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Abstract. We work over an algebraically closed field k of positive characteristic

p. Let q be a power of p. Let A be an ðnþ 1Þ � ðnþ 1Þ matrix with coe‰cients aij in

k, and let XA be a hypersurface of degree qþ 1 in the projective space Pn defined byP
aijxix

q
j ¼ 0. It is well-known that if the rank of A is nþ 1, the hypersurface XA is

projectively isomorphic to the Fermat hypersuface of degree qþ 1. We investigate the

hypersurfaces XA when the rank of A is n, and determine their projective isomorphism

classes.

1. Introduction

We work over an algebraically closed field k of positive characteristic p.

Let q be a power of p. Let n be a positive integer. We denote by Mnþ1ðkÞ
the set of square matrices of size nþ 1 with coe‰cients in k. For a nonzero

matrix A ¼ ðaijÞ0ai; jan A Mnþ1ðkÞ, we denote by XA the hypersurface of degree

qþ 1 defined by the equation X
aijxix

q
j ¼ 0

in the projective space Pn with homogeneous coordinates ðx0; x1; . . . ; xnÞ. The

following is well-known ([2], [10], [14], see also § 4 of this paper).

Proposition 1. Let A ¼ ðaijÞ0ai; jan A Mnþ1ðkÞ and XA HPn be as above.

Then the following conditions are equivalent:

( i ) rankðAÞ ¼ nþ 1,

( ii ) XA is smooth,

(iii) XA is isomorphic to the Fermat hypersurface of degree qþ 1, and

(iv) there exists a linear transformation of coordinates T A GLnþ1ðkÞ such

that tTAT ðqÞ ¼ Inþ1, where
tT is the transpose of T, T ðqÞ is the matrix

obtained from T by raising each coe‰cient to its q-th power, and Inþ1

is the identity matrix.
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The Fermat hypersurface of degree qþ 1 defined over an algebraically

closed field of positive characteristic p has been a subject of numerous papers.

It has many interesting properties, such as supersingularity ([15], [16], [17]), or

unirationality ([13], [15], [16]). Moreover, the hypersurface XA associated with

the matrix A with coe‰cients aij in the finite field Fq2 , which is called a

Hermitian variety, has also been studied for many applications, such as coding

theory ([8]). (The general results on Hermitian varieties are due to Segre [11];

see also [6]). Therefore it is important to extend these studies to degenerate

cases.

In the case where characteristic p0 2, the following is well-known and

can be found in any standard textbook on quadratic forms: the hypersurface

defined by the quadratic form
P

aijxixj ¼ 0 is projectively isomorphic to the

hypersurface defined by

x2
0 þ � � � þ x2

r�1 ¼ 0;

where r is the rank of A ¼ ðaijÞ. This result has been extended the case of

characteristic 2 (see [3]). Therefore we have a question what is the normal

form of the hypersurfaces defined by a form
P

aijxix
q
j ¼ 0. When A satisfies

tA ¼ AðqÞ and hence this form is the Hermitian form over Fq, the hypersurface

XA is projectively isomorphic over Fq2 to

x
qþ1
0 þ � � � þ x

qþ1
r�1 ¼ 0;

where r is the rank of A ([5]).

In this paper, we classify the hypersurfaces XA associated with the matrices

A of rank n over an algebraically closed field. Note that two hypersurfaces XA,

XA 0 associated with the matrices A, A 0 are projectively isomorphic if and only if

there exists a linear transformation T A GLnþ1ðkÞ such that A 0 ¼ tTAT ðqÞ. In

this case, we write A@A 0.

We define Is to be the s� s identity matrix, and Er to be the r� r

matrix

0 0 � � � 0

1 0 � � � 0

..

. . .
. . .

. ..
.

0 � � � 1 0

0
BBBB@

1
CCCCA:

In particular, E1 ¼ ð0Þ and E0 is the 0� 0 matrix. Throughout this paper, a

blank in a block decomposition of a matrix means that all the components of

the block are 0. Our main result is as follow.
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Theorem 1. Let A ¼ ðaijÞ0ai; jan be a nonzero matrix in Mnþ1ðkÞ, and let

XA be the hypersurface of degree qþ 1 defined by
P

aijxix
q
j ¼ 0 in the projective

space Pn with homogeneous coordinates ðx0; x1; . . . ; xnÞ. Suppose that the rank

of A is n. Then the hypersurface XA is projectively isomorphic to one of the

hypersurfaces Xs associated with the matrices

Ws ¼
Is

En�sþ1

 !
;

where 0a sa n. Moreover, if s0 s 0, then Xs and Xs 0 are not projectively

isomorphic.

Corollary 1. If A is a general point of fA A Mnþ1ðkÞ j rankðAÞ ¼ ng, then
A@Wn�1.

Corollary 2. Suppose that nb 2, s < n and ðn; sÞ0 ð2; 0Þ. Then Xs is

rational.

We also determine the automorphism group

AutðXsÞ ¼ fg A PGLnþ1ðkÞ j gðXsÞ ¼ Xsg;

of the hypersurface Xs for each s. For M A GLnþ1ðkÞ, we denote by ½M� A
PGLnþ1ðkÞ the image of M by the natural projection.

Theorem 2. Let Xs be the hypersurface associated with the matrix Ws

in the projective space Pn. The projective automorphism group AutðXsÞ with

sa n� 2 is the group consisting of ½M�, with

M ¼
T ta 0

0 d 0

c e 1

0
BB@

1
CCA;

where T A GLn�1ðkÞ, a; c are row vectors of dimension n� 1, d; e A k, and they

satisfy the following conditions:

( i ) ½T � A AutðX n�2
s Þ, tTW 0

s T
ðqÞ ¼ dW 0

s , d ¼ dq 0 0, where X n�2
s is the

hypersurface defined in Pn�2 by the matrix

W 0
s ¼

Is

En�s�1

 !
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( ii ) d ¼ d,

(iii) ½aW 0
s þ dð0; . . . ; 0; 1Þ� � T ðqÞ ¼ dð0; . . . ; 0; 1Þ,

(iv) tTW 0
s � taðqÞ þ tcd q ¼ 0, and

( v ) ½aW 0
s þ dð0; . . . ; 0; 1Þ� � taðqÞ þ ed q ¼ 0.

Moreover, we have

AutðXnÞ ¼
Tn

u 1

" #�����
tTnT

ðqÞ
n ¼ lIn; Tn A GLnðkÞ; l0 0;

u is a row vector of dimension n

( )
;

and

AutðXn�1Þ ¼
Tn�1

b

1

2
664

3
775
��������
tTn�1T

ðqÞ
n�1 ¼ bqIn�1;

Tn�1 A GLn�1ðkÞ; 00 b A k

8>><
>>:

9>>=
>>;

We give a brief outline of our paper. In § 2, we prove Theorem 1 and

its corollaries. In § 3, we prove Theorem 2. In § 4, we recall the proof of

Proposition 1 because this proposition plays an important role in the proof

of Theorem 1. In § 5, we investigate the plane curve XA associated with the

matrix A of ranka 2 in the projective plane P2, and recovers Homma’s

unpublished work [9] (see Remark 5).

The author thanks Professor Ichiro Shimada for helful discussions and

comments. A part of the proof of Theorem 1 was proved by Shimada. The

author also thanks Professor Masaaki Homma for sending his paper [9], and

the referee for his/her suggestion on the first version of this paper.

2. Proofs of Theorem 1 and its corollaries

We present several preliminary lemmas. The following remark may be

helpful in reading the proof of lemmas.

Remark 1. Let

T ¼
t00 � � � t0n

..

. . .
. ..

.

tn0 � � � tnn

0
BB@

1
CCA

be an invertible matrix. Suppose that
P

aijxix
q
j ¼ 0 is the equation associated

to a matrix A ¼ ðaijÞ0ai; jan. Then the operation

A 7! tTAT ðqÞ
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on the matrix is equivalent to the transformation of the coordinates

xi 7!
Xn
j¼0

tijxj;

where 0a ia n.

Lemma 1. Put

Gs; r ¼

Is

Er

a 0 � � � 0 1

0 0

..

. ..
.

En�s�rþ1

0 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
;

and

Gs; rþ2 ¼

Is

Erþ2

aðq
2Þ 0 � � � 0 1

0 0

..

. ..
.

En�s�r�1

0 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
;

where sb 1, rb 0, n� s� r� 1b 0, and a is a nonzero row vector of dimension

s. Then

Gs; r @Gs; rþ2:

Proof. By the transformation

TG ¼

Is � ta

Ir

1

aðqÞ 1

In�s�r�1

0
BBBBBBBB@

1
CCCCCCCCA
;
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we have

tTGGs; rT
ðqÞ
G ¼ Gs; rþ2: r

Remark 2. Lemma 1 holds when r ¼ 0 or n� s� r� 1 ¼ 0. In particular,

when n� s� r� 1 ¼ 0, we have Gs; rþ2 ¼ Ws.

Lemma 2. Put

Hs; r ¼

Ds�1 � ta 00 0 � � � 0

�a 0

0

..

.
Er

0

0 � � � 0 1 1

1

0

..

.
En�s�rþ1

0

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

;

where sb 1, rb 2, n� s� r� 1b 1, Ds�1 A Ms�1ðkÞ, a 0 and a 00 are row vectors

of dimension s� 1. Then

Hs; r @Hs; rþ2:

Proof. By the transformation

TH ¼

Isþr�1

1

�1 1 1

1

In�s�r�1

0
BBBBBBBB@

1
CCCCCCCCA
;

we have

tTHHs; rT
ðqÞ
H ¼ Hs; rþ2: r
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Lemma 3. Put

H 0
s; r ¼

Ds�1

�a 0 0

1

0

..

.
Er

0

0 � � � 0 1 0 1

1 0

1

0

..

.
En�s�r�1

0

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA

;

where sb 1, rb 2, n� s� r� 3b 1, Ds�1 A Ms�1ðkÞ, and a 0 is a row vector of

dimension s� 1. Then

H 0
s; r @H 0

s; rþ2:

Proof. By the transformation

TH 0 ¼

Isþr

1

1 1

�1 1

1

In�s�r�3

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
;

we have

tTH 0H 0
s; rT

ðqÞ
H 0 ¼ H 0

s; rþ2: r

Remark 3. Lemma 2 and 3 will be used only in the case where n� sþ 1

is odd. Hence, we do not need to prove the case n� s� 1 ¼ 0 in Lemma 2 nor

the case n� s� 3 ¼ 0 in Lemma 3.
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Lemma 4. Put

Ps ¼

Is

a

0

..

.
En�sþ1

0

0
BBBBBBB@

1
CCCCCCCA
;

where sb 1, n� sþ 1b 1, and a is a nonzero row vector of dimension s.

Then

(1) If n� sþ 1 is even, then Ps @Ws:

(2) If n� sþ 1 is odd, then

Ps @Bs�1 ¼

Ds�1

bs�1

0

..

.
En�sþ2

0

0
BBBBBBB@

1
CCCCCCCA
;

where Ds�1 A Ms�1ðkÞ, bs�1 is the row vector of dimension s� 1. In particular,

if s ¼ 1 and n is odd, then P1 @W0.

Proof. (1) Suppose that n� sþ 1 is even. Using Lemma 1 and Remark

2, we have

Ps ¼ Gs;0 @Gs;n�sþ1 ¼ Ws:

(2) Next, suppose that n� sþ 1 is odd. By interchanging the coor-

dinates x0; . . . ; xs�1, and scalar multiplication of the coordinates xs; . . . ; xn
if nessesary, we can show that

Ps @P 0
s ¼

Is�1

1

a 0 1 0

1

0

..

.
En�s

0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
;
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with a 0 being a row vector of dimension s� 1. By the transformation

T1 ¼

Is�1

�a 00 1

1

In�s

0
BBBBB@

1
CCCCCA;

with a 00ðqÞ ¼ a 0, we have

Qs ¼ tT1P
0
sT

ðqÞ
1 ¼

Ds�1 � ta 00

�a 0 1

1 0

1

0

..

.
En�s

0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
;

where Ds�1 ¼ Is�1 þ ta 00 � a 0. If n� sþ 1 ¼ 1, by the transformation

T2 ¼
In�1

1

a 00 �1 1

0
BB@

1
CCA;

we have

tT2QnT
ðqÞ
2 ¼ Bn�1:

Suppose that n� sþ 1 > 1. Note that, since we are in the case where n� sþ 1

is odd, we have n� sþ 1b 3. By the transformation

T3 ¼

Is�1

1

�1 1 1

1

In�s�1

0
BBBBBBBB@

1
CCCCCCCCA
;
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we have

Q 0
s ¼ tT3QsT

ðqÞ
3 ¼

Ds�1 � ta 00

�a 0 0

1 0

1 1

1

0

..

.
En�s�1

0

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

¼ Hs;2:

Using Lemma 2, we have

Q 0
s ¼ Hs;2 @Hs;n�s ¼ Q 00

s ¼

Ds�1 � ta 00 0 � � � 0

�a 0

0

..

.
En�s

0

0 � � � 0 1 1

1 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
:

Then by the transformation

T4 ¼
In�1

1

�1 1

0
BB@

1
CCA;

we have

Rs ¼ tT4Q
00
s T

ðqÞ
4 ¼

Ds�1 � ta 00 0 � � � 0

�a 0

0

..

.
En�sþ2

0

0
BBBBBBB@

1
CCCCCCCA
:

If s ¼ 1, R1 @W0. Suppose that s > 1. By the transformation
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T5 ¼

Is�1

1 1

a 00 1

1

In�s�1

0
BBBBBBBB@

1
CCCCCCCCA
;

we obtain

R 0
s ¼ tT5RsT

ðqÞ
5 ¼

Ds�1

�a 0 0

1 0 1

1 0

1

0

..

.
En�s�1

0

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

:

If n� s� 1 ¼ 1, by the tranformation

T6 ¼

In�2

1

1

�1 1

0
BBBBB@

1
CCCCCA;

we have

tT6R
0
n�2T

ðqÞ
6 ¼ Bn�3:

Suppose that n� s� 1 > 1. Then by the transformation

T7 ¼

Is

1

1 1

�1 1

1

In�s�3

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
;

205Fermat hypersurfaces



we have

R 00
s ¼ tT7R

0
sT

ðqÞ
7 ¼

Ds�1

�a 0 0

1

0 E2

0 1 0 1

1 0

1

0

..

.
En�s�3

0

0
BBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCA

¼ H 0
s;2:

Using Lemma 3, we have

R 00
s ¼ H 0

s;2 @H 0
s;n�s�2 ¼ R 000

s ¼

Ds�1

�a 0 0

1

0

..

.
En�s�2

0

0 � � � 0 1 0 1

1 0

1 0

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

:

It is easy to see that

tT6R
000
s T

ðqÞ
6 ¼ Bs�1: r

Lemma 5. Put

Bs ¼

Ds

bs

0

..

.
En�sþ1

0

0
BBBBBBB@

1
CCCCCCCA
;
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where sb 1, n� sþ 1b 1, Ds A MsðkÞ, and bs is a row vector of dimension s.

Suppose that the rank of Bs is n. Then

Bs @Ws ¼
Is

En�sþ1

 !
;

or

Bs @Bs�1 ¼

Ds�1

bs�1

0

..

.
En�sþ2

0

0
BBBBBBB@

1
CCCCCCCA
;

where Ds�1 A Ms�1ðkÞ, and bs�1 is a row vector of dimension s� 1.

Proof. Suppose that det Ds 0 0. By Proposition 1, there exists a linear

transformation of coordinates TD A GLsðkÞ such that tTDDsT
ðqÞ
D ¼ Is: By the

transformation

T ¼
TD

In�sþ1

 !
;

we have

tTBsT
ðqÞ ¼

Is

b 0
s

0

..

.
En�sþ1

0

0
BBBBBBB@

1
CCCCCCCA
;

where b 0
s ¼ bsT

ðqÞ
D . If b 0

s ¼ 0, then Bs @Ws. Suppose that b 0
s 0 0. By Lemma

4, we have Bs @Ws, or Bs @Bs�1.

Suppose that det Ds ¼ 0. Then one row of the matrix Ds is a linear

combination of the other rows. By interchanging coordinates x0; . . . ; xs�1 if

nessesary, we can assume that the s-th row is a linear combination of the other

rows. We write the matrix Ds as

Ds ¼
P tg

h d

 !
;

where P A Ms�1ðkÞ, g, h are row vectors of dimension s� 1, d A k, and that

satisfy h ¼ wP, d ¼ w tg with w being a row vector of dimension s� 1. Then
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Bs @B 0
s ¼

P tg

h d

f e

0 0

..

. ..
.

En�sþ1

0 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
;

where f is a row vector of dimension s� 1, and e A k. By the tranformation

T 0 ¼
Is�1 � tw

1

In�sþ1

0
BB@

1
CCA;

we obtain

B 00
s ¼ tT 0B 0

sT
0ðqÞ ¼

P �P � twðqÞ þ tg

f �f � twðqÞ þ e

0 0

..

. ..
.

En�sþ1

0 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:

Put

Q ¼
P �P � twðqÞ þ tg

f �f � twðqÞ þ e

 !
:

Because the rank of B 0
s is n, we have det Q0 0. Let Q 0 A GLsðkÞ such that

QQ 0ðqÞ ¼ Is,

Q 0 ¼
P 0 tg 0

f 0 e 0

 !
;

where P 0 A Ms�1ðkÞ, g 0, f 0 are row vectors of dimension s� 1, e 0 A k. By the

transformation

T 00 ¼
P 0 tg 0

f 0 e 0

In�sþ1

0
BB@

1
CCA;
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we obtain

tT 00B 00
s T

00ðqÞ ¼

tP 0

g 0 0

1

0

..

.
En�sþ1

0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:

Putting Ds�1 ¼ tP 0 and bs�1 ¼ g 0, we have B 00
s @Bs�1. r

Remark 4. When s ¼ 1, we have

Bs�1 ¼ B0 ¼ Enþ1 ¼ W0:

Now we prove Theorem 1 and Corollary 1.

Proof. Because the rank of the matrix A is n, Proposition 1 implies that

the hypersurface XA is singular. By using a linear transformation of coor-

dinates if nessesary, we can assume that XA has a singular point ð0; . . . ; 0; 1Þ.
Then we have ain ¼ 0 for any 0a ia n. The matrix A is now of the form

A ¼
Dn

bn

 !
¼ Bn;

where Dn A MnðkÞ, and bn is a row vector of dimension n. Using Lemma 5

repeatedly and Remark 4, we have that the hypersurface XA is isomorphic to

one of the hypersurfaces defined by the matrixes Ws with 0a sa n.

If A is general, then detðDnÞ0 0, and hence by the first paragraph of the

proof of Lemma 5 and Lemma 4, we have A@Wn�1.

Next we prove that s0 s 0 implies Ws SWs 0 . For this, we introduce

some notions. Let X n
s be the hypersurface defined by the matrix Ws in the

projective space Pn. The defining equation of X n
s can be written as

Fqxn þ Fqþ1 ¼ 0;

where

Fq ¼
0 if s ¼ n

x
q
n�1 if s < n;

�

and

Fqþ1 ¼
x
qþ1
0 þ � � � þ x

qþ1
n�1 if s ¼ n

x
qþ1
0 þ � � � þ x

qþ1
s�1 þ xq

s xsþ1 þ � � � þ x
q
n�2xn�1 if s < n:

(
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It is easy to see that X n
s has only one singular point P0 ¼ ð0; . . . ; 0; 1Þ. The

variety of lines in Pn passing through P0 can be naturally identified with the

hypersurface Hy ¼ fxn ¼ 0g in Pn by the correspondence Q A Hy to the line

QP0. Let j be the map defined by

j : PnnfP0g ! Pn�1

P 7! PP0:

Let X n
s ¼ jðX n

s nfP0gÞ. For Q ¼ ðy0; . . . ; yn�1; 0Þ A Hy, we consider the line

l ¼ QP0 ¼ fðly0; . . . ; lyn�1; mÞ j ðl; mÞ A P1g:

We have l A X n
s if and only if there exists P ¼ ðp0; . . . ; pn�1; pnÞ A X n

s nfP0g
satisfying P A l, i.e. there exists an element m A k such that

ðp0; . . . ; pn�1; pnÞ ¼ ðy0; . . . ; yn�1; mÞ;

for some P A X n
s nfP0g, or equivalently there exists an element m A k such that

Fqðy0; . . . ; yn�1Þmþ Fqþ1ðy0; . . . ; yn�1Þ ¼ 0:

Then

j�1ðlÞV ðX n
s nfP0gÞ ¼

q if Fqðy0; . . . ; yn�1Þ ¼ 0 and

Fqþ1ðy0; . . . ; yn�1Þ0 0;

fa single pointg if Fqðy0; . . . ; yn�1Þ0 0;

lnfP0g if Fqðy0; . . . ; yn�1Þ ¼ 0 and

Fqþ1ðy0; . . . ; yn�1Þ ¼ 0:

8>>>>>><
>>>>>>:

Putting Vs ¼ fFq ¼ 0;Fqþ1 ¼ 0gHPn�1, and Hs ¼ fFq ¼ 0gHPn�1, we have

Vs ¼
X n�2

s if sa n� 2;

nonsingular Fermat hypersurface in Pn�1 if s ¼ n;

nonsingular Fermat hypersurface in Pn�2 if s ¼ n� 1;

8><
>:

where X n�2
s is the hypersurface in Pn�2 associated with the matrix

Is

En�s�1

 !
:

For any s0 s 0, suppose that X n
s and X n

s 0 are isomorphic and let c : X n
s ! X n

s 0

be an isomorphism. Because each of X n
s and X n

s 0 has only one singular point
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P0, we have cðP0Þ ¼ P0, and hence c induces an isomorphism c from X n
s to

X n
s 0 . For any line l A X n

s and l 0 A X n
s 0 such that cðlÞ ¼ l 0, we have

aðj�1ðlÞV ðX n
s nfP0gÞÞ ¼aðj�1ðl 0ÞV ðX n

s 0 nfP0gÞÞ:

Thus Vs GVs 0 and Hs GHs 0 . Hence, for any s0 s 0, if Vs ZVs 0 or Hs ZHs 0

then X n
s ZX n

s 0 .

In the case n ¼ 1, we have that X 1
0 consists of two points, and X 1

1 consists

of a single point. In the case n ¼ 2, we have that X 2
0 consists of two

irreducible components, X 2
1 is irreducible, and X 2

2 consists of ðqþ 1Þ lines.

Hence, in the case n ¼ 1 and n ¼ 2, we see that s0 s 0 implies Ws SWs 0 . By

induction on n, we have the proof. r

Next, we prove Corollary 2.

Proof. Under the condition nb 2, s < n and ðn; sÞ0 ð2; 0Þ, we have xn�1

does not divide Fqþ1, and hence Vs is of codimension 2 in Pn�1. By induction

on n, X n
s is irreducible. The morphism

jjX n
s nfP0g : X

n
s nfP0g ! Hy GPn�1

is birational with the inverse rational map

Q ¼ ðy0; . . . ; yn�1; 0Þ 7! y0; . . . ; yn�1;�
Fqþ1ðy0; . . . ; yn�1Þ

y
q
n�1

� �
: r

3. Proof of Theorem 2

For any sa n� 2, the matrix Ws can be written

Ws ¼
W 0

s

0 � � � 0 1 0

1 0

0
BB@

1
CCA:

For any g A AutðXsÞ, we have gðP0Þ ¼ P0 because Xs has only one singular

point P0 ¼ ð0; . . . ; 0; 1Þ. The automorphism g is defined by a matrix of the

form

M ¼
T ta 0

b d 0

c e 1

0
BB@

1
CCA;

where T A Mn�1ðkÞ, a, b, c are row vectors of dimension n� 1, and d; e A k.

We have tMWsM
ðqÞ ¼ dWs for some 00 d A k, which implies
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tTW 0
s T

ðqÞ ¼ dW 0
s (1)

½aW 0
s þ dð0; . . . ; 0; 1Þ� � T ðqÞ ¼ dð0; . . . ; 0; 1Þ (2)

tTW 0
s � taðqÞ þ tcd q ¼ 0 (3)

½aW 0
s þ dð0; . . . ; 0; 1Þ� � taðaÞ þ ed q ¼ 0 (4)

b ¼ 0 (5)

d q ¼ d (6)

8>>>>>>>><
>>>>>>>>:

By (1), we see that T is a matrix defining an automorphism of X n�2
s in Pn�2.

Because sa n� 2, by (2) we have d ¼ d. Hence, we can calculate T by

induction on n. The vectors a, c and d, e can be find by using the equations

(2)–(6). Conversely, it is easy to show that if the matrix M satifies the

conditions (i)–(v) then it defines a projective automorphism of Xs. The

projective automorphism groups of Xn and Xn�1 are easy to calculate. r

4. Proof of Proposition 1

For reader’s convenience, we give a proof of Proposition 1, which is based

on arguments of [12], chapter VI. The implications (iv) ) (iii) ) (ii) ) (i) are

clear. We prove (i) ) (iv). For B A GLnþ1ðkÞ, consider the map fB defined

by

fB : GLnþ1ðkÞ ! GLnþ1ðkÞ

T 7! tTBT ðqÞ:

Because the di¤erential of the Frobenius map F : T 7! T ðqÞ is identically zero,

we can deduce that

dð fBÞ ¼ dð tTÞBT ðqÞ:

Therefore, the tangent map of fB is surjective for any B A GLnþ1ðkÞ. Hence,

fB is generically surjective, and the image of fB contains a non-empty open

subset UB. Let A be any matrix of Mnþ1ðkÞ such that the hypersurface XA

is nonsingular, i.e. A A GLnþ1ðkÞ. Because GLnþ1ðkÞ is irreducible, we have

UA VUI 0q, where I is the identity matrix of size nþ 1. There exist

T1;T2 A GLmðkÞ such that fAðT1Þ ¼ fI ðT2Þ. Putting T ¼ T1T
�1
2 , we have

tTAT ðqÞ ¼ I . r

5. The case of plane curves

Next we will study the plane curves XA associated with matrices A of

ranka 2 in the projective plane P2.
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Theorem 3. Let A ¼ ðaijÞ0ai; ja2 A M3ðkÞ be a nonzero matrix and let

XA be the curve defined by
P

aijxix
q
j ¼ 0 in P2. Suppose that the rank of A is

smaller than 3.

( i ) When the rank of A is 1, the curve XA is projectively isomorphic to one

of the following curves

Z0 : x
qþ1
0 ¼ 0; or Z1 : x

q
0x1 ¼ 0:

(ii) When the rank of A is 2, the curve XA is projectively isomorphic to one

of the following curves

X0 : x
q
0x1 þ x

q
1x2 ¼ 0; X1 : x

qþ1
0 þ x

q
1x2 ¼ 0; or X2 : x

qþ1
0 þ x

qþ1
1 ¼ 0:

Proof. In the case the rank of A is 2. By Theorem 1, the plane curve

XA is projectively isomorphic to one of the plane curves X0, or X1, or X2.

In the case rank of A is 1. With the same argument of the proof of

Theorem 1, we can assume that the matrix A is as following form

A ¼
a00 a01 0

a10 a11 0

a20 a21 0

0
B@

1
CA:

By interchanging with x0 and x1 if nessesary, we can assume that ða01; a11; a21Þ
0 ð0; 0; 0Þ. Because rank of A is 1, there exists l A k such that ða00; a10; a20Þ ¼
lða01; a11; a21Þ. The curve XA is defined by the equation

ða00x0 þ a10x1 þ a20x2Þðxq
0 þ lx

q
1 Þ ¼ 0:

It is easy to show that XA is projectively isomorphic to the curve Z0 or Z1.

r

Remark 5. In fact, the case when the plane curve XA of degree pþ 1 has

been proved by Homma in [9].

Note that the plane curve X1 has a special property such that the tangent

line of X1 at every smooth point passes through the point ð0; 1; 0Þ. There-

fore, the plane curve X1 is strange. Moreover, this curve is irreducible and

nonreflexive. In [1], Ballico and Hefez proved that a reduced irreducible

nonreflexive plane curve of degree qþ 1 is isomorphic to one of the following

curves:

(1) XI : x
qþ1
0 þ x

qþ1
1 þ x

qþ1
2 ¼ 0;

(2) a nodal curve whose defining equation is given in [4] and [7], or

(3) strange curves.
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Let L be the space of all reduced irreducible projective plane curves of degree

qþ 1, which is open in the space PGP
qþ3
2ð Þ of all projective plane curves of

degree qþ 1. Let L� be the locus of P consisting of curves isomorphic to

XI , and let L1 be the locus of P consisting of strange curves. Let ðxJÞ be the

homogeneous coordinates of P where J ¼ ð j0; j1; j2Þ ranges over the set of

all ordered triples on non-negative integer such that j0 þ j1 þ j2 ¼ qþ 1. The

point ðxJÞ corresponds to the curve
P

xJx
J ¼ 0 where xJ ¼ x

j0
0 x

j1
1 x

j2
2 . Then

the locus of all curves defined by the equation of the form
P

aijxix
q
j ¼ 0 is the

linear subspace of P defined by xJ ¼ 0, unless J A fðqþ 1; 0; 0Þ; ð0; qþ 1; 0Þ;
ð0; 0; qþ 1Þ; ðq; 1; 0Þ; ðq; 0; 1Þ; ð1; q; 0Þ; ð1; 0; qÞ; ð0; q; 1Þ; ð0; 1; qÞg. By Theorem 3,

we have that because Z0, Z1, X0, X2 are reducible, the closure L� of L� in L

consists of curves isomorphic to XI or to X1, and the intersection of L� and

L1 consist of curves isomorphic to X1.
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