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MINIMAL RELATIVE HILBERT-KUNZ MULTIPLICITY

KEI-ICHI WATANABE AND KEN-ICHI YOSHIDA

Abstract. In this paper we ask the following question: What is the

minimal value of the difference eHK(I)− eHK(I′) for ideals I′ ⊇ I with
lA(I′/I) = 1? In order to answer to this question, we define the no-
tion of minimal relative Hilbert-Kunz multiplicity for strongly F -regular

rings. We calculate this invariant for quotient singularities and for the
coordinate rings of Segre embeddings: Pr−1 × Ps−1 ↪→ P

rs−1.

Introduction

Throughout this paper, let A be a Noetherian ring containing a field of
characteristic p > 0. The purpose of this paper is to introduce the notion of
minimal relative Hilbert-Kunz multiplicity, which is a new invariant of local
rings in positive characteristic.

The notion of Hilbert-Kunz multiplicity has been introduced by Kunz [Ku1]
in 1969, and has been studied in detail by Monsky [Mo]; see also, e.g., [BC],
[BCP], [Co], [HaM], [Se], [WaY1], [WaY2], [WaY3].

Further, Hochster and Huneke [HH2] have pointed out that the tight clo-
sure I∗ of I is the largest ideal containing I having the same Hilbert-Kunz
multiplicity as I; see Lemma 1.3. Thus it seems to be important to un-
derstand Hilbert-Kunz multiplicities well. For example, the authors [WaY1]
have proved that an unmixed local ring whose Hilbert-Kunz multiplicity is
one is regular. Also, they [WaY3] have given a formula for eHK(I) for any
integrally closed ideal I in a two-dimensional F -rational double point using
McKay correspondence and the Riemann–Roch formula.

One of the most important conjectures about Hilbert-Kunz multiplicities
is that it is always a rational number. Let A be a local ring and I, J be
m-primary ideals in A. Also, suppose that J is a parameter ideal. Then it
is known that eHK(J) = e(J), the usual multiplicity (and hence eHK(J) is an
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integer). In order to investigate the value of eHK(I), we study the difference
“eHK(J)− eHK(I)”. Then it is natural to ask the following question.

Question. What is the minimal value of the difference eHK(I)− eHK(I ′)
for m-primary ideals I ′ ⊇ I with lA(I ′/I) = 1?

To answer to this question, we introduce the notion of minimal relative
Hilbert-Kunz multiplicity mHK(A) as follows:

mHK(A) = lim inf
e→∞

lA(A/ annA zp
e

)
ped

,

where z is a generator of the socle of the injective hull EA(A/m). Then we
can show that mHK(A) ≤ eHK(I)−eHK(I ′) for (m-primary) ideals I ⊆ I ′ with
lA(I ′/I) = 1. Also, we believe that equality holds for some pair (I, I ′). This
is true if A is a Gorenstein local ring. Namely, if A is a Gorenstein local ring,
then

eHK(J)− eHK(J : m) = mHK(A)
for any parameter ideal J of A; see Theorem 2.1 for details.

In general, if A is not weakly F -regular, then mHK(A) = 0. Thus it suffices
to consider weakly F -regular local rings in our context.

In Section 3, we will give a formula for minimal relative Hilbert-Kunz
multiplicities of the canonical cover of Q–Gorenstein F -regular local rings:

Theorem 1 (see Theorem 3.1). Let A be a Q–Gorenstein strongly F -
regular local ring of characteristic p > 0. Also, let B = A ⊕KAt ⊕K(2)

A t2 ⊕
· · ·⊕K(r−1)

A tr−1, the canonical cover of A, where r = ord(cl(KA)), K(r)
A = fA

and ftr = 1. Also, suppose that (r, p) = 1. Then we have

mHK(B) = r ·mHK(A).

In Section 4, as an application of Theorem 3.1, we will give a formula for
minimal relative Hilbert-Kunz multiplicities of quotient singularities.

Theorem 2 (see Theorem 4.2). Let k be a field of characteristic p > 0,
and let A = k[x1, . . . , xd]G be the invariant subring by a finite subgroup G
of GL(d, k) with (p, |G|) = 1. Also, assume that G contains no pseudo-
reflections. Then mHK(A) = 1/|G|.

In Section 5, we will give a formula for minimal relative Hilbert-Kunz
multiplicities of normal toric rings and Segre products.

Theorem 3 (see Theorem 5.8). Let A = k[x1, . . . , xr]#k[y1, . . . , ys],
where 2 ≤ r ≤ s, and put d = r + s− 1. Then

mHK(A) =
r!
d!
S(d, r) +

1
d!

r−1∑
k=1

r−k∑
j=1

(
r

k + j

)(
s

j

)
(−1)r+kkd,
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where S(n, k) denotes the Stirling number of the second kind (see Section 5).

In particular,

eHK(A) +mHK(A) =
r! · S(d, r) + s! · S(d, s)

d!
.

Huneke and Leuschke [HuL] (see also [AL]) defined the notion of “F -
signature” as follows: Let (A,m, k) be an F -finite reduced local ring of char-
acteristic p > 0. Put α(A) = logp[k : kp]. For each q = pe, decompose A1/q

as a direct sum of finitely generated A-modules Aaq ⊕Mq, where Mq has no
nonzero free direct summands. The F -signature s(A) of A is

s(A) = lim
q→∞

aq
qd+α(A)

provided the limit exists.
The referee pointed out that Yao [Ya] recently proved that the F -signature

coincides with our minimal relative Hilbert-Kunz multiplicity.

Acknowledgement. The authors wish to thank the referee for many valu-
able comments.

1. Minimal relative Hilbert-Kunz multiplicity

In this section, we define the notion of minimal relative Hilbert-Kunz mul-
tiplicity and give its fundamental properties. In the following, we let (A,m, k)
be a Noetherian excellent reduced local ring containing an infinite field of
characteristic p > 0, unless specified. We let EA denote the injective hull of
the residue field k = A/m, and Hi

m(A) the ith local cohomology module of A
with support in {m}. We always suppose that A is a homomorphic image of
a Gorenstein local ring, and we let KA denote a canonical module of A.

1.1. Peskine-Szpiro functor. First, let us recall the definition of the
Peskine–Szpiro functor. Let eA denote the ring A viewed as an A-algebra
via F e : A → A (a 7→ ap

e

). Then F eA(−) = eA ⊗A − is a covariant functor
from the category of A-modules to itself. Since eA is isomorphic to A as
rings (via F e), we can regard F eA as a covariant functor from A-modules to
themselves. We call this functor F eA the Peskine–Szpiro functor of A. The
A-module structure on F eA(M) is such that a′(a ⊗ m) = a′a ⊗ m. On the
other hand, a′ ⊗ am = a′aq ⊗ m; see, e.g., [PS], [Hu]. Suppose that an

A-module M has a finite presentation Am
φ−→ An → M → 0, where the

map φ is defined by a matrix (aij). Then F eA(M) has a finite presentation

Am
φq−→ An → F

e
A(M) → 0, where the map φq is defined by the matrix

(aqij). For example, F eA(A/I) = A/I [pe], where I [pe] is the ideal generated by
{ape : a ∈ I}.
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Also, one can identify the Frobenius map F e : A→ eA with the embedding
A ↪→ A1/q (q = pe).

1.2. Tight closure, Hilbert-Kunz multiplicity. Using the Peskine–
Szpiro functor, we define the notion of tight closure.

Definition 1.1 ([HH1], [HH2], [Hu]).
(1) Let M be an A-module, and let N be an A-submodule of M . Put

N
[pe]
M = Ker(F eA(M) → F

e
A(M/N)), and denote by xq (q = pe) the

image of x under the Frobenius map M → F
e
A(M) (x 7→ 1⊗x). Then

the tight closure N∗M of N (in M) is the submodule generated by
elements for which there exists an element c ∈ A0 := A\

⋃
P∈Min(A) P

such that for all sufficiently large q = pe, cxq ∈ N [q]
M . By definition, we

put I∗ = I∗A. Also, we say that N is tightly closed (in M) if N∗M = N .
(2) A local ring A in which every ideal is tightly closed is called weakly

F -regular. A ring whose localization is always weakly F -regular is
called F -regular.

(3) Suppose that A is F -finite, that is, 1A is finitely generated as an A-
module. A is said to be strongly F -regular if for any element c ∈ A0

there exists q = pe such that the A-linear map A → A1/q defined by
a→ c1/qa is split injective.

(4) A Noetherian ring R is F -regular (resp. weakly F -regular, strongly
F -regular) if and only if so is Rm for every maximal ideal m.

Remark 1. Strongly F -regular rings are F -regular. In general, it is
not known whether the converse is true, but it is known that F -finite Q–
Gorenstein weakly F -regular rings are always strongly F -regular; see [AM],
[Mc], [Wi].

The notion of Hilbert-Kunz multiplicity plays the central role in this paper.

Definition 1.2 ([Ku2], [Mo]). Let I be an m-primary ideal in A and M
a finite A-module. Then we define the Hilbert-Kunz multiplicity eHK(I, M)
of I with respect to M as

eHK(I, M) := lim
e→∞

lA(M/I [pe]M)
pde

.

By definition, we put eHK(I) := eHK(I,A) and eHK(A) := eHK(m).
Also, the multiplicity e(I) of I is defined as

e(I) = lim
n→∞

d! · lA(A/In)
nd

.

Let I ⊆ I ′ be m-primary ideals in A. Then it is known that I ′ and I have
the same integral closure (i.e., I ′ = I) if and only if e(I) = e(I ′). A similar
result holds for tight closures and the Hilbert-Kunz multiplicities.
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Lemma 1.3 (cf. [HH2, Theorem 8.17]). Let I ⊆ I ′ be m-primary ideals in
A.

(1) If I ′ ⊆ I∗, then eHK(I) = eHK(I ′).
(2) Assume further that A is equidimensional. Then the converse of (1)

is also true.

1.3. Minimal relative Hilbert-Kunz multiplicity. Our work is moti-
vated by the following question.

Question 1.4. What is the minimal value of the difference eHK(I) −
eHK(I ′) for m-primary ideals I ′ ⊇ I with lA(I ′/I) = 1?

In order to represent the “difference”, we define the following notion.

Definition 1.5 (Relative Hilbert-Kunz multiplicity). Let L be an A-
module, and let N ⊆ M be finite A-submodules of L with lA(M/N) < ∞.
Then we set

eHK(N,M ;L) := lim inf
e→∞

lA(M [pe]
L /N

[pe]
L )

pde
.

We call eHK(N,M ;L) the relative Hilbert-Kunz multiplicity with respect to
N ⊆ M of L. In particular, eHK(I, I ′ ;A) = eHK(I)− eHK(I ′) for m-primary
ideals I ⊆ I ′ in A.

Using the notion of relative Hilbert-Kunz multiplicity, we introduce the
following two notions.

Definition 1.6 (Minimal relative Hilbert-Kunz multiplicity). Let z be a
generator of the socle Soc(EA) := {x ∈ EA |mx = 0} of EA. Then we put

mHK(A) := eHK(0,Soc(EA) ;EA) = lim inf
e→∞

lA(A/ annA(zp
e

))
ped

,

where zp
e

= F
e
A(z) ∈ F eA(EA). We call mHK(A) the minimal relative Hilbert-

Kunz multiplicity of A. Also, we put

m̃HK(A) := inf{eHK(I, I ′;A) | I ⊆ I ′ ⊆ A such that lA(I ′/I) = 1}.
We call m̃HK(A) the minimal relative Hilbert-Kunz multiplicity for cyclic mod-
ules of A.

The following proposition justifies our definition of minimal relative Hilbert–
Kunz multiplicity.

Proposition 1.7. mHK(A) is the minimal number among all relative
Hilbert-Kunz multiplicities of all A-modules. That is,

mHK(A) = inf

eHK(N,M ;L)
∣∣∣∣ L: A-module
N ⊆M : finite A-submodules of L
with lA(M/N) = 1.

 .
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In particular, mHK(A) ≤ m̃HK(A).

Proof. Since EA ∼= EÂ, mHK(A) = mHK(Â). Also, since eHK(N̂ , M̂ ;L⊗A
Â) = eHK(N,M ;L), we may assume A is complete. Let L be an A-module
and let N ⊆M be A-submodules of L with lA(M/N) = 1.

Let z be a generator of the socle of EA and take an element x ∈M \N such
that M = N + Ax with mx ⊆ N . By Matlis duality, one can take a nonzero
homomorphism φ ∈ HomA(M,EA) such that φ(N) = 0 and φ(M) 6= 0. Then
we may assume φ(x) = z, since φ(x) is a generator of Soc(EA).

It suffices to show that annA(xq+N [q]) ⊂ annA(zq). But this is clear, since
if axq = 0, then azq = aφ(xq) = φ(axq) = 0. �

Now let (A, m, k) be a d-dimensional Cohen–Macaulay local ring of char-
acteristic p > 0. Then the highest local cohomology Hd

m(A) may be identified
with lim−→A/(an1 , . . . , a

n
d )A, where a1, a2, . . . , ad is a system of parameters for

A and the maps in the direct limit system are given by multiplication by
a =

∏d
i=1 ai. Any element η ∈ Hd

m(A) can be represented as the equivalence
class [x+ (an1 , . . . , a

n
d )] for some x ∈ A and some integer n ≥ 1.

Considering the Frobenius action to Hd
m(A), we have

F
e
A(Hd

m(A)) ∼= lim−→A/(anq1 , . . . , anqd ) = Hd
m(A),

where q = pe. Then ηq = [xq + (anq1 , . . . , anqd )] ∈ Hd
m(A) for η = [x +

(an1 , . . . , a
n
d )] ∈ Hd

m(A); see [Sm] for more details.
The following properties of mHK follows from [WaY1, Theorem 1.5].

Proposition 1.8. The following statements hold.
(1) 0 ≤ mHK(A) ≤ m̃HK(A) ≤ 1.
(2) m̃HK(A) = 1 (resp. mHK(A) = 1) if and only if A is regular.
(3) If m̃HK(A) > 0, then A is weakly F -regular.
(4) Suppose that A is F -finite. If mHK(A) > 0, then A is strongly F -

regular.

Proof. If A is not weakly F -regular, there exists an m-primary ideal I such
that I 6= I∗. Taking an ideal I ′ with I ⊆ I ′ ⊆ I∗ and lA(I ′/I) = 1, we
have eHK(I) = eHK(I ′) by Lemma 1.3(1). Hence m̃HK(A) = 0. Also, if A is
F -finite and not strongly F -regular, then mHK(A) = 0.

If A is regular, then eHK(I) = lA(A/I) for any m-primary ideal of A. Hence
mHK(A) = m̃HK(A) = 1. Conversely, if m̃HK(A) ≥ 1, then A is weakly F -
regular and thus is Cohen–Macaulay (cf. [HH3]). Take a parameter ideal J
of A. Then eHK(J) = e(J) = lA(A/J). By the assumption that m̃HK(A) ≥ 1,
we get

eHK(m) ≤ eHK(J)− lA(m/J) = lA(A/J)− lA(m/J) = 1.

Hence A is regular by [WaY1, Theorem 1.5]. �
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In Section 3, we will give an affirmative answer to the following question
in case of Q–Gorenstein F -regular local rings.

Question 1.9. Is the converse of Proposition 1.8(3) true?

Remark 2. Aberbach and Leuschke [AL] proved that an F -finite local
ring A is strongly F -regular if and only if its F -signature s(A) (which is equal
to mHK(A) by Yao’s result) is positive provided s(A) exists.

The following question is related to the localization problem of F -regularity.

Question 1.10. When does m̃HK(A) = mHK(A) hold?

We expect that this always holds. We will give a proof for Gorenstein local
rings in the next section. See also [Ya] for a stronger result.

2. Gorenstein local rings

In this section, we prove that if (A,m) is a Gorenstein local ring, then
eHK(J)− eHK(J : m) is independent of the choice of parameter ideal J of A.
In fact, this invariant is equal to mHK(A), defined in the previous section.

In the following, let (A,m, k) be an excellent reduced local ring containing
an infinite field of characteristic p > 0, unless specified.

Theorem 2.1. Suppose that A is Gorenstein. Then for any m-primary
ideal J of A such that pdAA/J <∞ and A/J is Gorenstein, we have

eHK(J)− eHK(J : m) = mHK(A).

In particular, m̃HK(A) = mHK(A).

Proof. First, we consider the case of parameter ideals. Put J = (a1, . . . , ad).
Since A is Gorenstein, EA ∼= Hd

m(A). The generator z of Soc(EA) can be writ-
ten as z = [b+J ], where b is a generator of Soc(A/J). For any element c ∈ A
and for all q = pe,

czq = cF eA([b+ J ]) = [cbq + J [q]] = 0 ∈ Hd
m(A)

if and only if there exists an integer n ≥ 1 such that

cbq ∈ (anq1 , . . . , anqd ) : (an−1
1 · · · an−1

d )q = J [q].

It follows that annA zq = J [q] : bq. Hence we get

mHK(A) = lim
e→∞

lA(A/J [q] : bq)
qd

= lim
e→∞

lA((J : m)[q]/J [q])
qd

= eHK(J)− eHK(J : m),

as required.
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Next we consider the general case. Let J be an m-primary ideal such that
pdAA/J < ∞ and A/J is Gorenstein. Take a parameter ideal q which is
contained in J . Then it is enough to show the following claim:

Claim. eHK(J)− eHK(J : m) = eHK(q)− eHK(q : m).

As q ⊆ J , there exists a natural surjective map A/q → A/J . Also, since
both A/q and A/J are Artinian Gorenstein local rings, we have the following
commutative diagram:

0→ A = F ′d→ · · · →Ad −−−−→ A −−−−→ A/q→ 0

δ

y y y ynat

0→ A = Fd→ · · · →An −−−−→ A −−−−→ A/J→ 0,

where the horizontal sequences are minimal free resolutions of A/q and A/J ,
respectively. In particular, the map F ′d → Fd is given by the multiplication of
an element (say δ). Then we have J = q : δ. If we apply the Peskine–Szpiro
functor to the above diagram, then we also get J [q] = q[q] : δq for all q = pe.

Since lA(J : m/J) = 1, there exists an element a ∈ J : m \ J such that
J : m = J + aA. Then one can easily see that mδa ⊆ q and δa /∈ q; thus
q : m = q + δaA. Then, since J [q] : aq = (q[q] : δq) : aq = q[q] : (δa)q, we get

lA((J : m)[q]/J [q]) = lA(A/(J [q] : aq)) = lA(A/(q[q] : (δa)q))

= lA((q : m)[q]/q[q])

for all q = pe. The required assertion easily follows from this. �

By virtue of Theorem 2.1, we can prove that the converse of Proposition
1.8(3) is also true for Gorenstein local rings.

Corollary 2.2. Let e(A) denote the usual multiplicity of A. If A is
weakly F -regular and Gorenstein, then m̃HK(A) = mHK(A) > 0. If, in addi-
tion, e(A) ≥ 2, then

mHK(A) ≤ e(A)− eHK(A)
e(A)− 1

.

Proof. Suppose that A is weakly F -regular. Let J be any parameter ideal
of A. Then, since J : m 6⊆ J = J∗, we have eHK(J) 6= eHK(J : m) by Lemma
1.3(2). Hence we have mHK(A) = eHK(J)− eHK(J : m) > 0 by Theorem 2.1.

To see the last inequality, taking a minimal reduction J of m, we have

eHK(J)− eHK(m) ≥ lA(m/J) ·mHK(A).

This yields the required inequality, since eHK(J) = e(J) = e(A). �
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Remark 3. In [HuL], Huneke and Leuschke independently proved a result
similar to Corollary 2.2 with respect to F -signature. Also, Yao [Ya] extended
this result to F -finite local rings A such that AP is Gorenstein for every
P ∈ SpecA \ {m}.

Example 2.3. Assume that A is a hypersurface local ring of multiplicity
2. Then we have mHK(A) = 2− eHK(A).

Proof. Let J be a minimal reduction of m. Since lA(A/J) = 2 and J :
m = m, we have mHK(A) = eHK(J) − eHK(J : m) = e(J) − eHK(m) =
2− eHK(A). �

Let A be a two-dimensional Gorenstein F -regular local ring which is not
regular. Then e(A) = 2, since A has minimal multiplicity. Moreover, suppose
that k is an algebraically closed field. Then it is known that the m-adic
completion Â of A is isomorphic to the completion of the invariant subring
by a finite subgroup G ⊆ SL(2, k) which acts on a polynomial ring k[x, y].
Furthermore, we have eHK(A) = 2− 1/|G|; see [WaY1, Theorem 5.1]. Hence
mHK(A) = 1/|G| by Example 2.3. This result will be generalized in Section
4.

By the above observation, we have an inequality mHK(A) ≤ 1
2 for hy-

persurface local rings with dimA = e(A) = 2. We can extend this result to
hypersurface local rings of higher dimension in the following form.

Proposition 2.4. Suppose that A is a hypersurface with e(A) = dimA =
d ≥ 1. Then

mHK(A) ≤ 1
2d−1 · (d− 1)!

.

Proof. By Proposition 1.8(3) we may assume that A is a complete F -regular
local domain. Let J be a minimal reduction of m. Take an element x ∈ m
such that m = xA+ J . Then, since xd−1 is a generator of Soc(A/J), we have

mHK(A) = lim
q→∞

lA(Ax(d−1)q + J [q]/J [q])
qd

by Theorem 2.1. For any q = pe, we have the following claim.

Claim. lA(Ax(d−1)q + J [q]/J [q]) ≤ 2 · lA(A/mb
q+1

2 c).

To prove the claim, we put B = A/J [q], y = x(d−1)q and a = mb
q+1

2 c. Then,
since ya2 ⊆ x(d−1)qmq ⊆ mdq ⊆ J [q], we have yaB ⊆ 0 : aB = KB/aB . By
Matlis duality, we get

lA(yB) ≤ lA(yB/yaB) + lA(yaB) ≤ 2 · lB(B/aB) ≤ 2 · lA(A/a),

as required. Since lA(A/mn) = e(A)
d! n

d + O(nd−1) for all large enough n, the
assertion easily follows from the claim. �
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Discussion 2.5. Let (A,m) be a three-dimensional F -regular hypersur-
face local ring. Then eHK(A) ≥ 2

3e(A) by the following formula (see [BC],
[BCP]):

eHK(A) ≥ e(A)
π

∫ ∞
−∞

(
sin θ
θ

)d+1

dθ =
e(A)
2dd!

b d2 c∑
i=0

(−1)i(d+ 1− 2i)d
(
d+ 1
i

)
.

In particular, if furthermore e(A) = 3, then eHK(A) ≥ 2
3 · 3 = 2. Thus

mHK(A) ≤ 3−2
3−1 = 1

2 by Corollary 2.2. On the other hand, Proposition 2.4
implies that mHK(A) ≤ 1

8 .

Question 2.6. Let d be an integer with d ≥ 2, and let

A = k[[x0, x1, . . . , xd]]/(xd0 + xd1 + · · ·+ xdd),

where k is a field of characteristic p > 0. Does mHK(A) = 1/(2d−1(d− 1)!)
hold if p > d?

3. Canonical covers

In the previous section, we have shown how to compute mHK(A) in the
case of Gorenstein local rings. In this section, we study the minimal Hilbert-
Kunz multiplicity in the case of Q–Gorenstein F -regular local rings using the
canonical cover.

Let us recall the notion of canonical cover. Let A be a normal local ring
and let I be a divisorial ideal (i.e., an ideal of pure height one) of A. Also,
let Cl(A) denote the divisor class group of A. Suppose that cl(I) is a torsion
element in Cl(A), that is, I(r) :=

⋂
P∈AssA(A/I) I

rAP ∩ A is a principal ideal
for some integer r ≥ 1. Putting r = ord(cl(I)), one can write as I(r) = fA
for some element f ∈ A. Then a Zr-graded A-algebra

B(I, r, f) := A⊕ I ⊕ I(2) ⊕ · · · ⊕ I(r−1) =
r−1∑
i=0

I(i)ti, where trf = 1,

is called the r-cyclic cover of A with respect to I. Also, suppose that r is
relatively prime to p = char(A) > 0. Then B(I, r, f) is a local ring with the
unique maximal ideal n := m ⊕ I ⊕ · · · ⊕ I(r−1), and the natural inclusion
A ↪→ B(I, r, f) is étale in codimension one; thus B(I, r, f) is also normal.

We further assume that A admits a canonical module KA. Note that
one can regard KA as an ideal of pure height one. The ring A is called Q–
Gorenstein if cl(KA) is a torsion element in Cl(A). Put r := ord(cl(KA)) <∞.
Then the r-cyclic cover with respect to KA

B := A⊕KA ⊕K(2)
A ⊕ · · · ⊕K

(r−1)
A

is called the canonical cover of A.
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Using the canonical cover, we can reduce the Q–Gorenstein case to the
Gorenstein case. The main result of this section is the following.

Theorem 3.1. Let (A, m, k) be a Q–Gorenstein F -regular local ring of
characteristic p > 0 and let B = ⊕r−1

i=0K
(i)
A ti be the canonical cover of A,

where r is the order of cl(KA) in Cl(A) and trf = 1. Also, suppose (r, p) = 1.
Then we have

mHK(B) = r ·mHK(A).

The following corollary gives a partial answer to Question 1.9.

Corollary 3.2. Let A be a Q–Gorenstein F -regular local ring of char-
acteristic p > 0 such that (ord(cl(KA)), p) = 1. Then mHK(A) > 0.

To prove Theorem 3.1, let us recall some properties of canonical covers.

Lemma 3.3. Let (A, m, k) be a Cohen-Macaulay normal local ring, and
suppose that A is Q–Gorenstein. Let B = ⊕r−1

i=0K
(i)
A ti be the canonical cover

of A, where K(r)
A = fA and trf = 1A. Then the following statements hold.

(1) B is quasi-Gorenstein, that is, B ∼= KB as B-modules. In particular,
B is Gorenstein if it is Cohen-Macaulay.

(2) If (r, p) = 1, then A is strongly F -regular if and only if so is B.

If we further assume that B is Cohen-Macaulay, then we also have:

(3) The injective hull EB := EB(B/n) of B/n is given as follows:

EB =
r−1⊕
i=0

Hd
m(K(i)

A )ti.

(4) SocB(EB) = HomB(B/n, EB) is generated by zt, where z is a gener-
ator of the socle of EA ∼= Hd

m(KA).

Proof. Assertion (1) follows from [TW, Sect.3] and assertion (2) follows
from [Wa3, Theorem 2.7].

In the following, assume that B is Cohen-Macaulay. Then, since B is
Gorenstein by (1) and mB is n-primary, we have

EB ∼= Hd
n(B) ∼= Hd

m(B) ∼=
r−1⊕
i=0

Hd
m(K(i)

A )ti.

Thus we get assertion (3). To see (4), it is enough to show that zt ∈ SocB(EB),
since dimk SocB(EB) = 1. Namely, we must show that az = 0 in Hd

m(K(i+1)
A )

for all i with 1 ≤ i ≤ r − 1 and for all a ∈ K(i)
A .
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Fix an integer i with 1 ≤ i ≤ r−1 and suppose that 0 6= a ∈ K(i)
A . Applying

the local cohomology functor to the short exact sequence

0→ KA
a−→ K

(i+1)
A → K

(i+1)
A /aKA → 0

implies that

0 = Hd−1
m (K(i+1)

A )→ Hd−1
m (K(i+1)

A /aKA)→ Hd
m(KA) a−→ Hd

m(K(i+1)
A ),

where the first vanishing follows from the fact that K(i+1)
A is a direct summand

of a maximal Cohen-Macaulay A-module B. To get the lemma, it is enough
to show the following claim:

Claim. Hd−1
m (K(i+1)

A /aKA) 6= 0.

Since A is Cohen-Macaulay, aKA
∼= KA is a maximal Cohen–Macaulay

A-module, hence a divisorial ideal of A. If K(i+1)
A /aKA = 0, then (i +

1) div(KA) = div(KA) + div(a), and thus i · cl(KA) = 0, contradicting r =
ord(cl(KA)). Hence K(i+1)

A /aKA 6= 0 and dimK
(i+1)
A /aKA = d − 1. We get

the claim, as required. �

Proof of Theorem 3.1. We fix a system of parameters x1, . . . , xd of A.
Since A is Cohen–Macaulay, we have EA = Hd

m(KA) = lim−→ KA/x
[q]KA. Also,

one can regard the Frobenius map F eA in EA as

F eA : EA → F
e
A(EA) ∼= Hd

m(K(q)
A ) = lim−→K

(q)
A /x[n]K

(q)
A(

[b+ xKA] 7→ [bq + x[q]K
(q)
A ]
)

;

see [Wa3] for details. Thus we have

(3.1) mHK(A) = lim inf
q→∞

lA

(
zqA+ x[q]K

(q)
A

x[q]K
(q)
A

)/
qd.

On the other hand, since zt ∈ KAt generates the socle of EB by Lemma
3.3, we have

(3.2) mHK(B) = lim
q→∞

lA

(
zqtqB + x[q]B

x[q]B

)/
qd

by Theorem 2.1. Also, as B is a Z/rZ-graded ring (in particular, K(i+r)
A ti+r =

K
(i)
A ti), (3.1) can be reformulated as follows:

(3.3) mHK(B) =
r−1∑
i=0

lim
q→∞

lA

(
zqK

(i)
A + x[q]K

(i+q)
A

x[q]K
(i+q)
A

)/
qd.

If necessary, we may assume that q ≡ 1 (mod r). Taking a nonzero element
ai ∈ K(i)

A for each i with 0 ≤ i ≤ r−1, we consider the following commutative
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diagram with exact rows:

0→Kq −−−−→
zqA+ x[q]K

(q)
A

x[q]K
(q)
A

ai−−−−→
zqK

(i)
A + x[q]K

(i+q)
A

x[q]K
(i+q)
A

−−−−→ Cq→ 0y yinj. yinj. y
0→Xq −−−−→

K
(q)
A

x[q]K
(q)
A

ai−−−−→
K

(i+q)
A

x[q]K
(i+q)
A

−−−−→ Yq→ 0.

In order to complete the proof of the theorem, it suffices to prove the
following claim.

Claim. lim
q→∞

lA(Kq)
qd

= lim
q→∞

lA(Cq)
qd

= 0.

First, note that if N is a finitely generated A-module with dimN ≤ d− 1,
then lA(N/x[q]N)/qd = 0. By the definition of Yq, we have

Yq = K
(i+q)
A /(aiK

(q)
A + x[q]K

(i+q)
A ) ∼=

(
K

(i+1)
A /aiKA

)
⊗A A/x[q].

Since dimK
(i+1)
A /aiKA ≤ d − 1, we get lim

q→∞
lA(Yq)/qd = 0. On the other

hand, as q ≡ 1 (mod r), we have

lim
q→∞

lA(K(q)
A /x[q]K

(q)
A )

qd
= eHK(x) · rankAKA = eHK(x),

lim
q→∞

lA(K(i+q)
A /x[q]K

(i+q)
A )

qd
= eHK(x) · rankAK

(i+1)
A = eHK(x).

That is, lim
q→∞

lA(Xq)/qd = lim
q→∞

lA(Yq)/qd = 0 and thus lim
q→∞

lA(Kq)/qd = 0.

On the other hand,

Cq =
zqK

(i)
A + x[q]K

(i+q)
A

aizqA+ x[q]K
(i+q)
A

∼=
zqK

(i)
A

aizqA+ zqK
(i)
A ∩ x[q]K

(i+q)
A

=
zqK

(i)
A

aizqA+ zq[K(i)
A ∩ (x[q]K

(i+q)
A : zq)]

∼=
K

(i)
A

aiA+ [K(i)
A ∩ (x[q]K

(i+q)
A : zq)]

.

Since m[q]K
(i)
A ⊆ K

(i)
A ∩ (x[q]K

(i+q)
A : zq) by the choice of z ∈ KA, we get

lA(Cq) ≤ lA(K(i)
A /aiA+ m[q]K

(i)
A ) = lA(K(i)

A /aiA⊗A A/m[q]).

By a similar argument as above we obtain lim
e→∞

l(Cq)/qd = 0, as required. �
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Question 3.4. Let A be a weakly F -regular local ring, and let I be
a divisorial ideal of A such that cl(I) has a finite order (say r ). If B =
A⊕It⊕I(2)t2⊕· · ·⊕I(r−1)tr−1, the r-cyclic cover, does mHK(B) = r ·mHK(A)
(resp. m̃HK(B) = r · m̃HK(A)) hold ?

4. Quotient singularities

In this section, as an application of Theorem 3.1, we study the minimal
Hilbert-Kunz multiplicities for quotient singularities (i.e., the invariant sub-
rings by a finite group; see below for the precise definition). In general, quo-
tient singularities are not necessarily Gorenstein, but they are Q–Gorenstein
normal domains. Thus, using the canonical cover trick, we can reduce our
problem to the case of Gorenstein rings.

Let k be a field and V a k-vector space of finite dimension (say d = dimk V ).
Assume that a finite subgroup G of GL(V ) ∼= GL(d, k) acts linearly on S :=
Symk(V ) ∼= k[x1, . . . , xd], a polynomial ring with d variables over k. Then

SG := {f ∈ S : g(f) = f for all g ∈ G}

is said to be the invariant subring of S by G.
In this section, we consider only the case of positive characteristic (say

p = char(k)), and assume that the order |G| is non-zero in k, that is, |G| is
not divisible by p. Then, using the Reynolds operator

ρ : S → SG
(
a 7→ 1

|G|
∑
g∈G

g(a)
)
,

we can show that SG is a direct summand of S. Put n = (x1, . . . , xd)S and
m = n∩SG. Then the ring A = (SG)m is said to be a quotient singularity (by
a finite group G). A quotient singularity is a Q–Gorenstein strongly F -regular
domain, but not always Gorenstein; see, e.g., [Wa1], [Wa2] for details.

In [WaY1], we gave a formula for Hilbert-Kunz multiplicity eHK(A) of
quotient singularities as follows.

Theorem 4.1 (cf. [WaY1, Theorem 2.7], [BCP]). Under the same nota-
tion as above, we have

eHK(I) =
1
|G|

lA(Sn/ISn),

for every m-primary ideal I in A. In particular, eHK(A) = 1
|G| µA(Sn), where

µA(M) denotes the number of minimal system of generators of a finite A-
module M .

The main purpose of this section is to prove the following theorem.
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Theorem 4.2. Let A = (SG)m be a quotient singularity by a finite group
G as described above. Also, assume that G contains no pseudo-reflections.
Then we have

mHK(A) =
1
|G|

.

Proof. First, suppose that G ⊆ SL(d, k). Then SG is Gorenstein by [Wa1,
Theorem 1a]. Since G acts linearly on S, SG is a graded subring of S. Thus
one can take a homogeneous system of parameters a1, . . . , ad of SG with
the same degree m. Also, we may assume that m is a multiple of |G|. Put
J = (a1, . . . , ad)SG. Then, since S/JS is a homogeneous Artinian Gorenstein
ring having the same Hilbert function as that of S/(xm1 , . . . , x

m
d )S, there exists

an element z ∈ Sd(m−1) which generates Soc(S/JS). Then we have z ∈ SG.
This follows from the proof of [Wa1, Theorem 1a], but since it is an essential
point in the proof, we sketch the argument here.

To see that z ∈ SG, it is enough to show that z ∈ S〈g〉 for any element
g ∈ G. The property z ∈ S〈g〉 does not change if we consider S ⊗k k instead
of S, where k is the algebraic closure of k. Therefore we may assume k = k
and further that g is diagonal. Then x1 · · ·xd ∈ S〈g〉 and xmi ∈ S〈g〉, since
det(g) = 1 and m is a multiple of |G|. If we put (x)[m] = (xm1 , · · · , xmd ), then

dimk[S〈g〉/JS〈g〉]d(m−1) = dimk[S〈g〉/(x)[m]S〈g〉]d(m−1) ≥ 1.

On the other hand, since JS〈g〉 = JS ∩ S〈g〉, we have

dimk[S〈g〉/JS〈g〉]d(m−1) ≤ dimk[S/JS]d(m−1) = 1.

It follows that z ∈ SG, as required.
Now let J , z be as above. Then JA : mA = (J, z)A and JS : n = (J, z)S.

Hence

eHK(JA)− eHK(JA : mA) =
1
|G|

lA(Sn/JSn)− 1
|G|

lA(Sn/(J : m)Sn)

=
1
|G|

lSn(JSn : n/JSn) =
1
|G|

.

The required assertion follows from Theorem 2.1.
Next, we consider the general case. If we put H = G∩SL(n, k), then SH is

Gorenstein by [Wa2, Theorem 1]. Further, since H is a normal subgroup of G
and G/H is a finite subgroup of k×, G/H is a cyclic group. Say G/H = 〈σH〉
and r = |G/H|. Also, SG = (SH)〈σ〉. Then B = (SH)n∩SH is a cyclic r-cover
of A = (SG)m. In fact, it is known that B is isomorphic to the canonical cover
of A:

B ∼= A⊕KAt⊕K(2)
A t2 ⊕ · · · ⊕K(r−1)

A tr−1,

where K(r)
A = fA, trf = 1; see [TW] for details.
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Since mHK(B) = 1 /|H|, by Theorem 3.1, we get

mHK(A) =
1
r
mHK(B) =

1
(G : H)|H|

=
1
|G|

,

as required. �

Conjecture 4.3. Under the same notation as in Theorem 4.2, m̃HK(A) =
1/|G|.

5. Toric rings and Segre products

We first give a general formula for mHK(A) in the case of a normal toric ring
A. For simplicity, we denote the minimal relative Hilbert-Kunz multiplicity of
the local ring at the unique graded maximal ideal by mHK(A). To formulate
our result, let us fix some notation.

Let M , N ∼= Z
d be dual lattices, and denote the duality pairing of MR =

M ⊗Z R with NZ = N ⊗Z R by 〈 , 〉 : MR ⊗NR → R. Let σ be a strongly
convex rational polyhedral cone, and set σ∨ = {m ∈ MR | 〈m,n〉 ≥ 0 for all
n ∈ σ}. Let A = k[σ∨ ∩M ] be a normal toric ring, and let n1, . . . , ns be
primitive generators of σ. Then A = k[xm | 〈m,ni〉 ≥ 0 for all i].

Theorem 5.1. Let k be a field of characteristic p > 0, and let A =
k[σ∨ ∩M ] be a normal toric ring. Under the above notation, we have

mHK(A) = vol{m ∈MR | 0 ≤ 〈m,ni〉 ≤ 1 for all i},
where vol(W ) denotes the relative volume of an integral polytope W ∈ MR

(see [St, pp. 239]).

Proof. By [HaY, Section 4], we have

EA = Hd
m(KA) ∼=

⊕
〈m,ni〉≤0 (∀i)

kxm,

where the socle is generated by z = 1 and

EA ⊗ eA ∼= Hd
m(K(q)

A ) ∼=
⊕

〈m,ni〉≤q−1 (∀i)

kxm.

Since the Frobenius action is given by F e : EA → F eA(EA), xm 7→ xmq, the
annihilator of zq = 1 is given by the direct sum⊕

0≤〈m,ni〉≤q−1,m 6=0

kxm,

whose length is ]{m ∈ M | 0 ≤ 〈m,ni〉 ≤ q − 1 (∀i),m 6= 0}. We obtain the
desired result by dividing by qd and letting q tend to ∞. �

Remark 4. In [Wa4], the first-named author gave a formula for Hilbert-
Kunz multiplicities of normal toric rings.
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Example 5.2. Let k be a field and An = k[x−nT, x−n+1T, . . . , T, xT, yT,
xyT ], where x, y, T are variables and n is a non-negative integer. Then the
generators of σ and σ∨ are given, respectively, by

σ = 〈(0, 1, 0), (−1, 0, 1), (0,−1, 1), (1,−n, n)〉 ,
σ∨ = 〈(−n, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1)〉 .

Since the volume of the region given by

{(x, y, z) ∈ R3 | 0 ≤ y ≤ 1, x ≤ z ≤ x+1, y ≤ z ≤ y+1, ny ≤ x+nz ≤ ny+1}

is 5/(6(n+ 1)), we have mHK(An) = 5/(6(n+ 1)).

Next, we will calculate mHK(A) for a “Segre Product” of two polynomial
rings. In the remainder of this section, let k be a perfect field of characteristic
p > 0, and let R = k[x1, . . . , xr] (resp. S = k[y1, . . . , ys]) be a polynomial
ring with r variables (resp. s variables) over k. We regard these rings as
homogeneous k-algebras with deg(xi) = deg(yj) = 1 as usual. We define the
graded subring A = R#S of R⊗k S by putting An := Rn⊗Sn for all integers
n ≥ 0. Then A = R#S is said to be the Segre product of R and S. In fact, the
ring A is the coordinate ring of the Segre embedding Pr−1 × Ps−1 ↪→ P

rs−1.
Since the Segre product A is a direct summand of R ⊗k S (which is iso-

morphic to a polynomial ring with r + s variables), it is a strongly F -regular
domain. Further, it is known that dimA = r+ s− 1 and e(A) =

(
r+s−2
r−1

)
; see

[GW, Chapter 4] for more details.
Before giving a formula for mHK(A) of Segre products, we recall related

results. In [BCP], Buchweitz, Chen and Purdue have given the Hilbert-Kunz
multiplicity eHK(A) of A. Also, Eto and the second-named author [EtY]
simplified their result in terms of “Stirling numbers of the second kind” as
follows.

Theorem 5.3 (cf. [BCP, 2.2.3], [EtY, Theorem 3.3], [Et]). Suppose that
2 ≤ r ≤ s and put d = r + s− 1. Let A = k[x1, . . . , xr]#k[y1, . . . , ys]. Then

eHK(A) =
s!
d!
S(d, s)− 1

d!

r−1∑
k=1

r−k∑
j=1

(
r

k + j

)(
s

j

)
(−1)r+kkd,

where S(n, k) denotes the Stirling number of the second kind; see below.

Stirling numbers of the second kind also play an important role in the study
of the minimal Hilbert-Kunz multiplicity of the Segre product, so we recall
their definition.

Definition 5.4 ([St, Chapter 1, §1.4]). We denote by S(n, k) the number
of partitions of the set [n] := {1, . . . , n} into k blocks. The number S(n, k) is
called the Stirling number of the second kind.
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The following properties are well-known; see [St].

Fact 5.5. If we denote by S(n, k) the Stirling number of the second kind,
then ∑

n≥k

S(n, k)
xn

n!
=

1
k!

(ex − 1)k.

In particular,

S(n, k) =
1
k!

k∑
i=0

(−1)k−i
(
k

i

)
in,

S(n, 2) = 2n−1 − 1,

S(n, n− 1) =
(
n

2

)
.

Example 5.6. Let A = R#S = k[x1, x2]#k[y1, . . . , ys], which is isomor-
phic to the Rees algebra S[nt] over S. Then

eHK(A) = s

(
1
2

+
1

(s+ 1)!

)
.

In the following, we will give a formula for the minimal Hilbert-Kunz multi-
plicity of the Segre product. Let A be the Segre product of R and S described
as above, i.e., A = R#S = k[x1, . . . , xr]#k[y1, . . . , ys], and suppose that
2 ≤ r ≤ s. Put d = r + s− 1(= dimA) and set

m = (x1, . . . , xr)R, n = (y1, . . . , ys)S, and M = m#n =
∞⊕
n=1

Rn ⊗ Sn.

Then the graded canonical module KA of A is isomorphic to KR#KS by [GW,
Theorem 4.3.1]. (In particular, A is Gorenstein if and only if r = s.) Thus,
by virtue of [GW, Theorem 4.1.5], we get

EA = Hd
M(KA) = Hd

M(KR#KS) = Hr
m(KR)#Hs

n(KS) = ER#ES .

Further, since ER can be represented as a graded module k[x−1
1 , . . . , x−1

r ],
which is called the inverse system of Macaulay, we have

EA ∼= k[x−1
1 , . . . , x−1

r ]#k[y−1
1 , . . . , y−1

s ].

Then z = 1#1 ∈ EA generates the socle of EA.
Using this, we obtain:
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Proposition 5.7. Let A = R#S and z = 1#1 be as above. Then:

(5.1) lA(A/ annA(F eA(z))

= #

(a1, . . . , ar, b1, . . . , bs) ∈ Zr+s
∣∣∣∣∣

0 ≤ a1, . . . , ar ≤ q − 1

0 ≤ b1, . . . , bs ≤ q − 1

a1 + · · ·+ ar = b1 + · · ·+ bs

 .

Proof. We use the same notation as in the above argument. Now we shall
investigate the Frobenius action on z in EA. First note that F eA(EA) ∼=
F
e
R(ER)#FeS(ES). Thus it is enough to investigate the Frobenius action of
z1 = 1 in ER. Since ER = Hr

m(R)(−r), that is, Hr
m(R) ∼= (x1 · · ·xr)−1ER,

the generator z1 of Soc(ER) corresponds to the element w1 = (x1 · · ·xr)−1 via
this isomorphism. Then we have F eR(w1) = (x1 · · ·xr)−q, since there exists an
isomorphism

(x1 · · ·xr)−1k[x1, . . . , xr]→ Hr
m(R) = lim−→

n

R/(xn1 , . . . , x
n
r ).(

x−a1
1 · · ·x−arr

)
7→ [xa−a1

1 · · ·xa−arr + (xa)],

where a := max{a1, . . . , ar}. If we identify F eR(ER) with ER, then

F eR(z1) = (x1 · · ·xr) · F e(w1) = (x1 · · ·xr)−(q−1).

Therefore

zq = F eR(z1)#F eS(z2) = (x1 · · ·xr)−(q−1)#(y1 · · · ys)−(q−1) in EA.

For any element c = xa1
1 · · ·xarr #yb11 · · · ybss in R, we have

cF e(z) 6= 0 in EA ⇐⇒


0 ≤ a1, . . . , ar ≤ q − 1,
0 ≤ b1, . . . , bs ≤ q − 1,
a1 + · · ·+ ar = b1 + · · ·+ bs.

Thus we get the required assertion. �

We are now ready to state our main theorem in this section.

Theorem 5.8. Let A = k[x1, . . . , xr]#k[y1, . . . , ys], where 2 ≤ r ≤ s,
and put d = r + s− 1. Then

mHK(A) =
r!
d!
S(d, r) +

1
d!

r−1∑
k=1

r−k∑
j=1

(
r

k + j

)(
s

j

)
(−1)r+kkd,

where S(n, k) denotes the Stirling number of the second kind; see below.
In particular,

eHK(A) +mHK(A) =
r! · S(d, r) + s! · S(d, s)

d!
.
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The following two corollaries easily follow from Theorems 5.3 and 5.8.

Corollary 5.9. Let A = R#S = k[x1, x2]#k[y1, . . . , ys], which is iso-
morphic to the Rees algebra S[nt] over S. Then

mHK(A) =
2s+1 − s− 2

(s+ 1)!
.

Corollary 5.10. Under the same notation as in Theorem 5.8, assume
further that A is Gorenstein, that is, r = s. Then

eHK(A) +mHK(A) =
2 · r!

(2r − 1)!
S(2r − 1, r).

Proof of Theorem 5.8. If we put αr,n := lR(mn/mn+1) =
(
n+r−1
r−1

)
and

αr,n,q := lR(mn/mn−qm[q] + mn+1), then

αr,n,q =
r∑
i=0

(−1)i
(
r

i

)
αr,n−iq.

In fact, αr,n,q is the number of monomials of degree n which appear in the
polynomial

∏r
i=1(1 + xi + x2

i + · · ·+ xq=1
i ). Also, we have

eHK(A) = lim
q→∞

1
qd

r(q−1)∑
n=0

αr,nαs,n,q

+ lim
q→∞

1
qd

s(q−1)∑
n=0

αr,n,qαs,n − lim
q→∞

1
qd

r(q−1)∑
n=0

αr,n,qαs,n,q.

By virtue of Proposition 5.7, we get

mHK(A) = lim
q→∞

1
qd

r(q−1)∑
n=0

αr,n,qαs,n,q.

Hence the required assertion follows from the following lemma. �

Lemma 5.11 (cf. [EtY, Lemmas 3.8 and 3.9]). Under the same notation
as above, we have

lim
q→∞

1
qd

r(q−1)∑
n=0

αr,n,qαs,n =
r!
d!
S(d, r),

lim
q→∞

1
qd

r(q−1)∑
n=0

αr,n,qαs,n,q =
r!
d!
S(d, r) +

1
d!

∑
0<j<i≤r

(
r

i

)(
s

j

)
(−1)r−i+j(i− j)d.



MINIMAL RELATIVE HILBERT-KUNZ MULTIPLICITY 293

References

[AL] I. M. Aberbach and G. J. Leuschke, The F -signature and strong F -regularity,
Math. Res. Lett. 10 (2003), 51–56. MR 2004b:13003

[AM] I. M. Aberbach and B. MacCrimmon, Some results on test elements, Proc. Edin-

burgh Math. Soc. (2) 42 (1999), 541–549. MR 2000i:13005
[BC] R. O. Buchweitz and Q. Chen, Hilbert-Kunz functions of cubic curves and surfaces,

J. Algebra 197 (1997), 246–267. MR 98i:13025
[BCP] R. O. Buchweitz, Q. Chen, and K. Pardue, Hilbert-Kunz functions, preprint, Al-

gebraic Geometry e-print series, Feb. 4, 1997.

[BH] W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge Studies in Ad-
vanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR

95h:13020
[Co] A. Conca, Hilbert-Kunz function of monomial ideals and binomial hypersurfaces,

Manuscripta Math. 90 (1996), 287–300. MR 97g:13006

[Du] S. P. Dutta, Frobenius and multiplicities, J. Algebra 85 (1983), 424–448. MR
85f:13022

[Et] K. Eto, Hilbert-Kunz multiplicity of the Segre product of polynomial rings, Rep.
Res. Nippon Inst. Tech. 30 (2000), 317–327.

[EtY] K. Eto and K. Yoshida, Notes on Hilbert-Kunz multiplicity of Rees algebras,
Comm. Algebra 31 (2003), 5943–5976. MR 2014910

[GW] S. Goto and K.-i. Watanabe, On graded rings. I, J. Math. Soc. Japan 30 (1978),
179–213. MR 81m:13021

[HaM] C. Han and P. Monsky, Some surprising Hilbert-Kunz functions, Math. Z. 214

(1993), 119–135. MR 94f:13008

[HaY] N. Hara and K. Yoshida, A generalization of tight closure and multiplier ideals,
Trans. Amer. Math. Soc. 355 (2003), 3143–3174. MR 1974679

[HH1] M. Hochster and C. Huneke, Tight closure and strong F -regularity, Mém. Soc.
Math. France (N.S.) (1989), 119–133. MR 91i:13025

[HH2] , Tight closure, invariant theory, and the Briançon-Skoda theorem, J.

Amer. Math. Soc. 3 (1990), 31–116. MR 91g:13010
[HH3] , F -regularity, test elements, and smooth base change, Trans. Amer. Math.

Soc. 346 (1994), 1–62. MR 95d:13007
[Hu] C. Huneke, Tight closure and its applications, CBMS Regional Conference Series

in Mathematics, vol. 88, American Mathematical Society, Providence, R.I., 1996.

MR 96m:13001
[HuL] C. Huneke and G. J. Leuschke, Two theorems about maximal Cohen-Macaulay

modules, Math. Ann. 324 (2002), 391–404. MR 2003j:13011

[Ku1] E. Kunz, Characterizations of regular local rings for characteristic p, Amer. J.
Math. 91 (1969), 772–784. MR 40#5609

[Ku2] , On Noetherian rings of characteristic p, Amer. J. Math. 98 (1976), 999–
1013. MR 55#5612

[Mc] B. MacCrimmon, Weak F -regularity is strong F -regularity for rings with isolated

non–Q–Gorenstein points, Trans. Amer. Math. Soc., to appear.
[Mo] P. Monsky, The Hilbert-Kunz function, Math. Ann. 263 (1983), 43–49. MR

84k:13012
[PS] C. Peskine and L. Szpiro, Dimension projective finie et cohomologie locale, Publ.

Math. IHES 42 (1973), 47–119. MR 51#10330
[Se] G. Seibert, The Hilbert-Kunz function of rings of finite Cohen-Macaulay type,

Arch. Math. (Basel) 69 (1997), 286–296. MR 98h:13022

[Sm] K. E. Smith, Tight closure of parameter ideals, Invent. Math. 115 (1994), 41–60.
MR 94k:13006



294 KEI-ICHI WATANABE AND KEN-ICHI YOSHIDA

[St] R. P. Stanley, Enumerative combinatorics. Vol. 1, Cambridge Studies in Ad-
vanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 1997. MR

98a:05001
[TW] M. Tomari and K.-i. Watanabe, Normal Zr-graded rings and normal cyclic covers,

Manuscripta Math. 76 (1992), 325–340. MR 93j:13002

[Wa1] K.-i. Watanabe, Certain invariant subrings are Gorenstein. I, Osaka J. Math. 11
(1974), 1–8. MR 50#7124

[Wa2] , Certain invariant subrings are Gorenstein. II, Osaka J. Math. 11 (1974),

379–388. MR 50#7124
[Wa3] , F -regular and F -pure normal graded rings, J. Pure Appl. Algebra 71

(1991), 341–350. MR 92g:13003
[Wa4] , Hilbert-Kunz multiplicity of Toric rings, Proc. Inst. Nat. Sci. (Nihon

Univ.) 35 (2000), 173–177.

[WaY1] K.-i. Watanabe and K. Yoshida, Hilbert-Kunz multiplicity and an inequality be-
tween multiplicity and colength, J. Algebra 230 (2000), 295–317. MR 2001h:13032

[WaY2] , Hilbert-Kunz multiplicity of two-dimensional local rings, Nagoya Math. J.
162 (2001), 87–110. MR 2002e:13040

[WaY3] , Hilbert-Kunz multiplicity, McKay correspondence and good ideals in two-

dimensional rational singularities, Manuscripta Math. 104 (2001), 275–294. MR
2002d:13024

[Wi] L. J. Williams, Uniform stability of kernels of Koszul cohomology indexed by the
Frobenius endomorphism, J. Algebra 172 (1995), 721–743. MR 96f:13003

[Ya] Y. Yao, Observations on the F -signature of local rings of characteristic p, prelim-

inary version, available at http://www.math.ukans.edu/~yyao/eprint/f-sig.pdf.

Kei-ichi Watanabe, Department of Mathematics, College of Humanities and

Sciences, Nihon University, Setagaya-ku, Tokyo 156–0045, Japan

E-mail address: watanabe@math.chs.nihon-u.ac.jp

Ken-ichi Yoshida, Graduate School of Mathematics, Nagoya University, Chi-

kusa-ku, Nagoya 464–8602, Japan

E-mail address: yoshida@math.nagoya-u.ac.jp


