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ABSTRACT. Let X be a projective variety with Q-factorial singularities, over an algebraically closed field
k of characteristic 0, L an ample Cartier divisor on X, and x a non-singular point of X. We prove that if for
two general points y. z X there exists a rational curve C passing through x, y, z, such that (L. C) 2,
then (X. L)

_
(l", O( )) or (Q", (9( )), a hyperquadric.

O. Introduction

Let X be a non-singular projective algebraic varietyover an algebraically closed
field k. If the anti-canonical divisor -Kx := AdimX TX of X is ample, then X
is called a Fano variety. It is known that the Fano index of X, that is, the largest
integer r > 0 that divides -Kx in the Picard group Pic X of X, is at most dim X + 1.
According to the Kobayashi-Ochiai Theorem [KoO] (see also Theorem 0.7 below), the
projective space I?" and the quadric hypersurface (i.e., the hyperquadric) Q". c I’’+
are the only Fano varieties having Fano indices dim X + and dim X, respectively,
if the characteristic of k is 0. Due to this result, " and Q" are distinguished in
the geography of Fano varieties, and have attracted special attention. In particular,
several subsequent characterizations were obtained ([Moll, [Fuj 1-5], [W], [ChS2]
and [ChM]; cf. [MoS], [CAP], [ChSl], [Zh]; also from a differential geometric point
of view, [Si], [SiY]), stated in terms of properties of Tx or -Kx (see 0.6 and (0.7.2)
below, also [Kol] Chap. V. 3).

The purpose of this paper is to characterize " and Q" in a somewhat different
flavor, that is, to characterize them by means of bounding degrees of rational curves
connecting points (Theorems 0.2, 0.6), after the initial case dealt with in [ABW] (cf.
[Zh2], also Theorems 0.3, 0.5 below). This formalism is traced back to Campana
and Kolldr-Miyaoka-Mori’s works [Cam], [KoMiMol,2,3], where they introduced
the notion of rational connectedness. In particular, they showed that the class of
Fano varieties satisfies this property, strengthening the Miyaoka-Mori’s theorem on
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uniruledness [MiMo]. In this paper we propose an effective variant of their definition
for a polarized variety (0.1,0.4).
0.0. Let k be an algebraically closed field, X a normal projective algebraic variety of
dimension n defined over k, and L an ample Cartier divisor on X.
0.1 (Effective rational connection; cf. [KoMiMo3, 4], [Kol, Chap. IV 3.10. I].) Let
y y. X be s distinct points. Consider the following condition:

(RCgen; y Ys),. For r general points x Xr X, there exists an irre-
ducible rational curve C C., ,. on X such that

Cx, x,. Xl Xr, y y., and (L. C) d.

(Compare this with (RC; yl ,..)d in 0.4 below.) In case s 0, we simply denote
this condition by (RCgen).
We give criteria for the pair (X, L) to be ("’, Op,, )) or Q", 0Q,, )), in terms of

the conditions (RCgen; y y.), for suitable (s,’d, r)’s (Theorem 0.2, cf. 0.3). We
establish our characterizations in the category not only of non-singular projective va-
rieties, but also of projective varieties having at worst Q-factorial singularities, where
every purely codimension subvariety D has an integer multiple mD (m - 0) which
is a Cartier divisor; mD Pic X. This category is considered to be substantial from
the view point of minimal models; it is closed under the birational transforms arising
from the minimal model program (e.g., see [R ], [KaMaMa]). This enlargement was
made possible, first for the log-terminal singularity case by virtue of the improve-
ments of Kobayashi-Ochiai Theorem ([Fuj5], 1, Corollary 1.3, [Sh0], [AI2], cf.
[Fuj 1], [All ]) combined with the Kawamata-Viehweg Vanishing Theorem [Kaw 1],
[V] (cf. [KaMaMa]), and for the general case by virtue of the result of Fujita [Fuj4],
as indicated by Andreatta-Ballico-Winiewski [ABW] and Mella [Me2]. These are
based on the formula describing the tangent spaces of the Hilbert schemes Hom(C, X)
for singular varieties [Kol, Chap. II]. As for the condition "log-terminal singularities",
see also (0.9.2) below.

In this paper we prove the following;

THEOREM 0.2 (a weaker version of Theorem 0.6 Theorem 5.1 ). Let (X, L) be as
in 0.0. Assume that char k 0, and that k has an uncountable cardinality. More-
over assume that X has only Q-factorial singularities. Assume that (X, L) satisfies
(RCgen; x), for some non-singular point x of X. Then (X, L) (", Op,,(l)) or
(Q’, OQ,, )), where Qn is a (possibly singular) hyperquadric in 1"+

We note that Theorem 0.2 (and Theorem 0.6 below) was proved initially under the
extra assumption "X has log-terminal singularities", while Mella pointed out that this
was unnecessary [Me2]. The above Theorem 0.2 is a revised statement after taking
this into account (see (0.9.2) below).

As to the question of isolating In from Q" in the above characterization, one has
the following result, which is essentially proved by Andreatta-Ballico-Winiewski
[ABW], p. 194 (cf. Zhang [Zh2]).
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THEOREM 0.3 (Andreatta-Ballico-Wi,niewski [ABW], cf. Theorem 0.5 (2)
Corollary 4.2) Let (X, L) be as in 0.0. Assume that chark 0. Let x X
be a non-singular point of X. Assume the.fidlowing condition;

(RCflat; x). There exists a flatfamily {CI },r of irreducible rational curves ofX
such that.fi)r every y X, there exists T such that CI x, y, and L C) I.

Then (X, L)
_

(I", O,,(I)).

0.4. In the definition of (RCgen" yi y,,.), (0. ), we may replace "r general points
x Xr in X" by "r points x Xr placed in a sufficiently dense subset of X",
to obtain an analogous but virtually weaker condition. Namely, let S"(X) be the r-th
symmetric product of X, and consider the following assumption;

(RC; y y,,.),. There exists a subset A C St(X) which is not contained
in a countable union of proper Zariski closed subsets of sr(x) (or a uc-dense subset
A of sr(x), in Terminology 2.4), such that for every {x Xr} 6 A, there exists
an irreducible rational curve C.,., ,., on X such that

C.,.. .,. D {x x,., y y,,. }, and (L. C.,.. .,.) d

(see 2. II). In this paper, we deduce the same conclusions as in Theorems 0.2 and
0.3 under this weaker assumption (RC; y y,,.),r, with (s, d, r) (I, I, I) and
(I, 2, 2), respectively:

THEOREM 0.5 (= Proposition 4.1 + Corollary 4.2). Let (X, L) be as in 0.0. As-
sume that char k 0, and that k has an uncountable cardinality. Moreover assume
that (X, L) satisfies (RC; x) (in 0.4),.for some x. Then:

() p(X)= .
(2) (a minor modification of [ABW]) Furthermore we assume that x is a non-

singular point of X; x Reg X, then (X, L)
_

(", 0,, )).

The following is our main result:

THEOREM 0.6 (= Theorem 5.1). Let (X, L) be as in 0.0. Assume that char k 0,
and that k has an uncountable cardinality. Moreover assume that X has -factorial
singularities. If(X, L) satisfies (RC; x)22 (in 0.4)for some x Reg X, then (X, L)

_
(It’’, O,, (I)), or (Q", Oo,, (I)).

We note that Theorem 0.5, seemingly a minor strengthening of the result of
[ABW], is indeed used in an essential way to prove Theorems 0.2 and 0.6 (see the
proof of Proposition 5.4). Due to this technicality, it is more reasonable to consider
(RC; y y.),, rather than (RCgen; y y.),rt. This generalization may also be
related to the question over non-algebraically closed fields ([Kol] Chap. IV. 6; cf.
[Isk2]).
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Our proof relies upon the special case of the following theorem, which is proved
by Kobayashi-Ochiai for the non-singular case, and by Fujita (an alternative algebraic
proof), Shokurov and Alexeev (enlargement. for the log-terminal singulari, case).

THEOREM 0.7 (Kobayashi-Ochiai [KoO], Fujita [Fuji,4], cf. Shokurov [Sh0],
Alexeev [Al2]; cf. [Kac2]) Let (X, L) be as in 0.0. Let n "= dim X. Assume that
char k 0, and that X has only Q-Gorenstein log-terminal singularities.

(1) If-Kx =-- rL in Pic Xfor some r > n + I, then X
_

I".
(2) If -Kx =-- rL in Pic Xfor some r > n, then X

_
I" or Q".

I).8 There is a tight relation between Theorem 0.7 and the Theorems 0.2-6, despite
their rather distinct appearances. Here we clarify the relation, and the partial logical
dependence existing between those, and also explain the feature of our characteriza-
tion in comparison with the prior characterizations collected above.

(0.8.1) First, each of the assumptions of Theorem 0.7 directly implies that X is Fano,
while in Theorems 0.2-0.6 it is not assumed that X is Fano.
(0.8.2) The assumptions of Theorems 0.2-0.6 do not concern the anti-canonical di-
visor -Kx. The condition that L is ample is purely numerical, according to the
Kleiman’s criterion [KI]. So our assumption is stated purely in the language of the
intersection pairing

Pic(X) x CH(X) Z,

and the incidence between the Chow scheme of algebraic l-cycles Chow(X) and
the symmetric power S (X) of X (i.e., the Chow scheme of algebraic 0-cycles of X).
The only non-extrinsic character involved in the assumptions of Theorems 0.2-0.6 is
that the curves C are assumed to be rational. (This was pointed out to us by J. Kollir;
a generalization along this line is obtained in [Kac2]. Also a relevant example is
observed by Iskovskikh-Prokhorov-Shokurov for Del Pezzo surfaces.)

(0.8.3) Assume that X is non-singular. Assume that -Kx rL for some r > n + 1,
as in Theorem 0.7 (1). Then X is Fano (0.8.1), and by the arguments of [Mol] (cf.
[Cam], [KoMiMo3]), for general x, y X, there exists a rational curve C on X
passing through x, y, with (-Kx. C) n + 1. Consequently, we have (RCgen)21
and in particular (RCgen; X)II Similarly, if-Kx =-- rL for some r >_ n, then we have
(RCgen)32 and in particular (RCgen; X). These show that Theorems 0.2-0.6 seem
to generalize Theorem 0.7, at least when X is non-singular. However, the proofs of
0.2-0.6 rely on using a weak form ofTheorem 0.7 (plus [Fuj4] when X is not assumed
to have log-terminal singularities; [ABW], [Me2]) at the final stage (5.5.5).

(0.8.4) Briefly, the proof of Theorem 0.6 is outlined as follows.
First, starting from X with the assumption (RC; x)l, we verify (RCflat; x)ll (see

Theorem 0.3), by using Theorem 2.6. Using this, combined with the result of l
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(particularly Theorem 1.5 )), we prove p(X) (Proposition 4. ), irrespective of
x 6 Reg X or not (cf. IABWl, IZh21).

Keeping this in mind, we then investigate X with (RC" x), x 6 RegX. We
prove that X satisfies either (RC; x) (then X " by [ABW] or Corollary 4.2),
or otherwise there exists a ’uc-dense" subset A C X (see Terminology 2.4) such
that for each y 6 A, there exist two irreducible divisors S’ and S,. of X, having flat
families of rational curves which make S. and S,. satisfy (Rftlat" x)l and (RCtlat; y) ,
respectively. Moreover such two families {I.’.I}IT,. and {I,..I}eT,. have a common
parameter scheme T,., such that y.,.. t3 l,.. # 1 for every 6 T,. (Lemma 5.3).
This is done by Iookirig at the conic bundle structure arising from the condition
(RC" x) (cf. [Iskll, IKacl], [PI,21), and making use of Mori’s Bend-and-Break
method (Lemma 5.2). Now by Theorem 2.10 applied to the collection of divisors
S,. (y A), we obtain a flat family {S,.},.R of codimension subvarieties of X,
endowed with a closed subscheme Z "= LIrR G,. C HrR Hilb(S,.), flat over R,
which extends T,.’s. This Z parametrizes a flat family of curves {/:.}:.z extending the
original/,..1’s (see (5.4.6)), and we arrive at a dichotomy:

(i) Every two points of X are joined by a finite chain of/:.’s from the family {It. }:.z,

or

(ii) otherwise

(see I. I-4). In case (ii), Corollary I. 13 applies to produce a surjection X T onto
a curve T, whose fibers are transversal to SI- s, which is absurd by what is formerly
proved; namely that p(S’) I. Therefore we have case (i), and Theorem 1.5 (I)
yields p(X) (Proposition 5.4). Note that until this point Theorem 0.7 is not
used. From this, together with the results of 3, it is proved that (-Kx. C) > dim X.
It automatically follows that the assumption of Theorem 0.7 is satisfied (in case X
has log-terminal singularities; see [Fuj4], [Me2] for the general case), and thus we
conclude X

_
" or Q".

0.9 (0.9.1) In Theorem 0.6, the assumption (RC" x) is not inadequately strong,
namely, neither (RC; x) nor (RC) is enough to deduce X

_
I" or Q". In fact,

there are a great many examples which satisfy (RC) (and hence (RC; x)) but not
(RC" x). Indeed, even in the case that L is very ample, a large number of series
of homogeneous varieties listed in [Kaj], [KOY] and [O] fall into (RC). Also,
most of De! Pezzo varieties of Fujita of dimension > 3 seem to fall into (RC),
by virtue of Fujita’s ladder argument [Fuj I]. (For example, see [Me ], [Am]; note
that an enlargement of this notion to algebraically equivalent systems of algebraic
cycles is found to play, in a certain circumstance, a role alternative to the Kodaira
vanishing theorem to provide the necessary lower bound of the dimension of the
global sections of L (e.g., (0.9.2)), which is valid in any characteristic; see [Kac2]).
So our Theorem 0.6 serves to isolate Q" in the class (RC)2. This may also have a
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connection with the problem of Lazarsfeld-Van de Ven [LV]. For example, consider
the following condition;

(RQ’") For two general points x, y e X, there exists an m-dimensional
subvariety V V,-.,. c X such that V 9 x, y, and (V, LIv) satisfies (RC; x, y),
with either

(a) dimX> II, m > 5dimX’

or

(b) dimX> 17, m >9.

In particular, the primary interest would be the case when L is very ample; X Iv,
ILl

or X has a fixed closed immersion into N with a fixed N, and the following holds:
(RQtur). For a general point z of the secant variety Sec X C N, the union Hr.

of all the secant lines passing through z is an (m + )-dimensional linear subspace of
Is, and Hr. fq X is a non-singular hyperquadric Q’" in H.

_
I’’’+

(See [FR] [O], which prescribe varieties with tuck,,,,’"satur), m > I, in terms of the
Gauss maps.) For example, Severi varieties ofZak [Za] satisfy the condition (RQ’.tur),
with m - dim X, dim X 2, 4, 8, 16 (see [LV]). Also the Grassmannian variety
X Grass(I, r) parametrizing lines in ]1r (with the Plticker embedding) satisfies
(RQ’.tur) with m 4, irrespective of its dimension dim X 2(r I). (Note that
X an when r 3.) Moreover, the 10-dimensional orthogonal Grassmannian
X C 5, which is a homogeneous space of SO(10) (see [H], [Muk]), satisfies
(RQl,tur) with (dim X, m) (10, 6). The above conditions (a) and (b) are posed as
counterhypotheses of these familiar examples in projective geometry.

ut3’,, plus the condition (a) above, then Sec XIn the meantime, if X satisfies (’’"satur", by the theorem of Zak [Za], combined with the result of [FR], [O]. If we pose
(b) instead of (a), the problem of [LV] is equivalent to asking whether Sec X ,
which is verified when X is a homogeneous space by Kaji [Kaj]. It would be of
interest to find (or disprove the existence of) such X C I, besides Q" c I’’+ even
under the assumption Sec X N. As to this, a primary case is settled in [KaS].

(0.9.2) As was mentioned above, our Theorems 0.2 and 0.6 were proved originally
with the assumption "X has only Q-factorial log-terminal singularities", whereas it
turned out that the iog-terminality assumption was redundant, as pointed out by Mella
[Me2].

In the 2-dimensional case, the Iog-terminality is stronger than Q-factoriality. In-
deed, a log-terminal singularity is nothing but a quotient singularity (see [Kaw2]),
while a Q-factorial singularity is the same as a rational singularity. Let X be a normal
projective variety of dimension 2. If X is a log De! Pezzo su.rface, i.e., if -Kx is ’nu-
merically ample’ in the sense of Mumford [Mum], then it is easily seen that X admits
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only rational singularities if and only if X is birational to I?2 (cf. lAb], [AN], [Che],
[HW], [KeM], [R2], [Sh3]). So in dimension 2, the assumption "log-terminal" is a
priori redundant. In case dim X > 3, Fujita [Fuj 1,5] characterizes (possibly singular)
hyperquadric Q" as a projective variety X having an ample Cartier divisor L, with

dim H(X, L) > dim X + 2, and (L)dimX 2

[Fuj 1, Theorem 2.2], without any condition on singularities of X. As a consequence,
when (X, L) satisfies the cohomology vanishings

Hi(X, -tL) 0 (i >_ 1, 0 <_ <_ dim X, (i, t) - (dim X, dim X)),

e.g., when X satisfies the assumption in Theorem 0.7 (2) and has only log-terminal
singularities, the Riemann-Roch theorem verifies the above pair of conditions on L,
and hence X

_
Qn. This argument works by virtue ofthe vanishing theorems [Kaw ],

[V], which are known to be true only for varieties with log-terminal singularities. For
the general case, a further argument is required, since there is no standard way to find
the estimate of dim H(X, L) without maintaining the vanishing theorems (cf. [Ish]).
Another theorem of Fujita [Fuj4, 2] remedies this obstacle, and in fact our proof
for this case (5.5.6) is based on his result [Fuj4, Theorem 2.3], following [Me2]. (cf.
One encounters the same difficulty in the case of characteristic p > 0, even when X
is assumed non-singular. An alternative approach which covers this case is found in
[Kac2].)
0.10. This paper is organized as follows.

First in 1, we deal with a projective variety A, endowed with a fiberspace B -- C
which parametrizes closed subschemes of A (1.1). For points x, y A, we consider
the following equivalence relation: x y if x and y are joined by a finite chain
of fibers of B ---> C (cf. [Cam 1,2], [KoMiMol]). Typically, the equivalence class of
x A is not a Zariski closed subset of A (1.1-2). We prove two things. First, we
investigate the Picard group ofA when every two points are equivalent. In particular, if
the fibration B ---> C is a Fano fiber bundle (at least outside a boundary ofcodimension
> 2), then we obtain a bound of the Picard number of A, p(A) < p(F), where F is
a general fiber of B ---> C (Theorem 1.5 (1)). Second, for the general case, we give
one sufficient condition toward the existence of the algebraic quotient with respect to
this equivalence relation, modulo a purely inseparable cover of A (Theorem 1.5 (2);
cf. [Kol], Chap. IV. 4).

In 2, we formulate several extendability results for collections of closed sub-
schemes or algebraic cycles ofan algebraic variety M. These are made in the language
of Hilbert schemes and Chow schemes (cf. [Kol]). First, we apply the Diricheletprin-
ciple to prove Theorem 2.6: For a collection of closed subschemes of M, indexed
by a subset A of the Chow scheme Chow M, satisfying the incidence relation ((IN) in
2.5), there exists an extending flat family {Yh }hEH of closed subschemes of M which
preserves the incidence over the uc-closure (2.4) of A C Chow M. Moreover, by
running the Noetherian induction, we may realize the parameter scheme H C Hilb M
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of this’flat family in such a way that the subset of H over which YI, coincides with the
originally given closed subscheme is uc-dense (in 2.4) in H (by Key Lemma 2.3). We
also prove Proposition 2.7: For a surjective flat morphism N ---> H, together with a
uc-dense subset J C H, over which an effective algebraic cycle BI, sitting in the fiber
is given, there exists a section H Chow(N/H) H which extends those Bt,’s,
after a base change of H. The proof is straightforward through the graph construction.
As a main consequence of these results, we prove Theorem 2.10: For a collection of
closed subschemes {}A indexed by A C Chow M, with each 4 having a cover-
ing flat family of closed subschemes {Ex.1 }1er whose members satisfy the obvious
incidence relation, there exists an extending fiat family Sr }rR of closed subschemes
of M, each of whose members carries a flat family of closed subschemes, preserving
the incidence. This Theorem 2.10 has many useful consequences. For instance, this
gives rise to the existence of the virtualflag schemes for varieties with (RC), which
enables us to work over algebraic equivalence, makes one free from remaining in
the fixed linear systems, valid in any characteristic (see [Kac2]). These results are
used essentially in 4-5. Also in 2. I, we redefine the condition (RC; y y.,.),
in 0.4.

In 3, we investigate the tangent bundle Tx of a variety X which has plenty of
rational curves. In [Mol], Mori developed a technique of deforming rational curves
on a variety, showing that if Tx is sufficiently positive, for example, if for a non-
constant morphism v: C ---> X from a curve C, the pull-back v*Tx is ample, then
X has a covering family of rational curves. As an aside, a close observation of his
argument allows us to deduce a consequence which is in an opposite direction. We
give formulae (Propositions 3. I, 3.3) that carry information about subvector bundles
of v*Tx, which in particular yield estimates of c (v*Tx) when the given collections
of rational curves cover X. This is a restatement of Kollir’s result [Kol, Chap. IV,
3.7] in a slightly generalized form. This argument works for singular varieties as
well, by virtue of Kollir’s generalization [Kol], where v*Tx is replaced by (v*f2)v.
According to Lemma 3.4, this replacement does not interfere with the estimate of
(-Kx.v(C)).

In 4, we prove that the Picard number p(X) of X is equal to I, if X satisfies
(RC; x)l, irrespective of the type of singularities of X, and regardless of whether x 6

Reg X or not (Proposition 4. ). As a corollary, we reproduce the result of Andreatta-
Ballico-Winiewski [ABW] (Corollary 4.2), that X

_
"’, when x 6 Reg X (under

the weakened assumption (RC; x)).
In 5, we prove the main theorem (Theorem 5. Theorem 0.6), a stronger version

of Theorem 0.2.
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1. Division of a variety into scrolls

1.1. (cf. [Cam l,2]) (1.1.0) Let A, B, C be normal projective varieties, n := dim A,
and let

p: B---> A and q" B---> C

be surjective morphisms. Assume that q is equi-dimensional, with connected fibers,
and is flat over a Zariski open subset CO C C of codimension 2, and that for each
c C, Plq-tc" q- (c) --> A is finite. Let B,. be its image: B,. := p(q-i (c)). For a
Zariski closed subset Z C A, let

SI (Z) "= p q-qp- (Z),

and inductively define ISm(Z)}m>_0 by setting SIn(Z) := S (S,,,_ (Z)) (and S0(Z) :=
Z) (cf. Campana [Cam2], Koll,Sr-Miyaoka-Mori [KoMiMo ]). Obviously this forms
an increasing sequence of Zariski closed subsets of A"

z So(Z) c s(z) c s:(z) c... c s,,,(z) c...

Let

(1.1.2) S(Z) "= U SIn(Z).
m>

Note that in general S(Z) may not be Zariski closed in A, although the SIn(Z) are. For
a point x e A, we often write Sin(x), S(x), instead of S,,({x}), S({x}), respectively.
(1.1.3) If Z is connected, then so are SIn(Z) and S(Z).
We introduce a relation ’.’ on the set of points of A as follows:
x y if and only if there exists a finite set {c Cr of points of C such that

x Be.,, y Be.,., and for r 1, Be, N Be.,+, O.

LEMMA 1.2. is an equivalence relation on the set ofpoints of A. S(x) is the
equivalence class containing x A.

1.3. The following two cases are of specific interest for the purpose.

Case I. Sm (x) A for some x A and for some m > 1.
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Ca.e II. dim S,,, (x) n for a general x A and for any m > I.

Remark 1.4. Every S(x) is a union of at most countably many Zariski closed
subsets. (2) In particular, if the cardinality of the base field k is uncountable, and if
we are not in Case I, then S(x) A, and A is divided into uncountably many such
S(x)’s.

The following is the main result of this section"

THEOREM 1.5. With the notation and assumption above, let N(A) "= Pic A/_=
be the group ofnumerical equivalence classes ofCartierdivisors ofA, andN A)Q "=

N(A) (R) Q.

(I) Assume that the quintuple (A, B, C, p, q).falls into Case I, and that there
exists a Zariski open subset C C C with codimc(C C) > 2 such that qlq-,tc,,"
q- (C) C is an talefiber bundle with thefiber F. Let Pic A Pic F be the
natural homomorphism sending L Pic A to (p*L)IF. Then

Kertpc{LPicAI L_=0}.

In particular, t.’f Pic F (R) ( N (F)Q, then the induced homomorphism N (A)Q
z

N(F)Q is injective, and/(A) < p(F).
(2) (Existence ofthe algebraic quotient, modulo a purely inseparable cover of A.)
Assume that A, B, C, p, q) falls into Case II. Assume that A is Q-factorial, and

that the basefield k is uncountable. Then there exists an irreducible projective curve
H C Hilb(A) such that the inducedfamily or" 7-[ H and the natural projection
[3" 7-( A satis. thefollowing:

1.5. )/5 is a finite morphism.
(1.5.2) There exists a non-empty Zariski open subset H C H such that on 7-[ "=

t- (H), [3 is set theoretically an injection, and [3 (7"() is an open dense subset ofA.
(I.5.3) For any x [3(7-[),

S(x) S (x) =/c-c/- (x),

which is a prime divisor of A.

For Case I, we begin with the following result.

LEMMA 1.6 (see also [Sa], I)). Let p: B A and q: B -- C be as in I.I. Let
Z be a Zariski closed subset of A, and L and M line bundle on A and C respectively.
Assume that q*M =-- p*L on B, and that either dim Z 0, or (L l) O for any
irreducible curve Z. In such a case we let Llz =- O. Then for any m > O,
Lls,,,tz =- O, and Mlq p-ts,,,tz)) =- O.
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Let Cz := q p- (Z), qz := qlt,-,tz" P- (Z) Cz, and consider the

qT. --ICz p Z Z

(I.6.1) N n N

C B A.
q P

By the assumption LIz =- 0 and the projection formula, (p*L)lp-,tz) =- 0, that is,
(q*M)lp-,tz) O. Since qz is surjective, we have Mlcz =- O. Repeat the argument,
switching the role of (A, L, Z) and (C, M, Cz), to obtain LIs, tz =- O. Then switch
(C, M, Cz) and (A, L, S (Z)), to obtain MIc.,,z, =-- O, and so on. 12]

1.7. Proof of Theorem 1.5 (1). Let L be a line bundle on A such that L
namely, p* LIF 0 for a general fiber F ofq. By the assumption, there exists aZariski
open subset C C C with codimc(C C) > 2 such that qlq-tc,," q- (C) C
is an 6tale fiber bundle wi’th the fiber F. Hence by the base change theorem, there
exists a line bundle M on C such that p*L q*M (cf. [Sh2]). By Lemma 1.6,
LIs,,,tx) =-- 0 for all m > 1. By the assumption, Sin(x) A for some m, and hence
L 0. Thus we have provedKerq9 C {L 6 PicAI L 0}, and we obtain the
commutative diagram

Pic A/ Ker t# Pic F

N(A) N(F)

with the vertical arrows both surjective. In particular, if Pic F (R) Q
_
N (F)Q,

Z
then the lefthand vertical arrow also becomes an isomorphism after tensoring with
Q. Hence from the diagram, we have N (A)Q N (F)Q. I"1

Now we turn to Case II.

1.8. LetM be an n-dimensional normal projective variety defined over an uncountable
field k. Let Fx }x^ be a set of closed subschemes of M, indexed by an uncountable
set A.

LEMMA 1.9 (cf. Theorem 2.6). Under the assumption of 1.8, there exists an irre-
ducible closed subscheme H C Hilb(M), parametrizing closed subschemes Yh
of M, an uncountable subset A0 C A, and an injection t" Ao H such that

Ytx Fx (. Ao).
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Proo.f. Let us fix a very ample line bundle OM(I) of M, and let us take each
into the polynomial

e(,k) := x(Fx, OF(I)’) 6 Q[t].

Since {dege(.) . A} is bounded, R "= e(A) is a countable set, whereas by the
assumption A is uncountable. Hence there exists an uncountable subset A C A
such that e(A) consists of a single polynomial, e(A) IP^, (t)}. Let Hilbe^, (M)
be the subscheme of Hilb(M), the Hilbert scheme of M, consisting of those points
which have the Hilbert polynomial P^. HilbP^ (M) is a union of several connected
components of Hilb(M) (see [Ig]). Let {Yh }h6HilbP^, (M) be the corresponding family

of subschemes of M. Then there exists an injective map A ’- HilbP^, (M) such that
Fx D,x). Since HilbP^, (M) is a projective scheme, we may choose an irreducible
component H of HilbP^, (M) such that Ao :-- A tq H is uncountable. This H and
Ao H satisfy the required property. I-1

PROPOSITION 1.10 (THEOREM ON ALGEBRAIZATION, PART I). In 1.8, assume.fur-
ther that.r each X A, Fx is purely ofdimension r, and there exists a set of (n r)
effective Weil divisors {Etx) t?(n-r).......x such that

E) is an irreducible -Cartier divisor (X A),

E) N E) 1 (X, lz A, X S lz), ,and
n-r

(i)F E (scheme theoretically).
i=1

Moreover assume that^ Fx is not contained in a union of countably many
proper Zariski closed subsets ofM. Then there exists an irreducible closed subscheme
H ofthe Hilbert scheme Hilb(M), with dim H n r, such that the inducedfamily
c: 7-( --+ H and the natural projection [3: 7-[ M satisfy thefollowing:

(1) There exists a non-empty Zariski open subset U c H such that/l-(u):
t- (U) M is set theoretically an injection.

(2) Denote by Yh the closed subscheme ofM corresponding to h H. Then there
exists an uncountable subset Ao C A and an injection t" A0 H such that for
each X Ao,

Yt() F).

Proof. Let H C Hilb(M) be the closed subscheme obtained by Lemma 1.9,
and {Yh }her4 the corresponding family over H. Clearly, it is enough to prove the
following:

(1.10.0) There exists a Zariski open subset U C H such that for h, h’ U with
h h’, Yh N Yh, l.

Fx is assumed to be the scheme theoretic intersection of (n r) effective Weil
divisors {Etxi)}i= ,-r. Apply Lemma 1.9 to the collection of divisors El)}.e^, to
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obtain an irreducible closed subscheme H) C Hilb(M) parametrizing closed sub-
schemes {D,)}/,n,,,, an uncountable subset A () C A, and an injection
H) such that

=E) (.A))(I.10.1) D:,’,,x
Next, apply Lemma I. to the subcollection EI^,,,, to obtain/-/ C Hilb()
pammetrizin8 IDI,,_,, an uncountable subset A2 C A, and an inection
t(2): A(2) c_), H(2)such that

DI, ’)(.)
.-,(3)Then apply Lemma 1.9 to the subcollection t }z^,;,, and so on. Repeat this proce-

dure (n r) times, and we obtain H) H("-r) Hilb(M), a chain of uncount-
able subsets A (’’-r) C A (’’-r-I) C C A() C A, and injections t(i): A (i) c_ H(i)
(i n r) such that

11

(l 10.2) "--,,,(x) Ex and hence Fx (Z 6 A(i))---.)(.)
i--I

Let A) := A’’-r, and ) := (t() t"-")): A) HI) ... H’’-’). Take
the smallest subset H’ of H) H’’-r) which contains t)(A ()) and is a union
of at most countably many Zariski closed subsets (cf. 2, 2.4). Furthermore, take an
irreducible component H of H’ of maximal dimension, and let

I. 10.3) A := H f3 (t () (A (o))) c_L> Hi.
() () H(I)Denote D(i) simply by Dh where rr H --> is the i-th projection Also7r(i(h

for ,k 6 A, denote D(),() by t)z"(i). By construction we have the following"
(1.10.4) A is uncountable, and A is not contained in a countable union of proper
Zariski closed subsets of H.

r)(i) (i) (i n r), and hence(1 10.5) ,_,, ,_,, D,(i) F, (k A)
i=1

fn-r (i)(scheme theoretically). Take a Zariski open subset V C H such that = Dt, }t,v
forms a flat family of closed subschemes ofM (where the intersections are the scheme
theoretic ones). By (1.10.4) we have the following:
(I.10.6) A0 :-- V [q A is an uncountable set, and is not contained in a countable
union of proper Zariski closed subsets of V.

Let v: V --> Hilb(M) be the .induced morphism, and H the closure of Im v. H is
an irreducible projective scheme. Let {Yh }ht4 be the family parametrized by H. For
h E UI := v(V), we have

II --F

N 13(i(I 10.7) Yh ’h
i=1
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Moreover, by (I.10.5) and the assumption, viA,, is injective, and for X, ,k’ e Ao with
(I)k U, we have D) fq D, 0. This implies

(I.10.8)

for any Q-Cartier divisors B B,,_2, and h, h’ 6 H. Since D) E1 (by
(I.10.5)) and E) is assumed to be irreducible for ,k 6 A0, by (I.10.4), there exists a

non-empty Zariski open subset U C U such that for any h U, D),) is irreducible.

In particular, for h, h’ 6 U with h # h’, D,) C D,I 1, and hence YI, fq YI,’ 0
[Ful]. Thus (I.10.0) is proved, and we are done. I-1

1.11. Proo.fo.fTheorem 1.5 (2). We apply Proposition 1.10 with M A. First, let
{xx }xe^ be an entire collection of representatives of the equivalence relation ’’ on
A in Lemma 1.2:

(I.I I.I) S(xx) fq S(xl,) 0 for ,k -7/: p, and U S(xx) A.

Since the base field k is assumed to be uncountable, and since we are not in Case I, we
have S(xx) A by Remark 1.4 (2). Moreover, by assumption, dim S (xx) n
for each . 6 A. Take an irreducible component Fx of S (x) with dim Fx = n 1.

(I.I 1.2) for zq:u.

Again by Remark 1.4 (2), the index set A is uncountable. Moreover, by the as-
sumption, A is -factorial, and so every Fx is Q-Cartier. Hence the assumption of
Proposition I. 10 is satisfied. By Proposition I. 10, there exists an irreducible closed
subscheme H of Hilb(A) of dimension I, with the associated flat morphism c and
the projection/5,

(I.II.3) ’.L
H

such that (I. 11.4) and (I. 11.5) hold as follows:

(I. 1.4) There exists a finite set {h h.} of points of H such that every fiber
c- (h) of ot over H := {h h, is irreducible, and of dimension n I.

(I. 11.5) Let 7-/o := a- (H), then fl[,, is set theoretically an injection. In particular,
fl: 7-( -- A is a finite morphism.

(I. 11.6) Let A :=/5(7-/0). This is a Zariski open subset of A.
Consider Dt, := fl(c-(h)) (h H)..Dt is a prime divisor of A by (I.11.4).
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We are going to prove

(I.I 1.7) S(x) S(x)

for any x 6

In fact, by assumption dim S (x) n I, it is enough to prove S(x) C Dr,, so
let us assume to the contrary that S(x) . Dr,. By the definition of S(x) (1.1.2), there
exists B,. C S(x) (1.1.0) such that B,. N Dtl and B,. Dr, (1.1.3). Thus we may
take an irreducible curve C C B,. such that C N DI, -7- and C Dr1. (Dr,. C) > 0,
and hence (DI,,. C) > 0 for all h’ 6 H. Thus B,. q D,, . By construction, for

Dh,"h’ Ao, DI,, C S(y)for some y D,,, and hence y S(x)for y UI,,A.
i.e.,

(1.11.8) S(x) D U Dt,,.
h’A

This contradicts Remark 1.4 (I), since S(x) A (by Remark 1.4 (2)), the Dt,,’s are
all divisors, and A0 is uncountable. Hence (I. 11.7).

COROLLARY 1.12. Under the same assumption as in Theorem 1.5 (2), .r any
x A, S(x) is a Zariski closed subset of A, which is purely ofcodimension I.

COROLLARY I. 13 (Existence of the algebraic quotient, char k 0). In Theorem
1.5 (2), f we also assume that char k 0, then there exists a smooth projective
curve H and a surjective morphism "if: A H such that

(1.13.1) S(x) -’(x)

for any x A.

Proof. Let u" 7-( H, /3: 7-( A, 7-(0 C 7-/and H C H be as in I.I1.
Since char k is assumed to be 0, by the Zariski Main Theorem, (I. II .5) implies the
following:

(1.13.2) / is a finite morphism, and/1,, is an open immersion. In particular,/ is a
finite birational morphism.

Since A is assumed to be normal (1.1.0), again by the Zariski Main Theorem,/ is
an isomorphism"

/’H A.
Through this identification, c can be viewed as a morphism from A: c" A ---> H.

(1.13.3) Take the normalization of H; u" H ---> H. By Theorem 1.5 (2), a general
fiber of c is of the form S(x) (x A), and hence is connected by (1.1.3). Thus:

(I. 13.4) The induced morphism : A ---> H has connected fibers.

(1.13.5) By (1.5.3), this satisfies (I.13.1) for a point x in the open set c- (H)- (u-I (H)) C A.
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We still have to verify (I.13.1) for an arbitrary x A. If S(x) . - (x),
then (I.13.5) plus an argument similar to (1.11.7-8) shows that S(x) D a-(H).
However this is impossible by Remark 1.4 (2). Hence

S(x) -ff- (x).

By (I. 13.4), we conclude that this inclusion is in fact an equality:

S(x) - (x).

Hence we have I. 13. ). I-’1

2. Theorems on algebraizations

In this section, we prove several results on algebraic extendability for a collection of
cycles or subschemes of a variety (Theorem 2.6, Proposition 2.7, and Theorem 2.10)
(cf. Proposition 1. 0). Also at the end of this section (2. ), we give a precise defini-
tion of the condition (RC; y y.), for a polarized variety (X, L). In particular,
the case (s, d, r) (I, I, 1) and (I, 2, 2) are exactly the assumptions of our Main
Theorems (Theorem 4. and 5. I), respectively. These assumptions are apparently
weaker than those stated in the introduction, and carry more flexibility (see 5).

Throughout this section, k is an algebraically closed field of uncountable cardi-
nality and of arbitrary characteristic.

First we start with some set theory in 2.0-3. For a set E, denote #E the cardinality
of E.

Definition 2.0. For a set E, let q3(E) denote the set of all subsets of E.

(2.0.1) Consider the following set of axioms (Z0-3) for a subset Z(E) C q3(E):

(Z0) 1, E Z(E), {x} Z(E) for x E.

(ZI) If F, F2 Z(E), then F f3 F2 6 Z(E).

(Z2) If {Fi }it is a collection of countably many elements of Z(E), then

U F Z(E).
il

(2.0.2) We say that F e Z(E) is Z-irreducible if for any collection {Fx}xe^ of
distinct elements of Z(E) such that F C F and F [,-JXA Fz, A is uncountable.

(Z3) For any F Z(E) {}, there exists a collection {F}rR of Z-irreducible
subsets, with R at most countable, such that
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A set E, equipped with Z(E) satisfying the axioms (Z0-3) is called a Z-set, and is
denoted by E, Z(E)).

(2.0.3) Let (E, Z(E)) be a Z-set, F Z(E). A subset D C F (not necessarily
D Z(E)) is called Z-dense in F, if there is no G Z(E) such that D C G C F.
(2.0.4) We sometimes require certain optional conditions, such as (Z4) or (Z5) below,
in addition to (Z0-3):
(Z4) E is Z-irreducible.

(Z5) (Quasi-Noetherian condition) Let F" },,er be a descending chain of Z-irreducible
subsets

F3 F 3...3 F’I 3 F’1+ 3....

Then there exists n0 N such that for n > n0, F" F"".
(2.0.5) Let (E, Z(E)), (E’, Z(E’)) be Z-sets. A map e: Z(E) --> Z(E’) is called
a Z-map if the following two conditions are satisfied:

(MI) For F, G Z(E) with F C G, e(F) C e(G).

(M2) For a collection IF,,I,, of elements of Z(E), such that [,J,Ac F,, Z(E),
we have I,.J,,Ac e(Fi,) .Z(E’), and

e(,AcF")=Ue(F")’I
(2.0.6) If E is countable, then it is easily seen that Z(E) q3(E), and the one-point
sets {x (x E) are the only Z-irreducible subsets, so the whole thing becomes trivial
in this case. So from now on let us make one convention: for a Z-set (E, Z(E)), E
is always assumed to be uncountable, unless otherwise specified.

LEMMA 2. I. Let (E, Z(E)) be a Z-set, and F Z(E) a Z-irreducible subset.
Let Di }i! be a collection ofsubsets ofF, with the countable index set I, and D C F
such that

DCUDi.
il

Assume that D is Z-dense in F. Then there exists I such that Di is Z-dense
in F.

In particular, fassume that Di Z(E) for each I, then Di F for some
il.

Setting 2.2. Let (H, Z(H)), (W, Z(W)) be Z-sets, and L" Z(H) --> Z(W) a
Z-map.
(AI) Assume that Z(H) satisfies the axiom (Z5), and Z(W) satisfies (Z4).
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Let A be an uncountable set, and a: A ---> H a map. Define a map c: A Z(W)
by c(.) := L({a(.)}). This is well defined by (Z0). Assume the following"

(J c()0 is Z-dense in W.(A2)
)A

KEY LEMMA 2.3.
such that

UnderSetting 2.2, there exists a Z-irreducible subset HA C H

(1) L(HA) = W
and

(2) a (A) f’l H^ is Z-dense in HA.

Proof By (Z3), applied to Z(H),

(2.3.0) n U Hr,
rER

where

(2.3. l) R is countable and Hr is Z-irreducible.

Let

(2.3.2) Ar := a -I (Hr).

Assume that for every r e R, either

(2.3.3) L(Hr) W

or

(2.3.4) L(Hr)= W, and there exists Kr Z(W)-IW} suchthat I,.Jx^,.c(.)c
Kr. In case (2.3.3), put Kr :-- L(nr). Note that also in this case, by (MI),

(2.3.5) U c() C Kr.
.Ar

Then

U c()) U U c(.) (by (2.3.2))
)EA rR .A,.

C U Kr (by (2.3.4), (2.3.5)).
rR

Since xs^ c(.) is Z-dense by (A2), by Lemma 2.1 we have W gr for some
r R. However, this contradicts the choice of KI. Hence there exists r R
such that

L(H) W and J c(.) is Z-dense in W.
.A,.
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For such r, rewrite Htt "= H,., A tl := Ar(-- a-(Ht)) so we have

(2.3.6) L(H) W, and U c(.) is Z-dense in W.

Case A. a(Al)) is Z-dense in Hit.

Then Hil =: HA satisfies the conclusion ofthe lemma, and the proof is completed.

Case B. a(Ait) is not Z-dense in Hl, i.e., there exists an element H’ Z(H)
such that

(2.3.7) a(Ai) C H’ C Hi.
By (Z3), decompose H’ as H’ .,.s H,!, where

(2.3.8) S is countable and H) is Z-irreducible.

Note that

(2.3.9) H,!) C n()

by (2.3.7). Set A. := a- (H,f); then x’," c(L) C L(H,) by (MI), and

c(X)=( c(X))CL(,’")=L(H’, (by(M2)).
EA sS I sS

By (2.3.6) the left-hand side Uzeh,,, c() is Z-dense in W, and hence by Lemma 2. I,
there exists s S such that

L(,) W and U c(Z)is Z-dense in W.

For such s, let H := H., , A "= A.(= a-i(H)) so that

(2.3.10) L(H) W and U c(Z) is Z-dense in W.

Case A. a(A t2)) is Z-dense in Ht2.

Then H2 H^ satisfies the conclusion of the lemma, and the proof is complete.

Case B. a(A2)) is not Z-dense in H2).

Then repeat the above argument (2.3.7-10), replacing (H tl) A t)) by (Hz), At2)),
to obtain a Z-irreducible Ht3) C Ht2) such that L(Ht3)) W, and A t3) :=
a -I (H3)) C A2).
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Again consider two cases:

Case A. a(A t3)) is 2-dense in Ht3).

Case B. Otherwise.

Repeat this procedure as long as Case B occurs. If we assume that Case A never
occurs, then we have an infinite strictly decreasing chain of Z-irreducible subsets

H D Htl)D Ht2)D D Htn) D...

with L(H’)) W for every n. This contradicts the assumption (AI) that (H, Z(H))
satisfies the quasi-Noetherian condition (Z5). Hence at some stage, Case A must oc-
cur: L(Htn)) W, and a(Atn)) is Z-dense in Ht’). This completes the
proof. I-’1

Terminology 2.4. Let M be an algebraic scheme over a field k. Assume that k is
uncountable. A subset D C M of closed points ofM is said to be uncountably dense,
or uc-dense, if D is not contained in a union of countably many proper Zariski closed
subsets of M. If M is the one-point scheme Speck, then D M is understood to be
a uc-dense subset.

For an arbitrary subset A C M, there exists a smallest subset A- C M, called the
uc-closure of A, which contains A and is a union of at most countably many Zariski
closed subsets of M.

2.5. Let M be a projective algebraic scheme over an uncountable field k of charac-
teristic 0. Let W be an irreducible closed Zariski closed subset of the Chow scheme
Chow(M). (For the precise definition and the fundamental properties, see for exam-
ple [Kol], Chap. I; cf. [Cat].) For w 6 W, denote the corresponding effective cycle
on M by Z,,. Given a uc-dense subset A C W, satisfying the following property:

(IN) There exists a collection {E}^ of Zariski closed subsets of M, indexed by A,
such that

Let

Ex D Supp Zx (x A).

(FL) F := N Ex
kA

(F might be empty).

THEOREM 2.6 (THEOREM ON ALGEBRAIZATION, Part II). Under the condition and
assumption of2.5, there exists an irreducible closed subscheme H^ C Hilb(M) such



370 YASUYUK! KACHI AND EIICHI SATO

that the corresponding algebraicfamily Yh }hn^ ofclosed subschemes ofM satisfies
thefollowing:

For any w E W, there exists h HA such that

Yt, D (Supp Z,,,) LJ F.

(2) There exists a uc-dense subset J C H^ such that for eve. h J, Yh is
reduced, and there exists k A such that

Proof. Let 2(W) be the set of all. unions of countably many Zariski closed
subsets of W. Since the base field k is assumed to be uncountable, it is easy to
see that (W, Z(W)) satisfies the axioms (Z0-4). Let H := Hilb(M), and define
Z(H) similarly; then (H, Z(H)) satisfies (Z0-3, 5). For h 6 H, denote by Yh the
corresponding closed subscheme of M. Define L: H --+ 2(W) by

L(h) := I[Z] W lYh SuppZ}.

It is easily seen that UhF L(h) Z(W) for F Z(H), and hence this uniquely
extends to a map L: Z(H) -- Z(W) satisfying (MI), (M2) (see (2.0.5)). Define
a map a: A --> H by sending 6 A to [Ex] 6 H, the point corresponding to the
reduced closed subscheme Ex of M. Then (H, Z(H)), (W, Z(W)), A, a, L satisfy
the conditions of 2.2. Hence by Lemma 2.3 we have an irreducible closed subscheme
HA C H Hilb(M) such that L(HA) W, and D := a(A) is Z-dense in HA, as
required. F-I

PROPOSITION 2.7 (THEOREM ON ALGEBRA|ZATION, PART III). Let N, H be alge-
braic schemes over an uncountable field k, and N .-- H a projective surjective fiat
morphism. Denote by Yh the fiber at h H. Assume that there exists a uc-dense
subset J C H such thatfor every h J, Yh is reduced, and there exists an effective
qvcle B Bh in N such that

Yh D Supp Bh.

Then there exist a scheme R, together with a uc-dense subset I" C R, and proper
morphisms o: R H, q/R: R Chow(NR/R), where NR := N x R, such that

H
the.dlowing hold:

(1) Olr: r J is set theoretically an injection, tp(r) is uc-dense in H.

(2) The composite R - Chow(NR/R) R is the identity idR, where rrR is
the structure morphism.

(3) Denote by Zr the effective cycle corresponding to q/R(r) Chow(NR/R).
Thenfor any y F, Z Bo).
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Moreover, f there exists an irreducible Zariski closed subset V C Chow(N/H)
such that every Bh (h J) belongs to V, then we may find / in such a way that

Im’R C VR.

Proof. Let j: J --> Chow(N/H) be the map sending h to [Bh], the class of
the effective cycle Bh, F0 C H x Chow(N/H) the graph of j, and (F0)- its uc-
closure in H x Chow(N/H) (see 2.4). Take an irreducible Zariski closed subset R
of (F0)- of maximal dimension which dominates H. Let p: R ---> H and /-/: R -->

Chow(N/H) be the natural projections, and zrn" Chow(N/H) ---> H the structure
morphism. Then by construction,

(2.7.1) Chow(N/H) ---> H.

Since we have an R-isomorphism Chow(N/H) x R
_

Chow(NR/R) (see [Kol],
H

Chap. I, 3.2 I), by (2.7. I), PH lifts to R: R ---> Chow(N//R) so as to satisfy
zrR o FR idR. (F C R, p, grR) satisfies the required properties, r--I

Remark 2.8. It is not true in general that a fiber of p: R ---> H is finite. Indeed,
consider the natural projection A ---> A =: H. Then for a set theoretic section
s: H ---> A (which might be highly discontinuous), normally it is impossible to find
an algebraic section Sang: H ---> A2 which agrees with s over an uncountable set of
points of H.

Notation 2.9. Let M be as above, and D a Zariski closed subset of Hilb(M). Let
Yh be the closed subscheme of M corresponding to h 6 D. Define

LocusD:= USupPYh and BsD:= NYh"
h !) h !)

We have LocusDDBsD.

Let M be an algebraic scheme, and A C M a uc-dense subset. In the following
we deal with an extendability problem for a collection of cycles {,fx}x^. on M of the
following kind: Assume that for . A, we are given an algebraic family {Ex.t }t of
closed subschemes which sweeps out x and such that each passes through .. Then
the ;’s are extended (with few discardings) to an algebraic family {Sr }rR, where
each Sr brings an algebraic family {Lr.t }t which sweeps out Sr in such a way that for
any z M, there exists r R such that every Lr.t passes through z. Moreover, all
the Lr.t’s form an algebraic family which extends {E.t }x.r. This is stated in a more
precise and generalized form as follows.

THEOREM 2.10 (THEOREM ON ALGEBRAIZATION, PART IV). Let M be a projec-
tive algebraic scheme over k, W C Chow(M) an irreducible Zariski closed subset,
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parametrizing effective cycles {Z,,,},,,w. Assume that there exists a uc-dense subset
A C W, such thatfor any A, there exists a completefamily {Ex.t }tr ofclosed
subschemes with an irreducible base scheme T satis.ing

N Ex.t D SuppZx.
tT

Let

U Ex., =" .
tTx

Then by suitably replacing, A by a subset of A which is uc-dense in W (which we
denote by the same symbol A), there exist a flat morphism ,.q -+ R parametrizing
closed subschemes {Sr}rt of M over a projective algebraic scheme R over k, a
uc-dense subset F C R, and an R-morphism : R -- Chow(Hilb(S/R)/R), with
the corresponding effective c:vcles {Gr }rR, such that the.hallowing hold:

(I) For any , F, S and G are reduced, and there exists unique ) A .such
that S ,fx, and SuppG Tx (in Hilb(S)).

(2) For any r R, Locus(Supp Gr) Sr (see Notation 2.9).
(3) For any w W, there exists r R such that Bs(SuppGr) Supp Z,,, (see

Notation 2.9).

Proof. By Theorem 2.6 (Part II), there exists a fiat family S H of closed
subschemes {St, }t,t4 of M such that:

(2.10. I) For any w 6 W, there exists h 6 H such that St, Supp Z,,,.
(2.10.2) There exists a uc-dense subset J C H such that forany h J, St, is reduced,
and there exists Z ,k(h) A such that St,

Consider 7-/ := Hilb(S/H) -- H. By (2.10.2) above, for h 6 J, we have
St, fxtt,) Utr Ex., so regard E;.t as a point of 7-/.

(2.10.3) As sweeps out Tx, we obtain a subset 7), (h 6 J) of 7-/, which is an
irreducible reduced cycle sitting on the fiber of 7-( H over h. By the assumption,

(2.10.4) Locus(Supp T,) St, and Bs(Supp 7),) Supp Zxtt,) (for h 6 J).

Take an irreducible component 7-/ of such that {h 6 J Supp Tt, C 7-(i} C J is
uc-dense in H.
(2.10.5) Consider a surjective morphism tp" R H from a projective algebraic
scheme R, endowed with a uc-dense subset F C R such that o(F) =: J0(C J) is
uc-dense in H. Denote the resulting base-changes by 7-( x R =: (7-()R R and

H
S x R =: SR --> R. Let Sr := Sop(r) (r R), Zv :: Zv)), and T :=

H
(, r).

Note that we have a natural R-isomorphism

(2.10.6) Hilb(S/H) x R
_

Hilb(Szc/R)
H
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([Kol], Chap. (1.4.1.5)), and this induces a closed immersion; (Hi) R Hilb(Sn / R).
By Proposition 2.7 (Part llI) applied to (N --> H D J, {Bh}hJ) (H --> H D
J, {Th}ha) for a suitable such (F C R - H), we have (2.10.7) and (2.10.8) as
follows:

(2.10.7) There exists an R-morphism g/R: R --> Chow((H)R/R), namely, a mor-
phism lpR such that the composite

R
R Chow((7-/)R/R) R (ZrR is the structure morphism

is the identity idR.
(2.10.8) Denote by G the effective cycle corresponding to R (r) Chow((7-/) R /R ).
Then for any , 6 F, G T (see the notation in (2.10.5)).

By construction,

(2.10.9) Locus(SuppGr) C Sr (r R)

and

(2.10.10) G is irreducible, reduced, and Locus(SuppGv) S (?’ 1-’)

(by (2.10.3), (2.10.8)). Take a Zariski open subset R C R such that ISupp Gr}rR is
a flat family of irreducible reduced closed subschemes of (7-t) R. R 51:0 by (2.10.10)
(see [Kol], Chap. I, (3.10.3)). Consider S x R =: $o ___> Ro. This is flat, and by

R

(2.10.9-10), there exists a non-empty Zariski open subset R of R such that

(2.10.11) Locus(SuppGr) Sr (r R).

Rewrite R as R for simplicity, and let

(2.10.12) Yr := Bs(SuppGr) for r E R.
By the assumption and (2.10.8), we have

(2.10.13) Y =Bs(SuppT)DSuppZ for, 6F:=FfqR

(see the notation in (2.10.5)). Moreover, there exists a Zariski open subset of R,
which is denoted again by R, such that {Yr }rR" forms a flat family of irreducible
reduced closed subschemes of M.

(2. 0.14) Consider the associated morphism R Hilb(SR / R). By construction,
the composite

I, h
R Hilb($R/R) R

of/z and the structure morphism h R coincides with the open immersion R - R.
Hence there exists an extension R Hilb(SR/R) such that ht o/z idR.
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Denote by Y,. the closed subscheme of Sr corresponding to (r) (r R), and
let y := I,_J,.eR Yr C Sn. By Proposition 2.7 (Part III), applied to (N -- H D J,
{BhlheJ) (Y "- R F, {Z}r,,) we have the following.
(2.10.15) There exist a morphism tp’" R’ -- R from a projective algebraic scheme
R’, a uc-dense subset F’ C R’ whose image is in F and is uc-dense in R, and
an R’-morphism pn,: R’ -- Chow(yn,/R’), such that the cycle corresponding to
g’(Y) Chow((7-[)R,/R’) coincides with Zo’(v) for y F’.

This SR, R’ 3 F’ gives a family with the required properties. IZI

2.11. Let X be a projective algebraic scheme over an algebraically closed field k, and
L an ample Cartier divisor on X. Let S"(X) denote the r-th symmetricproduct (r >_
whose closed points are in one to one correspondence with r-tuples (x Xr) of
closed points of X, modulo permutation Sr. This is naturally identified with the
Chow scheme of 0-cycles of X of degree r (see [Kol], Chap. 3.22). Denote by
prr" X x X --, S" (X) the natural projection. For a set D C X of closed points
of X, let S"(D) := {pr(x Xr) sr(X) Ix x,. D} C S"(X).

Let A"(X) C sr(x) be the set of closed points (x Xr)modr with xi xj
for some :/: j. Let Si](X) "= S (X) A (X), an element of which is identified with
a set of distinct r points {x Xr of X. Let {y Y,,. 6 Si] (X). This gives rise
to a natural injective morphism " S Sr+s S’1.,’, :’,1 (X) (X). Let I:’, y,I (X) :=

(s[’,., ,.,i)- (Si+’(X)). Given a uc-dense subset A C SI:’, ,..,I(X) (in the sense of
2.4), satisfying the following condition;

(RC; y y.,." A)’,i There exists an irreducible rational curve C.,., ,., on
X for every Ix Xr} A such that

C.,., ,.,. 3 {x x, y y.,. 1, and (L. C.,., ,.,.) d.

We sometimes do not specify the set A, and denote this condition simply
(RC; y y.,.),r. In particular, if s 0, we use the notation (RC),rt.

Remark 2.12. If (X, L) satisfies (RC; y y.,." A),, and {x x,.} 6 A,
then (X,L) satisfies also (RC; y Yr Xl Xt" A’r-t with A’]d

r-t --I(six ,1 (A).

COROLLARY 2.13. Assume that (X, L) satisfies (RC; y Z,.),r in 2.11. As-
sume that the base field k is uncountable. Then there exists an irreducible closed
subscheme H C Hilb X such that the corresponding algebraicfamily {Ch }hsH satis-

fies the following:
For anv {x Xr Sly y.,I(X) there exists h H such that

Ch D {x x, y y.}.

(2) For a general h H, Ch is an irreducible rational curve with (L Ch d.
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3. (Co-)Tangent bundle of X pulled back to (char k = 0)

In [Mol] Mori developed what he called the ’Bend-and-Break’ method (see also
Lemma 5.2), and observed that if the tangent bundle Tx of a smooth variety X is
sufficiently positive, then X has a large family of rational curves, while a little close
attention to his argument leads us to a consequence in a somewhat opposite direction.
Namely, if there is a family of rational curves on X, then Tx, restricted to each of
those curves, has a positive (or semi-positive) subbundle, whose rank is equal to the
dimension of the locus of those curves, if char k 0 (Propositions 3. I, 3.3 below).
This is regarded as a modification of Kollar’s [Kol], Chap. IV Theorem 3.7. We
prove this for singular varieties as well. Indeed the proof for the non-singular case
works with only a few minor change. This is made possible by virtue of Kollir’s
generalization [Kol] of Mori’s argument.

Here we are unable to remove the assumption char k 0, because of the neccesity
of deducing the surjectivity of the derivative of 0,, (3.1.6). Indeed this forces us to
restrict the validity ofour Main Theorems (Theorem 4. I, 5. to the case ofchar k 0,
although all the other parts of our proof are valid in an arbitrary characteristic. (Of
course, we may alternatively assume the separability of the evaluation map q (3.0),
instead of assuming char k 0; (cf. [Kac2] for a treatment applicable to the arbitrary
characteristic case.)
We follow Mori and Kollir’s notation and terminology ([Mol], [Kol], Chap. II).

3.0. (3.0.0) Let X be a normal projective variety defined over an algebraically closed
field k. Fix a closed point x Reg X. Fix a coordinate of lP, so that the point
0 e IP is specified. Let S be a connected component of Hom(ll, X; t)red, where
t: 10} {x} (see [Moll 2). For s e S, the corresponding morphism ]P ---> X is
denoted by v.,.:

(3.0.1) s [v.,.].

Let S x IF’ X be the evaluation map, and let

(3.0.2) := dim Im .
Then there exists an irreducible component S of Reg S such that

(3.0.3) dim Im(ls,,e, t.

In fact, take an irreducible component S of S with

dim Im(ls,,,) t.

(Such S exists, since the base field k is assumed to be uncountable (3.0.0), and S has
at most countably many irreducible components.) Then S := (Reg S) N S satisfies
(3.0.3).



376 YASUYUK! KACH! AND EIICHI SATO

PROPOSITION 3. (char k 0). With the notation above, assume that the basefield
k is o.fcharacteristic O. Then for a general s E S,

O, (2) (90,(I)*’-) C (v.,.*)v.

Proof. Let

A "= Aut (, {0}) {r" IP ---> IP r isomorphism, or(0) 0}
This is a 2-dimensional scheme. Define

f,,..,, := v, o r" IP ---> X

(s E S). This has the following properties:

(3. I. lm f.. lm v.

(for all s 6 S, c 6 4),

(3.1.2) [f.orl 6 S

(for all s 6 S, c E 4), and

(3.1.3) [f..,] 6 S

(for all s 6 S, and for a general a 6 A).
Define

A := 1 A [f,..] Sl c A.
This is dense in A, hence"

(3.1.4) {.L.(a) I 6 A’} is dense in Im v,,. for any a 6 {0};
(3.1.5) Im(ls,,l,,i) U.,.s,,{f.(a)1 6 A’} is dense in U.s,, Im v.
Im(ls,,, ).
Since Im(ls,,l,,i) is locally closed in Im(ls,,, ), by (3.0.3) we conclude that

dim lm(C’ls,,l,,i) dim Im(ls,,e,) t.

Let Im(ls,,l,i) =" Tr(a), and oa ’= ls"l,,l" S -’-> Tr(a) which maps s to v.(a).
Take s 6 S so that qg,, (s) 6 Reg Tr(a).

(3.1.6) Since char k 0, the derivative of o,, is surjective, as a homomorphism
between the Zariski tangent spaces Ts,,..,. and

Here T’rrt,,).,,c) is a t-dimensional k-vector space, while we have a canonical isomor-
phism

t)v(3.1.7) Ts,,.., Homo,., (v.* , O, (- )) H (t, (v., f2x (R) O,, (- ))
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([Mol ], Proposition 3, [Kol], Chap. I, 2.16 Theorem). Hence:
(3.1.8) There exists a t-dimensional subvector space V C H(I?, (v,*f2)v (R)

O, (-I)) which is mapped by (do,,). isomorphically onto TTrt,,.0,,I.,.. This V gener-
ates a rank locally free subsheaf .Tv of (v.f2x)v (R) Or, (- I). Since .Tv is globally
generated, we have

(3.1.9) O,(1)e’ C (v,,.*x)v.
On the other hand, we have a natural homomorphism v, x -- f2, which is generi-
cally surjective. By taking the dual, we have the generically injective homomorphism

(3.1.10) O.,(2) Tu., (v,*fl() v.
Since both T and (v,f2x)v are locally free Or,-modules, this homomorphism is
injective. (3.1.9) and (3.1.10) prove the proposition. IZ!

3.2. By exactly the same argument, we can show Proposition 3.3 below.
Let S’ be a connected componentofHom& X)red, : S’ xI? X the evaluation

map, and

t’ := dim Im .
For s’ S’, let v.,: X be the corresponding homomorphism:

(3.2.0) s’ v,, ].

Let (S’) be an irreducible component of Reg S’ such that

(3.2.1) dim Im(ls,,,,, t’.

(3.2.2) Assume that for a general s’ e (S’), v.,.,(lP SingX.

PROPOSITION 3.3 (char k 0). Under the notation of 3.2, assume that.the base

field k is ofcharacteristic O. Then.fir a general s’ S’),
{,Qq)(t’- v(2) ._.,, C (v,,.,f()

Proof. Proceed as in the proof of Proposition 3.1, replacing Hom(P X" t) by
Hom(lP X). Then analogous with (3.17) we have

(3.3.1) ,Ho v*fl)v)Ts’)"..,.’ (I .,
([Mol ], [Kol]), and there exists a globally generated locally free subsheaf .T"
.T’v, C (v.,.*, f2x)v, of rank t’. The rest is the same as before.

Let C C X be an irreducible curve on a variety X, and v" C C the normalization
of C. The following formula compares c ((v*g2c)v) and (-Kx. C), which coincide
when X is non-singular (cf. |Mo3], [Shl ]).
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LEMMA 3.4. Let C C X be an irreducible curve on X, and v: C X the
composite of the normalization morphism of C and the closed immersion C X.
Assume that C . SingX, and assume that X is Q-Gorenstein; i.e., X is Cohen-
Macaulay and" (R)"’)vv(wx is an invertible sheqfon X for some integer m > O. Then

c, ((v*)v) _< (-Kx. C).

Proqf
open immersions

Let U "= Reg X, v0 := vl,,-,(v), i" U X and j" v- (U) be the

v-(U) C

U X

Then we have a sequence of O-homomorphisms:
(3.4.1)

A((*a,)v)

Since both/" ((v*g2x)v) and (V*wx)v are invertible O’-modules and (fl o o)l,,-,(v)
is an isomorphism, f o ot is injective. Hence

(3.4.2) c, ((v*x)v) <_ deg(u*wx)v.
Next, let m > 0 be an integer such that (wx’")vv i,twv is invertible. Then we
have a sequence of homomorphisms of O’-modules,

v )(R)m(v*wVx)(R)"’ (j, VoWv
, (o) (R),,,j,vo v*i,(w (R)’’’) v*(WVx(R)"’),

which is an isomorphism on v-(U) (cf. [Mo3], 1). By taking the double-dual
(.)vv, we have an injective homomorphism of O’-modules"
(3.4.3) (U*O)X)v(R)m --> I)*’(coX’v(R)m)

Hence

(3.4.4) m deg(v*wx)v deg ((V*Wx)v(R)’’’) < deg *v (wx ))=(-mKx.C).

(3.4.2) and (3.4.4) prove the lemma, r-l



POLARIZED VARIETIES JOINED BY RATIONAL CURVES 379

4. Varieties with (RC; x) (after Andreatta-Ballico-Winiewski)

In this section we prove Proposition 4. I.
4.0. Let X be an n-dimensional projective algebraic scheme, defined over an alge-
braically closed uncountable field k, and L an ample Cartier divisor on X.

PROPOSITION 4.1 (cf. Andreatta-Ballico-Wigniewski [ABW]). Let (X, L) be as
in 4.0. Assume that (X, L) satisfies (RC; x) in 2.11fi)rsome x E X. Let v: , --> X
be the normalization of X. Then p X) I.

Proof. If X satisfies (RC; x), then , satisfies (RC; ’) for some ’ e v- (x).
Hence we may assume that X is normal.

By Corollary 2.13, there exists a flat family {Ch}hen of I-dimensional closed
subschemes of X such that:

(4. I. I) For any y X {x}, there exists h H such that Ch D {x, y}.
(4.1.2) For a general h 6 H, Ch is reduced and is an irreducible rational curve with
(L. Ch) I.
Let 7-( H be the flat morphism defining thee family {Ch}hl, and H the normal-
ization of, H, respectively, and q: 7-( H the morphism induced from H.
Let p" H X be the composition of the normalization morphism v" 7-( and
the natural projection 7-( X. We have the following diagram"

p
H X

(4.1.3)

H

For h H, denote the fiber of q at h by Bh, so p(Bh) Ch. Since char k is assumed
to be 0 we have the following:
(4.1.4) There exists a Zariski open subset/0 C Reg/ such that q- (/) is smooth,
and q Iq--, t"’l is a I -bundle. Let

S "= I E O. is not Cohen-Macaulayl.

Since 7 is normal, this is of codimension at ieast 3 in 7, and hence

Also, since H is normal,

codim’q(S) > 2.

(4.1.5) codim’ (q(S) t3 Sing/) > 2

(cf. [Koll, Chap. II, (2.8.5)). Let "= (q(S) U Sing/), and .consider the
restriction qlq-,{’ff,," q-() _. /00.
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(4.1.6) q- (/0o) is Cohen-Macaulay, and/00 is smooth. In particular, qlq_.,t’ff,,, is
flat.

By (4.1.2), Bh (h H) is a generically reduced irreducible curve. Hence by
(4.1.6), if h /00, then Bh does not have an embedded point; in particular,
dim H(On,,) I. By (4.1.4), a general fiber of q is isomorphic to the reduced, and thus BI, has to satisfy X(On,,) I. Hence p,,(Bh) := dim H(O,,) 0.
Namely, Bt, is isomorphic to the reduced I (cf. [Mo2], pp. 154, i58). Therefore:

(4.1.7) q is a ?-bundle over/0o, with codi.7(/ -/00) > 2.
By (4. I. I) and (4.1.7), for A X, B 7-(, and C H, we have Case of 1.3

(indeed S(x) A in the present case), and the assumption of Theorem 1.5 (I) is
satisfied. Hence by Theorem 1.5 (I), we have

p(X) I. t3

The following reproduces the result of Andreatta-Ballico-Wi,niewski [ABW]
(also Theorem 0.3 of this article) under the slightly generalized assumption (RC; x) "I’

COROLLARY 4.2 (Andreatta-Ballico-Wigniewski [ABW], p. 194). In Proposition
4. I, assume.furthermore that x Reg X. Assume that char k 0. Then

(X, L) (", Or,,(I)).

Proo.f. By (4. I. I), p is surjective, and hence n in (3.0.2). Thus by Proposi-
tion 3. and Lemma 3.4,

(4.2.1) (-Kx. Ch) >_ c ((v.,.*x)v) >_ c (0, (2) 0, (I)*’’-)) n + I.

If X has at worst log-terminal singularities, Proposition 4. I, (4.2. I), and (L. Ch)
imply that -Kx rL for some r > n -I- I. By Theorem 0.7, we conclude that
(X, L) (IP", O,,(I)).
(4.2.2) (taken from Andreatta-Ballico-Winiewski [ABW]). If X admits singu-
larities worse than log-terminal, apply Fujita’s result ([Fuj4] Theorem 2.2) to obtain
the same conclusion. I--1

5. Proof of the Main Theorem

In this section we prove our main result (Theorem 5. I).

THEOREM 5. (Main Theorem). In 4.0, assume that X has only normal Q-.factorial
singularities, and that (X, L) satisfies the condition (RC; x)22 in 2.11.r some
Reg X. Assume that char k 0. Then

(X, L) (IP", Oe,,(I)) or (Q", O0,,(1)),

where Q" is a quadric hypersu.rface in IP’’+
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In the course of the proof of Theorem 5. I, we need the ’Bend-and-Break Lemma’
of Mori ([Mo ], p. 599), in a slightly modified form, as follows (cf. [Kol], Chap. 11.5):

LEMMA 5.2 (BEND-AND-BREAK LEMMA, A VARIANT). Let S be a projective sur-

.face with only Du Val singularities (i.e., rational double points), T a non-singular
projective curve, and .f S -- T a surjective morphism. Assume that -Ks is f-
ample, and that there exist two irreducible curves s and s’ on S such that s fq s’ i,
.f(s) f(s’) T, (S2) < 0, and (s’2) < 0.

Then there exists a fiber F F U F2 off, with F F2 , such that

snF #, and s’nF2#O.

First we prove:

LEMMA 5.3. Let (X, L) be as in 4.0. Assume that (X, L) satisfies (RC; x)2 in
2. fi)r some x X. Thenfir any y X {x }, one ofthefollowing holds:

(I) There exists an irreducible rational curve Ix.y C X such that
lx.y g X, y, and (L.lx.y) I.

(2) There exist flat families {l.’.t }reT,., {ly.t }r,. o.f irreducible rational curves on
X, parametrized by a common irreducible projective scheme T,., such that

1.., t,,., o, 1:., x, t,,., y, (L .t:’.,) (L .:,.,) ,
and

dim U l’., dim U ly., n I.
tT,. tT,.

Proof. As in Proposition 4.2, we may assume that X is normal. By Corollary
2.13, there exists a flat family {Ch}heH of I-dimensional closed subschemes of X
such that:

(5.3.1) For any y,z X-{x} (y =/: z),thereexistsh H such that Ch {x, y,z}.
(5.3.2) For a general h 6 H, Ch is an irreducible rational curve with (L. Ch) 2.
Let 7-/-- H be the flat morphism defining the family {Ch}hH. For y 6 X {x}, let

(5.3.3) H,. := q(p-(y))= {h H ICh y} C H,

and let q- (H,.) =: 7-/,. -- H,. be the restriction of the family q over H,.. As in the
proof of Theorem 4. I, we may assume that both 7-/,. and H,. are normal (otherwise
we may just replace them by their normalizations). Let

(5.3.4)

P
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be the induced diagram, as (4.1.3). For h 6 H, denote the fiber of q at h by BI,, so
that p( Bh) Ch. Let
(5.3.5) A A,. := {h

_
Hv Ch Ch. U Ch.2, Ch.j is an irreducible rational

curve, (L. Ch.j) (j I, 2) }.
This is a Zariski closed subset of H.. By Lemma 5.2:

(5.3.6) For any irreducible closed subset T C H,. of dimension I, T f3 A :/: 1. In
particular, A has an irreducible component Ai of codimension I.

(5.3.7) Let H C Reg H,. be a Zariski open subset of H. such that q-(H) is
Cohen-Macaulay, and in particular, qlq-,ttr,) is flat. As in (4.1.5-6), H - 1, and
codim,.(H,.- H) >_ 2.
Let

(5.3.8)

DbI(A)
(Ai)
(Ai)

:= {h 6 A IBh is not generically reduced},
:= Reg(Ai N H),
:= Reg(Ai f’) H) DbI(A),
:-- q-I(Ai), and (Di) := q-((Ai)).

Note that (Ai) : 0 by (5.3.7).

Claim I. In (5.3.6); for an irreducible component A of A with codimn,. A I,
the following two conditions are equivalent:

(a) p(79i) has an irreducible component of codimension I.
(b) For any complete irreducible curve T C H., T f’l A .

In particular, by (5.3.6), condition (a) holds for some i.

Proof. We only have to prove the implication (b) =: (a). Assume that p(Di)
p(q- (Ai)) has no irreducible component of codimension I. Take a complete irre-
duciblecurve Z C X such that Zp(Di) 0, and consider Hz := q(p-(Z)) C H.
If Z is taken sufficiently general so that the geometric genus p.e (Z) > I, then Z is not
contained in any Ch, and hence Hz is a complete curve in H,. such that Hz fq Ai 1.
Hence Claim is proved.

(5.3.9) Let {Ai}i! be the set of all those irreducible components of A satisfying
condition (a) (or equivalently, condition (b)) ofClaim I. Iffor some e 1, (Ai)00 ,
i.e., a general fiber of q over A is not generically reduced, then we immediately have
assertion (I) of the lemma. Hence we may assume in what follows that for every

I, (Ai)) =f= .
(5.3.10) Let s. := (plv,)-(x), and s,. := (plv,)-(y). By construction, dims.,.
dim s. n 2.

By (5.3.7) and (5.3.8), Ai )o0 is non-singular, and q- Ai )t) is Cohen-Macaulay.
Moreover, q is fiat over H, and therefore p,,(Bh) 0 for any h (Ai)t. Hence:
(5.3.1 I) For any h e (Ai)00, BI, is reduced, BI, B,. U Bh.2, Bt,. Bh.2 1,
and Bh.I Iq Bh.2 {Wh} (one point), meeting transversally. Also, there exists a
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commutative diagram

where Pi is the normalization, d is an 6tale double cover (either (Ai)00" is connected
or (Ai)~ (Ai)H (Ai)) and b is a I?-bundle such that the the fiber at h of
(dob): (Di)- ---> (Ai) gives the normalization of Bh: Bh. H Bh.2 ---’> 811. Let
Ch. := p(Bh. ) and Ch.2 :’- p(Bh.2), SO that Ch Ch. kJ Ch.2.

By (5.3. ), we may take a general complete non-singular curve T C Hy such that
T fq Ai C (Ai) and q- (T) has only Du Val singularities. By Lemma 5.2, applied
to qlq-tT): q-I (T) --> T, there exist I and h (Ai)0 such that

(5.3.12) s. fq Bh, 1, and Sy Bh,2 .
In (5.3.12), if either sv N Bh.I :/: 0 or s. tq Bh.2 -7(: , then accordingly x, y . Ch.
or x, y Ch.2, and hence we have (I) of the assertion. Thus we may assume the
following:

(5.3.13) Sxf"lBh (7_ Bh, i--Bh.2, and svOBh (7_ Bh.2--Bh.I for any h 6 (Ai)00.

In particular, (Ai)oo~ (Ai)t) LI (Ai)t) in (5.3. ). Let

DInt := {whlh a__ (Ai)} C

(5.3.14) Dnt is irreducible, dim DInt n 2, and q]znt" DInt ---> Ai is a

birationai morphism which is an isomorphism over (Ai).

Claim 2. plznt" DInt ---> p(Dint) is generically finite.

Proof. Assume to the contrary that any fiber F of plvnt is of dimension > I.

Hence dim((Ai)t) tq q (F)) > for a general F. Let

(5.3.15) "= {F Ifiberof p179n such that dim ((Ai) tqq(F)) > 1}.

(5.3.16) Take F 6 , and let z := p(F). By (5.3.13), z -7: x, and z y.
Moreover,

(5.3.17) Ch. x, Z and Ch.2 Y, z (h (Ai) f3q(F)).
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Let

(5.3.18) CF "=

By (5.3.14), we have

U Ct,..i (j I, 2).
( Ai )q(F)

(5.3.19) (u )-p(D) (CF. U CF.2)

Case (i). If dimCF.j (j I, 2) for any F :, then by (5.3.19) we have
dim p(Di) < n 2, a contradiction to the choice of Ai in (5.3.9).

Case (ii). If dim CF. > 2 or dim CF.: > 2 for some F , then we have a
complete family {C,.j},q(F) of irreducible rational curves passing through Ix, z}
(case j I) or {y, z} (case j 2). Note that by (5.3.16), x -7/: z and y -7/: z, so this
contradicts Lemma 5.2. Hence Claim 2 is proved.

By (5.3. ), (5.3.13), C,.j },(zx,),,, gives a family of irreducible rational curves on
X (j I, 2) such that CI,. x, CI,.: y, and (L. Ct,.) (L. C,.2) I. Moreover
by Claim 2, dim p(Ut, e(zx;),,, Bt,.j) n I, namely,

(5.3.20) dim( U Ci,.j)=n-I (j=l,2).

Thus the assertion (2) ofLemma 5.2 is satisfied, with T,. Ai, I.,’?., Ct,., i,.., Ch.2,
and the proof of the Lemma 5.2 is completed.

PROPOSITION 5.4. Under the same assumption as in Lemma 5.3, let X X be
the normalization of X. Then o(X) I.

Proo.f. We may assume that X is normal. By Lemma 5.3, we have a uc-dense
subset A C Reg X such that (X, L) either satisfies (RC" x’ A), or the following:

(5.4. I) For every y A, there exist fiat families {/.’?., }tr,., I/,.., }tr,. of irreducible
rational curves on X such that

and

dimUl:’.,.., dimUly.,=n I.
tT,. tT,.
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Here we may assume that the parameter scheme T,. is irreducible, reduced. In the
former case, we have p(X) I, by Proposition 4.2. So we may assume (5.4.1) in
what follows.

By Theorem 2.10, appli,d to {/r.t}ter,. (Y A), there exist a flat morphism S --> R
parametrizing closed subschemes {SrJr.R of X over a projective base scheme R,
together with a uc-dense subset F C R, and an R-morphism p: R Chow(Hilb
(SIR)/R), with the corresponding family of effective cycles {Gr}reR, such that
properties (5.4.2-4) hold as follows:

(5.4.2) For any ?, F, S and G are reduced, and there exists y A such that

Sr UtET,. ly,t, and SuppG Tr in Hilb(S).
(5.4.3) For any r 6 R, Locus(Supp Gr) Sr (see Notation 2.9).

(5.4.4) For any y 6 X, there exists r 6 R such that Bs(SuppGr) 9 y (see Nota-
tion 2.9).
By (5.4.1-2), we have

(5.4.5) dimSr =n- for anyr 6R.

Since G is an irreducible reduced cycle for y 6 F, as in (2.10.8-1 I), there exists a
.non-empty Zariski open subset R C R such that {Supp Gr }rER" forms a flat family

gO
of reduced closed subschemes of Hilb(S/R) ([Kol], Chap. (3.10.3)). Let Z

R be the flat morphism parametrizing/{Supp Gr}rR,,, and Z Hilb(S/R) the
projection. Note that since " R Chow(Hilb(S/R)/R) is an R-morphism, it
follows that the composite

ZO
i,"

Hilb(S/R)

(where Hilb(S/R) R is the structure morphism) coincides with gO. Hence
there is an extension Z - Hilb(S/R) from a projective algebraic scheme Z which
contains Z as an open subscheme, such that/Zlz,} 0. Denote the composite
Z Hilb(S/R) R by g. We have glz,, gO. Let Y Z be the flat family
of closed subschemes ofS induced from/z. If Y or Z is not normal, then as in (4.2.3),
we take the normalization and replace a by the induced one, so we may assume that
both Y and Z are normal, that c is equi-dimensional and flat over a Zariski open
subset of Z whose complement is of codimension at least 2 (see (4.2.4)). Thus we
have the following diagram:

(5.4.6)

Y S

Z R



386 YASUYUKI KACHI AND EIICHI SATO

Denote the composite of the top line of (5.4.6) by Y X., Apply the results in
to the diagram

Z Y X.
For z Z, let Bz be the fiber of c at z.
(5.4.7) By construction,/ is a surjective morphism such that for a general z Z,
Bz -- , and Vz :=/IB:.: Bz (Bz) =: lz is a birational morphism. By (5.4.3),

U lz rSr for R.
zEg-(r)

Following the notation of 1.1, let

SI (y) :-- flc-c/- (y).

By (5.4.4) we have the following:

(5.4.8) For a general y 6 X, there exists r 6 R such that

S (y) D Locus(Supp Gr) St.

Hence dim S (y) n for a general y 6 X, and we are either in Case I or Case II
of 1.3.

(5.4.9) If we are in Case II of 1.3, then by Corollary 1.13, we have a surjective
morphism f: X T to a non-singular curve T such that for a general fiber F of f
andany y 6 F, F Sl(y). On the other hand, by (5.4.1) and (5.4.8), for every y A,
SI (x) has an irreducible component S] of dimension n 1, such that S NS (y) -7t: 0;
in particular, the restriction f s" S: T of f to S] is surjective, while S] satisfies
(RC; x), and hence by Proposition 4.2, p(SYx ~) 1, which is absurd.

Hence we are in Case I in 1.3. By Theorem 1.5 (1), we have

p(X)-- l,

as required. I-3

5.5. Proof of Theorem 5.1. Let z 6 Z be a general point, so that Bz (cf.
(4.2.7)). Consider ’ Bz -- Cz C X (see (5.4.7)). Let

(5.5.1) (I))v Op,(ai), a > > an.
i=1

By (5.4.7),/: Y X is surjective, hence we have t’ n in (3.2.1). Thus by
Proposition 3.3,

vOp, (2) On- C (v f2x)
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(5.5.2) al > 2, an > O.

Also, by (5.4.1), t > n in (3.0.3). Thus

vO,, (2) OpI (1)n-2 C (v 2x)

(5.5.3) an-l > 1.

By (5.5.1-3) and Lemma 3.4, we have

(5.5.4) (--Kx Ch) >__ CI((I)"Ix)V) >__. ai >_ n.
i=1

Proposition 5.4, (5.5.4), and (L. Ch) imply that -Kx =-- rL for some r > n.

(5.5.5) In case X has only log-terminal singularities, by Theorem 0.7, it follows that
(X, L) (n, O,. (1)), or (Qn, Or2.(1))"
(5.5.6) (following the suggestion by Mella [Me2]). Finally, if X’ has singulari-
ties worse than log-terminal, then (as indicated by [Me2]) we apply Fujita’s result
(Theorem 2.3 of [Fuj4]) to obtain the same conclusion.

[Ab]
[All]

[Al2l

[AN]

[Am]
[ABW]

[BS]

[Cam

[Cam2]

[CAP]

[Cat]
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