(A) \leq \frac{e(A)-e_{\mathrm{HK}}(A)}{e(A)-1}
$$

Proof. Suppose that A is weakly F-regular. Let J be any parameter ideal of A. Then, since $J: \mathfrak{m} \nsubseteq J=J^{*}$, we have $e_{\mathrm{HK}}(J) \neq e_{\mathrm{HK}}(J: \mathfrak{m})$ by Lemma $1.3(2)$. Hence we have $m_{\mathrm{HK}}(A)=e_{\mathrm{HK}}(J)-e_{\mathrm{HK}}(J: \mathfrak{m})>0$ by Theorem 2.1.

To see the last inequality, taking a minimal reduction J of \mathfrak{m}, we have

$$
e_{\mathrm{HK}}(J)-e_{\mathrm{HK}}(\mathfrak{m}) \geq l_{A}(\mathfrak{m} / J) \cdot m_{\mathrm{HK}}(A)
$$

This yields the required inequality, since $e_{\mathrm{HK}}(J)=e(J)=e(A)$.

Remark 3. In [HuL], Huneke and Leuschke independently proved a result similar to Corollary 2.2 with respect to F-signature. Also, Yao [Ya] extended this result to F-finite local rings A such that A_{P} is Gorenstein for every $P \in \operatorname{Spec} A \backslash\{\mathfrak{m}\}$.

Example 2.3. Assume that A is a hypersurface local ring of multiplicity 2. Then we have $m_{\mathrm{HK}}(A)=2-e_{\mathrm{HK}}(A)$.

Proof. Let J be a minimal reduction of \mathfrak{m}. Since $l_{A}(A / J)=2$ and J : $\mathfrak{m}=\mathfrak{m}$, we have $m_{\mathrm{HK}}(A)=e_{\mathrm{HK}}(J)-e_{\mathrm{HK}}(J: \mathfrak{m})=e(J)-e_{\mathrm{HK}}(\mathfrak{m})=$ $2-e_{\mathrm{HK}}(A)$.

Let A be a two-dimensional Gorenstein F-regular local ring which is not regular. Then $e(A)=2$, since A has minimal multiplicity. Moreover, suppose that k is an algebraically closed field. Then it is known that the \mathfrak{m}-adic completion \widehat{A} of A is isomorphic to the completion of the invariant subring by a finite subgroup $G \subseteq S L(2, k)$ which acts on a polynomial ring $k[x, y]$. Furthermore, we have $e_{\mathrm{HK}}(A)=2-1 /|G|$; see [WaY1, Theorem 5.1]. Hence $m_{\mathrm{HK}}(A)=1 /|G|$ by Example 2.3. This result will be generalized in Section 4.

By the above observation, we have an inequality $m_{\mathrm{HK}}(A) \leq \frac{1}{2}$ for hypersurface local rings with $\operatorname{dim} A=e(A)=2$. We can extend this result to hypersurface local rings of higher dimension in the following form.

Proposition 2.4. Suppose that A is a hypersurface with $e(A)=\operatorname{dim} A=$ $d \geq 1$. Then

$$
m_{\mathrm{HK}}(A) \leq \frac{1}{2^{d-1} \cdot(d-1)!}
$$

Proof. By Proposition $1.8(3)$ we may assume that A is a complete F-regular local domain. Let J be a minimal reduction of \mathfrak{m}. Take an element $x \in \mathfrak{m}$ such that $\mathfrak{m}=x A+J$. Then, since x^{d-1} is a generator of $\operatorname{Soc}(A / J)$, we have

$$
m_{\mathrm{HK}}(A)=\lim _{q \rightarrow \infty} \frac{l_{A}\left(A x^{(d-1) q}+J^{[q]} / J^{[q]}\right)}{q^{d}}
$$

by Theorem 2.1. For any $q=p^{e}$, we have the following claim.
CLAIM. $\quad l_{A}\left(A x^{(d-1) q}+J^{[q]} / J^{[q]}\right) \leq 2 \cdot l_{A}\left(A / \mathfrak{m}^{\left\lfloor\frac{q+1}{2}\right\rfloor}\right)$.
To prove the claim, we put $B=A / J^{[q]}, y=x^{(d-1) q}$ and $\mathfrak{a}=\mathfrak{m}^{\left\lfloor\frac{q+1}{2}\right\rfloor}$. Then, since $y \mathfrak{a}^{2} \subseteq x^{(d-1) q} \mathfrak{m}^{q} \subseteq \mathfrak{m}^{d q} \subseteq J^{[q]}$, we have $y \mathfrak{a} B \subseteq 0: \mathfrak{a} B=K_{B / \mathfrak{a} B}$. By Matlis duality, we get

$$
l_{A}(y B) \leq l_{A}(y B / y \mathfrak{a} B)+l_{A}(y \mathfrak{a} B) \leq 2 \cdot l_{B}(B / \mathfrak{a} B) \leq 2 \cdot l_{A}(A / \mathfrak{a})
$$

as required. Since $l_{A}\left(A / \mathfrak{m}^{n}\right)=\frac{e(A)}{d!} n^{d}+O\left(n^{d-1}\right)$ for all large enough n, the assertion easily follows from the claim.

Discussion 2.5. Let (A, \mathfrak{m}) be a three-dimensional F-regular hypersurface local ring. Then $e_{\mathrm{HK}}(A) \geq \frac{2}{3} e(A)$ by the following formula (see [BC], [BCP]):
$e_{\mathrm{HK}}(A) \geq \frac{e(A)}{\pi} \int_{-\infty}^{\infty}\left(\frac{\sin \theta}{\theta}\right)^{d+1} d \theta=\frac{e(A)}{2^{d} d!} \sum_{i=0}^{\left\lfloor\frac{d}{2}\right\rfloor}(-1)^{i}(d+1-2 i)^{d}\binom{d+1}{i}$.
In particular, if furthermore $e(A)=3$, then $e_{\mathrm{HK}}(A) \geq \frac{2}{3} \cdot 3=2$. Thus $m_{\mathrm{HK}}(A) \leq \frac{3-2}{3-1}=\frac{1}{2}$ by Corollary 2.2. On the other hand, Proposition 2.4 implies that $m_{\mathrm{HK}}(A) \leq \frac{1}{8}$.

Question 2.6. Let d be an integer with $d \geq 2$, and let

$$
A=k\left[\left[x_{0}, x_{1}, \ldots, x_{d}\right]\right] /\left(x_{0}^{d}+x_{1}^{d}+\cdots+x_{d}^{d}\right)
$$

where k is a field of characteristic $p>0$. Does $m_{\mathrm{HK}}(A)=1 /\left(2^{d-1}(d-1)\right.$! $)$ hold if $p>d$?

3. Canonical covers

In the previous section, we have shown how to compute $m_{\mathrm{HK}}(A)$ in the case of Gorenstein local rings. In this section, we study the minimal HilbertKunz multiplicity in the case of \mathbb{Q}-Gorenstein F-regular local rings using the canonical cover.

Let us recall the notion of canonical cover. Let A be a normal local ring and let I be a divisorial ideal (i.e., an ideal of pure height one) of A. Also, let $\mathrm{Cl}(A)$ denote the divisor class group of A. Suppose that $\operatorname{cl}(I)$ is a torsion element in $\mathrm{Cl}(A)$, that is, $I^{(r)}:=\bigcap_{P \in \operatorname{Ass}_{A}(A / I)} I^{r} A_{P} \cap A$ is a principal ideal for some integer $r \geq 1$. Putting $r=\operatorname{ord}(\operatorname{cl}(I))$, one can write as $I^{(r)}=f A$ for some element $f \in A$. Then a \mathbb{Z}_{r}-graded A-algebra

$$
B(I, r, f):=A \oplus I \oplus I^{(2)} \oplus \cdots \oplus I^{(r-1)}=\sum_{i=0}^{r-1} I^{(i)} t^{i}, \quad \text { where } t^{r} f=1
$$

is called the r-cyclic cover of A with respect to I. Also, suppose that r is relatively prime to $p=\operatorname{char}(A)>0$. Then $B(I, r, f)$ is a local ring with the unique maximal ideal $\mathfrak{n}:=\mathfrak{m} \oplus I \oplus \cdots \oplus I^{(r-1)}$, and the natural inclusion $A \hookrightarrow B(I, r, f)$ is étale in codimension one; thus $B(I, r, f)$ is also normal.

We further assume that A admits a canonical module K_{A}. Note that one can regard K_{A} as an ideal of pure height one. The ring A is called \mathbb{Q} Gorenstein if $\operatorname{cl}\left(K_{A}\right)$ is a torsion element in $\mathrm{Cl}(A)$. Put $r:=\operatorname{ord}\left(\operatorname{cl}\left(K_{A}\right)\right)<\infty$. Then the r-cyclic cover with respect to K_{A}

$$
B:=A \oplus K_{A} \oplus K_{A}^{(2)} \oplus \cdots \oplus K_{A}^{(r-1)}
$$

is called the canonical cover of A.

Using the canonical cover, we can reduce the \mathbb{Q}-Gorenstein case to the Gorenstein case. The main result of this section is the following.

Theorem 3.1. Let (A, \mathfrak{m}, k) be a \mathbb{Q}-Gorenstein F-regular local ring of characteristic $p>0$ and let $B=\oplus_{i=0}^{r-1} K_{A}^{(i)} t^{i}$ be the canonical cover of A, where r is the order of $\operatorname{cl}\left(K_{A}\right)$ in $\mathrm{Cl}(A)$ and $t^{r} f=1$. Also, suppose $(r, p)=1$. Then we have

$$
m_{\mathrm{HK}}(B)=r \cdot m_{\mathrm{HK}}(A)
$$

The following corollary gives a partial answer to Question 1.9.
Corollary 3.2. Let A be a \mathbb{Q}-Gorenstein F-regular local ring of characteristic $p>0$ such that $\left(\operatorname{ord}\left(\operatorname{cl}\left(K_{A}\right)\right), p\right)=1$. Then $m_{\mathrm{HK}}(A)>0$.

To prove Theorem 3.1, let us recall some properties of canonical covers.
Lemma 3.3. Let (A, \mathfrak{m}, k) be a Cohen-Macaulay normal local ring, and suppose that A is \mathbb{Q}-Gorenstein. Let $B=\oplus_{i=0}^{r-1} K_{A}^{(i)} t^{i}$ be the canonical cover of A, where $K_{A}^{(r)}=f A$ and $t^{r} f=1_{A}$. Then the following statements hold.
(1) B is quasi-Gorenstein, that is, $B \cong K_{B}$ as B-modules. In particular, B is Gorenstein if it is Cohen-Macaulay.
(2) If $(r, p)=1$, then A is strongly F-regular if and only if so is B.

If we further assume that B is Cohen-Macaulay, then we also have:
(3) The injective hull $E_{B}:=E_{B}(B / \mathfrak{n})$ of B / \mathfrak{n} is given as follows:

$$
E_{B}=\bigoplus_{i=0}^{r-1} H_{\mathfrak{m}}^{d}\left(K_{A}^{(i)}\right) t^{i}
$$

(4) $\operatorname{Soc}_{B}\left(E_{B}\right)=\operatorname{Hom}_{B}\left(B / \mathfrak{n}, E_{B}\right)$ is generated by zt, where z is a generator of the socle of $E_{A} \cong H_{\mathfrak{m}}^{d}\left(K_{A}\right)$.

Proof. Assertion (1) follows from [TW, Sect.3] and assertion (2) follows from [Wa3, Theorem 2.7].

In the following, assume that B is Cohen-Macaulay. Then, since B is Gorenstein by (1) and $\mathfrak{m} B$ is \mathfrak{n}-primary, we have

$$
E_{B} \cong H_{\mathfrak{n}}^{d}(B) \cong H_{\mathfrak{m}}^{d}(B) \cong \bigoplus_{i=0}^{r-1} H_{\mathfrak{m}}^{d}\left(K_{A}^{(i)}\right) t^{i}
$$

Thus we get assertion (3). To see (4), it is enough to show that $z t \in \operatorname{Soc}_{B}\left(E_{B}\right)$, since $\operatorname{dim}_{k} \operatorname{Soc}_{B}\left(E_{B}\right)=1$. Namely, we must show that $a z=0$ in $H_{\mathfrak{m}}^{d}\left(K_{A}^{(i+1)}\right)$ for all i with $1 \leq i \leq r-1$ and for all $a \in K_{A}^{(i)}$.

Fix an integer i with $1 \leq i \leq r-1$ and suppose that $0 \neq a \in K_{A}^{(i)}$. Applying the local cohomology functor to the short exact sequence

$$
0 \rightarrow K_{A} \xrightarrow{a} K_{A}^{(i+1)} \rightarrow K_{A}^{(i+1)} / a K_{A} \rightarrow 0
$$

implies that

$$
0=H_{\mathfrak{m}}^{d-1}\left(K_{A}^{(i+1)}\right) \rightarrow H_{\mathfrak{m}}^{d-1}\left(K_{A}^{(i+1)} / a K_{A}\right) \rightarrow H_{\mathfrak{m}}^{d}\left(K_{A}\right) \xrightarrow{a} H_{\mathfrak{m}}^{d}\left(K_{A}^{(i+1)}\right)
$$

where the first vanishing follows from the fact that $K_{A}^{(i+1)}$ is a direct summand of a maximal Cohen-Macaulay A-module B. To get the lemma, it is enough to show the following claim:

$$
\text { CLAIM. } \quad H_{\mathfrak{m}}^{d-1}\left(K_{A}^{(i+1)} / a K_{A}\right) \neq 0
$$

Since A is Cohen-Macaulay, $a K_{A} \cong K_{A}$ is a maximal Cohen-Macaulay A-module, hence a divisorial ideal of A. If $K_{A}^{(i+1)} / a K_{A}=0$, then $(i+$ 1) $\operatorname{div}\left(K_{A}\right)=\operatorname{div}\left(K_{A}\right)+\operatorname{div}(a)$, and thus $i \cdot \operatorname{cl}\left(K_{A}\right)=0$, contradicting $r=$ $\operatorname{ord}\left(\operatorname{cl}\left(K_{A}\right)\right)$. Hence $K_{A}^{(i+1)} / a K_{A} \neq 0$ and $\operatorname{dim} K_{A}^{(i+1)} / a K_{A}=d-1$. We get the claim, as required.

Proof of Theorem 3.1. We fix a system of parameters x_{1}, \ldots, x_{d} of A. Since A is Cohen-Macaulay, we have $E_{A}=H_{\mathfrak{m}}^{d}\left(K_{A}\right)=\underline{\longrightarrow} K_{A} / \underline{x}^{[q]} K_{A}$. Also, one can regard the Frobenius map \mathbb{F}_{A}^{e} in E_{A} as

$$
\begin{aligned}
& F_{A}^{e}: E_{A} \rightarrow \mathbb{F}_{A}^{e}\left(E_{A}\right) \cong H_{\mathfrak{m}}^{d}\left(K_{A}^{(q)}\right)=\underline{\lim } K_{A}^{(q)} / \underline{x}^{[n]} K_{A}^{(q)} \\
& \quad\left(\left[b+\underline{x} K_{A}\right] \mapsto\left[b^{q}+\underline{x}^{[q]} K_{A}^{(q)}\right]\right)
\end{aligned}
$$

see [Wa3] for details. Thus we have

$$
\begin{equation*}
m_{\mathrm{HK}}(A)=\liminf _{q \rightarrow \infty} l_{A}\left(\frac{z^{q} A+\underline{x}^{[q]} K_{A}^{(q)}}{\underline{x}^{[q]} K_{A}^{(q)}}\right) / q^{d} \tag{3.1}
\end{equation*}
$$

On the other hand, since $z t \in K_{A} t$ generates the socle of E_{B} by Lemma 3.3, we have

$$
\begin{equation*}
m_{\mathrm{HK}}(B)=\lim _{q \rightarrow \infty} l_{A}\left(\frac{z^{q} t^{q} B+\underline{x}^{[q]} B}{\underline{x}^{[q]} B}\right) / q^{d} \tag{3.2}
\end{equation*}
$$

by Theorem 2.1. Also, as B is a $\mathbb{Z} / r \mathbb{Z}$-graded ring (in particular, $K_{A}^{(i+r)} t^{i+r}=$ $\left.K_{A}^{(i)} t^{i}\right),(3.1)$ can be reformulated as follows:

$$
\begin{equation*}
m_{\mathrm{HK}}(B)=\sum_{i=0}^{r-1} \lim _{q \rightarrow \infty} l_{A}\left(\frac{z^{q} K_{A}^{(i)}+\underline{x}^{[q]} K_{A}^{(i+q)}}{\underline{x}^{[q]} K_{A}^{(i+q)}}\right) / q^{d} \tag{3.3}
\end{equation*}
$$

If necessary, we may assume that $q \equiv 1(\bmod r)$. Taking a nonzero element $a_{i} \in K_{A}^{(i)}$ for each i with $0 \leq i \leq r-1$, we consider the following commutative
diagram with exact rows:

In order to complete the proof of the theorem, it suffices to prove the following claim.

CLAIM. $\lim _{q \rightarrow \infty} \frac{l_{A}\left(K_{q}\right)}{q^{d}}=\lim _{q \rightarrow \infty} \frac{l_{A}\left(C_{q}\right)}{q^{d}}=0$.
First, note that if N is a finitely generated A-module with $\operatorname{dim} N \leq d-1$, then $l_{A}\left(N / \underline{x}^{[q]} N\right) / q^{d}=0$. By the definition of Y_{q}, we have

$$
Y_{q}=K_{A}^{(i+q)} /\left(a_{i} K_{A}^{(q)}+\underline{x}^{[q]} K_{A}^{(i+q)}\right) \cong\left(K_{A}^{(i+1)} / a_{i} K_{A}\right) \otimes_{A} A / \underline{x}^{[q]} .
$$

Since $\operatorname{dim} K_{A}^{(i+1)} / a_{i} K_{A} \leq d-1$, we get $\lim _{q \rightarrow \infty} l_{A}\left(Y_{q}\right) / q^{d}=0$. On the other hand, as $q \equiv 1(\bmod r)$, we have

$$
\begin{aligned}
\lim _{q \rightarrow \infty} \frac{l_{A}\left(K_{A}^{(q)} / \underline{x}^{[q]} K_{A}^{(q)}\right)}{q^{d}} & =e_{\mathrm{HK}}(\underline{x}) \cdot \operatorname{rank}_{A} K_{A}=e_{\mathrm{HK}}(\underline{x}) \\
\lim _{q \rightarrow \infty} \frac{l_{A}\left(K_{A}^{(i+q)} / \underline{x}^{[q]} K_{A}^{(i+q)}\right)}{q^{d}} & =e_{\mathrm{HK}}(\underline{x}) \cdot \operatorname{rank}_{A} K_{A}^{(i+1)}=e_{\mathrm{HK}}(\underline{x}) .
\end{aligned}
$$

That is, $\lim _{q \rightarrow \infty} l_{A}\left(X_{q}\right) / q^{d}=\lim _{q \rightarrow \infty} l_{A}\left(Y_{q}\right) / q^{d}=0$ and thus $\lim _{q \rightarrow \infty} l_{A}\left(K_{q}\right) / q^{d}=0$.
On the other hand,

$$
\begin{aligned}
C_{q} & =\frac{z^{q} K_{A}^{(i)}+\underline{x}^{[q]} K_{A}^{(i+q)}}{a_{i} z^{q} A+\underline{x}^{[q]} K_{A}^{(i+q)}} \cong \frac{z^{q} K_{A}^{(i)}}{a_{i} z^{q} A+z^{q} K_{A}^{(i)} \cap \underline{x}^{[q]} K_{A}^{(i+q)}} \\
& =\frac{z^{q} K_{A}^{(i)}}{a_{i} z^{q} A+z^{q}\left[K_{A}^{(i)} \cap\left(\underline{x}^{[q]} K_{A}^{(i+q)}: z^{q}\right)\right]} \\
& \cong \frac{K_{A}^{(i)}}{a_{i} A+\left[K_{A}^{(i)} \cap\left(\underline{x}^{[q]} K_{A}^{(i+q)}: z^{q}\right)\right]} .
\end{aligned}
$$

Since $\mathfrak{m}^{[q]} K_{A}^{(i)} \subseteq K_{A}^{(i)} \cap\left(\underline{x}^{[q]} K_{A}^{(i+q)}: z^{q}\right)$ by the choice of $z \in K_{A}$, we get

$$
l_{A}\left(C_{q}\right) \leq l_{A}\left(K_{A}^{(i)} / a_{i} A+\mathfrak{m}^{[q]} K_{A}^{(i)}\right)=l_{A}\left(K_{A}^{(i)} / a_{i} A \otimes_{A} A / \mathfrak{m}^{[q]}\right)
$$

By a similar argument as above we obtain $\lim _{e \rightarrow \infty} l\left(C_{q}\right) / q^{d}=0$, as required.

Question 3.4. Let A be a weakly F-regular local ring, and let I be a divisorial ideal of A such that $\operatorname{cl}(I)$ has a finite order (say r). If $B=$ $A \oplus I t \oplus I^{(2)} t^{2} \oplus \cdots \oplus I^{(r-1)} t^{r-1}$, the r-cyclic cover, does $m_{\mathrm{HK}}(B)=r \cdot m_{\mathrm{HK}}(A)$ $\left(\right.$ resp. $\left.\widetilde{m}_{\mathrm{HK}}(B)=r \cdot \widetilde{m}_{\mathrm{HK}}(A)\right)$ hold ?

4. Quotient singularities

In this section, as an application of Theorem 3.1, we study the minimal Hilbert-Kunz multiplicities for quotient singularities (i.e., the invariant subrings by a finite group; see below for the precise definition). In general, quotient singularities are not necessarily Gorenstein, but they are \mathbb{Q}-Gorenstein normal domains. Thus, using the canonical cover trick, we can reduce our problem to the case of Gorenstein rings.

Let k be a field and V a k-vector space of finite dimension (say $d=\operatorname{dim}_{k} V$). Assume that a finite subgroup G of $G L(V) \cong G L(d, k)$ acts linearly on $S:=$ $\operatorname{Sym}_{k}(V) \cong k\left[x_{1}, \ldots, x_{d}\right]$, a polynomial ring with d variables over k. Then

$$
S^{G}:=\{f \in S: g(f)=f \quad \text { for all } g \in G\}
$$

is said to be the invariant subring of S by G.
In this section, we consider only the case of positive characteristic (say $p=\operatorname{char}(k))$, and assume that the order $|G|$ is non-zero in k, that is, $|G|$ is not divisible by p. Then, using the Reynolds operator

$$
\rho: S \rightarrow S^{G} \quad\left(a \mapsto \frac{1}{|G|} \sum_{g \in G} g(a)\right)
$$

we can show that S^{G} is a direct summand of S. Put $\mathfrak{n}=\left(x_{1}, \ldots, x_{d}\right) S$ and $\mathfrak{m}=\mathfrak{n} \cap S^{G}$. Then the ring $A=\left(S^{G}\right)_{\mathfrak{m}}$ is said to be a quotient singularity (by a finite group G). A quotient singularity is a \mathbb{Q}-Gorenstein strongly F-regular domain, but not always Gorenstein; see, e.g., [Wa1], [Wa2] for details.

In [WaY1], we gave a formula for Hilbert-Kunz multiplicity $e_{\mathrm{HK}}(A)$ of quotient singularities as follows.

Theorem 4.1 (cf. [WaY1, Theorem 2.7], [BCP]). Under the same notation as above, we have

$$
e_{\mathrm{HK}}(I)=\frac{1}{|G|} l_{A}\left(S_{\mathfrak{n}} / I S_{\mathfrak{n}}\right)
$$

for every \mathfrak{m}-primary ideal I in A. In particular, $e_{\mathrm{HK}}(A)=\frac{1}{|G|} \mu_{A}\left(S_{\mathfrak{n}}\right)$, where $\mu_{A}(M)$ denotes the number of minimal system of generators of a finite A module M.

The main purpose of this section is to prove the following theorem.

TheOrem 4.2. Let $A=\left(S^{G}\right)_{\mathfrak{m}}$ be a quotient singularity by a finite group G as described above. Also, assume that G contains no pseudo-reflections. Then we have

$$
m_{\mathrm{HK}}(A)=\frac{1}{|G|}
$$

Proof. First, suppose that $G \subseteq S L(d, k)$. Then S^{G} is Gorenstein by [Wa1, Theorem 1a]. Since G acts linearly on S, S^{G} is a graded subring of S. Thus one can take a homogeneous system of parameters a_{1}, \ldots, a_{d} of S^{G} with the same degree m. Also, we may assume that m is a multiple of $|G|$. Put $J=\left(a_{1}, \ldots, a_{d}\right) S^{G}$. Then, since $S / J S$ is a homogeneous Artinian Gorenstein ring having the same Hilbert function as that of $S /\left(x_{1}^{m}, \ldots, x_{d}^{m}\right) S$, there exists an element $z \in S_{d(m-1)}$ which generates $\operatorname{Soc}(S / J S)$. Then we have $z \in S^{G}$. This follows from the proof of [Wa1, Theorem 1a], but since it is an essential point in the proof, we sketch the argument here.

To see that $z \in S^{G}$, it is enough to show that $z \in S^{\langle g\rangle}$ for any element $g \in G$. The property $z \in S^{\langle g\rangle}$ does not change if we consider $S \otimes_{k} \bar{k}$ instead of S, where \bar{k} is the algebraic closure of k. Therefore we may assume $k=\bar{k}$ and further that g is diagonal. Then $x_{1} \cdots x_{d} \in S^{\langle g\rangle}$ and $x_{i}^{m} \in S^{\langle g\rangle}$, since $\operatorname{det}(g)=1$ and m is a multiple of $|G|$. If we put $(\underline{x})^{[m]}=\left(x_{1}^{m}, \cdots, x_{d}^{m}\right)$, then

$$
\operatorname{dim}_{k}\left[S^{\langle g\rangle} / J S^{\langle g\rangle}\right]_{d(m-1)}=\operatorname{dim}_{k}\left[S^{\langle g\rangle} /(\underline{x})^{[m]} S^{\langle g\rangle}\right]_{d(m-1)} \geq 1
$$

On the other hand, since $J S^{\langle g\rangle}=J S \cap S^{\langle g\rangle}$, we have

$$
\operatorname{dim}_{k}\left[S^{\langle g\rangle} / J S^{\langle g\rangle}\right]_{d(m-1)} \leq \operatorname{dim}_{k}[S / J S]_{d(m-1)}=1
$$

It follows that $z \in S^{G}$, as required.
Now let J, z be as above. Then $J A: \mathfrak{m} A=(J, z) A$ and $J S: \mathfrak{n}=(J, z) S$. Hence

$$
\begin{aligned}
e_{\mathrm{HK}}(J A)-e_{\mathrm{HK}}(J A: \mathfrak{m} A) & =\frac{1}{|G|} l_{A}\left(S_{\mathfrak{n}} / J S_{\mathfrak{n}}\right)-\frac{1}{|G|} l_{A}\left(S_{\mathfrak{n}} /(J: \mathfrak{m}) S_{\mathfrak{n}}\right) \\
& =\frac{1}{|G|} l_{\mathfrak{S}_{\mathfrak{n}}}\left(J S_{\mathfrak{n}}: \mathfrak{n} / J S_{\mathfrak{n}}\right)=\frac{1}{|G|}
\end{aligned}
$$

The required assertion follows from Theorem 2.1.
Next, we consider the general case. If we put $H=G \cap S L(n, k)$, then S^{H} is Gorenstein by [Wa2, Theorem 1]. Further, since H is a normal subgroup of G and G / H is a finite subgroup of $k^{\times}, G / H$ is a cyclic group. Say $G / H=\langle\sigma H\rangle$ and $r=|G / H|$. Also, $S^{G}=\left(S^{H}\right)^{\langle\sigma\rangle}$. Then $B=\left(S^{H}\right)_{\mathfrak{n} \cap S^{H}}$ is a cyclic r-cover of $A=\left(S^{G}\right)_{\mathfrak{m}}$. In fact, it is known that B is isomorphic to the canonical cover of A :

$$
B \cong A \oplus K_{A} t \oplus K_{A}^{(2)} t^{2} \oplus \cdots \oplus K_{A}^{(r-1)} t^{r-1}
$$

where $K_{A}^{(r)}=f A, t^{r} f=1$; see [TW] for details.

Since $m_{\mathrm{HK}}(B)=1 /|H|$, by Theorem 3.1, we get

$$
m_{\mathrm{HK}}(A)=\frac{1}{r} m_{\mathrm{HK}}(B)=\frac{1}{(G: H)|H|}=\frac{1}{|G|}
$$

as required.
Conjecture 4.3. Under the same notation as in Theorem 4.2, $\widetilde{m}_{\mathrm{HK}}(A)=$ $1 /|G|$.

5. Toric rings and Segre products

We first give a general formula for $m_{\mathrm{HK}}(A)$ in the case of a normal toric ring A. For simplicity, we denote the minimal relative Hilbert-Kunz multiplicity of the local ring at the unique graded maximal ideal by $m_{\mathrm{HK}}(A)$. To formulate our result, let us fix some notation.

Let $M, N \cong \mathbb{Z}^{d}$ be dual lattices, and denote the duality pairing of $M_{\mathbb{R}}=$ $M \otimes_{\mathbb{Z}} \mathbb{R}$ with $N_{\mathbb{Z}}=N \otimes_{\mathbb{Z}} \mathbb{R}$ by $\langle\quad, \quad\rangle: M_{\mathbb{R}} \otimes N_{\mathbb{R}} \rightarrow \mathbb{R}$. Let σ be a strongly convex rational polyhedral cone, and set $\sigma^{\vee}=\left\{m \in M_{\mathbb{R}} \mid\langle m, n\rangle \geq 0\right.$ for all $n \in \sigma\}$. Let $A=k\left[\sigma^{\vee} \cap M\right]$ be a normal toric ring, and let n_{1}, \ldots, n_{s} be primitive generators of σ. Then $A=k\left[x^{m} \mid\left\langle m, n_{i}\right\rangle \geq 0\right.$ for all $\left.i\right]$.

ThEOREM 5.1. Let k be a field of characteristic $p>0$, and let $A=$ $k\left[\sigma^{\vee} \cap M\right]$ be a normal toric ring. Under the above notation, we have

$$
m_{\mathrm{HK}}(A)=\operatorname{vol}\left\{m \in M_{\mathbb{R}} \mid 0 \leq\left\langle m, n_{i}\right\rangle \leq 1 \quad \text { for all } i\right\}
$$

where $\operatorname{vol}(W)$ denotes the relative volume of an integral polytope $W \in M_{\mathbb{R}}$ (see [St, pp. 239]).

Proof. By [HaY, Section 4], we have

$$
E_{A}=H_{\mathfrak{m}}^{d}\left(K_{A}\right) \cong \bigoplus_{\left\langle m, n_{i}\right\rangle \leq 0(\forall i)} k x^{m}
$$

where the socle is generated by $z=1$ and

$$
E_{A} \otimes{ }^{e} A \cong H_{\mathfrak{m}}^{d}\left(K_{A}^{(q)}\right) \cong \bigoplus_{\left\langle m, n_{i}\right\rangle \leq q-1} k x^{m}
$$

Since the Frobenius action is given by $F^{e}: E_{A} \rightarrow F_{A}^{e}\left(E_{A}\right), x^{m} \mapsto x^{m q}$, the annihilator of $z^{q}=1$ is given by the direct sum

$$
\bigoplus_{0 \leq\left\langle m, n_{i}\right\rangle \leq q-1, m \neq 0} k x^{m},
$$

whose length is $\sharp\left\{m \in M \mid 0 \leq\left\langle m, n_{i}\right\rangle \leq q-1(\forall i), m \neq 0\right\}$. We obtain the desired result by dividing by q^{d} and letting q tend to ∞.

REmark 4. In [Wa4], the first-named author gave a formula for HilbertKunz multiplicities of normal toric rings.

Example 5.2. Let k be a field and $A_{n}=k\left[x^{-n} T, x^{-n+1} T, \ldots, T, x T, y T\right.$, $x y T]$, where x, y, T are variables and n is a non-negative integer. Then the generators of σ and σ^{\vee} are given, respectively, by

$$
\begin{aligned}
\sigma & =\langle(0,1,0),(-1,0,1),(0,-1,1),(1,-n, n)\rangle \\
\sigma^{\vee} & =\langle(-n, 0,1),(1,0,1),(0,1,1),(1,1,1)\rangle
\end{aligned}
$$

Since the volume of the region given by
$\left\{(x, y, z) \in \mathbb{R}^{3} \mid 0 \leq y \leq 1, x \leq z \leq x+1, y \leq z \leq y+1, n y \leq x+n z \leq n y+1\right\}$ is $5 /(6(n+1))$, we have $m_{\mathrm{HK}}\left(A_{n}\right)=5 /(6(n+1))$.

Next, we will calculate $m_{\mathrm{HK}}(A)$ for a "Segre Product" of two polynomial rings. In the remainder of this section, let k be a perfect field of characteristic $p>0$, and let $R=k\left[x_{1}, \ldots, x_{r}\right]$ (resp. $S=k\left[y_{1}, \ldots, y_{s}\right]$) be a polynomial ring with r variables (resp. s variables) over k. We regard these rings as homogeneous k-algebras with $\operatorname{deg}\left(x_{i}\right)=\operatorname{deg}\left(y_{j}\right)=1$ as usual. We define the graded subring $A=R \# S$ of $R \otimes_{k} S$ by putting $A_{n}:=R_{n} \otimes S_{n}$ for all integers $n \geq 0$. Then $A=R \# S$ is said to be the Segre product of R and S. In fact, the ring A is the coordinate ring of the Segre embedding $\mathbb{P}^{r-1} \times \mathbb{P}^{s-1} \hookrightarrow \mathbb{P}^{r s-1}$.

Since the Segre product A is a direct summand of $R \otimes_{k} S$ (which is isomorphic to a polynomial ring with $r+s$ variables), it is a strongly F-regular domain. Further, it is known that $\operatorname{dim} A=r+s-1$ and $e(A)=\binom{r+s-2}{r-1}$; see [GW, Chapter 4] for more details.

Before giving a formula for $m_{\mathrm{HK}}(A)$ of Segre products, we recall related results. In $[\mathrm{BCP}]$, Buchweitz, Chen and Purdue have given the Hilbert-Kunz multiplicity $e_{\mathrm{HK}}(A)$ of A. Also, Eto and the second-named author [EtY] simplified their result in terms of "Stirling numbers of the second kind" as follows.

Theorem 5.3 (cf. [BCP, 2.2.3], [EtY, Theorem 3.3], [Et]). Suppose that $2 \leq r \leq s$ and put $d=r+s-1$. Let $A=k\left[x_{1}, \ldots, x_{r}\right] \# k\left[y_{1}, \ldots, y_{s}\right]$. Then

$$
e_{\mathrm{HK}}(A)=\frac{s!}{d!} S(d, s)-\frac{1}{d!} \sum_{k=1}^{r-1} \sum_{j=1}^{r-k}\binom{r}{k+j}\binom{s}{j}(-1)^{r+k} k^{d}
$$

where $S(n, k)$ denotes the Stirling number of the second kind; see below.
Stirling numbers of the second kind also play an important role in the study of the minimal Hilbert-Kunz multiplicity of the Segre product, so we recall their definition.

Definition 5.4 ([St, Chapter 1, §1.4]). We denote by $S(n, k)$ the number of partitions of the set $[n]:=\{1, \ldots, n\}$ into k blocks. The number $S(n, k)$ is called the Stirling number of the second kind.

The following properties are well-known; see [St].
FACT 5.5. If we denote by $S(n, k)$ the Stirling number of the second kind, then

$$
\sum_{n \geq k} S(n, k) \frac{x^{n}}{n!}=\frac{1}{k!}\left(e^{x}-1\right)^{k}
$$

In particular,

$$
\begin{aligned}
S(n, k) & =\frac{1}{k!} \sum_{i=0}^{k}(-1)^{k-i}\binom{k}{i} i^{n} \\
S(n, 2) & =2^{n-1}-1 \\
S(n, n-1) & =\binom{n}{2}
\end{aligned}
$$

Example 5.6. Let $A=R \# S=k\left[x_{1}, x_{2}\right] \# k\left[y_{1}, \ldots, y_{s}\right]$, which is isomorphic to the Rees algebra $S[\mathfrak{n} t]$ over S. Then

$$
e_{\mathrm{HK}}(A)=s\left(\frac{1}{2}+\frac{1}{(s+1)!}\right)
$$

In the following, we will give a formula for the minimal Hilbert-Kunz multiplicity of the Segre product. Let A be the Segre product of R and S described as above, i.e., $A=R \# S=k\left[x_{1}, \ldots, x_{r}\right] \# k\left[y_{1}, \ldots, y_{s}\right]$, and suppose that $2 \leq r \leq s$. Put $d=r+s-1(=\operatorname{dim} A)$ and set

$$
\mathfrak{m}=\left(x_{1}, \ldots, x_{r}\right) R, \mathfrak{n}=\left(y_{1}, \ldots, y_{s}\right) S, \quad \text { and } \mathfrak{M}=\mathfrak{m} \# \mathfrak{n}=\bigoplus_{n=1}^{\infty} R_{n} \otimes S_{n}
$$

Then the graded canonical module K_{A} of A is isomorphic to $K_{R} \# K_{S}$ by [GW, Theorem 4.3.1]. (In particular, A is Gorenstein if and only if $r=s$.) Thus, by virtue of [GW, Theorem 4.1.5], we get

$$
E_{A}=H_{\mathfrak{M}}^{d}\left(K_{A}\right)=H_{\mathfrak{M}}^{d}\left(K_{R} \# K_{S}\right)=H_{\mathfrak{m}}^{r}\left(K_{R}\right) \# H_{\mathfrak{n}}^{s}\left(K_{S}\right)=E_{R} \# E_{S}
$$

Further, since E_{R} can be represented as a graded module $k\left[x_{1}^{-1}, \ldots, x_{r}^{-1}\right]$, which is called the inverse system of Macaulay, we have

$$
E_{A} \cong k\left[x_{1}^{-1}, \ldots, x_{r}^{-1}\right] \# k\left[y_{1}^{-1}, \ldots, y_{s}^{-1}\right]
$$

Then $z=1 \# 1 \in E_{A}$ generates the socle of E_{A}.
Using this, we obtain:

Proposition 5.7. Let $A=R \# S$ and $z=1 \# 1$ be as above. Then:

$$
\text { 1) } \begin{align*}
& l_{A}\left(A / \operatorname{ann}_{A}\left(F_{A}^{e}(z)\right)\right. \tag{5.1}\\
= & \#\left\{\begin{array}{l|l}
\left(a_{1}, \ldots, a_{r}, b_{1}, \ldots, b_{s}\right) \in \mathbb{Z}^{r+s} & \begin{array}{l}
0 \leq a_{1}, \ldots, a_{r} \leq q-1 \\
0 \leq b_{1}, \ldots, b_{s} \leq q-1 \\
a_{1}+\cdots+a_{r}=b_{1}+\cdots+b_{s}
\end{array}
\end{array}\right\} .
\end{align*}
$$

Proof. We use the same notation as in the above argument. Now we shall investigate the Frobenius action on z in E_{A}. First note that $\mathbb{F}_{A}^{e}\left(E_{A}\right) \cong$ $\mathbb{F}_{R}^{e}\left(E_{R}\right) \# \mathbb{F}_{S}^{e}\left(E_{S}\right)$. Thus it is enough to investigate the Frobenius action of $z_{1}=1$ in E_{R}. Since $E_{R}=H_{\mathfrak{m}}^{r}(R)(-r)$, that is, $H_{\mathfrak{m}}^{r}(R) \cong\left(x_{1} \cdots x_{r}\right)^{-1} E_{R}$, the generator z_{1} of $\operatorname{Soc}\left(E_{R}\right)$ corresponds to the element $w_{1}=\left(x_{1} \cdots x_{r}\right)^{-1}$ via this isomorphism. Then we have $F_{R}^{e}\left(w_{1}\right)=\left(x_{1} \cdots x_{r}\right)^{-q}$, since there exists an isomorphism

$$
\begin{aligned}
& \left(x_{1} \cdots x_{r}\right)^{-1} k\left[x_{1}, \ldots, x_{r}\right] \rightarrow H_{\mathfrak{m}}^{r}(R)=\underset{n}{\lim } R /\left(x_{1}^{n}, \ldots, x_{r}^{n}\right) . \\
& \left(x_{1}^{-a_{1}} \cdots x_{r}^{-a_{r}}\right) \mapsto\left[x_{1}^{a-a_{1}} \cdots x_{r}^{a-a_{r}}+\left(\underline{x}^{a}\right)\right]
\end{aligned}
$$

where $a:=\max \left\{a_{1}, \ldots, a_{r}\right\}$. If we identify $\mathbb{F}_{R}^{e}\left(E_{R}\right)$ with E_{R}, then

$$
F_{R}^{e}\left(z_{1}\right)=\left(x_{1} \cdots x_{r}\right) \cdot F^{e}\left(w_{1}\right)=\left(x_{1} \cdots x_{r}\right)^{-(q-1)}
$$

Therefore

$$
z^{q}=F_{R}^{e}\left(z_{1}\right) \# F_{S}^{e}\left(z_{2}\right)=\left(x_{1} \cdots x_{r}\right)^{-(q-1)} \#\left(y_{1} \cdots y_{s}\right)^{-(q-1)} \quad \text { in } E_{A}
$$

For any element $c=x_{1}^{a_{1}} \cdots x_{r}^{a_{r}} \# y_{1}^{b_{1}} \cdots y_{s}^{b_{s}}$ in R, we have

$$
c F^{e}(z) \neq 0 \quad \text { in } E_{A} \Longleftrightarrow\left\{\begin{array}{l}
0 \leq a_{1}, \ldots, a_{r} \leq q-1 \\
0 \leq b_{1}, \ldots, b_{s} \leq q-1 \\
a_{1}+\cdots+a_{r}=b_{1}+\cdots+b_{s}
\end{array}\right.
$$

Thus we get the required assertion.
We are now ready to state our main theorem in this section.
Theorem 5.8. Let $A=k\left[x_{1}, \ldots, x_{r}\right] \# k\left[y_{1}, \ldots, y_{s}\right]$, where $2 \leq r \leq s$, and put $d=r+s-1$. Then

$$
m_{\mathrm{HK}}(A)=\frac{r!}{d!} S(d, r)+\frac{1}{d!} \sum_{k=1}^{r-1} \sum_{j=1}^{r-k}\binom{r}{k+j}\binom{s}{j}(-1)^{r+k} k^{d}
$$

where $S(n, k)$ denotes the Stirling number of the second kind; see below.
In particular,

$$
e_{\mathrm{HK}}(A)+m_{\mathrm{HK}}(A)=\frac{r!\cdot S(d, r)+s!\cdot S(d, s)}{d!}
$$

The following two corollaries easily follow from Theorems 5.3 and 5.8.
Corollary 5.9. Let $A=R \# S=k\left[x_{1}, x_{2}\right] \# k\left[y_{1}, \ldots, y_{s}\right]$, which is isomorphic to the Rees algebra $S[\mathfrak{n} t]$ over S. Then

$$
m_{\mathrm{HK}}(A)=\frac{2^{s+1}-s-2}{(s+1)!}
$$

Corollary 5.10. Under the same notation as in Theorem 5.8, assume further that A is Gorenstein, that is, $r=s$. Then

$$
e_{\mathrm{HK}}(A)+m_{\mathrm{HK}}(A)=\frac{2 \cdot r!}{(2 r-1)!} S(2 r-1, r)
$$

Proof of Theorem 5.8. If we put $\alpha_{r, n}:=l_{R}\left(\mathfrak{m}^{n} / \mathfrak{m}^{n+1}\right)=\binom{n+r-1}{r-1}$ and $\alpha_{r, n, q}:=l_{R}\left(\mathfrak{m}^{n} / \mathfrak{m}^{n-q} \mathfrak{m}^{[q]}+\mathfrak{m}^{n+1}\right)$, then

$$
\alpha_{r, n, q}=\sum_{i=0}^{r}(-1)^{i}\binom{r}{i} \alpha_{r, n-i q}
$$

In fact, $\alpha_{r, n, q}$ is the number of monomials of degree n which appear in the polynomial $\prod_{i=1}^{r}\left(1+x_{i}+x_{i}^{2}+\cdots+x_{i}^{q=1}\right)$. Also, we have

$$
\begin{aligned}
e_{\mathrm{HK}}(A) & =\lim _{q \rightarrow \infty} \frac{1}{q^{d}} \sum_{n=0}^{r(q-1)} \alpha_{r, n} \alpha_{s, n, q} \\
& +\lim _{q \rightarrow \infty} \frac{1}{q^{d}} \sum_{n=0}^{s(q-1)} \alpha_{r, n, q} \alpha_{s, n}-\lim _{q \rightarrow \infty} \frac{1}{q^{d}} \sum_{n=0}^{r(q-1)} \alpha_{r, n, q} \alpha_{s, n, q}
\end{aligned}
$$

By virtue of Proposition 5.7, we get

$$
m_{\mathrm{HK}}(A)=\lim _{q \rightarrow \infty} \frac{1}{q^{d}} \sum_{n=0}^{r(q-1)} \alpha_{r, n, q} \alpha_{s, n, q}
$$

Hence the required assertion follows from the following lemma.
Lemma 5.11 (cf. [EtY, Lemmas 3.8 and 3.9]). Under the same notation as above, we have

$$
\begin{aligned}
& \lim _{q \rightarrow \infty} \frac{1}{q^{d}} \sum_{n=0}^{r(q-1)} \alpha_{r, n, q} \alpha_{s, n}=\frac{r!}{d!} S(d, r), \\
& \lim _{q \rightarrow \infty} \frac{1}{q^{d}} \sum_{n=0}^{r(q-1)} \alpha_{r, n, q} \alpha_{s, n, q}=\frac{r!}{d!} S(d, r)+\frac{1}{d!} \sum_{0<j<i \leq r}\binom{r}{i}\binom{s}{j}(-1)^{r-i+j}(i-j)^{d} .
\end{aligned}
$$

References

[AL] I. M. Aberbach and G. J. Leuschke, The F-signature and strong F-regularity, Math. Res. Lett. 10 (2003), 51-56. MR 2004b:13003
[AM] I. M. Aberbach and B. MacCrimmon, Some results on test elements, Proc. Edinburgh Math. Soc. (2) 42 (1999), 541-549. MR 2000i:13005
[BC] R. O. Buchweitz and Q. Chen, Hilbert-Kunz functions of cubic curves and surfaces, J. Algebra 197 (1997), 246-267. MR 98i:13025
[BCP] R. O. Buchweitz, Q. Chen, and K. Pardue, Hilbert-Kunz functions, preprint, Algebraic Geometry e-print series, Feb. 4, 1997.
[BH] W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 95h:13020
[Co] A. Conca, Hilbert-Kunz function of monomial ideals and binomial hypersurfaces, Manuscripta Math. 90 (1996), 287-300. MR 97g: 13006
[Du] S. P. Dutta, Frobenius and multiplicities, J. Algebra 85 (1983), 424-448. MR 85f:13022
[Et] K. Eto, Hilbert-Kunz multiplicity of the Segre product of polynomial rings, Rep. Res. Nippon Inst. Tech. 30 (2000), 317-327.
[EtY] K. Eto and K. Yoshida, Notes on Hilbert-Kunz multiplicity of Rees algebras, Comm. Algebra 31 (2003), 5943-5976. MR 2014910
[GW] S. Goto and K.-i. Watanabe, On graded rings. I, J. Math. Soc. Japan 30 (1978), 179-213. MR 81m:13021
[HaM] C. Han and P. Monsky, Some surprising Hilbert-Kunz functions, Math. Z. 214 (1993), 119-135. MR 94f:13008
[HaY] N. Hara and K. Yoshida, A generalization of tight closure and multiplier ideals, Trans. Amer. Math. Soc. 355 (2003), 3143-3174. MR 1974679
[HH1] M. Hochster and C. Huneke, Tight closure and strong F-regularity, Mém. Soc. Math. France (N.S.) (1989), 119-133. MR 91i:13025
[HH2] , Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Amer. Math. Soc. 3 (1990), 31-116. MR 91g:13010
[HH3] , F-regularity, test elements, and smooth base change, Trans. Amer. Math. Soc. 346 (1994), 1-62. MR 95d:13007
[Hu] C. Huneke, Tight closure and its applications, CBMS Regional Conference Series in Mathematics, vol. 88, American Mathematical Society, Providence, R.I., 1996. MR 96m:13001
[HuL] C. Huneke and G. J. Leuschke, Two theorems about maximal Cohen-Macaulay modules, Math. Ann. 324 (2002), 391-404. MR 2003j:13011
[Ku1] E. Kunz, Characterizations of regular local rings for characteristic p, Amer. J. Math. 91 (1969), 772-784. MR 40\#5609
[Ku2] , On Noetherian rings of characteristic p, Amer. J. Math. 98 (1976), 9991013. MR 55\#5612
[Mc] B. MacCrimmon, Weak F-regularity is strong F-regularity for rings with isolated non- \mathbb{Q}-Gorenstein points, Trans. Amer. Math. Soc., to appear.
[Mo] P. Monsky, The Hilbert-Kunz function, Math. Ann. 263 (1983), 43-49. MR 84k:13012
[PS] C. Peskine and L. Szpiro, Dimension projective finie et cohomologie locale, Publ. Math. IHES 42 (1973), 47-119. MR 51\#10330
[Se] G. Seibert, The Hilbert-Kunz function of rings of finite Cohen-Macaulay type, Arch. Math. (Basel) 69 (1997), 286-296. MR 98h:13022
[Sm] K. E. Smith, Tight closure of parameter ideals, Invent. Math. 115 (1994), 41-60. MR 94k:13006
[St] R. P. Stanley, Enumerative combinatorics. Vol. 1, Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 1997. MR 98a:05001
[TW] M. Tomari and K.-i. Watanabe, Normal Z_{r}-graded rings and normal cyclic covers, Manuscripta Math. 76 (1992), 325-340. MR 93j:13002
[Wa1] K.-i. Watanabe, Certain invariant subrings are Gorenstein. I, Osaka J. Math. 11 (1974), 1-8. MR 50\#7124
[Wa2] , Certain invariant subrings are Gorenstein. II, Osaka J. Math. 11 (1974), 379-388. MR 50\#7124
[Wa3] , F-regular and F-pure normal graded rings, J. Pure Appl. Algebra 71 (1991), 341-350. MR 92g:13003
[Wa4] , Hilbert-Kunz multiplicity of Toric rings, Proc. Inst. Nat. Sci. (Nihon Univ.) 35 (2000), 173-177.
[WaY1] K.-i. Watanabe and K. Yoshida, Hilbert-Kunz multiplicity and an inequality between multiplicity and colength, J. Algebra 230 (2000), 295-317. MR 2001h:13032
[WaY2] , Hilbert-Kunz multiplicity of two-dimensional local rings, Nagoya Math. J. 162 (2001), 87-110. MR 2002e:13040
[WaY3] , Hilbert-Kunz multiplicity, McKay correspondence and good ideals in twodimensional rational singularities, Manuscripta Math. 104 (2001), 275-294. MR 2002d:13024
[Wi] L. J. Williams, Uniform stability of kernels of Koszul cohomology indexed by the Frobenius endomorphism, J. Algebra 172 (1995), 721-743. MR 96f:13003
[Ya] Y. Yao, Observations on the F-signature of local rings of characteristic p, preliminary version, available at http://www.math.ukans.edu/~yyao/eprint/f-sig.pdf.

Kei-ichi Watanabe, Department of Mathematics, College of Humanities and Sciences, Nihon University, Setagaya-ku, Tokyo 156-0045, Japan

E-mail address: watanabe@math.chs.nihon-u.ac.jp
Ken-ichi Yoshida, Graduate School of Mathematics, Nagoya University, Chi-KUSA-KU, NAGOYA 464-8602, JAPAN

E-mail address: yoshida@math.nagoya-u.ac.jp

[^0]: Received March 19, 2003; received in final form December 27, 2003.
 2000 Mathematics Subject Classification. Primary 13D40, 13A35. Secondary 13H10, 13H15.

 The first author was supported in part by Grant Aid in Scientific Research, \# 13440015 and \# 13874006. The second author was supported in part by NSF Grant \#14540020.

