Notes on elements of $\boldsymbol{U}(\mathbf{1}, \boldsymbol{n} ; \boldsymbol{C})$

Shigeyasu Kamiya

(Received December 15, 1989)

Introduction

Let C be the field of complex numbers. Let $V=V^{1, n}(C)(n \geqq 1)$ denote the vector space C^{n+1}, together with the unitary structure defined by the Hermitian form

$$
\Phi\left(z^{*}, w^{*}\right)=-\overline{z_{0}^{*}} w_{0}^{*}+\overline{z_{1}^{*}} w_{1}^{*}+\cdots+\overline{z_{n}^{*}} w_{n}^{*}
$$

for $z^{*}=\left(z_{0}^{*}, z_{1}^{*}, \ldots, z_{n}^{*}\right)$ and $w^{*}=\left(w_{0}^{*}, w_{1}^{*}, \ldots, w_{n}^{*}\right)$ in V. An automorphism g of V, that is, a linear bijection such that $\Phi\left(g\left(z^{*}\right), g\left(w^{*}\right)\right)=\Phi\left(z^{*}, w^{*}\right)$ for z^{*}, $w^{*} \in V$, will be called a unitary transformation. We denote the group of all unitary transformations by $U(1, n ; C)$. Let $V_{0}=\left\{z^{*} \in V \mid \Phi\left(z^{*}, z^{*}\right)=0\right\}$ and $V_{-}=\left\{z^{*} \in V \mid \Phi\left(z^{*}, z^{*}\right)<0\right\}$. It is clear that V_{0} and V_{-}are invariant under $U(1, n ; C)$. Set $V^{*}=V_{-} \cup V_{0}-\{0\}$. Let $\pi: V^{*} \rightarrow \pi\left(V^{*}\right)$ be the projection map defined by $\pi\left(z_{0}^{*}, z_{1}^{*}, \ldots, z_{n}^{*}\right)=\left(z_{1}^{*} z_{0}^{*-1}, z_{2}^{*} z_{0}^{*-1}, \ldots, z_{n}^{*} z_{0}^{*-1}\right)$. Set $H^{n}(C)=$ $\pi\left(V_{-}\right)$. Let $\overline{H^{n}(\boldsymbol{C})}$ denote the closure of $H^{n}(\boldsymbol{C})$ in the projective space $\pi\left(V^{*}\right)$. An element g of $U(1, n ; C)$ operates in $\pi\left(V^{*}\right)$, leaving $H^{n}(C)$ invariant. Since $H^{n}(C)$ is identified with the complex unit ball $B^{n}=B^{n}(C)=\left\{z=\left(z_{1}, z_{2}, \ldots, z_{n}\right)\right.$ $\left.\left.\in C^{n}\left|\|z\|^{2}=\Sigma_{k=1}^{n}\right| z_{k}\right|^{2}<1\right\}$, we regard a unitary transformation as a transformation operating on B^{n}. We introduce the Bergman metric

$$
g_{i j}(z)=\delta_{i j}\left(1-\|z\|^{2}\right)^{-1}+\bar{z}_{i} z_{j}\left(1-\|z\|^{2}\right)^{-2}
$$

for $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in B^{n}$. Using this metric, we see that the holomorphic sectional curvature is -4 . The distance $d(z, w)$ for $z, w \in B^{n}$ is defined by the use of the Hermitian form Φ as follows:

$$
d(z, w)=\cosh ^{-1}\left[\left|\Phi\left(z^{*}, w^{*}\right)\right|\left\{\Phi\left(z^{*}, z^{*}\right) \Phi\left(w^{*}, w^{*}\right)\right\}^{-1 / 2}\right]
$$

where $z^{*} \in \pi^{-1}(z)$ and $w^{*} \in \pi^{-1}(w)$ (see [3; Proposition 2.4.4]).
Many results on Möbius transformations and discrete groups are shown in [1] and [6]. Our purpose of this paper is to find analogous results for elements of $U(1, n ; \boldsymbol{C})$ and discrete subgroups of $U(1, n ; \boldsymbol{C})$. In Section 1 we shall prove that an element of $U(1, n ; C)$ can be decomposed into two special

[^0] Ministry of Education.
elements. Using this fact, we obtain a distortion theorem for unitary transformations in Theorem 1.3. Elements of $U(1, n ; \boldsymbol{C})$ and $\tilde{U}(1, n ; \boldsymbol{C})$ are classified into three types (see Section 1 for the definition of $\tilde{U}(1, n ; C)$). We discuss the properties of elements of each type. In Section 2 we shall study the properties of elements of discrete subgroups of $U(1, n ; C)$ and $\tilde{U}(1, n ; C)$ and show in Theorem 2.2 the existence of a domain where the action of a discrete subgroup is equal to the action of the cyclic group generated by a translation. Using the G-duality, we shall state in Theorem 2.16 that the fixed points of loxodromic elements of a discrete subgroup of $U(1, n ; \boldsymbol{C})$ are dense in $L(G) \times L(G)$.

1. Elements of $U(1, n ; C)$

We define the norm of an element $g=\left(a_{i j}\right)_{i, j=1,2, \ldots, n+1}$ in $U(1, n ; C)$ by $\|g\|=\left(\Sigma_{i, j=1}^{n+1}\left|a_{i j}\right|^{2}\right)^{1 / 2}$. Noting that $\Phi\left(z^{*}, w^{*}\right)$ is invariant under $U(1, n ; C)$, we see that

$$
\begin{align*}
& -\left|a_{11}\right|^{2}+\sum_{k=2}^{n+1}\left|a_{k 1}\right|^{2}=-1, \tag{1}\\
& -\left|a_{1 j}\right|^{2}+\sum_{k=2}^{n+1}\left|a_{k j}\right|^{2}=1 \quad \text { for } j=2,3, \ldots, n+1, \tag{2}\\
& -\overline{a_{1 i}} a_{1 j}+\sum_{k=2}^{n+1} \overline{a_{k i}} a_{k j}=0 \quad \text { for } i \neq j, i, j=1,2, \ldots, n+1, \tag{3}\\
& -\left|a_{11}\right|^{2}+\sum_{k=2}^{n+1}\left|a_{1 k}\right|^{2}=-1, \tag{4}\\
& -\left|a_{21}\right|^{2}+\sum_{k=2}^{n+1}\left|a_{2 k}\right|^{2}=1 . \tag{5}
\end{align*}
$$

Proposition 1.1 (cf. [2; Theorem 2]). For $g \in U(1, n ; C)$,

$$
\|g\|^{2}=\|I\|^{2}+4 \sinh ^{2} d(0, g(0)),
$$

where I is the unit matrix.
Proof. First we note that $d(0, g(0))=\cosh ^{-1}\left|a_{11}\right|$ by (1) and $\|I\|^{2}=$ $n+1$. Therefore we have

$$
\|I\|^{2}+4 \sinh ^{2} d(0, g(0))=4\left|a_{11}\right|^{2}+(n-3)
$$

It follows from the equalities (1), (2) and (4) that

$$
\begin{aligned}
\|g\|^{2} & =\sum_{k=1}^{n+1}\left|a_{k 1}\right|^{2}+\sum_{k=1}^{n+1}\left|a_{k 2}\right|^{2}+\cdots+\sum_{k=1}^{n+1}\left|a_{k, n+1}\right|^{2} \\
& =\left(-1+2\left|a_{11}\right|^{2}\right)+\left(1+2\left|a_{12}\right|^{2}\right)+\cdots+\left(1+2\left|a_{1, n+1}\right|^{2}\right) \\
& =(n-1)+2 \sum_{k=1}^{n+1}\left|a_{1 k}\right|^{2} \\
& =(n-1)+2\left(2\left|a_{11}\right|^{2}-1\right) \\
& =4\left|a_{11}\right|^{2}+(n-3) .
\end{aligned}
$$

Thus we complete the proof.

Next we shall show that any element of $U(1, n ; C)$ can be expressed as the product of two special elements. Before stating our theorem, we shall give notation. We denote by $U(1 ; C) \times U(n ; \boldsymbol{C})$ the subgroup $\left\{\left[\begin{array}{ll}\alpha & 0 \\ 0 & A\end{array}\right]||\alpha|=1\right.$, $A \in U(n ; C)\}$ of $U(1, n ; C)$.

Theorem 1.2. Let $g=\left(a_{i j}\right)_{i, j=1,2, \ldots, n+1}$ be an element of $U(1, n ; C)$ and let p be a point of B^{n} such that $g(p)=0$. Then the element g is decomposed into two elements f_{p} and u in $U(1, n ; C)$ such that

1) $g=u f_{p}$;
2) $f_{p}(p)=0, f_{p}(0)=p$ and $f_{p}^{2}=$ identity;
3) $u \in U(1 ; \boldsymbol{C}) \times U(n ; \boldsymbol{C})$.

Proof. Without loss of generality, we may assume that $p=(a, 0, \ldots, 0) \in$ B^{n}. Set

$$
f_{p}=\left[\begin{array}{ccc}
\alpha_{11} & -\bar{a} \alpha_{11} & 0 \\
a \alpha_{11} & -\alpha_{11} & 0 \\
0 & 0 & I_{n-1}
\end{array}\right]
$$

where $\alpha_{11}^{2}=\left(1-|a|^{2}\right)^{-1}$. It is easy to show that f_{p} is an element of $U(1, n ; C)$ such that $f_{p}(p)=0, f_{p}(0)=p$ and $f_{p}^{2}=$ identity. Next we shall show that there exists an element $u \in U(1 ; C) \times U(n ; C)$ such that $g=u f_{p}$. To prove this, we have only to show that $g f_{p}^{-1}$ belongs to $U(1 ; C) \times U(n ; C)$. We denote $\left(a_{i j}\right)_{i=1,2, j=3, \ldots, n+1}$ and $\left(a_{i j}\right)_{i=3, \ldots, n+1, j=3, \ldots, n+1}$ by A_{1} and A_{2}, respectively. It is seen that

$$
u=g f_{p}^{-1}=\left[\begin{array}{ccc}
a_{11} \alpha_{11}+a_{12} a \alpha_{11} & -a_{11} \bar{a} \alpha_{11}-a_{12} \alpha_{11} & A_{1} \\
a_{21} \alpha_{11}+a_{22} a \alpha_{11} & -a_{21} \bar{a} \alpha_{11}-a_{22} \alpha_{11} & \\
\ldots & \ldots & A_{2} \\
a_{n+1,1} \alpha_{11}+a_{n+1,2} a \alpha_{11} & -a_{n+1,1} \bar{a} \alpha_{11}-a_{n+1,2} \alpha_{11} &
\end{array}\right] .
$$

Then $g(p)=0$ implies $a_{i 1}+a_{i 2} a=0$ for $i \geqq 2$. Therefore the (i, 1)-component of u is equal to 0 for $i \geqq 2$. By (1), $\left|a_{11} \alpha_{11}+a_{12} a \alpha_{11}\right|=1$. It follows from (4) that the ($1, j$)-component of u equals 0 for $j \geqq 2$. Using (2) and (3), we see that $g f_{p}^{-1}$ has the form $\left[\begin{array}{cc}b & 0 \\ 0 & B\end{array}\right]$, where $|b|=1$ and $B \in U(n ; C)$. Thus u belongs to $U(1 ; \boldsymbol{C}) \times U(n ; \boldsymbol{C})$.

Given any points $z, w \in \overline{B^{n}}$, define $d^{*}(z, w)$ by

$$
d^{*}(z, w)=\left\{\left|z_{0}^{*}\right|^{-1}\left|w_{0}^{*}\right|^{-1}\left|\Phi\left(z^{*}, w^{*}\right)\right|\right\}^{1 / 2},
$$

where $z^{*}=\left(z_{0}^{*}, z_{1}^{*}, \ldots, z_{n}^{*}\right) \in \pi^{-1}(z)$ and $w^{*}=\left(w_{0}^{*}, w_{1}^{*}, \ldots, w_{n}^{*}\right) \in \pi^{-1}(w)$. Note that $d^{*}(z, w)$ does not depend on the choice of z^{*} and w^{*}.

Theorem 1.3 (cf. [1; Theorem 3.6.1]). If $g \in U(1, n ; C)$, then

$$
\sup _{z, w \in B^{n}, z \neq w} \frac{d^{*}(g(z), g(w))}{d^{*}(z, w)}=\exp (d(0, g(0))) .
$$

After showing a lemma, we shall prove Theorem 1.3.
Lemma 1.4. Let f_{p} be defined as in the proof of Theorem 1.2. Then

$$
\sup _{z, w \in B^{n}, z \neq w} \frac{d^{*}\left(f_{p}(z), f_{p}(w)\right)}{d^{*}(z, w)}=\exp \left(d\left(0, f_{p}(0)\right)\right) .
$$

Proof. It is seen that

$$
\begin{aligned}
d^{*} & \left(f_{p}(z), f_{p}(w)\right)^{2} \\
= & \left|\alpha_{11} z_{0}^{*}-\bar{a} \alpha_{11} z_{1}^{*}\right|^{-1}\left|\alpha_{11} w_{0}^{*}-\bar{a} \alpha_{11} w_{1}^{*}\right|^{-1} \mid-\left(\overline{\alpha_{11} z_{0}^{*}-\bar{a} \alpha_{11} z_{1}^{*}}\right)\left(\alpha_{11} w_{0}^{*}-\bar{a} \alpha_{11} w_{1}^{*}\right) \\
& \quad+\left(\overline{\left.a \alpha_{11} z_{0}^{*}-\alpha_{11} z_{1}^{*}\right)}\left(a \alpha_{11} w_{0}^{*}-\alpha_{11} w_{1}^{*}\right)+\sum_{k=2}^{n} \overline{z_{k}^{*}} w_{k}^{*} \mid\right. \\
= & \left|\alpha_{11}\right|^{-2}\left|z_{0}^{*}\left(1-\bar{a} z_{1}^{*} z_{0}^{*-1}\right)\right|^{-1}\left|w_{0}^{*}\left(1-\bar{a} w_{1}^{*} w_{0}^{*-1}\right)\right|^{-1} \mid-\overline{z_{0}^{*} w_{0}^{*}+\sum_{k=1}^{n} \overline{z_{k}^{*}} w_{k}^{*} \mid} \\
= & \left(1-|a|^{2}\right)\left|1-\bar{a} z_{1}\right|^{-1}\left|1-\bar{a} w_{1}\right|^{-1} d^{*}(z, w)^{2} .
\end{aligned}
$$

Since $\left|1-\bar{a} z_{1}\right| \geqq 1-|a|$ and $\left|1-\bar{a} w_{1}\right| \geqq 1-|a|,\left\{(1+|a|)(1-|a|)^{-1}\right\}^{1 / 2}$ is the supremum of $d^{*}\left(f_{p}(z), f_{p}(w)\right) / d^{*}(z, w)$ over $z, w \in B^{n}$. We observe that

$$
\begin{aligned}
\exp \left(d\left(0, f_{p}(0)\right)\right) & =\exp \left(\log \left(\left|\alpha_{11}\right|+\left(\left|\alpha_{11}\right|^{2}-1\right)^{1 / 2}\right)\right. \\
& =\left\{(1+|a|)(1-|a|)^{-1}\right\}^{1 / 2},
\end{aligned}
$$

and conclude our lemma.
Proof of Theorem 1.3. Let g be an element of $U(1, n ; C)$ and let p be a point of B^{n} such that $g(p)=0$. As in Theorem 1.2 we decompose g into $u f_{p}$. It is easy to check $d^{*}(u(\zeta), u(\omega))=d^{*}(\zeta, \omega)$ for any $\zeta, \omega \in B^{n}$. Hence $d^{*}(g(z), g(w))=d^{*}\left(u f_{p}(z), u f_{p}(w)\right)=d^{*}\left(f_{p}(z), f_{p}(w)\right)$. Therefore it follows from Lemma 1.4 that

$$
\begin{aligned}
\sup _{z, w \in B^{n}, z \neq w} \frac{d^{*}(g(z), g(w))}{d^{*}(z, w)} & =\sup _{z, w \in B^{n}, z \neq w} \frac{\left.d^{*}\left(f_{p}(z), f_{p}(w)\right)\right)}{d^{*}(z, w)} \\
& =\exp \left(d\left(0, f_{p}(0)\right)\right)=\exp \left(d\left(u(0), u f_{p}(0)\right)\right) \\
& =\exp (d(0, g(0)))
\end{aligned}
$$

Thus our theorem is proved.
Now we set $K=\exp (d(0, g(0)))$. It follows from Proposition 1.1 that $\|g\|^{2}=\|I\|^{2}+(K-1 / K)^{2}$. If $\|g\|^{2}=\|I\|^{2}$, then $K=1$. This equality together with (1) implies that the absolute value of the $(1,1)$-component of g is 1 .

Hence it follows from (1), (2), (3) and (4) that $g \in U(1 ; C) \times U(n ; C)$. Assume that g is an element of $U(1 ; \boldsymbol{C}) \times U(n ; \boldsymbol{C})$. Then we see that $\|g\|^{2}=\|I\|^{2}$. Thus we have

Proposition 1.5 The following statements are equivalent to one another:

1) $\|g\|^{2}=\|I\|^{2}$;
2) $g \in U(1 ; \boldsymbol{C}) \times U(n ; \boldsymbol{C})$;
3) $g(0)=0$.

Elements of $U(1, n ; C)$ are classified into three types by S. S. Chen and L. Greenberg [3]. We shall discuss the properties of these types.

Definition 1.6. Let g be an element of $U(1, n ; C)$ which is not the identity. We shall call g elliptic if it has a fixed point in B^{n} and g parabolic if it has exactly one fixed point and this lies on ∂B^{n}. An element g will be called loxodromic if it has exactly two fixed points and they lie on ∂B^{n}. If g is conjugate to an element having the form

$$
\left[\begin{array}{ccc}
\lambda \cosh t & \lambda \sinh t & 0 \\
\lambda \operatorname{sinft} t & \lambda \cosh t & 0 \\
0 & 0 & I_{n-1}
\end{array}\right] \quad(\lambda= \pm 1, t \in \mathbf{R}-\{0\})
$$

then g is called hyperbolic. Hyperbolic elements are special kinds of loxodromic elements.

Now we state properties of each kind of element.
Proposition 1.7 ([3; Proposition 3.2.1]). Let g be an elliptic element in $U(1, n ; \boldsymbol{C})$. Then:
(a) g is conjugate to an element in $U(1 ; C) \times U(n ; C)$.
(b) g is semisimple with eigenvalues of absolute value 1 .

Proposition 1.8 (cf. [3; Proposition 3.2.3]). Let g be a loxodromic element of $U(1, n ; \boldsymbol{C})$. Then:
(a) There exist a unique hyperbolic element h and a unique elliptic element e such that $g=h e=e h$.
(b) Any element in $U(1, n ; C)$ which commutes with g also commutes with h and e.
(c) g is semisimple with exactly $n-1$ eigenvalues of absolute value 1 .
(d) g leaves the geodesic connecting the two fixed points, invariant. We call this geodesic the axis of g and denote it by A_{g}.
(e) g moves every point z in A_{g} the same distance $T(g)=d(z, g(z))$. This $T(g)$ is called the translation length of g.
(f) $T(g)=\min _{z \in B^{n}} d(z, g(z))$.

Proof. Since (a), (b) and (c) are proved in [3; Proposition 3.2.3], we have only to prove (d), (e) and (f).
(d) Using [3; Proposition 2.1.2], we may assume that the fixed points of g are $(1,0, \ldots, 0)$ and $(-1,0, \ldots, 0)$. By [3; Lemma 3.2.2], g has the form

$$
\left[\begin{array}{ccc}
c \lambda & s \lambda & 0 \\
s \lambda & c \lambda & 0 \\
0 & 0 & A
\end{array}\right]
$$

where $c=\cosh t, s=\sinh t$ for some $t \in \boldsymbol{R}-\{0\},|\lambda|=1$ and $A \in U(n-1 ; C)$. Let $\left\{e_{0}, e_{1}, \ldots, e_{n}\right\}$ be the standard basis in V. Let $X=e_{0} \boldsymbol{R}+e_{1} \boldsymbol{R}$. Since $g\left(z^{*}\right)=\left(\left(c z_{0}^{*}+s z_{1}^{*}\right) \lambda,\left(s z_{0}^{*}+c z_{1}^{*}\right) \lambda, 0, \ldots, 0\right)$ for $z^{*}=\left(z_{0}^{*}, z_{1}^{*}, 0, \ldots, 0\right)$ in $X \cap V_{-}$, $\pi\left(g\left(z^{*}\right)\right)$ is contained in the geodesic $\pi\left(X \cap V_{-}\right)$(see [3; Proposition 2.4.3]).
(e) A direct computation shows that

$$
\begin{aligned}
d(z, g(z)) & =\cosh ^{-1}\left[\left|\left(-z_{0}^{* 2}+z_{1}^{* 2}\right) c \lambda\right|\left\{\left(-z_{0}^{* 2}+z_{1}^{* 2}\right)^{2}\right\}^{-1 / 2}\right] \\
& =\cosh ^{-1} c
\end{aligned}
$$

for $z \in A_{g}$.
(f) Let $z^{*}=\left(z_{0}^{*}, z_{1}^{*}, \ldots, z_{n}^{*}\right)$ and let $w^{*}=g\left(z^{*}\right)$. We shall show that $\min _{z^{*} \in V_{-}} d\left(\pi\left(z^{*}\right), \pi\left(w^{*}\right)\right)=\cosh ^{-1} c$. As Φ is invariant under $U(1, n ; C)$, $\Phi\left(z^{*}, z^{*}\right)=\Phi\left(w^{*}, w^{*}\right)$. Therefore it suffices to prove that $\left|\Phi\left(z^{*}, w^{*}\right)\right| \geqq$ $c\left|\Phi\left(z^{*}, z^{*}\right)\right|$.

Let $A=\left(a_{i j}\right)_{i, j=2,3, \ldots, n}$. Noting that $A \in U(n-1 ; C)$, we obtain

$$
\begin{align*}
\left|\sum_{k=2}^{n} \overline{z_{k}^{*}}\left(\sum_{j=2}^{n} a_{k} z_{j}^{*}\right)\right| & \leqq\left(\sum_{k=2}^{n}\left|z_{k}^{*}\right|^{2}\right)^{1 / 2}\left(\sum_{k=2}^{n}\left|\sum_{j=2}^{n} a_{k j} z_{j}^{*}\right|^{2}\right)^{1 / 2} \tag{6}\\
& =\sum_{k=2}^{n}\left|z_{k}^{*}\right|^{2} .
\end{align*}
$$

It is seen that

$$
\begin{align*}
& \left|c\left(\overline{z_{0}^{*}} \lambda z_{0}^{*}-\overline{z_{1}^{*}} \lambda z_{1}^{*}\right)+s\left(\overline{z_{0}^{*}} \lambda z_{1}^{*}-\overline{z_{1}^{*}} \lambda z_{0}^{*}\right)\right|^{2}-\left\{c\left(\left|z_{0}^{*}\right|^{2}-\left|z_{1}^{*}\right|^{2}\right)\right\}^{2} \\
& =\left|c\left(\left|z_{0}^{*}\right|^{2}-\left|z_{1}^{*}\right|^{2}\right)+2 \operatorname{si} \operatorname{Im}\left(\overline{z_{0}^{*}} z_{1}^{*}\right)\right|^{2}-\left\{c\left(\left|z_{0}^{*}\right|^{2}-\left|z_{1}^{*}\right|^{2}\right)\right\}^{2} \tag{7}\\
& =4 s^{2}\left\{\operatorname{Im}\left(\overline{z_{0}^{*}} z_{1}^{*}\right)\right\}^{2} \geqq 0 \text {. }
\end{align*}
$$

Using (6) and (7), we have

$$
\begin{aligned}
& \left|\Phi\left(z^{*}, w^{*}\right)\right| \\
& \quad=\left|-\overline{z_{0}^{*}}\left(c \lambda z_{0}^{*}+s \lambda z_{1}^{*}\right)+\overline{z_{1}^{*}}\left(s \lambda z_{0}^{*}+c \lambda z_{1}^{*}\right)+\sum_{k=2}^{n} \overline{z_{k}^{*}}\left(\sum_{j=2}^{n} a_{k j} z_{j}^{*}\right)\right| \\
& \quad \geqq\left|c\left(\overline{z_{0}^{*}} \lambda z_{0}^{*}-\overline{z_{1}^{*}} \lambda z_{1}^{*}\right)+s\left(\overline{z_{0}^{*}} \lambda z_{1}^{*}-\overline{z_{1}^{*}} \lambda z_{0}^{*}\right)\right|-\left|\sum_{k=2}^{n} \overline{z_{k}^{*}}\left(\sum_{j=2}^{n} a_{k j} z_{j}^{*}\right)\right| \\
& \quad \geqq c\left(\left|z_{0}^{*}\right|^{2}-\left|z_{1}^{*}\right|^{2}\right)-\sum_{k=2}^{n}\left|z_{k}^{*}\right|^{2} .
\end{aligned}
$$

This implies that

$$
\begin{aligned}
& \left|\Phi\left(z^{*}, w^{*}\right)\right|-c\left|\Phi\left(z^{*}, z^{*}\right)\right| \\
& \quad \geqq c\left(\left|z_{0}^{*}\right|^{2}-\left|z_{1}^{*}\right|^{2}\right)-\sum_{k=2}^{n}\left|z_{k}^{*}\right|^{2}-c\left(\left|z_{0}^{*}\right|^{2}-\left|z_{1}^{*}\right|^{2}-\sum_{k=2}^{n}\left|z_{k}^{*}\right|^{2}\right) \\
& \quad=(c-1) \sum_{k=2}^{n}\left|z_{k}^{*}\right|^{2} \geqq 0 .
\end{aligned}
$$

Thus $\min _{z^{*} \in V_{-}} d\left(\pi\left(z^{*}\right), \pi\left(g\left(z^{*}\right)\right)\right)=\cosh ^{-1} c$.
To discuss some properties of unitary transformations, it may be more convenient to use another matrix representation for $U(1, n ; \boldsymbol{C})$. By changing the basis of V, we introduce the group $\tilde{U}(1, n ; C)$ as follows.

Let

$$
D=\left[\begin{array}{ccc}
1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\
-1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\
0 & 0 & I_{n-1}
\end{array}\right]
$$

and define $\tilde{U}(1, n ; C)$ by $D^{-1} U(1, n ; C) D$. We see that $\tilde{U}(1, n ; C)$ is the group of linear transformations which leave $D^{-1}\left(V_{-}\right)$invariant and that $\tilde{U}(1, n ; C)$ is the automorphism group of the Hermitian form

$$
\tilde{\Phi}\left(z^{*}, w^{*}\right)=-\left(\overline{z_{0}^{*}} w_{1}^{*}+\overline{z_{1}^{*}} w_{0}^{*}\right)+\overline{z_{2}^{*}} w_{2}^{*}+\cdots+\overline{z_{n}^{*}} w_{n}^{*}
$$

defined for $z^{*}, w^{*} \in D^{-1}(V)$. We can regard the linear transformation D^{-1} as a mapping of complex unit ball B^{n} to the domain $\tilde{H}^{n}=\left\{z \in C^{n} \mid \operatorname{Re}\left(z_{1}\right)>\right.$ $\left.(1 / 2) \Sigma_{k=2}^{n}\left|z_{k}\right|^{2}\right\}$. The action of $U(1, n ; C)$ in B^{n} is converted by D^{-1} into the action of $\tilde{U}(1, n ; \boldsymbol{C})$ in \tilde{H}^{n}. The distance $\tilde{d}(z, w)$ for $z, w \in \tilde{H}^{n}$ is defined by

$$
\tilde{d}(z, w)=\cosh ^{-1}\left[\left|\tilde{\Phi}\left(z^{*}, w^{*}\right)\right|\left\{\tilde{\Phi}\left(z^{*}, z^{*}\right) \tilde{\Phi}\left(w^{*}, w^{*}\right)\right\}^{-1 / 2}\right]
$$

where $z^{*} \in \pi^{-1}(z)$ and $w^{*} \in \pi^{-1}(w)$. We note that $\tilde{d}(z, w)=d(D(z), D(w))$ for z, $w \in \tilde{H}^{n}$.

Let $g=\left(a_{i j}\right)_{i, j=1,2, \ldots, n+1}$ be an element of $\tilde{U}(1, n ; C)$. Noting that

$$
\bar{g}^{T}\left[\begin{array}{ccc}
0 & -1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & I_{n-1}
\end{array}\right] g=\left[\begin{array}{ccc}
0 & -1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & I_{n-1}
\end{array}\right]
$$

we see that

$$
\begin{align*}
& -2 \operatorname{Re}\left(\overline{a_{11}} a_{12}\right)+\sum_{k=3}^{n+1}\left|a_{1 k}\right|^{2}=0, \tag{8}\\
& -2 \operatorname{Re}\left(\overline{a_{21}} a_{22}\right)+\sum_{k=3}^{n+1}\left|a_{2 k}\right|^{2}=0, \\
& -2 \operatorname{Re}\left(\overline{a_{i 1}} a_{i 2}\right)+\sum_{k=3}^{n+1}\left|a_{i k}\right|^{2}=1 \quad \text { for } i=3,4, \ldots, n+1
\end{align*}
$$

$$
\begin{align*}
& -2 \operatorname{Re}\left(\overline{a_{11}} a_{21}\right)+\sum_{k=3}^{n+1}\left|a_{k 1}\right|^{2}=0, \tag{11}\\
& -2 \operatorname{Re}\left(\overline{a_{12}} a_{22}\right)+\sum_{k=3}^{n+1}\left|a_{k 2}\right|^{2}=0, \tag{12}\\
& -\left(\overline{a_{11}} a_{22}+\overline{a_{21}} a_{12}\right)+\sum_{k=3}^{n+1} \overline{a_{k 1}} a_{k 2}=-1 . \tag{13}
\end{align*}
$$

Definition 1.9. Let g be an element of $\tilde{U}(1, n ; C)$ which is not the identity. We shall call g elliptic if it has a fixed point in \tilde{H}^{n} and g parabolic if it has exactly one fixed point and this lies on $\partial \tilde{H}^{n}$. A unipotent parabolic element will be called strictly parabolic and in particular the element which is conjugate to an element having the form

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
s & 1 & 0 \\
0 & 0 & I_{n-1}
\end{array}\right] \quad(s \neq 0 \text { and } \operatorname{Re}(s)=0)
$$

will be called a translation. An element g will be called loxodromic if it has exactly two fixed points and they lie on $\partial \tilde{H}^{n}$. If g is conjugate to an element having the form

$$
\left[\begin{array}{ccc}
t & 0 & 0 \\
0 & t^{-1} & 0 \\
0 & 0 & I_{n-1}
\end{array}\right] \quad(t \in \boldsymbol{R}-\{0,1\})
$$

then g is called hyperbolic.
Proposition 1.10 ([3; Proposition 3.4.1]). Let g be a parabolic element in $\tilde{U}(1, n ; \boldsymbol{C})$.
(a) There exist a unique strictly parabolic element p and a unique elliptic element e such that $g=p e=e p$.
(b) Any element of $\tilde{U}(1, n ; \boldsymbol{C})$ which commutes with g also commutes with p and e.
(c) g is not semisimple. All absolute values of the eigenvalues of g are 1 .

Proposition 1.11. Let f_{1} and f_{2} be elements of $\tilde{U}(1, n ; C)$. Assume that these two elements have one and only one common fixed point and it lies on $\partial \tilde{H}^{n}$. Then the commutator g of f_{1} and f_{2} is either elliptic, parabolic or the identity. However, if both elements f_{1} and f_{2} are elliptic, or, if at least one element of f_{1} and f_{2} is loxodromic, then g can not be the identity.

Proof. We may assume that the common fixed point is ∞. Then the forms of $f_{i}(i=1,2)$ are as follows:

$$
f_{i}=\left[\begin{array}{ccc}
\xi_{i} & 0 & 0 \\
s_{i} & \eta_{i} & b_{i} \\
a_{i} & 0 & A_{i}
\end{array}\right],
$$

where a_{i}, b_{i}, A_{i} are $(n-1) \times 1,1 \times(n-1),(n-1) \times(n-1)$ matrices respectively, $\bar{\xi}_{i} \eta_{i}=1, \operatorname{Re}\left(\bar{\xi}_{i} s_{i}\right)=(1 / 2)\left\|a_{i}\right\|^{2}, b_{i}=\eta_{i} \bar{a}_{i}^{T} A_{i}$ and $A_{i} \in U(n-1 ; C)$. The commutator g of f_{1} and f_{2} is of the form

$$
g=f_{1} f_{2} f_{1}^{-1} f_{2}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
a_{21} & 1 & F \\
G & 0 & A_{1} A_{2} A_{1}^{-1} A_{2}^{-1}
\end{array}\right]
$$

This implies that all absolute values of the eigenvalues of g equal 1 . By (b) in Proposition 1.7, (c) in Proposition 1.8 and (c) in Proposition 1.10, g is either elliptic, parabolic or the identity.

Next let f_{1} and f_{2} be elliptic elements of $\tilde{U}(1, n ; \boldsymbol{C})$. We may assume that the common fixed point is ∞ and another fixed point of f_{2} is 0 . Then in the form of $f_{1}, \xi_{1}=\eta_{1}$ and $a_{1} \neq 0$. In the element $f_{2}, \xi_{2}=\eta_{2}, s_{2}=0, a_{2}=0$ and $b_{2}=0$. Therefore we see that $a_{21}=\bar{a}_{1}^{T}\left(I_{n-1}-\xi_{2}^{-1} A_{1} A_{2} A_{1}^{-1}\right) a_{1}$ in the commutator g. Suppose that g is the identity. Then $a_{21}=\bar{a}_{1}^{T}\left(I_{n-1}-\xi_{2}^{-1} A_{1} A_{2} A_{1}^{-1}\right) a_{1}=$ 0 and $A_{1} A_{2} A_{1}^{-1} A_{2}^{-1}=I_{n-1}$. It follows that $A_{2}=\xi_{2} I_{n-1}$. This implies that f_{2} is the identity. This is a contradiction. Thus g is not the identity.

Lastly let f_{1} be a loxodromic element with fixed points α and ∞. If the commutator g is the identity, then $f_{1} f_{2}=f_{2} f_{1}$. We see that $f_{1} f_{2}(\alpha)=$ $f_{2} f_{1}(\alpha)=f_{2}(\alpha)$ and $f_{2}(\alpha)$ is a fixed point of f_{1}. Then either $f_{2}(\alpha)=\infty$ or $f_{2}(\alpha)=\alpha$. The former does not occur. In the latter case f_{1} and f_{2} have two fixed points in common. This contradicts our assumption. Hence if f_{1} is loxodromic, then the commutator g of f_{1} and f_{2} is not the identity.

Remark 1.12. The following table describes all the possible type for $g=f_{1} f_{2} f_{1}^{-1} f_{2}^{-1}$. There exist examples that demonstrate the table.

$f_{2} f_{1}$	E	P	\mathbf{L}
E	E, P	$\mathrm{E}, \mathrm{P}, \mathrm{I}$	E, P
P	$\mathrm{E}, \mathrm{P}, \mathrm{I}$	$\mathrm{E}, \mathrm{P}, \mathrm{I}$	E, P
L	E, P	E, P	E, P

(The symbols E, P, L and I denote elliptic, parabolic, loxodromic type and the identity, respectively.)

We shall consider the displacement function $z \rightarrow \sinh ^{2} \tilde{d}(z, g(z))$ for an element g of $\tilde{U}(1, n ; \boldsymbol{C})$. Before stating our proposition, we distinguish between the fixed points α, β of a loxodromic element g in $\tilde{U}(1, n ; C)$. If $\lim _{k \rightarrow \infty} g^{k}(z)=$ α for a point $z \in \tilde{H}^{n}$, then α is called an attracting fixed point of g. This
definition does not depend on the choice of z. For a loxodromic element g we can define the axis \tilde{A}_{g} and the translation length $\tilde{T}(g)$ in the same manner as in Proposition 1.8.

Proposition 1.13 (cf. [1; Theorem 7.35.1]).
(a) Suppose that g is a hyperbolic element of $\tilde{U}(1, n ; C) . \quad$ Let $\alpha=\left(\alpha_{1}, \alpha_{2}\right.$, \ldots, α_{n}) be the attracting fixed point of g. We denote the shortest distance from a point z in \tilde{H}^{n} to the axis $\tilde{A_{g}}$ by $\tilde{d}\left(z, \tilde{A_{g}}\right)$. Let $z^{*}=\left(1, z_{1}, \ldots, z_{n}\right) \in \pi^{-1}(z)$ and $\alpha^{*}=\left(1, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \in \pi^{-1}(\alpha) . \quad$ Set $k=-\operatorname{Re}\left(\tilde{\Phi}\left(\alpha^{*}, z^{*}\right)\right) /\left|\tilde{\Phi}\left(\alpha^{*}, z^{*}\right)\right| . \quad$ Then

$$
\begin{aligned}
\sinh ^{2} \tilde{d}(z, g(z))= & 8(1+k)^{-2} \cosh ^{2} \tilde{d}\left(z, \tilde{A_{g}}\right) \sinh ^{2}(1 / 2) \tilde{T}(g) \\
& \times\left\{2 \cosh ^{2}(1 / 2) \tilde{T}(g) \cosh ^{2} \tilde{d}\left(z, \tilde{A_{g}}\right)\right. \\
& \left.-2 k^{2} \cosh ^{2} \tilde{d}\left(z, \tilde{A_{g}}\right)+k+k^{2}\right\}
\end{aligned}
$$

(b) If g is a translation with a fixed point ζ, then $\sinh ^{2} \tilde{d}(z, g(z))\{\widetilde{P}(z, \zeta)\}^{2 / n}$ is constant, where $\tilde{P}(z, \zeta)$ is the Poisson kernel defined by

$$
\tilde{P}(z, \zeta)=\left\{\begin{array}{l}
\left|\tilde{\Phi}\left(z^{*}, z^{*}\right)\right|^{n} \quad \text { if } \zeta=\infty, z^{*}=\left(1, z_{1}, z_{2}, \ldots, z_{n}\right) \in \pi^{-1}\left(z^{\prime} ;\right. \\
\left\{\left|\tilde{\Phi}\left(z^{*}, z^{*}\right)\right|\left|\tilde{\Phi}\left(z^{*}, \zeta^{*}\right)\right|^{-2}\right\}^{n} \quad \text { if } \zeta \neq \infty, \quad z^{*}=\left(1, z_{1}, z_{2}, \ldots, z_{n}\right) \in \\
\pi^{-1}(z), \zeta^{*}=\left(1, \zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}\right) \in \pi^{-1}(\zeta)
\end{array}\right.
$$

Proof. (a) Without loss of generality, we may assume that

$$
g=\left[\begin{array}{ccc}
a & 0 & 0 \\
0 & a^{-1} & 0 \\
0 & 0 & I_{n-1}
\end{array}\right]
$$

where $a>1$. Then it is seen that $\tilde{A_{g}}=\left\{w=(t, 0, \ldots, 0) \in \tilde{H}^{n} \mid t>0\right\}$ and $\tilde{T}(g)=$ $\log a$. We shall compute $\tilde{d}\left(z, \tilde{A_{g}}\right)$. Let $w^{*} \in \pi^{-1}(w) \subset \pi^{-1}\left(\tilde{A_{g}}\right)$. We see that

$$
\begin{aligned}
\tilde{d}\left(z, \tilde{A}_{g}\right) & =\min _{\pi\left(w^{*}\right) \in \tilde{A}_{g}}\left\{\cosh ^{-1}\left[\left|\tilde{\Phi}\left(z^{*}, w^{*}\right)\right|\left\{\tilde{\Phi}\left(z^{*}, z^{*}\right) \tilde{\Phi}\left(w^{*}, w^{*}\right)\right\}^{-1 / 2}\right]\right\} \\
& =\min _{t>0}\left\{\cosh ^{-1}\left[\left|t+z_{1}\right|\left\{2 t\left(2 \operatorname{Re}\left(z_{1}\right)-\sum_{j=2}^{n}\left|z_{j}\right|^{2}\right)\right\}^{-1 / 2}\right]\right\} \\
& =\cosh ^{-1}\left[\left\{\left(\left|z_{1}\right|+\operatorname{Re}\left(z_{1}\right)\right)\left(2 \operatorname{Re}\left(z_{1}\right)-\sum_{j=2}^{n}\left|z_{j}\right|^{2}\right)^{-1}\right\}^{1 / 2}\right] .
\end{aligned}
$$

Write $W=2 \operatorname{Re}\left(z_{1}\right)-\Sigma_{j=2}^{n}\left|z_{j}\right|^{2}$ and let $z_{1}=\left|z_{1}\right| e^{i \theta}$. We note that

$$
\begin{aligned}
& \left|z_{1}\right|=(1+\cos \theta)^{-1} W \cosh ^{2} \tilde{d}\left(z, \tilde{A_{g}}\right) \\
& \sum_{j=2}^{n}\left|z_{j}\right|^{2}=W \sinh ^{2} \tilde{d}\left(z, \tilde{A_{g}}\right)-(1-\cos \theta)(1+\cos \theta)^{-1} W \cosh ^{2} \tilde{d}\left(z, \tilde{A}_{g}\right) \\
& 4 \sinh ^{2} \tilde{T}(g)=(a-1 / a)^{2} \\
& 4 \sinh ^{2}(1 / 2) \tilde{T}(g)=a+1 / a-2
\end{aligned}
$$

From the above equalities it follows that

$$
\begin{aligned}
& \sinh ^{2} \tilde{d}(z, g(z)) \\
&=\left.\left.W^{-2}\left|-\left(a \overline{z_{1}}+(1 / a) z_{1}\right)+\sum_{j=2}^{n}\right| z_{j}\right|^{2}\right|^{2}-1 \\
&= W^{-2}\left\{\left|z_{1}\right|^{2}(a-1 / a)^{2}-2\left|z_{1}\right|\left(\sum_{j=2}^{n}\left|z_{j}\right|^{2}\right)(a+1 / a-2) \cos \theta\right\} \\
&= 8(1+\cos \theta)^{-2} \cosh ^{2} \tilde{d}\left(z, \tilde{A_{g}}\right) \sinh ^{2}(1 / 2) \tilde{T}(g)\left\{2 \cosh ^{2}(1 / 2) \tilde{T}(g) \cosh ^{2} \tilde{d}\left(z, \tilde{A}_{g}\right)\right. \\
&\left.-2 \cos ^{2} \theta \cosh ^{2} \tilde{d}\left(z, \tilde{A_{g}}\right)+\cos \theta+\cos ^{2} \theta\right\} .
\end{aligned}
$$

Noting that $\cos \theta=k$, we have the desired equality.
(b) Let g be a translation with a fixed point $\zeta \in \partial \tilde{H}^{n}$. There is an element $f=\left(a_{i j}\right)_{i, j=1,2, \ldots, n+1}$ of $\tilde{U}(1, n ; \boldsymbol{C})$ such that $h=f g f^{-1}$ has the form

$$
h=\left[\begin{array}{ccc}
1 & 0 & 0 \\
t \sqrt{-1} & 1 & 0 \\
0 & 0 & I_{n-1}
\end{array}\right]
$$

where $t \in \boldsymbol{R}-\{0\}$. It follows that $g f^{-1}=f^{-1} h$ and hence $g f^{-1}(\infty)=f^{-1} h(\infty)=$ $f^{-1}(\infty)$. Thus $f^{-1}(\infty)$ is a fixed point of g. Since ζ is the only fixed point of $g, f^{-1}(\infty)=\zeta$ so that $f(\zeta)=\infty$. Hence $a_{k 1}+a_{k 2} \zeta_{1}+\cdots+a_{k, n+1} \zeta_{n}=0$ for $k \neq 2$ and $\neq 0$ for $k=2$. Write $f(z)=w=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ and let $f(z)^{*}=$ $\left(1, w_{1}, w_{2}, \ldots, w_{n}\right) \in \pi^{-1}(f(z))$. Then

$$
\begin{aligned}
& \left|\tilde{\Phi}\left(f\left(z^{*}\right), f\left(z^{*}\right)\right)\right|=\left|\left(f\left(z^{*}\right)\right)_{0}\right|^{2}\left|\tilde{\Phi}\left(f(z)^{*}, f(z)^{*}\right)\right|, \\
& \left|\tilde{\Phi}\left(f\left(z^{*}\right), f\left(\zeta^{*}\right)\right)\right|=\left|\left(f\left(z^{*}\right)\right)_{0}\right|\left|a_{21}+a_{22} \zeta_{1}+\cdots+a_{2, n+1} \zeta_{n}\right|
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\{\tilde{P}(z, \zeta)\}^{2 / n} & =\left|\tilde{\Phi}\left(z^{*}, z^{*}\right)\right|^{2}\left|\tilde{\Phi}\left(z^{*}, \zeta^{*}\right)\right|^{-4} \\
& =\left|\tilde{\Phi}\left(f\left(z^{*}\right), f\left(z^{*}\right)\right)\right|^{2}\left|\tilde{\Phi}\left(f\left(z^{*}\right), f\left(\zeta^{*}\right)\right)\right|^{-4} \\
& =\left|\tilde{\Phi}\left(f(z)^{*}, f(z)^{*}\right)\right|^{2}\left|a_{21}+a_{22} \zeta_{1}+\cdots+a_{2, n+1} \zeta_{n}\right|^{-4} \\
& =\{\tilde{P}(w, \infty)\}^{2 / n}\left|a_{21}+a_{22} \zeta_{1}+\cdots+a_{2, n+1} \zeta_{n}\right|^{-4}
\end{aligned}
$$

By using this equality, we have

$$
\begin{aligned}
& \sinh ^{2} \tilde{d}(z, g(z))\{\tilde{P}(z, \zeta)\}^{2 / n} \\
& \quad=\sinh ^{2} \tilde{d}\left(z, f^{-1} h f(z)\right)\{\tilde{P}(z, \zeta)\}^{2 / n} \\
& \quad=\sinh ^{2} \tilde{d}(f(z), h f(z))\{\tilde{P}(z, \zeta)\}^{2 / n} \\
& \quad=\sinh ^{2} \tilde{d}(w, h(w))\{\tilde{P}(w, \infty)\}^{2 / n}\left|a_{21}+a_{22} \zeta_{1}+\cdots+a_{2, n+1} \zeta_{n}\right|^{-4}
\end{aligned}
$$

$$
\begin{aligned}
= & \left\{2 \operatorname{Re}\left(w_{1}\right)-\sum_{k=2}^{n}\left|w_{k}\right|^{2}\right\}^{-2} t^{2}\left\{2 \operatorname{Re}\left(w_{1}\right)-\sum_{k=2}^{n}\left|w_{k}\right|^{2}\right\}^{2} \\
& \times\left|a_{21}+a_{22} \zeta_{1}+\cdots+a_{2, n+1} \zeta_{n}\right|^{-4} \\
= & t^{2}\left|a_{21}+a_{22} \zeta_{1}+\cdots+a_{2, n+1} \zeta_{n}\right|^{-4} .
\end{aligned}
$$

Thus $\sinh ^{2} \tilde{d}(z, g(z))\{\tilde{P}(z, \zeta)\}^{2 / n}$ is equal to a constant which does not depend on z.

Remark 1.14. If g is a hyperbolic element of $\tilde{U}(1,1 ; C)$, then we have

$$
\sinh \tilde{d}(z, g(z))=\cosh 2 \tilde{d}\left(z, \tilde{A_{g}}\right) \sinh \tilde{T}(g)
$$

If g is strictly parabolic and of the form

$$
g=\left[\begin{array}{ccc}
1 & 0 & 0 \\
s & 1 & \bar{a}^{T} \\
a & 0 & I_{n-1}
\end{array}\right],
$$

where $\operatorname{Re}(s)=(1 / 2)\|a\|^{2}$, then $\sinh ^{2} \tilde{d}(z, g(z))\{\tilde{P}(z, \zeta)\}^{2 / n}$ is not necessarily constant.

2. Elements of discrete subgroups of $U(1, n ; C)$ and $\tilde{U}(1, n ; C)$

First we quote one theorem from [5].
Theorem 2.1 ([5; Theorem 3.2]). Let G be a discrete subgroup of $\tilde{U}(1, n ; C)$. Assume that g is a translation of G having the form

$$
g=\left[\begin{array}{ccc}
1 & 0 & 0 \\
s & 1 & 0 \\
0 & 0 & I_{n-1}
\end{array}\right]
$$

where $s \neq 0$ and $\operatorname{Re}(s)=0$. If $f=\left(a_{i j}\right)_{i, j=1,2, \ldots, n+1}$ is an element of G, then either $a_{12}=0$ or $\left|a_{12}\right| \geqq|s|^{-1}$.

Using this theorem, we shall show the existence of a domain where the action of G is equal to the action of the cyclic group generated by g.

Theorem 2.2. Let G, g and s be the same as in Theorem 2.1. Assume that the stabilizer $G_{\infty}=\{h \in G \mid h(\infty)=\infty\}$ is generated by g. Let Σ be the set $\left\{\left.z \in \tilde{H}^{n}\left|\operatorname{Re}\left(z_{1}\right)>(1 / 2) \sum_{k=2}^{n}\right| z_{k}\right|^{2}+|s|\right\}$. Then

$$
\begin{array}{rll}
f(\Sigma)=\Sigma & \text { if } & f \in G_{\infty}, \\
f(\Sigma) \cap \Sigma=\varnothing & \text { if } & f \in G-G_{\infty} .
\end{array}
$$

Proof. Assume that f is an element of G_{∞} and that z is a point in Σ. Noting that f has the form

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
m s & 1 & 0 \\
0 & 0 & I_{n-1}
\end{array}\right] \quad(m \in Z)
$$

we see that $f(z)=\left(z_{1}+m s, z_{2}, \ldots, z_{n}\right)$. It follows that

$$
\operatorname{Re}\left(z_{1}+m s\right)=\operatorname{Re}\left(z_{1}\right)>(1 / 2) \sum_{k=2}^{n}\left|z_{k}\right|^{2}+|s| .
$$

Thus $\Sigma \supset f(\Sigma)$. If we replace f by f^{-1}, then we have $f(\Sigma)=\Sigma$.
Next we suppose that $f=\left(a_{i j}\right)_{i, j=1,2, \ldots, n+1}$ is an element of $G-G_{\infty}$. Then $a_{12} \neq 0$ so that $\left|a_{12}\right| \geqq|s|^{-1}$ by Theorem 2.1. Take $z \in \Sigma$ and $z^{*}=$ $\left(1, z_{1}, z_{2}, \ldots, z_{n}\right) \in \pi^{-1}(z)$. Write $f\left(z^{*}\right)=\left(w_{0}^{*}, w_{1}^{*}, \ldots, w_{n}^{*}\right)$ and let $t=\operatorname{Re}\left(z_{1}\right)-$ $(1 / 2) \sum_{k=2}^{n}\left|z_{k}\right|^{2}$. Then $t>|s|$. Noting that $\tilde{\Phi}\left(z^{*}, z^{*}\right)=\tilde{\Phi}\left(f\left(z^{*}\right), f\left(z^{*}\right)\right)$, we have

$$
\operatorname{Re}\left(w_{1}^{*} / w_{0}^{*}\right)=\left|w_{0}^{*}\right|^{-2} \operatorname{Re}\left(\overline{w_{0}^{*}} w_{1}^{*}\right)=(1 / 2) \sum_{k=2}^{n}\left|w_{k}^{*} / w_{0}^{*}\right|^{2}+\left|w_{0}^{*}\right|^{-2} t .
$$

It follows from (8) in Section 1 that

$$
\begin{aligned}
& \left|a_{11} a_{12}^{-1}+z_{1}+a_{13} a_{12}{ }^{-1} z_{2}+\cdots+a_{1, n+1} a_{12}{ }^{-1} z_{n}\right|-t \\
& \quad \geqq \\
& \quad \operatorname{Re}\left(a_{11} a_{12}{ }^{-1}\right)+\operatorname{Re}\left(z_{1}\right)+\operatorname{Re}\left(a_{13} a_{12}^{-1} z_{2}\right)+\cdots \\
& \quad \quad+\operatorname{Re}\left(a_{1, n+1} a_{12}^{-1} z_{n}\right)-\operatorname{Re}\left(z_{1}\right)+(1 / 2) \sum_{k=2}^{n}\left|z_{k}\right|^{2} \\
& = \\
& \quad\left|a_{12}\right|^{-2} \operatorname{Re}\left(a_{11} \overline{a_{12}}\right)+\operatorname{Re}\left(a_{13} a_{12}^{-1} z_{2}\right)+\cdots+\operatorname{Re}\left(a_{1, n+1} a_{12}{ }^{-1} z_{n}\right) \\
& \quad \quad+(1 / 2) \sum_{k=2}^{n}\left|z_{k}\right|^{2} \\
& = \\
& \quad\left|a_{12}\right|^{-2}\left\{(1 / 2)\left(\left|a_{13}\right|^{2}+\left|a_{14}\right|^{2}+\cdots+\left|a_{1, n+1}\right|^{2}\right)\right\} \\
& \quad \quad+\operatorname{Re}\left(a_{13} a_{12}^{-1} z_{2}\right)+\cdots+\operatorname{Re}\left(a_{1, n+1} a_{12}^{-1} z_{n}\right)+(1 / 2) \sum_{k=2}^{n}\left|z_{k}\right|^{2} \\
& = \\
& (1 / 2)\left(\left|\overline{z_{2}}+a_{13} a_{12}{ }^{-1}\right|^{2}+\left|\overline{z_{3}}+a_{14} a_{12}^{-1}\right|^{2}+\cdots+\left|\overline{z_{n}}+a_{1, n+1} a_{12}^{-1}\right|^{2}\right) \geqq 0 .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\left|w_{0}^{*}\right|^{2} & =\left|a_{12}\right|^{2}\left|a_{11} a_{12}^{-1}+\cdots+a_{1, n+1} a_{12}^{-1} z_{n}\right|^{2} \\
& \geqq\left|a_{12}\right|^{2} t^{2} \geqq|s|^{-2} t^{2} \geqq|s|^{-1} t .
\end{aligned}
$$

It follows that $\operatorname{Re}\left(w_{1}^{*} / w_{0}^{*}\right) \leqq(1 / 2) \Sigma_{k=2}^{n}\left|w_{k}^{*} / w_{0}^{*}\right|^{2}+|s|$, which shows $f(z) \notin \Sigma$. Thus, if $f \in G-G_{\infty}$, then $f(\Sigma) \cap \Sigma=\varnothing$.

Proposition 2.3 (cf. [1; Theorem 5.4.3]). Let G, g and s be the same as in Theorem 2.1. Let $f=\left(a_{i j}\right)_{i, j=1,2, \ldots, n+1}$ be an element of $\tilde{U}(1, n ; \boldsymbol{C})$ such that $f(\infty) \neq \infty$. Suppose that the group $\langle f, g\rangle$ generated by f and g is discrete.

Then:
(a) $\|f-I\|\|g-I\| \geqq 1$.
(b) If f is strictly parabolic, then $\sinh \tilde{d}(e, f(e)) \sinh \tilde{d}(e, g(e)) \geqq 1 / 4$, where $e=(1,0, \ldots, 0) \in \tilde{H}^{n}$.

If f is of the form

$$
\left[\begin{array}{ccc}
1 & s^{-1} & 0 \\
0 & 1 & 0 \\
0 & 0 & I_{n-1}
\end{array}\right]
$$

then the equalities are satisfied in (a) and (b).
To prove Proposition 2.3 we need a lemma.
Lemma 2.4 (cf. [Proposition 1.1]). For $g \in \tilde{U}(1, n ; \boldsymbol{C})$,

$$
\|g\|^{2}=\|I\|^{2}+4 \sinh ^{2} \tilde{d}(e, g(e)) .
$$

Proof. Let $g=\left(a_{i j}\right)_{i, j=1,2, \ldots, n+1} \in \tilde{U}(1, n ; C)$. By making use of (11), (12) and (13) in Section 1, we obtain

$$
\tilde{d}(e, g(e))=\cosh ^{-1}(1 / 2)\left|a_{11}+a_{12}+a_{21}+a_{22}\right|
$$

From this it follows that

$$
4 \sinh ^{2} \tilde{d}(e, g(e))=\left|a_{11}+a_{12}+a_{21}+a_{22}\right|^{2}-4
$$

Using (8), (9), (10), (11), (12) and (13), we see that

$$
\begin{aligned}
\|g\|^{2}= & \left|a_{11}\right|^{2}+\left|a_{12}\right|^{2}+\left|a_{21}\right|^{2}+\left|a_{22}\right|^{2}+2 \operatorname{Re}\left(\overline{a_{11}} a_{12}\right) \\
& +2 \operatorname{Re}\left(\overline{a_{11}} a_{21}\right)+2 \operatorname{Re}\left(\overline{a_{11}} a_{22}\right)+2 \operatorname{Re}\left(\overline{a_{12}} a_{21}\right) \\
& +2 \operatorname{Re}\left(\overline{a_{12}} a_{22}\right)+2 \operatorname{Re}\left(\overline{a_{21}} a_{22}\right)+n-3 \\
= & 4 \sinh ^{2} \tilde{d}(e, g(e))+4+n-3 \\
= & 4 \sinh ^{2} \tilde{d}(e, g(e))+\|I\|^{2} .
\end{aligned}
$$

Proof of Proposition 2.3. Since $\|g-I\|=|s|$ and $\|f-I\|^{2} \geqq\left|a_{12}\right|^{2} \neq 0$, it follows from Theorem 2.1 that $\|f-I\|\|g-I\| \geqq 1$. Assume that all eigenvalues of the element f are 1. By Lemma 2.4,

$$
\begin{aligned}
\|f-I\|^{2} & =\|f\|^{2}+\|I\|^{2}-2 \sum_{i=1}^{n+1} \operatorname{Re}\left(a_{i i}\right) \\
& =\|f\|^{2}+\|I\|^{2}-2(n+1)=\|f\|^{2}-\|I\|^{2} \\
& =4 \sinh ^{2} \tilde{d}(e, f(e)) .
\end{aligned}
$$

Therefore $\|g-I\|=|s|=2 \sinh \tilde{d}(e, g(e))$ implies $\sinh \tilde{d}(e, f(e)) \sinh \tilde{d}(e, g(e)) \geqq$ 1/4.

It is easy to show that the equalities are satisfied if

$$
f=\left[\begin{array}{ccc}
1 & s^{-1} & 0 \\
0 & 1 & 0 \\
0 & 0 & I_{n-1}
\end{array}\right]
$$

Next we shall consider loxodromic elements of a discrete subgroup.
Theorem 2.5. Let G be a discrete subgroup of $U(1, n ; C)$. Let f and g be elements of G. Suppose that f is loxodromic and that f and g have fixed point sets $\{x, y\}$ and $\left\{x^{\prime}, y^{\prime}\right\}$, respectively in ∂B^{n}. Then either these sets are disjoint or they are identical. Moreover, if the latter occurs, then there is an integer m such that $f^{m} g=g f^{m}$.

Proof. Assume that f and g have only one fixed point, say $x \in \partial B^{n}$, in common. It follows from [5; Theorem 3.1] that the subgroup $\langle f, g\rangle$ generated by f and g is not discrete. Hence $\{x, y\}=\left\{x^{\prime}, y^{\prime}\right\}$ or $\{x, y\} \cap\left\{x^{\prime}, y^{\prime}\right\}=\varnothing$. Without loss of generality, we may assume that $\{x, y\}=\{(1,0, \ldots, 0)$, $(-1,0, \ldots, 0)\}$. If $\{x, y\}=\left\{x^{\prime}, y^{\prime}\right\}$, then it follows from (1), (2), (3), (4) and (5) in Section 1 that f and g are of the form

$$
f=\left[\begin{array}{ccc}
\lambda \cosh t & \lambda \sinh t & 0 \\
\lambda \sinh t & \lambda \cosh t & 0 \\
0 & 0 & A
\end{array}\right] \text { and } g=\left[\begin{array}{ccc}
\mu \cosh s & \mu \sinh s & 0 \\
\mu \sinh s & \mu \cosh s & 0 \\
0 & 0 & B
\end{array}\right]
$$

where $|\lambda|=1,|\mu|=1, t, s \in \boldsymbol{R}$ and $A, B \in U(n-1 ; C)$. Therefore

$$
f^{j} g f^{-j} g^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & A^{j} B A^{-j} B^{-1}
\end{array}\right] \quad(j \in Z)
$$

Let $F=\left\{f^{j} g f^{-j} g^{-1} \mid j \in \boldsymbol{Z}\right\}$. Assume that F is an infinite set. Noting that $U(n-1 ; C)$ is compact, we see that there exists a sequence $\left\{h_{k}\right\}$ of different elements of F which converges to some element h of $U(1, n ; C)$. Since $\lim _{k \rightarrow \infty} h_{k}(z)=h(z)$ for $z \in B^{n}, G$ is not discontinuous at $h(z)$ in B^{n}. This is a contradiction. Hence F is a finite set, so $A^{m} B A^{-m} B^{-1}=I_{n-1}$ for some integer m. Thus $f^{m} g=g f^{m}$.

For the remainder of this section G denotes a discrete subgroup of $U(1, n ; C)$. We shall give the definition of G-duality.

Definition 2.6. Let x and y be any two not necessarily distinct points in ∂B^{n}. If there exists a sequence $\left\{g_{k}\right\}$ of elements of G such that $\lim _{k \rightarrow \infty} g_{k}(p)=x$
and $\lim _{k \rightarrow \infty} g_{k}^{-1}(p)=y$ for any point p in B^{n}, then we say that x and y are G-dual and denote this duality by $x \sim y$.

Proposition 2.7. Two points x and y in ∂B^{n} are G-dual if and only if there exists an element g of G such that $g\left(\overline{B^{n}}-V\right) \subset U$, where U (resp. V) is any open neighborhood of x (resp. y) in $\overline{B^{n}}$.

We need the following lemma for the proof.

Lemma 2.8. Let ε be any positive number. If $d^{*}(z, w)^{2}<\varepsilon$ for $z=$ $\left(z_{1}, z_{2}, \ldots, z_{n}\right), w=\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in B^{n}$, then $\|z-w\|^{2}=\Sigma_{i=1}^{n}\left|z_{i}-w_{i}\right|^{2}<2 \varepsilon$.

Proof. If $z=w=0$, then $\|z-w\|^{2}=0$. Hence we may assume that one of z and w, say z, is not zero. Without loss of generality, we may assume that $z=(r, 0, \ldots, 0)$, where $0<r<1$. Noting that $\inf \left\{\operatorname{Re}\left(w_{1}\right) \mid d^{*}(z, w)^{2}<\varepsilon\right\}=$ $(1-\varepsilon) r^{-1}$, we see that

$$
\begin{aligned}
\|z-w\|^{2} & =\left|r-w_{1}\right|^{2}+\sum_{i=2}^{n}\left|w_{i}\right|^{2}=r^{2}-2 r \operatorname{Re}\left(w_{1}\right)+\|w\|^{2} \\
& \leqq r^{2}-2 r \operatorname{Re}\left(w_{1}\right)+1<r^{2}-2 r(1-\varepsilon) r^{-1}+1 \\
& =2 \varepsilon-\left(1-r^{2}\right)<2 \varepsilon .
\end{aligned}
$$

Let us go back to the proof of Proposition 2.7. We shall prove that if part first. Let U_{k} (resp. V_{k}) be a sequence of open neighborhoods of x (resp. y) in $\overline{B^{n}}$ such that $U_{k} \supset \overline{U_{k+1}}$ and $\bigcap_{k \geq 1} U_{k}=\{x\}$ (resp. $V_{k} \supset \overline{V_{k+1}}$ and $\bigcap_{k \geqq 1} V_{k}=\{y\}$). By our assumption, there exists a sequence $\left\{g_{k}\right\}$ of elements in G such that $g_{k}\left(\overline{B^{n}}-V_{k}\right) \subset U_{k}$ and $g_{k}{ }^{-1}\left(\overline{B^{n}}-U_{k}\right) \subset V_{k}$ for each k. Let p be a point in B^{n}. If k is sufficiently large, then $p \in\left(\overline{B^{n}}-U_{k}\right) \cap\left(\overline{B^{n}}-V_{k}\right)$. Therefore we see that $g_{k}(p) \in U_{k}$ and $g_{k}{ }^{-1}(p) \in V_{k}$. Thus $g_{k}(p) \rightarrow x$ and $g_{k}{ }^{-1}(p) \rightarrow y$.

Conversely we assume that x and y are G-dual. Let U (resp. V) be an open neighborhood of x (resp. y) in $\overline{B^{n}}$. By our assumption, there is a sequence $\left\{g_{k}\right\} \subset G$ such that $g_{k}(0) \rightarrow x$ and $g_{k}{ }^{-1}(0) \rightarrow y$ as $k \rightarrow \infty$. Since $\lim _{k \rightarrow \infty} g_{k}{ }^{-1}(0)=$ y, there exist $\delta>0$ and an integer $N>0$ such that $\left\|g_{k}{ }^{-1}(0)-z\right\|>\delta$ for all $z \in \overline{B^{n}}-V$ and all $k \geqq N$. Fix $z \in \overline{B^{n}}-V$. Then $d^{*}\left(g_{k}{ }^{-1}(0), z\right) \geqq \delta / 2$ for all $k \geqq N$ by Lemma 2.8.

We can find an element v_{k} of $U(1 ; \boldsymbol{C}) \times U(n ; \boldsymbol{C})$ which carries $g_{k}{ }^{-1}(0)$ to $\left(a_{k}, 0, \ldots, 0\right)$, where $\left|a_{k}\right|=\left\|g_{k}{ }^{-1}(0)\right\|$. Set $p_{k}=\left(a_{k}, 0, \ldots, 0\right)$. By Theorem 1.2, we have two elements u_{k} and $f_{p_{k}}$ which satisfy the following conditions:

1) $g_{k} v_{k}^{-1}=u_{k} f_{p_{k}}$;
2) $f_{p_{k}}\left(p_{k}\right)=0, f_{p_{k}}(0)=p_{k}$ and $f_{p_{k}}{ }^{2}=$ identity:
3) $u_{k} \in U(1 ; \boldsymbol{C}) \times U(n ; \boldsymbol{C})$,
where $f_{p_{k}}$ is defined in the same manner as in the proof of Theorem 1.2.

Write $v_{k}(z)=\left(v_{1}{ }^{(k)}, v_{2}{ }^{(k)}, \ldots, v_{n}{ }^{(k)}\right)$. Using $u_{k}{ }^{-1}(0)=0$ and the fact that d^{*} is invariant under $U(1 ; C) \times U(n ; C)$, we see that

$$
\begin{aligned}
d^{*}\left(g_{k}{ }^{-1}(0), z\right)^{2} & =d^{*}\left(v_{k}{ }^{-1} f_{p_{k}}{ }^{-1} u_{k}{ }^{-1}(0), z\right)^{2}=d^{*}\left(v_{k}{ }^{-1} f_{p_{k}}{ }^{-1}(0), z\right)^{2} \\
& =d^{*}\left(f_{p_{k}}{ }^{-1}(0), v_{k}(z)\right)^{2}=d^{*}\left(p_{k}, v_{k}(z)\right)^{2}=\left|1-\bar{a}_{k} v_{1}^{(k)}\right| .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\left|1-\overline{a_{k}} v_{1}{ }^{(k)}\right| \geqq \delta^{2} / 4 \quad \text { for all } k \geqq N \tag{14}
\end{equation*}
$$

It follows from the proof of Lemma 1.4 that

$$
\begin{aligned}
d^{*}\left(g_{k}(0), g_{k}(z)\right)^{2} & =d^{*}\left(u_{k} f_{p_{k}} v_{k}(0), u_{k} f_{p_{k}} v_{k}(z)\right)^{2} \\
& =d^{*}\left(f_{p_{k}}\left(v_{k}(0)\right), f_{p_{k}}\left(v_{k}(z)\right)\right)^{2} \\
& =\left(1-\left|a_{k}\right|^{2}\right)\left|1-\overline{a_{k}} v_{1}{ }^{(k)}\right|^{-1} d^{*}\left(v_{k}(0), v_{k}(z)\right)^{2} \\
& =\left(1-\left|a_{k}\right|^{2}\right)\left|1-\overline{a_{k}} v_{1}{ }^{(k)}\right|^{-1} d^{*}(0, z)^{2} \\
& =\left(1-\left|a_{k}\right|^{2}\right)\left|1-\overline{a_{k}} v_{1}{ }^{(k)}\right|^{-1} .
\end{aligned}
$$

Using (14), we see that

$$
d^{*}\left(g_{k}(0), g_{k}(z)\right)^{2} \leqq 4\left(1-\left\|g_{k}^{-1}(0)\right\|^{2}\right) \delta^{-2}
$$

for all $k \geqq N$. Let $\varepsilon>0$ be given. Since $\lim _{k \rightarrow \infty} g_{k}{ }^{-1}(0)=y \in \partial B^{n}$, there exists an integer $M>0$ such that

$$
4\left(1-\left\|g_{k}^{-1}(0)\right\|^{2}\right) \delta^{-2}<\varepsilon \quad \text { for all } k \geqq M
$$

Lemma 2.8 implies that

$$
\left\|g_{k}(0)-g_{k}(z)\right\|^{2}<2 \varepsilon \quad \text { for all } k \geqq \max \{N, M\} .
$$

Since $\lim _{k \rightarrow \infty} g_{k}(0)=x,\left\{g_{k}\right\}$ uniformly converges to x on $\overline{B^{n}}-V$. Thus $g_{k}\left(\overline{B^{n}}-V\right) \subset U$ for sufficiently large k.

Proposition 2.9. Suppose that two points x and y are $G-d u a l . \quad$ Let U and V be open neighborhoods in $\overline{B^{n}}$ of x and y, respectively. If $\bar{U} \cap \bar{V}=\varnothing$, then there exists a loxodromic element of G that has one fixed point in U and another fixed point in V.

Proof. We may take U and V to be convex. It follows from Proposition 2.7 that there exists an element g of G such that $g\left(\overline{B^{n}}-V\right) \subset U$. Therefore $g\left(\bar{U} \cap \partial B^{n}\right) \subset U \cap \partial B^{n}$. By the Brouwer fixed point theorem, we see that g has a fixed point in $U \cap \partial B^{n}$. Similarily we have that $g^{-1}\left(\bar{V} \cap \partial B^{n}\right) \subset V \cap \partial B^{n}$. Therefore g has another fixed point in V. Assume that g is elliptic. It follows
from [3; Lemma 3.3.2] that g must fix any point in the geodesic connecting x to y. This is impossible, because $g\left(\overline{B^{n}}-V\right) \subset U$. Thus g is a loxodromic element of G.

We shall derive some properties of G-dual points. Before stating our theorem, we give the definition of the limit set. Let $G(p)=\{g(p) \mid g \in G\}$ for a point $p \in B^{n}$. Define the limit set $L(G)$ of G by $L(G)=\overline{G(p)} \cap \partial B^{n}$. Note that $L(G)$ does not depend on the choice of p (see [3; Lemma 4.3.1]). By definition, $L(G)$ is a G-invariant closed set.

Theorem 2.10. Let G be a discrete subgroup of $U(1, n ; C)$.
(a) G-dual points x and y belong to the limit set $L(G)$.
(b) If $x \in L(G)$, then there is some point $y \in L(G)$ such that $x \sim y$.
(c) Denote $\{y \in L(G) \mid x \sim y\}$ by $D(x)$. The set $D(x)$ is closed and G-invariant. If $\#(D(x)) \geqq 2$, then $D(x)=L(G)$.
(d) The set $D(x)$ is contained in the derived set $d G(y)$ of $G(y)$ for any $y \in \partial B^{n}-\{x\}$.
(e) If $\#(L(G))=1$, then the point in $L(G)$ is G-dual to itself. If $\#(L(G)) \geqq$ 2 , then any two points in $L(G)$ are G-dual.

Proof. (a) This is immediate.
(b) If $x \in L(G)$, then there exists a sequence $\left\{g_{j}\right\} \subset G$ such that $g_{j}(p) \rightarrow x$ as $j \rightarrow \infty$ for any point p. If we take a subsequence $\left\{g_{j_{k}}{ }^{-1}(p)\right\}$, then there is a point y such that $g_{j_{k}}{ }^{-1}(p) \rightarrow y$ as $j_{k} \rightarrow \infty$.
(c) Suppose that there is a sequence $\left\{y_{j}\right\}$ in $D(x)$ such that $y_{j} \rightarrow y$ as $j \rightarrow \infty$. Since $L(G)$ is closed, $y \in L(G)$. We shall show that y is G-dual to x. For each j, there is a sequence $\left\{g_{m}{ }^{(j)}\right\} \subset G$ such that $g_{m}{ }^{(j)}(p) \rightarrow x$ and $\left(g_{m}{ }^{(j)}\right)^{-1}(p) \rightarrow y_{j}$ as $m \rightarrow \infty$ for any point p. There exists a sequence $\left\{g^{(m)}\right\} \subset G$ such that $g^{(m)}(p) \rightarrow x$ and $\left(g^{(m)}\right)^{-1}(p) \rightarrow y$. Hence y is G-dual to x. If $y \in D(x)$, then there is a sequence $\left\{g_{m}\right\}$ in G such that $g_{m}(p) \rightarrow x$ and $g_{m}{ }^{-1}(p) \rightarrow y$. Let g be an element of G. Replace p by $g^{-1}(p)$. By [3; Lemma 4.3.1], $g_{m}\left(g^{-1}(p)\right) \rightarrow x$. Consider the sequence $\left\{g_{m} g^{-1}\right\}$ in G. Since $g_{m} g^{-1}(p) \rightarrow x$ and $\left(g_{m} g^{-1}\right)^{-1}(p) \rightarrow g(y), g(y)$ is contained in $D(x)$. Assume that $D(x)$ contains more than one point. Then it follows from [3; Lemma 4.3.3] that $D(x) \supset L(G)$. Thus we conclude that $D(x)=L(G)$.
(d) Before showing this, we define an angle and prove a lemma.

Let $x, y \in \overline{\boldsymbol{B}^{n}}$ and $p \in \boldsymbol{B}^{n}$. Set

$$
\Psi_{p}\left(x^{*}, y^{*}\right)=-\operatorname{Re}\left[\Phi\left(p^{*}, p^{*}\right)^{-2}\left\{\Phi\left(x^{*}, y^{*}\right) \Phi\left(p^{*}, p^{*}\right)-\Phi\left(x^{*}, p^{*}\right) \Phi\left(p^{*}, y^{*}\right)\right\}\right]
$$

where $p^{*} \in \pi^{-1}(p), x^{*} \in \pi^{-1}(x)$ and $y^{*} \in \pi^{-1}(y)$. We define the angle $\Varangle_{p}(x, y)$ $\left(0 \leqq \Varangle_{p}(x, y) \leqq \pi\right)$ at p between two geodesics $\widehat{x p}$ and $\overparen{y p}$ by

$$
\cos 丈_{p}(x, y)=\Psi_{p}\left(x^{*}, y^{*}\right)\left\{\Psi_{p}\left(x^{*}, x^{*}\right) \Psi_{p}\left(y^{*}, y^{*}\right)\right\}^{-1 / 2} .
$$

We note that $\cos \Varangle_{p}(x, y)$ is invariant under $U(1, n ; C)$.
Lemma 2.11. Let p be a point in the geodesic γ having the end points x, y. Then

$$
\Varangle_{z}(p, y) \leqq \Varangle_{p}(z, x) \quad \text { for any point } z \in B^{n} .
$$

Proof. Without loss of generality, we may assume that $x=(1,0, \ldots, 0)$, $y=(-1,0, \ldots, 0), p=(t, 0, \ldots, 0)$, where $t \in(-1,1)$. Write $z=\left(z_{1}, \ldots, z_{n}\right)$. Setting $s=1-\Sigma_{i=1}^{n}\left|z_{i}\right|^{2}$ and $x_{1}=\operatorname{Re}\left(z_{1}\right)$, we see that

$$
\begin{aligned}
\cos \Varangle_{z}(p, y)= & -\left[\operatorname{Re}\left\{(1+t) s-\left(1-t z_{1}\right)\left(1+\overline{z_{1}}\right)\right\}\right] \\
& \times\left[\left\{-\left(1-t^{2}\right) s+\left|1-t z_{1}\right|^{2}\right\}^{1 / 2}\left|1+z_{1}\right|\right]^{-1}
\end{aligned}
$$

and

$$
\cos \Varangle_{p}(z, x)=\left(\operatorname{Re}\left(z_{1}\right)-t\right)\left\{-\left(1-t^{2}\right) s+\left|1-t z_{1}\right|^{2}\right\}^{-1 / 2} .
$$

Let

$$
F(t)=1-s-s t+x_{1}-t x_{1}-t\left|z_{1}\right|^{2}-\left|1+z_{1}\right|\left(x_{1}-t\right)
$$

for $t \in[-1,1]$. We observe that

$$
\begin{aligned}
F(-1) & =1-s+s+x_{1}+x_{1}+\left|z_{1}\right|^{2}-\left|1+z_{1}\right|\left(x_{1}+1\right) \\
& =1+2 x_{1}+\left|z_{1}\right|^{2}-\left|1+z_{1}\right|\left(1+x_{1}\right) \\
& =\left|1+z_{1}\right|^{2}-\left|1+z_{1}\right|\left(1+x_{1}\right) \\
& =\left|1+z_{1}\right|\left\{\left|1+z_{1}\right|-\left(1+x_{1}\right)\right\} \geqq 0
\end{aligned}
$$

and

$$
F^{\prime}(t)=-s-x_{1}-\left|z_{1}\right|^{2}+\left|1+z_{1}\right| \geqq-1-x_{1}+\left|1+x_{1}\right| \geqq 0 .
$$

These facts imply that $F(t) \geqq 0$ in $[-1,1]$. Therefore

$$
\cos \Varangle_{z}(p, y) \geqq \cos \Varangle_{p}(z, x) .
$$

Thus we have

$$
\Varangle_{z}(p, y) \leqq \Varangle_{p}(z, x) .
$$

Now we are ready to prove (d).
Proof of (d). Take $y \in \partial B^{n}-\{x\}$. Let γ be the geodesic with the end points x and y, and let p be a point on γ. Suppose that z is a point in
$D(x)$. Then there is a sequence $\left\{g_{k}\right\}$ in G such that $g_{k}(p) \rightarrow z$ and $g_{k}{ }^{-1}(p) \rightarrow x$ as $k \rightarrow \infty$. Using Lemma 2.11, we have

$$
\begin{aligned}
\Varangle_{p}\left(g_{k}(p), g_{k}(y)\right) & =\Varangle_{g_{k}-1(p)}(p, y) \\
& \leqq \Varangle_{p}\left(g_{k}{ }^{-1}(p), x\right) \rightarrow 0 .
\end{aligned}
$$

Hence $\Varangle_{p}\left(g_{k}(p), g_{k}(y)\right) \rightarrow 0$ as $k \rightarrow \infty$. Therefore $g_{k}(y) \rightarrow z$ as $k \rightarrow \infty$. Thus $D(x) \subset d G(y)$.
(e) To prove this, we prepare two lemmas.

Lemma 2.12. Let x and y be two points of ∂B^{n}. Let G be a discrete subgroup of $U(1, n ; C)$ consisting only of elliptic elements all of which leave the set $\{x, y\}$ invariant. Then G is a finite group.

Proof. By [3; Proposition 2.1.3], we may assume that $x=(1,0, \ldots, 0)$ and $y=(-1,0, \ldots, 0)$. We write $U_{x, y}$ for the subgroup of all elliptic elements g in $U(1, n ; C)$ such that g fixes x and y. It follows that an element in $U_{x, y}$ is of the form

$$
\left[\begin{array}{lll}
\alpha & 0 & 0 \\
0 & \alpha & 0 \\
0 & 0 & A
\end{array}\right]
$$

where $|\alpha|=1$ and $A \in U(n-1 ; C)$. Let $G_{x, y}=\{g \in G \mid g(x)=x$ and $g(y)=y\}$. Since $U_{x, y}$ is compact, we see that $G_{x, y}$ is a finite group in the same manner as in the proof of Theorem 2.5. Therefore we have only to prove that $G-G_{x, y}$ is a finite set. Assume that $G-G_{x, y}$ is not a finite set, say, $G-G_{x, y}=$ $\left\{h_{1}, h_{2}, \ldots, h_{k}, \ldots\right\}$. Since each element of $G-G_{x, y}$ interchanges x and y, the set $\left\{h_{1} h_{1}, h_{1} h_{2}, \ldots, h_{1} h_{k}, \ldots\right\}$ is contained in $G_{x, y}$. Hence $\left\{h_{1} h_{1}, h_{1} h_{2}, \ldots, h_{1} h_{k}\right.$, $\ldots\}$ is a finite set. This is a contradiction. Therefore there exist at most a finite number of elements in $G-G_{x, y}$. Thus G is a finite group.

Lemma 2.13. If $\#(L(G)) \geqq 3$, then there exists a point in $L(G)$ which is not fixed by some element of G.

Proof. It is easy to show our statement in the case where G contains a loxodromic or parabolic element. Therefore we have only to consider the case where all elements of G except the identity are elliptic. Assume that any point in $L(G)$ is fixed by all elements of G. Using Lemma 2.12 , we see that G is a finite group. This contradicts our assumption that $L(G) \neq \varnothing$. Thus our lemma is proved.

We now come to the proof of (e).

Proof of (e). If $L(G)=\{x\}$, then x is G-dual to itself by (b).
Next assume that $L(G)=\{x, y\}$. Since all elements of G leave the set $\{x, y\}$ invariant, there are no parabolic elements in G. Suppose that G contains only the identity and elliptic elements which leave $\{x, y\}$ invariant. Lemma 2.12 implies that G is a finite group. This contradicts our assumption that $L(G) \neq \varnothing$. Therefore G contains a loxodromic element with fixed points x and y. Thus x and y are G-dual.

Lastly assume that $\#(L(G)) \geqq 3$. By Lemma 2.13 , there exists a point ζ in $L(G)$ such that some element f of G does not fix ζ. By (b), ζ has a dual point η in $L(G)$. It follows from (c) that ζ and $f(\zeta)$ are contained in $D(\eta)$ and hence that $D(\eta)=L(G)$, that is, η is G-dual to every point in $L(G)$.

Choose x and y in $L(G)$ such that η, x and y are all distinct. Let W, U and V be disjoint open neighborhoods of η, x and y, respectively. Using Proposition 2.9, we can find two elements g and h in G such that g has fixed points in U and W and h has fixed points in V and W. Two elements g and h do not have a common fixed point in W, otherwise G would be non-discrete by [5; Theorem 3.1]. Therefore either g or h does not fix η. Let $g(\eta) \neq \eta$. This implies that $D(x)$ contains at least two points η and $g(\eta)$. Using (c) again, we see that $D(x)=L(G)$. Hence any two points in $L(G)$ are G-dual.

Remark 2.14. (1) According to Theorem 2.10 (c), $D(x)=L(G)$ for any $x \in L(G)$ in case $\#(D(x)) \geqq 2$. In case $\#(D(x))=1$ it may happen that $D(x) \neq$ $L(G)$. In fact, let g be a loxodromic element with fixed points x and y, and let G be a cyclic group generated by g. Then $D(x)=\{y\}, D(y)=\{x\}$ but $L(G)=\{x, y\}$.
(2) The argument in the proof of (e) shows that, if $\#(L(G)) \geqq 3$, then there exist at least two loxodromic elements in G without a common fixed point.

Next we shall state the properties of the limit set $L(G)$.
Theorem 2.15. Let G be a discrete subgroup of $U(1, n ; C)$.
(a) $L(G)=d G(y)$ for any $y \in \overline{B^{n}}$ if $\#(L(G)) \geqq 3$.
(b) Either $L(G)=\partial B^{n}$ or $L(G)$ is nowhere dense on ∂B^{n}.
(c) $L(G)$ is a perfect set if $\#(L(G)) \geqq 3$.
(d) $L(G)$ is the closure of the set of points fixed by some loxodromic elements of G if $\#(L(G)) \geqq 3$.

Proof. (a) Since G is discontinuous in $B^{n}, L(G)=d G(y)$ for any $y \in B^{n}$. Therefore we have only to show that $d G(0)=d G(y)$ for any $y \in \partial B^{n}$.

First we shall prove that $d G(0) \subset d G(y)$. By (2) in Remark 2.14, there exists a loxodromic element h of G such that $h(y) \neq y$. Let ζ be a point of
$d G(0)$. Take a point z of B^{n} in the geodesic connecting y to $h(y)$. Then there exists a sequence $\left\{g_{k}\right\}$ of elements of G such that $g_{k}(z) \rightarrow \zeta$ as $k \rightarrow \infty$. By taking a subsequence, if necessary, we may assume that $g_{k}(y) \rightarrow \zeta_{1}$ and $g_{k}(h(y)) \rightarrow \zeta_{2}$ as $k \rightarrow \infty$. If $\zeta_{1}=\zeta_{2}$, then $\zeta=\zeta_{1}=\zeta_{2}$. Hence $d G(0) \subset d G(y)$. On the other hand, assume that $\zeta_{1} \neq \zeta_{2}$. It follows from [3; Lemma 4.3.3] that $d G(0) \subset d G(y)$.

Next we shall show that $d G(0) \supset d G(y)$. Let ζ be a point of $d G(y)$. Then there exists a sequence $\left\{g_{k}\right\}$ of elements of G such that $g_{k}(y) \rightarrow \zeta, g_{k}(0) \rightarrow \zeta_{1}$ and $g_{k}{ }^{-1}(0) \rightarrow \zeta_{2}$. Suppose that $y \neq \zeta_{2}$. It follows from the proof of Proposition 2.7 that $g_{k}(y) \rightarrow \zeta_{1}$. Hence $\zeta=\zeta_{1}$, so ζ belongs to $d G(0)$. Assume therefore that $y=\zeta_{2}$. Since $d G(0)$ is invariant under $G, g_{k}\left(\zeta_{2}\right)$ is included in $d G(0)$, hence $g_{k}(y) \in d G(0)$. As $d G(0)$ is closed, ζ belongs to $d G(0)$. Thus $d G(0) \supset d G(y)$.
(b) If $\#(L(G)) \leqq 2$, then $L(G)$ is nowhere dense on ∂B^{n}. Therefore we may assume that $\#(L(G)) \geqq 3$. Let ζ be a point in $L(G)$. Suppose that there is a point z in $\partial B^{n}-L(G)$. By (a), there exists a sequence $\left\{g_{k}\right\}$ of elements of G such that $g_{k}(z) \rightarrow \zeta$ as $k \rightarrow \infty$. Every neighborhood of ζ contains points in the complement of $L(G)$, so $L(G)$ is nowhere dense on ∂B^{n}.
(c) This statement is an immediate consequence of (a).
(d) By (2) in Remark 2.14, there is a loxodromic element in G with fixed points ζ_{1}, ζ_{2}. Let M be the set of points fixed by some loxodromic elements of G. It follows from (a) that $L(G)=d G\left(\zeta_{1}\right)$. Since $L(G)$ is closed and $L(G) \supset$ $M \supset G\left(\zeta_{1}\right), L(G) \supset \bar{M} \supset \overline{G\left(\zeta_{1}\right)} \supset d G\left(\zeta_{1}\right)$. Thus $L(G)=\bar{M}$.

The groups for which $L(G)=\partial B^{n}$ are called groups of the first kind; those for which $L(G) \neq \partial B^{n}$ are called groups of the second kind.

Proposition 2.9 and (e) in Theorem 2.10 lead to

Theorem 2.16 (cf. [4; Proposition 12]). If $\#(L(G)) \geqq 3$, then the fixed points of the loxodromic elements of G are dense in $L(G) \times L(G)$, that is, for any points $x, y \in L(G)$ and open neighborhoods U, V of these points in ∂B^{n}, there is a loxodromic element in G which has one fixed point in U and the other in V.

Corollary 2.17. If G is of the first kind, then the fixed points of the loxodromic elements of G are dense in $\partial B^{n} \times \partial B^{n}$.

Acknowledgements

The author wishes to express his deepest appreciation to Professors M. Ohtsuka and H. Sato for valuable discussions and comments in the preparation of the manuscript.

References

[1] A. F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics 91, Springer, New York, Heidelberg, Berlin, 1983.
[2] A. F. Beardon and J. Wilker, The norm of a Möbius transformation, Math. Proc. Camb. Phil. Soc. 96 (1984), 301-308.
[3] S. S. Chen and L. Greenberg, Hyperbolic spaces, Contributions to Analysis, Academic Press, New York, (1974), 49-87.
[4] L. Greenberg, Discrete subgroups of the Lorentz group, Math. Scand. 10 (1962), 85-107.
[5] S. Kamiya, Notes on non-discrete subgroups of $\hat{U}(1, n ; F)$, Hiroshima Math. J. 13 (1983), 501-506.
[6] J. Lehner, Discontinuous groups and automorphic functions, Mathematical Surveys, No. VIII, American Mathematical Society, Providence, 1964.

Department of Mechanical Science, Okayama University of Science

[^0]: This research was partially supported by Grant-in-Aid for Scientific Research (No. 61740109),

