Нікозніма Матн. J. 21 (1991), 23–45

Notes on elements of U(1, n; C)

Shigeyasu KAMIYA

(Received December 15, 1989)

Introduction

Let C be the field of complex numbers. Let $V = V^{1,n}(C)$ $(n \ge 1)$ denote the vector space C^{n+1} , together with the unitary structure defined by the Hermitian form

$$\Phi(z^*, w^*) = -\overline{z_0^*} w_0^* + \overline{z_1^*} w_1^* + \dots + \overline{z_n^*} w_n^*$$

for $z^* = (z_0^*, z_1^*, ..., z_n^*)$ and $w^* = (w_0^*, w_1^*, ..., w_n^*)$ in V. An automorphism g of V, that is, a linear bijection such that $\Phi(g(z^*), g(w^*)) = \Phi(z^*, w^*)$ for z^* , $w^* \in V$, will be called a *unitary transformation*. We denote the group of all unitary transformations by $U(1, n; \mathbb{C})$. Let $V_0 = \{z^* \in V | \Phi(z^*, z^*) = 0\}$ and $V_- = \{z^* \in V | \Phi(z^*, z^*) < 0\}$. It is clear that V_0 and V_- are invariant under $U(1, n; \mathbb{C})$. Set $V^* = V_- \cup V_0 - \{0\}$. Let $\pi: V^* \to \pi(V^*)$ be the projection map defined by $\pi(z_0^*, z_1^*, ..., z_n^*) = (z_1^* z_0^{i-1}, z_2^* z_0^{i-1}, ..., z_n^* z_0^{i-1})$. Set $H^n(\mathbb{C}) = \pi(V_-)$. Let $\overline{H^n(\mathbb{C})}$ denote the closure of $H^n(\mathbb{C})$ in the projective space $\pi(V^*)$. An element g of $U(1, n; \mathbb{C})$ operates in $\pi(V^*)$, leaving $\overline{H^n(\mathbb{C})}$ invariant. Since $H^n(\mathbb{C})$ is identified with the complex unit ball $B^n = B^n(\mathbb{C}) = \{z = (z_1, z_2, ..., z_n) \in \mathbb{C}^n |||z||^2 = \sum_{k=1}^n |z_k|^2 < 1\}$, we regard a unitary transformation as a transformation operating on B^n . We introduce the Bergman metric

$$g_{ii}(z) = \delta_{ii}(1 - ||z||^2)^{-1} + \overline{z_i}z_i(1 - ||z||^2)^{-2}$$

for $z = (z_1, z_2, ..., z_n) \in B^n$. Using this metric, we see that the holomorphic sectional curvature is -4. The distance d(z, w) for $z, w \in B^n$ is defined by the use of the Hermitian form Φ as follows:

$$d(z, w) = \cosh^{-1} \left[|\Phi(z^*, w^*)| \{ \Phi(z^*, z^*) \Phi(w^*, w^*) \}^{-1/2} \right],$$

where $z^* \in \pi^{-1}(z)$ and $w^* \in \pi^{-1}(w)$ (see [3; Proposition 2.4.4]).

Many results on Möbius transformations and discrete groups are shown in [1] and [6]. Our purpose of this paper is to find analogous results for elements of U(1, n; C) and discrete subgroups of U(1, n; C). In Section 1 we shall prove that an element of U(1, n; C) can be decomposed into two special

This research was partially supported by Grant-in-Aid for Scientific Research (No. 61740109), Ministry of Education.

elements. Using this fact, we obtain a distortion theorem for unitary transformations in Theorem 1.3. Elements of U(1, n; C) and $\tilde{U}(1, n; C)$ are classified into three types (see Section 1 for the definition of $\tilde{U}(1, n; C)$). We discuss the properties of elements of each type. In Section 2 we shall study the properties of elements of discrete subgroups of U(1, n; C) and $\tilde{U}(1, n; C)$ and show in Theorem 2.2 the existence of a domain where the action of a discrete subgroup is equal to the action of the cyclic group generated by a translation. Using the *G*-duality, we shall state in Theorem 2.16 that the fixed points of loxodromic elements of a discrete subgroup of U(1, n; C) are dense in $L(G) \times L(G)$.

1. Elements of U(1, n; C)

We define the norm of an element $g = (a_{ij})_{i,j=1,2,...,n+1}$ in U(1, n; C) by $||g|| = (\sum_{i,j=1}^{n+1} |a_{ij}|^2)^{1/2}$. Noting that $\Phi(z^*, w^*)$ is invariant under U(1, n; C), we see that

(1) $-|a_{11}|^2 + \sum_{k=2}^{n+1} |a_{k1}|^2 = -1 ,$

(2)
$$-|a_{1j}|^2 + \sum_{k=2}^{n+1} |a_{kj}|^2 = 1$$
 for $j = 2, 3, ..., n+1$,

(3)
$$-\overline{a_{1i}}a_{1j} + \sum_{k=2}^{n+1} \overline{a_{ki}}a_{kj} = 0$$
 for $i \neq j, i, j = 1, 2, ..., n+1$,

(4)
$$-|a_{11}|^2 + \sum_{k=2}^{n+1} |a_{1k}|^2 = -1,$$

(5)
$$-|a_{21}|^2 + \sum_{k=2}^{n+1} |a_{2k}|^2 = 1.$$

PROPOSITION 1.1 (cf. [2; Theorem 2]). For $g \in U(1, n; C)$,

$$||g||^{2} = ||I||^{2} + 4 \sinh^{2} d(0, g(0)),$$

where I is the unit matrix.

PROOF. First we note that $d(0, g(0)) = \cosh^{-1} |a_{11}|$ by (1) and $||I||^2 = n + 1$. Therefore we have

$$||I||^{2} + 4 \sinh^{2} d(0, g(0)) = 4|a_{11}|^{2} + (n-3).$$

It follows from the equalities (1), (2) and (4) that

$$\begin{split} \|g\|^2 &= \sum_{k=1}^{n+1} |a_{k1}|^2 + \sum_{k=1}^{n+1} |a_{k2}|^2 + \dots + \sum_{k=1}^{n+1} |a_{k,n+1}|^2 \\ &= (-1+2|a_{11}|^2) + (1+2|a_{12}|^2) + \dots + (1+2|a_{1,n+1}|^2) \\ &= (n-1) + 2 \sum_{k=1}^{n+1} |a_{1k}|^2 \\ &= (n-1) + 2(2|a_{11}|^2 - 1) \\ &= 4|a_{11}|^2 + (n-3) \,. \end{split}$$

Thus we complete the proof.

Next we shall show that any element of U(1, n; C) can be expressed as the product of two special elements. Before stating our theorem, we shall give notation. We denote by $U(1; C) \times U(n; C)$ the subgroup $\left\{ \begin{bmatrix} \alpha & 0 \\ 0 & A \end{bmatrix} | |\alpha| = 1, A \in U(n; C) \right\}$ of U(1, n; C).

THEOREM 1.2. Let $g = (a_{ij})_{i,j=1,2,...,n+1}$ be an element of U(1, n; C) and let p be a point of B^n such that g(p) = 0. Then the element g is decomposed into two elements f_p and u in U(1, n; C) such that

- 1) $g = u f_p;$
- 2) $f_p(p) = 0, f_p(0) = p$ and $f_p^2 = identity;$ 2) $f_p(p) = 0, f_p(0) = p$ and $f_p^2 = identity;$
- 3) $u \in U(1; \mathbb{C}) \times U(n; \mathbb{C}).$

PROOF. Without loss of generality, we may assume that $p = (a, 0, ..., 0) \in B^n$. Set

$$f_{p} = \begin{bmatrix} \alpha_{11} & -\overline{\alpha}\alpha_{11} & 0\\ a\alpha_{11} & -\alpha_{11} & 0\\ 0 & 0 & I_{n-1} \end{bmatrix},$$

where $\alpha_{11}^2 = (1 - |a|^2)^{-1}$. It is easy to show that f_p is an element of U(1, n; C) such that $f_p(p) = 0$, $f_p(0) = p$ and $f_p^2 =$ identity. Next we shall show that there exists an element $u \in U(1; C) \times U(n; C)$ such that $g = uf_p$. To prove this, we have only to show that gf_p^{-1} belongs to $U(1; C) \times U(n; C)$. We denote $(a_{ij})_{i=1,2,j=3,...,n+1}$ and $(a_{ij})_{i=3,...,n+1,j=3,...,n+1}$ by A_1 and A_2 , respectively. It is seen that

$$u = gf_p^{-1} = \begin{bmatrix} a_{11}\alpha_{11} + a_{12}a\alpha_{11} & -a_{11}\overline{a}\alpha_{11} - a_{12}\alpha_{11} & A_1 \\ a_{21}\alpha_{11} + a_{22}a\alpha_{11} & -a_{21}\overline{a}\alpha_{11} - a_{22}\alpha_{11} & \\ & \dots & & \dots & \\ a_{n+1,1}\alpha_{11} + a_{n+1,2}a\alpha_{11} & -a_{n+1,1}\overline{a}\alpha_{11} - a_{n+1,2}\alpha_{11} & A_2 \end{bmatrix}.$$

Then g(p) = 0 implies $a_{i1} + a_{i2}a = 0$ for $i \ge 2$. Therefore the (i, 1)-component of u is equal to 0 for $i \ge 2$. By (1), $|a_{11}\alpha_{11} + a_{12}a\alpha_{11}| = 1$. It follows from (4) that the (1, j)-component of u equals 0 for $j \ge 2$. Using (2) and (3), we see that gf_p^{-1} has the form $\begin{bmatrix} b & 0 \\ 0 & B \end{bmatrix}$, where |b| = 1 and $B \in U(n; C)$. Thus u belongs to $U(1; C) \times U(n; C)$.

Given any points $z, w \in \overline{B^n}$, define $d^*(z, w)$ by

$$d^{*}(z, w) = \{|z_{0}^{*}|^{-1}|w_{0}^{*}|^{-1}|\Phi(z^{*}, w^{*})|\}^{1/2},\$$

where $z^* = (z_0^*, z_1^*, ..., z_n^*) \in \pi^{-1}(z)$ and $w^* = (w_0^*, w_1^*, ..., w_n^*) \in \pi^{-1}(w)$. Note that $d^*(z, w)$ does not depend on the choice of z^* and w^* .

Shigeyasu KAMIYA

THEOREM 1.3 (cf. [1; Theorem 3.6.1]). If $g \in U(1, n; C)$, then

$$\sup_{z,w \in B^n, z \neq w} \frac{d^*(g(z), g(w))}{d^*(z, w)} = \exp(d(0, g(0))).$$

After showing a lemma, we shall prove Theorem 1.3.

LEMMA 1.4. Let f_p be defined as in the proof of Theorem 1.2. Then

$$\sup_{z,w \in B^n, z \neq w} \frac{d^*(f_p(z), f_p(w))}{d^*(z, w)} = \exp\left(d(0, f_p(0))\right).$$

PROOF. It is seen that

$$\begin{aligned} d^{*}(f_{p}(z), f_{p}(w))^{2} \\ &= |\alpha_{11}z_{0}^{*} - \bar{a}\alpha_{11}z_{1}^{*}|^{-1} |\alpha_{11}w_{0}^{*} - \bar{a}\alpha_{11}w_{1}^{*}|^{-1}| - (\overline{\alpha_{11}z_{0}^{*} - \bar{a}\alpha_{11}z_{1}^{*}})(\alpha_{11}w_{0}^{*} - \bar{a}\alpha_{11}w_{1}^{*}) \\ &+ (\overline{a\alpha_{11}z_{0}^{*} - \alpha_{11}z_{1}^{*}})(a\alpha_{11}w_{0}^{*} - \alpha_{11}w_{1}^{*}) + \sum_{k=2}^{n} \overline{z_{k}^{*}}w_{k}^{*}| \\ &= |\alpha_{11}|^{-2}|z_{0}^{*}(1 - \bar{a}z_{1}^{*}z_{0}^{*-1})|^{-1}|w_{0}^{*}(1 - \bar{a}w_{1}^{*}w_{0}^{*-1})|^{-1}| - \overline{z_{0}^{*}}w_{0}^{*} + \sum_{k=1}^{n} \overline{z_{k}^{*}}w_{k}^{*}| \\ &= (1 - |a|^{2})|1 - \bar{a}z_{1}|^{-1}|1 - \bar{a}w_{1}|^{-1}d^{*}(z, w)^{2} \,. \end{aligned}$$

Since $|1 - \bar{a}z_1| \ge 1 - |a|$ and $|1 - \bar{a}w_1| \ge 1 - |a|$, $\{(1 + |a|)(1 - |a|)^{-1}\}^{1/2}$ is the supremum of $d^*(f_p(z), f_p(w))/d^*(z, w)$ over $z, w \in B^n$. We observe that

$$\exp (d(0, f_p(0))) = \exp (\log (|\alpha_{11}| + (|\alpha_{11}|^2 - 1)^{1/2}))$$
$$= \{(1 + |a|)(1 - |a|)^{-1}\}^{1/2},$$

and conclude our lemma.

PROOF OF THEOREM 1.3. Let g be an element of U(1, n; C) and let p be a point of B^n such that g(p) = 0. As in Theorem 1.2 we decompose g into uf_p . It is easy to check $d^*(u(\zeta), u(\omega)) = d^*(\zeta, \omega)$ for any $\zeta, \omega \in B^n$. Hence $d^*(g(z), g(w)) = d^*(uf_p(z), uf_p(w)) = d^*(f_p(z), f_p(w))$. Therefore it follows from Lemma 1.4 that

$$\sup_{z,w \in B^{n}, z \neq w} \frac{d^{*}(g(z), g(w))}{d^{*}(z, w)} = \sup_{z,w \in B^{n}, z \neq w} \frac{d^{*}(f_{p}(z), f_{p}(w)))}{d^{*}(z, w)}$$
$$= \exp(d(0, f_{p}(0))) = \exp(d(u(0), uf_{p}(0)))$$
$$= \exp(d(0, g(0))).$$

Thus our theorem is proved.

Now we set $K = \exp(d(0, g(0)))$. It follows from Proposition 1.1 that $||g||^2 = ||I||^2 + (K - 1/K)^2$. If $||g||^2 = ||I||^2$, then K = 1. This equality together with (1) implies that the absolute value of the (1, 1)-component of g is 1.

Hence it follows from (1), (2), (3) and (4) that $g \in U(1; \mathbb{C}) \times U(n; \mathbb{C})$. Assume that g is an element of $U(1; \mathbb{C}) \times U(n; \mathbb{C})$. Then we see that $||g||^2 = ||I||^2$. Thus we have

PROPOSITION 1.5 The following statements are equivalent to one another: 1) $||g||^2 = ||I||^2$; 2) $g \in U(1; \mathbb{C}) \times U(n; \mathbb{C})$;

3) g(0) = 0.

Elements of U(1, n; C) are classified into three types by S. S. Chen and L. Greenberg [3]. We shall discuss the properties of these types.

DEFINITION 1.6. Let g be an element of U(1, n; C) which is not the identity. We shall call g elliptic if it has a fixed point in B^n and g parabolic if it has exactly one fixed point and this lies on ∂B^n . An element g will be called *loxodromic* if it has exactly two fixed points and they lie on ∂B^n . If g is conjugate to an element having the form

 $\begin{bmatrix} \lambda \cosh t & \lambda \sinh t & 0\\ \lambda \sinh t & \lambda \cosh t & 0\\ 0 & 0 & I_{n-1} \end{bmatrix} \qquad (\lambda = \pm 1, t \in \mathbf{R} - \{0\}),$

then g is called *hyperbolic*. Hyperbolic elements are special kinds of loxodromic elements.

Now we state properties of each kind of element.

PROPOSITION 1.7 ([3; Proposition 3.2.1]). Let g be an elliptic element in U(1, n; C). Then:

(a) g is conjugate to an element in $U(1; C) \times U(n; C)$.

(b) g is semisimple with eigenvalues of absolute value 1.

PROPOSITION 1.8 (cf. [3; Proposition 3.2.3]). Let g be a loxodromic element of U(1, n; C). Then:

(a) There exist a unique hyperbolic element h and a unique elliptic element e such that g = he = eh.

(b) Any element in U(1, n; C) which commutes with g also commutes with h and e.

(c) g is semisimple with exactly n - 1 eigenvalues of absolute value 1.

(d) g leaves the geodesic connecting the two fixed points, invariant. We call this geodesic the axis of g and denote it by A_g .

(e) g moves every point z in A_g the same distance T(g) = d(z, g(z)). This T(g) is called the translation length of g.

(f) $T(g) = \min_{z \in B^n} d(z, g(z)).$

PROOF. Since (a), (b) and (c) are proved in [3; Proposition 3.2.3], we have only to prove (d), (e) and (f).

(d) Using [3; Proposition 2.1.2], we may assume that the fixed points of g are (1, 0, ..., 0) and (-1, 0, ..., 0). By [3; Lemma 3.2.2], g has the form

$$\begin{bmatrix} c\lambda & s\lambda & 0 \\ s\lambda & c\lambda & 0 \\ 0 & 0 & A \end{bmatrix},$$

where $c = \cosh t$, $s = \sinh t$ for some $t \in \mathbb{R} - \{0\}$, $|\lambda| = 1$ and $A \in U(n-1; \mathbb{C})$. Let $\{e_0, e_1, \ldots, e_n\}$ be the standard basis in V. Let $X = e_0\mathbb{R} + e_1\mathbb{R}$. Since $g(z^*) = ((cz_0^* + sz_1^*)\lambda, (sz_0^* + cz_1^*)\lambda, 0, \ldots, 0)$ for $z^* = (z_0^*, z_1^*, 0, \ldots, 0)$ in $X \cap V_-$, $\pi(g(z^*))$ is contained in the geodesic $\pi(X \cap V_-)$ (see [3; Proposition 2.4.3]).

(e) A direct computation shows that

$$d(z, g(z)) = \cosh^{-1} \left[\left| \left(-z_0^{*2} + z_1^{*2} \right) c \lambda \right| \left\{ \left(-z_0^{*2} + z_1^{*2} \right)^2 \right\}^{-1/2} \right]$$

= $\cosh^{-1} c$

for $z \in A_q$.

(f) Let $z^* = (z_0^*, z_1^*, ..., z_n^*)$ and let $w^* = g(z^*)$. We shall show that $\min_{z^* \in V_-} d(\pi(z^*), \pi(w^*)) = \cosh^{-1} c$. As Φ is invariant under U(1, n; C), $\Phi(z^*, z^*) = \Phi(w^*, w^*)$. Therefore it suffices to prove that $|\Phi(z^*, w^*)| \ge c |\Phi(z^*, z^*)|$.

Let $A = (a_{ij})_{i,j=2,3,...,n}$. Noting that $A \in U(n-1; C)$, we obtain

(6)
$$\frac{|\sum_{k=2}^{n} \overline{z_{k}^{*}}(\sum_{j=2}^{n} a_{kj} z_{j}^{*})| \leq (\sum_{k=2}^{n} |z_{k}^{*}|^{2})^{1/2} (\sum_{k=2}^{n} |\sum_{j=2}^{n} a_{kj} z_{j}^{*}|^{2})^{1/2}}{= \sum_{k=2}^{n} |z_{k}^{*}|^{2}}.$$

It is seen that

$$|c(\overline{z_0^*}\lambda z_0^* - \overline{z_1^*}\lambda z_1^*) + s(\overline{z_0^*}\lambda z_1^* - \overline{z_1^*}\lambda z_0^*)|^2 - \{c(|z_0^*|^2 - |z_1^*|^2)\}^2$$

$$(7) \qquad = |c(|z_0^*|^2 - |z_1^*|^2) + 2si \operatorname{Im}(\overline{z_0^*}z_1^*)|^2 - \{c(|z_0^*|^2 - |z_1^*|^2)\}^2$$

$$= 4s^2 \{\operatorname{Im}(\overline{z_0^*}z_1^*)\}^2 \ge 0.$$

Using (6) and (7), we have

$$\begin{aligned} |\Phi(z^*, w^*)| \\ &= |-\overline{z_0^*}(c\lambda z_0^* + s\lambda z_1^*) + \overline{z_1^*}(s\lambda z_0^* + c\lambda z_1^*) + \sum_{k=2}^n \overline{z_k^*}(\sum_{j=2}^n a_{kj} z_j^*)| \\ &\ge |c(\overline{z_0^*}\lambda z_0^* - \overline{z_1^*}\lambda z_1^*) + s(\overline{z_0^*}\lambda z_1^* - \overline{z_1^*}\lambda z_0^*)| - |\sum_{k=2}^n \overline{z_k^*}(\sum_{j=2}^n a_{kj} z_j^*)| \\ &\ge c(|z_0^*|^2 - |z_1^*|^2) - \sum_{k=2}^n |z_k^*|^2. \end{aligned}$$

This implies that

$$\begin{aligned} |\Phi(z^*, w^*)| &- c |\Phi(z^*, z^*)| \\ &\geq c(|z_0^*|^2 - |z_1^*|^2) - \sum_{k=2}^n |z_k^*|^2 - c(|z_0^*|^2 - |z_1^*|^2 - \sum_{k=2}^n |z_k^*|^2) \\ &= (c-1) \sum_{k=2}^n |z_k^*|^2 \ge 0. \end{aligned}$$

Thus $\min_{z^* \in V_-} d(\pi(z^*), \pi(g(z^*))) = \cosh^{-1} c.$

To discuss some properties of unitary transformations, it may be more convenient to use another matrix representation for U(1, n; C). By changing the basis of V, we introduce the group $\tilde{U}(1, n; C)$ as follows.

Let

$$D = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0\\ -1/\sqrt{2} & 1/\sqrt{2} & 0\\ 0 & 0 & I_{n-1} \end{bmatrix}$$

and define $\tilde{U}(1, n; C)$ by $D^{-1}U(1, n; C)D$. We see that $\tilde{U}(1, n; C)$ is the group of linear transformations which leave $D^{-1}(V_{-})$ invariant and that $\tilde{U}(1, n; C)$ is the automorphism group of the Hermitian form

$$\tilde{\varPhi}(z^*, w^*) = -(\overline{z_0^*}w_1^* + \overline{z_1^*}w_0^*) + \overline{z_2^*}w_2^* + \dots + \overline{z_n^*}w_n^*$$

defined for z^* , $w^* \in D^{-1}(V)$. We can regard the linear transformation D^{-1} as a mapping of complex unit ball B^n to the domain $\tilde{H}^n = \{z \in \mathbb{C}^n | \operatorname{Re}(z_1) > (1/2) \sum_{k=2}^n |z_k|^2 \}$. The action of $U(1, n; \mathbb{C})$ in B^n is converted by D^{-1} into the action of $\tilde{U}(1, n; \mathbb{C})$ in \tilde{H}^n . The distance $\tilde{d}(z, w)$ for $z, w \in \tilde{H}^n$ is defined by

$$\tilde{d}(z,w) = \cosh^{-1} \left[|\tilde{\Phi}(z^*,w^*)| \{\tilde{\Phi}(z^*,z^*)\tilde{\Phi}(w^*,w^*)\}^{-1/2} \right],$$

where $z^* \in \pi^{-1}(z)$ and $w^* \in \pi^{-1}(w)$. We note that $\tilde{d}(z, w) = d(D(z), D(w))$ for z, $w \in \tilde{H}^n$.

Let $g = (a_{ij})_{i,j=1,2,...,n+1}$ be an element of $\tilde{U}(1, n; C)$. Noting that

	0	-1	0		0	-1	0	
\overline{g}^{T}	-1	0	0	g =	-1	0	0	,
	0	0	I_{n-1}		0	0	$\begin{array}{c} 0 \\ 0 \\ I_{n-1} \end{array}$	

we see that

(8)
$$-2 \operatorname{Re}\left(\overline{a_{11}}a_{12}\right) + \sum_{k=3}^{n+1} |a_{1k}|^2 = 0,$$

(9)
$$-2 \operatorname{Re} \left(\overline{a_{21}}a_{22}\right) + \sum_{k=3}^{n+1} |a_{2k}|^2 = 0,$$

(10)
$$-2 \operatorname{Re} \left(\overline{a_{i1}} a_{i2}\right) + \sum_{k=3}^{n+1} |a_{ik}|^2 = 1 \quad \text{for } i = 3, 4, \dots, n+1,$$

Shigeyasu KAMIYA

(11)
$$-2 \operatorname{Re}\left(\overline{a_{11}}a_{21}\right) + \sum_{k=3}^{n+1} |a_{k1}|^2 = 0$$

(12)
$$-2 \operatorname{Re}\left(\overline{a_{12}}a_{22}\right) + \sum_{k=3}^{n+1} |a_{k2}|^2 = 0,$$

(13)
$$-(\overline{a_{11}}a_{22}+\overline{a_{21}}a_{12})+\sum_{k=3}^{n+1}\overline{a_{k1}}a_{k2}=-1.$$

DEFINITION 1.9. Let g be an element of $\tilde{U}(1, n; C)$ which is not the identity. We shall call g elliptic if it has a fixed point in \tilde{H}^n and g parabolic if it has exactly one fixed point and this lies on $\partial \tilde{H}^n$. A unipotent parabolic element will be called *strictly parabolic* and in particular the element which is conjugate to an element having the form

$$\begin{bmatrix} 1 & 0 & 0 \\ s & 1 & 0 \\ 0 & 0 & I_{n-1} \end{bmatrix} \quad (s \neq 0 \text{ and } \operatorname{Re}(s) = 0),$$

will be called a *translation*. An element g will be called *loxodromic* if it has exactly two fixed points and they lie on $\partial \tilde{H}^n$. If g is conjugate to an element having the form

$$\begin{bmatrix} t & 0 & 0 \\ 0 & t^{-1} & 0 \\ 0 & 0 & I_{n-1} \end{bmatrix} \quad (t \in \mathbf{R} - \{0, 1\}),$$

then g is called *hyperbolic*.

PROPOSITION 1.10 ([3; Proposition 3.4.1]). Let g be a parabolic element in $\tilde{U}(1, n; C)$.

(a) There exist a unique strictly parabolic element p and a unique elliptic element e such that g = pe = ep.

(b) Any element of $\tilde{U}(1, n; C)$ which commutes with g also commutes with p and e.

(c) g is not semisimple. All absolute values of the eigenvalues of g are 1.

PROPOSITION 1.11. Let f_1 and f_2 be elements of $\tilde{U}(1, n; C)$. Assume that these two elements have one and only one common fixed point and it lies on $\partial \tilde{H}^n$. Then the commutator g of f_1 and f_2 is either elliptic, parabolic or the identity. However, if both elements f_1 and f_2 are elliptic, or, if at least one element of f_1 and f_2 is loxodromic, then g can not be the identity.

PROOF. We may assume that the common fixed point is ∞ . Then the forms of f_i (i = 1, 2) are as follows:

$$f_i = \begin{bmatrix} \xi_i & 0 & 0 \\ s_i & \eta_i & b_i \\ a_i & 0 & A_i \end{bmatrix},$$

30

where a_i , b_i , A_i are $(n-1) \times 1$, $1 \times (n-1)$, $(n-1) \times (n-1)$ matrices respectively, $\overline{\xi}_i \eta_i = 1$, Re $(\overline{\xi}_i s_i) = (1/2) ||a_i||^2$, $b_i = \eta_i \overline{a}_i^T A_i$ and $A_i \in U(n-1; \mathbb{C})$. The commutator g of f_1 and f_2 is of the form

$$g = f_1 f_2 f_1^{-1} f_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ a_{21} & 1 & F \\ G & 0 & A_1 A_2 A_1^{-1} A_2^{-1} \end{bmatrix}.$$

This implies that all absolute values of the eigenvalues of g equal 1. By (b) in Proposition 1.7, (c) in Proposition 1.8 and (c) in Proposition 1.10, g is either elliptic, parabolic or the identity.

Next let f_1 and f_2 be elliptic elements of $\tilde{U}(1, n; C)$. We may assume that the common fixed point is ∞ and another fixed point of f_2 is 0. Then in the form of f_1 , $\xi_1 = \eta_1$ and $a_1 \neq 0$. In the element f_2 , $\xi_2 = \eta_2$, $s_2 = 0$, $a_2 = 0$ and $b_2 = 0$. Therefore we see that $a_{21} = \overline{a}_1^T (I_{n-1} - \xi_2^{-1}A_1A_2A_1^{-1})a_1$ in the commutator g. Suppose that g is the identity. Then $a_{21} = \overline{a}_1^T (I_{n-1} - \xi_2^{-1}A_1A_2A_1^{-1})a_1 =$ 0 and $A_1A_2A_1^{-1}A_2^{-1} = I_{n-1}$. It follows that $A_2 = \xi_2I_{n-1}$. This implies that f_2 is the identity. This is a contradiction. Thus g is not the identity.

Lastly let f_1 be a loxodromic element with fixed points α and ∞ . If the commutator g is the identity, then $f_1f_2 = f_2f_1$. We see that $f_1f_2(\alpha) = f_2f_1(\alpha) = f_2(\alpha)$ and $f_2(\alpha)$ is a fixed point of f_1 . Then either $f_2(\alpha) = \infty$ or $f_2(\alpha) = \alpha$. The former does not occur. In the latter case f_1 and f_2 have two fixed points in common. This contradicts our assumption. Hence if f_1 is loxodromic, then the commutator g of f_1 and f_2 is not the identity.

REMARK 1.12. The following table describes all the possible type for $g = f_1 f_2 f_1^{-1} f_2^{-1}$. There exist examples that demonstrate the table.

f_2 f_1	Е	Р	L
E	E, P	E, P, I	E, P
Р	E, P, I	E, P, I	E, P
L	E, P	E, P	E, P

(The symbols E, P, L and I denote elliptic, parabolic, loxodromic type and the identity, respectively.)

We shall consider the displacement function $z \to \sinh^2 \tilde{d}(z, g(z))$ for an element g of $\tilde{U}(1, n; C)$. Before stating our proposition, we distinguish between the fixed points α , β of a loxodromic element g in $\tilde{U}(1, n; C)$. If $\lim_{k\to\infty} g^k(z) = \alpha$ for a point $z \in \tilde{H}^n$, then α is called an *attracting fixed point* of g. This

definition does not depend on the choice of z. For a loxodromic element g we can define the axis \tilde{A}_g and the translation length $\tilde{T}(g)$ in the same manner as in Proposition 1.8.

PROPOSITION 1.13 (cf. [1; Theorem 7.35.1]).

(a) Suppose that g is a hyperbolic element of $\tilde{U}(1, n; C)$. Let $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n)$ be the attracting fixed point of g. We denote the shortest distance from a point z in \tilde{H}^n to the axis \tilde{A}_g by $\tilde{d}(z, \tilde{A}_g)$. Let $z^* = (1, z_1, \ldots, z_n) \in \pi^{-1}(z)$ and $\alpha^* = (1, \alpha_1, \alpha_2, \ldots, \alpha_n) \in \pi^{-1}(\alpha)$. Set $k = -\operatorname{Re}(\tilde{\Phi}(\alpha^*, z^*))/|\tilde{\Phi}(\alpha^*, z^*)|$. Then

$$\sinh^2 \tilde{d}(z, g(z)) = 8(1+k)^{-2} \cosh^2 \tilde{d}(z, \tilde{A}_g) \sinh^2 (1/2) \tilde{T}(g)$$
$$\times \{2 \cosh^2 (1/2) \tilde{T}(g) \cosh^2 \tilde{d}(z, \tilde{A}_g)$$
$$- 2k^2 \cosh^2 \tilde{d}(z, \tilde{A}_g) + k + k^2\}.$$

(b) If g is a translation with a fixed point ζ , then $\sinh^2 \tilde{d}(z, g(z)) \{\tilde{P}(z, \zeta)\}^{2/n}$ is constant, where $\tilde{P}(z, \zeta)$ is the Poisson kernel defined by

$$\widetilde{P}(z,\zeta) = \begin{cases} |\widetilde{\Phi}(z^*,z^*)|^n & \text{if } \zeta = \infty, \ z^* = (1, z_1, z_2, \dots, z_n) \in \pi^{-1}(z); \\ \{|\widetilde{\Phi}(z^*,z^*)| |\widetilde{\Phi}(z^*,\zeta^*)|^{-2}\}^n & \text{if } \zeta \neq \infty, \ z^* = (1, z_1, z_2, \dots, z_n) \in \pi^{-1}(z), \ \zeta^* = (1, \zeta_1, \zeta_2, \dots, \zeta_n) \in \pi^{-1}(\zeta). \end{cases}$$

PROOF. (a) Without loss of generality, we may assume that

$$g = \begin{bmatrix} a & 0 & 0 \\ 0 & a^{-1} & 0 \\ 0 & 0 & I_{n-1} \end{bmatrix},$$

where a > 1. Then it is seen that $\tilde{A}_g = \{w = (t, 0, ..., 0) \in \tilde{H}^n | t > 0\}$ and $\tilde{T}(g) = \log a$. We shall compute $\tilde{d}(z, \tilde{A}_g)$. Let $w^* \in \pi^{-1}(w) \subset \pi^{-1}(\tilde{A}_g)$. We see that

$$\begin{split} \tilde{d}(z, \tilde{A}_g) &= \min_{\pi(w^*) \in \tilde{A}_g} \left\{ \cosh^{-1} \left[|\tilde{\Phi}(z^*, w^*)| \left\{ \tilde{\Phi}(z^*, z^*) \tilde{\Phi}(w^*, w^*) \right\}^{-1/2} \right] \right\} \\ &= \min_{t \ge 0} \left\{ \cosh^{-1} \left[|t + z_1| \left\{ 2t(2 \operatorname{Re}(z_1) - \sum_{j=2}^n |z_j|^2) \right\}^{-1/2} \right] \right\} \\ &= \cosh^{-1} \left[\left\{ (|z_1| + \operatorname{Re}(z_1))(2 \operatorname{Re}(z_1) - \sum_{j=2}^n |z_j|^2)^{-1} \right\}^{1/2} \right]. \end{split}$$

Write $W = 2 \operatorname{Re}(z_1) - \sum_{j=2}^{n} |z_j|^2$ and let $z_1 = |z_1|e^{i\theta}$. We note that

 $|z_1| = (1 + \cos \theta)^{-1} W \cosh^2 \tilde{d}(z, \tilde{A}_z),$

$$\sum_{j=2}^{n} |z_j|^2 = W \sinh^2 \tilde{d}(z, \tilde{A}_g) - (1 - \cos \theta)(1 + \cos \theta)^{-1} W \cosh^2 \tilde{d}(z, \tilde{A}_g),$$

$$4 \sinh^2 \tilde{T}(g) = (a - 1/a)^2,$$

$$4 \sinh^2 (1/2) \tilde{T}(g) = a + 1/a - 2.$$

From the above equalities it follows that

$$\begin{split} \sinh^2 \tilde{d}(z, g(z)) \\ &= W^{-2} |-(a\overline{z_1} + (1/a)z_1) + \sum_{j=2}^n |z_j|^2|^2 - 1 \\ &= W^{-2} \{ |z_1|^2 (a - 1/a)^2 - 2|z_1| (\sum_{j=2}^n |z_j|^2) (a + 1/a - 2) \cos \theta \} \\ &= 8(1 + \cos \theta)^{-2} \cosh^2 \tilde{d}(z, \tilde{A_g}) \sinh^2 (1/2) \tilde{T}(g) \{ 2 \cosh^2 (1/2) \tilde{T}(g) \cosh^2 \tilde{d}(z, \tilde{A_g}) \\ &- 2 \cos^2 \theta \cosh^2 \tilde{d}(z, \tilde{A_g}) + \cos \theta + \cos^2 \theta \} \,. \end{split}$$

Noting that $\cos \theta = k$, we have the desired equality.

(b) Let g be a translation with a fixed point $\zeta \in \partial \tilde{H}^n$. There is an element $f = (a_{ij})_{i,j=1,2,...,n+1}$ of $\tilde{U}(1, n; C)$ such that $h = fgf^{-1}$ has the form

$$h = \begin{bmatrix} 1 & 0 & 0 \\ t \sqrt{-1} & 1 & 0 \\ 0 & 0 & I_{n-1} \end{bmatrix},$$

where $t \in \mathbf{R} - \{0\}$. It follows that $gf^{-1} = f^{-1}h$ and hence $gf^{-1}(\infty) = f^{-1}h(\infty) = f^{-1}(\infty)$. Thus $f^{-1}(\infty)$ is a fixed point of g. Since ζ is the only fixed point of g, $f^{-1}(\infty) = \zeta$ so that $f(\zeta) = \infty$. Hence $a_{k1} + a_{k2}\zeta_1 + \cdots + a_{k,n+1}\zeta_n = 0$ for $k \neq 2$ and $\neq 0$ for k = 2. Write $f(z) = w = (w_1, w_2, \ldots, w_n)$ and let $f(z)^* = (1, w_1, w_2, \ldots, w_n) \in \pi^{-1}(f(z))$. Then

$$\begin{split} |\tilde{\Phi}(f(z^*), f(z^*))| &= |(f(z^*))_0|^2 |\tilde{\Phi}(f(z)^*, f(z)^*)| ,\\ |\tilde{\Phi}(f(z^*), f(\zeta^*))| &= |(f(z^*))_0| |a_{21} + a_{22}\zeta_1 + \dots + a_{2,n+1}\zeta_n| \end{split}$$

Therefore

$$\begin{split} \{\tilde{P}(z,\zeta)\}^{2/n} &= |\tilde{\Phi}(z^*,z^*)|^2 |\tilde{\Phi}(z^*,\zeta^*)|^{-4} \\ &= |\tilde{\Phi}(f(z^*),f(z^*))|^2 |\tilde{\Phi}(f(z^*),f(\zeta^*))|^{-4} \\ &= |\tilde{\Phi}(f(z)^*,f(z)^*)|^2 |a_{21} + a_{22}\zeta_1 + \dots + a_{2,n+1}\zeta_n|^{-4} \\ &= \{\tilde{P}(w,\infty)\}^{2/n} |a_{21} + a_{22}\zeta_1 + \dots + a_{2,n+1}\zeta_n|^{-4} \,. \end{split}$$

By using this equality, we have

$$\begin{aligned} \sinh^2 \tilde{d}(z, g(z)) \{ \tilde{P}(z, \zeta) \}^{2/n} \\ &= \sinh^2 \tilde{d}(z, f^{-1}hf(z)) \{ \tilde{P}(z, \zeta) \}^{2/n} \\ &= \sinh^2 \tilde{d}(f(z), hf(z)) \{ \tilde{P}(z, \zeta) \}^{2/n} \\ &= \sinh^2 \tilde{d}(w, h(w)) \{ \tilde{P}(w, \infty) \}^{2/n} |a_{21} + a_{22}\zeta_1 + \dots + a_{2,n+1}\zeta_n |^{-4} \end{aligned}$$

Shigeyasu KAMIYA

$$= \{2 \operatorname{Re}(w_1) - \sum_{k=2}^{n} |w_k|^2\}^{-2} t^2 \{2 \operatorname{Re}(w_1) - \sum_{k=2}^{n} |w_k|^2\}^2 \times |a_{21} + a_{22}\zeta_1 + \dots + a_{2,n+1}\zeta_n|^{-4} = t^2 |a_{21} + a_{22}\zeta_1 + \dots + a_{2,n+1}\zeta_n|^{-4}.$$

Thus $\sinh^2 \tilde{d}(z, g(z)) \{\tilde{P}(z, \zeta)\}^{2/n}$ is equal to a constant which does not depend on z.

REMARK 1.14. If g is a hyperbolic element of $\tilde{U}(1, 1; C)$, then we have

$$\sinh \tilde{d}(z, g(z)) = \cosh 2\tilde{d}(z, \tilde{A}_a) \sinh \tilde{T}(g)$$
.

If g is strictly parabolic and of the form

$$g = \begin{bmatrix} 1 & 0 & 0 \\ s & 1 & \bar{a}^T \\ a & 0 & I_{n-1} \end{bmatrix},$$

where Re (s) = $(1/2)||a||^2$, then $\sinh^2 \tilde{d}(z, g(z)) \{\tilde{P}(z, \zeta)\}^{2/n}$ is not necessarily constant.

2. Elements of discrete subgroups of U(1, n; C) and $\tilde{U}(1, n; C)$

First we quote one theorem from [5].

THEOREM 2.1 ([5; Theorem 3.2]). Let G be a discrete subgroup of $\tilde{U}(1, n; C)$. Assume that g is a translation of G having the form

$$g = \begin{bmatrix} 1 & 0 & 0 \\ s & 1 & 0 \\ 0 & 0 & I_{n-1} \end{bmatrix},$$

where $s \neq 0$ and Re (s) = 0. If $f = (a_{ij})_{i,j=1,2,...,n+1}$ is an element of G, then either $a_{12} = 0$ or $|a_{12}| \ge |s|^{-1}$.

Using this theorem, we shall show the existence of a domain where the action of G is equal to the action of the cyclic group generated by g.

THEOREM 2.2. Let G, g and s be the same as in Theorem 2.1. Assume that the stabilizer $G_{\infty} = \{h \in G | h(\infty) = \infty\}$ is generated by g. Let Σ be the set $\{z \in \tilde{H}^n | \operatorname{Re}(z_1) > (1/2) \sum_{k=2}^n |z_k|^2 + |s|\}$. Then

$$\begin{split} f(\varSigma) &= \varSigma \quad \text{if} \quad f \in G_{\infty} \text{,} \\ f(\varSigma) \cap \varSigma &= \varnothing \quad \text{if} \quad f \in G - G_{\infty} \end{split}$$

PROOF. Assume that f is an element of G_{∞} and that z is a point in Σ . Noting that f has the form

$$\begin{bmatrix} 1 & 0 & 0 \\ ms & 1 & 0 \\ 0 & 0 & I_{n-1} \end{bmatrix} \quad (m \in \mathbb{Z}),$$

we see that $f(z) = (z_1 + ms, z_2, ..., z_n)$. It follows that

$$\operatorname{Re}(z_1 + ms) = \operatorname{Re}(z_1) > (1/2) \sum_{k=2}^{n} |z_k|^2 + |s|$$

Thus $\Sigma \supset f(\Sigma)$. If we replace f by f^{-1} , then we have $f(\Sigma) = \Sigma$.

Next we suppose that $f = (a_{ij})_{i,j=1,2,...,n+1}$ is an element of $G - G_{\infty}$. Then $a_{12} \neq 0$ so that $|a_{12}| \geq |s|^{-1}$ by Theorem 2.1. Take $z \in \Sigma$ and $z^* = (1, z_1, z_2, ..., z_n) \in \pi^{-1}(z)$. Write $f(z^*) = (w_0^*, w_1^*, ..., w_n^*)$ and let $t = \operatorname{Re}(z_1) - (1/2) \sum_{k=2}^n |z_k|^2$. Then t > |s|. Noting that $\tilde{\Phi}(z^*, z^*) = \tilde{\Phi}(f(z^*), f(z^*))$, we have

Re
$$(w_1^*/w_0^*) = |w_0^*|^{-2}$$
 Re $(w_0^*w_1^*) = (1/2) \sum_{k=2}^n |w_k^*/w_0^*|^2 + |w_0^*|^{-2}t$.

It follows from (8) in Section 1 that

$$\begin{aligned} |a_{11}a_{12}^{-1} + z_1 + a_{13}a_{12}^{-1}z_2 + \cdots + a_{1,n+1}a_{12}^{-1}z_n| - t \\ &\geq \operatorname{Re}(a_{11}a_{12}^{-1}) + \operatorname{Re}(z_1) + \operatorname{Re}(a_{13}a_{12}^{-1}z_2) + \cdots \\ &+ \operatorname{Re}(a_{1,n+1}a_{12}^{-1}z_n) - \operatorname{Re}(z_1) + (1/2)\sum_{k=2}^{n} |z_k|^2 \\ &= |a_{12}|^{-2}\operatorname{Re}(a_{11}\overline{a_{12}}) + \operatorname{Re}(a_{13}a_{12}^{-1}z_2) + \cdots + \operatorname{Re}(a_{1,n+1}a_{12}^{-1}z_n) \\ &+ (1/2)\sum_{k=2}^{n} |z_k|^2 \\ &= |a_{12}|^{-2}\{(1/2)(|a_{13}|^2 + |a_{14}|^2 + \cdots + |a_{1,n+1}|^2)\} \\ &+ \operatorname{Re}(a_{13}a_{12}^{-1}z_2) + \cdots + \operatorname{Re}(a_{1,n+1}a_{12}^{-1}z_n) + (1/2)\sum_{k=2}^{n} |z_k|^2 \\ &= (1/2)(|\overline{z_2} + a_{13}a_{12}^{-1}|^2 + |\overline{z_3} + a_{14}a_{12}^{-1}|^2 + \cdots + |\overline{z_n} + a_{1,n+1}a_{12}^{-1}|^2) \geq 0. \end{aligned}$$

Therefore

$$|w_0^*|^2 = |a_{12}|^2 |a_{11}a_{12}^{-1} + \dots + a_{1,n+1}a_{12}^{-1}z_n|^2$$
$$\ge |a_{12}|^2 t^2 \ge |s|^{-2} t^2 \ge |s|^{-1} t.$$

It follows that $\operatorname{Re}(w_1^*/w_0^*) \leq (1/2) \sum_{k=2}^n |w_k^*/w_0^*|^2 + |s|$, which shows $f(z) \notin \Sigma$. Thus, if $f \in G - G_{\infty}$, then $f(\Sigma) \cap \Sigma = \emptyset$.

PROPOSITION 2.3 (cf. [1; Theorem 5.4.3]). Let G, g and s be the same as in Theorem 2.1. Let $f = (a_{ij})_{i,j=1,2,...,n+1}$ be an element of $\tilde{U}(1, n; C)$ such that $f(\infty) \neq \infty$. Suppose that the group $\langle f, g \rangle$ generated by f and g is discrete. Then:

(a) $||f - I|| ||g - I|| \ge 1$.

(b) If f is strictly parabolic, then $\sinh \tilde{d}(e, f(e)) \sinh \tilde{d}(e, g(e)) \ge 1/4$, where $e = (1, 0, ..., 0) \in \tilde{H}^n$.

If f is of the form

[1	s^{-1}	0	
0	1	0	,
00	0	I_{n-1}	

then the equalities are satisfied in (a) and (b).

To prove Proposition 2.3 we need a lemma.

LEMMA 2.4 (cf. [Proposition 1.1]). For
$$g \in \tilde{U}(1, n; C)$$
,
 $\|g\|^2 = \|I\|^2 + 4\sinh^2 \tilde{d}(e, g(e))$.

PROOF. Let $g = (a_{ij})_{i,j=1,2,...,n+1} \in \tilde{U}(1, n; \mathbb{C})$. By making use of (11), (12) and (13) in Section 1, we obtain

$$d(e, g(e)) = \cosh^{-1} (1/2) |a_{11} + a_{12} + a_{21} + a_{22}|$$

From this it follows that

$$4 \sinh^2 \tilde{d}(e, g(e)) = |a_{11} + a_{12} + a_{21} + a_{22}|^2 - 4.$$

Using (8), (9), (10), (11), (12) and (13), we see that

$$||g||^{2} = |a_{11}|^{2} + |a_{12}|^{2} + |a_{21}|^{2} + |a_{22}|^{2} + 2 \operatorname{Re}(\overline{a_{11}}a_{12}) + 2 \operatorname{Re}(\overline{a_{11}}a_{21}) + 2 \operatorname{Re}(\overline{a_{11}}a_{22}) + 2 \operatorname{Re}(\overline{a_{12}}a_{21}) + 2 \operatorname{Re}(\overline{a_{12}}a_{22}) + 2 \operatorname{Re}(\overline{a_{21}}a_{22}) + n - 3 = 4 \sinh^{2} \tilde{d}(e, g(e)) + 4 + n - 3 = 4 \sinh^{2} \tilde{d}(e, g(e)) + ||I||^{2}.$$

PROOF OF PROPOSITION 2.3. Since ||g - I|| = |s| and $||f - I||^2 \ge |a_{12}|^2 \ne 0$, it follows from Theorem 2.1 that $||f - I|| ||g - I|| \ge 1$. Assume that all eigenvalues of the element f are 1. By Lemma 2.4,

$$\|f - I\|^{2} = \|f\|^{2} + \|I\|^{2} - 2\sum_{i=1}^{n+1} \operatorname{Re} (a_{ii})$$

= $\|f\|^{2} + \|I\|^{2} - 2(n+1) = \|f\|^{2} - \|I\|^{2}$
= $4 \sinh^{2} \tilde{d}(e, f(e))$.

Therefore $||g - I|| = |s| = 2 \sinh \tilde{d}(e, g(e))$ implies $\sinh \tilde{d}(e, f(e)) \sinh \tilde{d}(e, g(e)) \ge 1/4$.

36

It is easy to show that the equalities are satisfied if

$$f = \begin{bmatrix} 1 & s^{-1} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & I_{n-1} \end{bmatrix}.$$

Next we shall consider loxodromic elements of a discrete subgroup.

THEOREM 2.5. Let G be a discrete subgroup of U(1, n; C). Let f and g be elements of G. Suppose that f is loxodromic and that f and g have fixed point sets $\{x, y\}$ and $\{x', y'\}$, respectively in ∂B^n . Then either these sets are disjoint or they are identical. Moreover, if the latter occurs, then there is an integer m such that $f^m g = gf^m$.

PROOF. Assume that f and g have only one fixed point, say $x \in \partial B^n$, in common. It follows from [5; Theorem 3.1] that the subgroup $\langle f, g \rangle$ generated by f and g is not discrete. Hence $\{x, y\} = \{x', y'\}$ or $\{x, y\} \cap \{x', y'\} = \emptyset$. Without loss of generality, we may assume that $\{x, y\} = \{(1, 0, ..., 0), (-1, 0, ..., 0)\}$. If $\{x, y\} = \{x', y'\}$, then it follows from (1), (2), (3), (4) and (5) in Section 1 that f and g are of the form

$$f = \begin{bmatrix} \lambda \cosh t & \lambda \sinh t & 0\\ \lambda \sinh t & \lambda \cosh t & 0\\ 0 & 0 & A \end{bmatrix} \text{ and } g = \begin{bmatrix} \mu \cosh s & \mu \sinh s & 0\\ \mu \sinh s & \mu \cosh s & 0\\ 0 & 0 & B \end{bmatrix},$$

where $|\lambda| = 1$, $|\mu| = 1$, $t, s \in \mathbb{R}$ and $A, B \in U(n - 1; \mathbb{C})$. Therefore

$$f^{j}gf^{-j}g^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & A^{j}BA^{-j}B^{-1} \end{bmatrix} \qquad (j \in \mathbb{Z}).$$

Let $F = \{f^{j}gf^{-j}g^{-1} | j \in \mathbb{Z}\}$. Assume that F is an infinite set. Noting that $U(n-1; \mathbb{C})$ is compact, we see that there exists a sequence $\{h_k\}$ of different elements of F which converges to some element h of $U(1, n; \mathbb{C})$. Since $\lim_{k\to\infty} h_k(z) = h(z)$ for $z \in B^n$, G is not discontinuous at h(z) in B^n . This is a contradiction. Hence F is a finite set, so $A^m B A^{-m} B^{-1} = I_{n-1}$ for some integer m. Thus $f^m g = g f^m$.

For the remainder of this section G denotes a discrete subgroup of U(1, n; C). We shall give the definition of G-duality.

DEFINITION 2.6. Let x and y be any two not necessarily distinct points in ∂B^n . If there exists a sequence $\{g_k\}$ of elements of G such that $\lim_{k\to\infty} g_k(p) = x$

and $\lim_{k\to\infty} g_k^{-1}(p) = y$ for any point p in B^n , then we say that x and y are G-dual and denote this duality by $x \sim y$.

PROPOSITION 2.7. Two points x and y in ∂B^n are G-dual if and only if there exists an element g of G such that $g(\overline{B^n} - V) \subset U$, where U (resp. V) is any open neighborhood of x (resp. y) in $\overline{B^n}$.

We need the following lemma for the proof.

LEMMA 2.8. Let ε be any positive number. If $d^*(z, w)^2 < \varepsilon$ for $z = (z_1, z_2, \ldots, z_n)$, $w = (w_1, w_2, \ldots, w_n) \in B^n$, then $||z - w||^2 = \sum_{i=1}^n |z_i - w_i|^2 < 2\varepsilon$.

PROOF. If z = w = 0, then $||z - w||^2 = 0$. Hence we may assume that one of z and w, say z, is not zero. Without loss of generality, we may assume that z = (r, 0, ..., 0), where 0 < r < 1. Noting that $\inf \{\operatorname{Re}(w_1) | d^*(z, w)^2 < \varepsilon\} = (1 - \varepsilon)r^{-1}$, we see that

$$||z - w||^{2} = |r - w_{1}|^{2} + \sum_{i=2}^{n} |w_{i}|^{2} = r^{2} - 2r \operatorname{Re}(w_{1}) + ||w||^{2}$$

$$\leq r^{2} - 2r \operatorname{Re}(w_{1}) + 1 < r^{2} - 2r(1 - \varepsilon)r^{-1} + 1$$

$$= 2\varepsilon - (1 - r^{2}) < 2\varepsilon.$$

Let us go back to the proof of Proposition 2.7. We shall prove that if part first. Let U_k (resp. V_k) be a sequence of open neighborhoods of x (resp. y) in $\overline{B^n}$ such that $U_k \supset \overline{U_{k+1}}$ and $\bigcap_{k \ge 1} U_k = \{x\}$ (resp. $V_k \supset \overline{V_{k+1}}$ and $\bigcap_{k \ge 1} V_k = \{y\}$). By our assumption, there exists a sequence $\{g_k\}$ of elements in G such that $g_k(\overline{B^n} - V_k) \subset U_k$ and $g_k^{-1}(\overline{B^n} - U_k) \subset V_k$ for each k. Let p be a point in B^n . If k is sufficiently large, then $p \in (\overline{B^n} - U_k) \cap (\overline{B^n} - V_k)$. Therefore we see that $g_k(p) \in U_k$ and $g_k^{-1}(p) \in V_k$. Thus $g_k(p) \to x$ and $g_k^{-1}(p) \to y$.

Conversely we assume that x and y are G-dual. Let U (resp. V) be an open neighborhood of x (resp. y) in $\overline{B^n}$. By our assumption, there is a sequence $\{g_k\} \subset G$ such that $g_k(0) \to x$ and $g_k^{-1}(0) \to y$ as $k \to \infty$. Since $\lim_{k\to\infty} g_k^{-1}(0) = y$, there exist $\delta > 0$ and an integer N > 0 such that $||g_k^{-1}(0) - z|| > \delta$ for all $z \in \overline{B^n} - V$ and all $k \ge N$. Fix $z \in \overline{B^n} - V$. Then $d^*(g_k^{-1}(0), z) \ge \delta/2$ for all $k \ge N$ by Lemma 2.8.

We can find an element v_k of $U(1; C) \times U(n; C)$ which carries $g_k^{-1}(0)$ to $(a_k, 0, \ldots, 0)$, where $|a_k| = ||g_k^{-1}(0)||$. Set $p_k = (a_k, 0, \ldots, 0)$. By Theorem 1.2, we have two elements u_k and f_{p_k} which satisfy the following conditions:

- 1) $g_k v_k^{-1} = u_k f_{p_k};$
- 2) $f_{p_k}(p_k) = 0$, $f_{p_k}(0) = p_k$ and $f_{p_k}^2$ = identity:
- 3) $u_k \in U(1; \mathbb{C}) \times U(n; \mathbb{C}),$

where f_{p_k} is defined in the same manner as in the proof of Theorem 1.2.

Write $v_k(z) = (v_1^{(k)}, v_2^{(k)}, \dots, v_n^{(k)})$. Using $u_k^{-1}(0) = 0$ and the fact that d^* is invariant under $U(1; \mathbb{C}) \times U(n; \mathbb{C})$, we see that

$$d^*(g_k^{-1}(0), z)^2 = d^*(v_k^{-1}f_{p_k}^{-1}u_k^{-1}(0), z)^2 = d^*(v_k^{-1}f_{p_k}^{-1}(0), z)^2$$

= $d^*(f_{p_k}^{-1}(0), v_k(z))^2 = d^*(p_k, v_k(z))^2 = |1 - \overline{a_k}v_1^{(k)}|.$

Therefore

(14) $|1 - \overline{a_k} v_1^{(k)}| \ge \delta^2/4 \quad \text{for all } k \ge N .$

It follows from the proof of Lemma 1.4 that

$$d^{*}(g_{k}(0), g_{k}(z))^{2} = d^{*}(u_{k}f_{p_{k}}v_{k}(0), u_{k}f_{p_{k}}v_{k}(z))^{2}$$

= $d^{*}(f_{p_{k}}(v_{k}(0)), f_{p_{k}}(v_{k}(z)))^{2}$
= $(1 - |a_{k}|^{2})|1 - \overline{a_{k}}v_{1}^{(k)}|^{-1}d^{*}(v_{k}(0), v_{k}(z))^{2}$
= $(1 - |a_{k}|^{2})|1 - \overline{a_{k}}v_{1}^{(k)}|^{-1}d^{*}(0, z)^{2}$
= $(1 - |a_{k}|^{2})|1 - \overline{a_{k}}v_{1}^{(k)}|^{-1}$.

Using (14), we see that

$$d^*(g_k(0), g_k(z))^2 \leq 4(1 - \|g_k^{-1}(0)\|^2)\delta^{-2}$$

for all $k \ge N$. Let $\varepsilon > 0$ be given. Since $\lim_{k \to \infty} g_k^{-1}(0) = y \in \partial B^n$, there exists an integer M > 0 such that

$$4(1 - \|g_k^{-1}(0)\|^2)\delta^{-2} < \varepsilon \quad \text{for all } k \ge M.$$

Lemma 2.8 implies that

 $\|g_k(0) - g_k(z)\|^2 < 2\varepsilon \quad \text{for all } k \ge \max\{N, M\}.$

Since $\lim_{k\to\infty} g_k(0) = x$, $\{g_k\}$ uniformly converges to x on $\overline{B^n} - V$. Thus $g_k(\overline{B^n} - V) \subset U$ for sufficiently large k.

PROPOSITION 2.9. Suppose that two points x and y are G-dual. Let U and V be open neighborhoods in $\overline{B^n}$ of x and y, respectively. If $\overline{U} \cap \overline{V} = \emptyset$, then there exists a loxodromic element of G that has one fixed point in U and another fixed point in V.

PROOF. We may take U and V to be convex. It follows from Proposition 2.7 that there exists an element g of G such that $g(\overline{B^n} - V) \subset U$. Therefore $g(\overline{U} \cap \partial B^n) \subset U \cap \partial B^n$. By the Brouwer fixed point theorem, we see that g has a fixed point in $U \cap \partial B^n$. Similarly we have that $g^{-1}(\overline{V} \cap \partial B^n) \subset V \cap \partial B^n$. Therefore g has another fixed point in V. Assume that g is elliptic. It follows

from [3; Lemma 3.3.2] that g must fix any point in the geodesic connecting x to y. This is impossible, because $g(\overline{B^n} - V) \subset U$. Thus g is a loxodromic element of G.

We shall derive some properties of G-dual points. Before stating our theorem, we give the definition of the limit set. Let $G(p) = \{g(p) | g \in G\}$ for a point $p \in B^n$. Define the limit set L(G) of G by $L(G) = \overline{G(p)} \cap \partial B^n$. Note that L(G) does not depend on the choice of p (see [3; Lemma 4.3.1]). By definition, L(G) is a G-invariant closed set.

THEOREM 2.10. Let G be a discrete subgroup of U(1, n; C).

(a) G-dual points x and y belong to the limit set L(G).

(b) If $x \in L(G)$, then there is some point $y \in L(G)$ such that $x \sim y$.

(c) Denote $\{y \in L(G) | x \sim y\}$ by D(x). The set D(x) is closed and G-invariant. If $\#(D(x)) \ge 2$, then D(x) = L(G).

(d) The set D(x) is contained in the derived set dG(y) of G(y) for any $y \in \partial B^n - \{x\}$.

(e) If #(L(G)) = 1, then the point in L(G) is G-dual to itself. If $\#(L(G)) \ge 2$, then any two points in L(G) are G-dual.

PROOF. (a) This is immediate.

(b) If $x \in L(G)$, then there exists a sequence $\{g_j\} \subset G$ such that $g_j(p) \to x$ as $j \to \infty$ for any point p. If we take a subsequence $\{g_{j_k}^{-1}(p)\}$, then there is a point y such that $g_{j_k}^{-1}(p) \to y$ as $j_k \to \infty$.

(c) Suppose that there is a sequence $\{y_j\}$ in D(x) such that $y_j \to y$ as $j \to \infty$. Since L(G) is closed, $y \in L(G)$. We shall show that y is G-dual to x. For each j, there is a sequence $\{g_m^{(j)}\} \subset G$ such that $g_m^{(j)}(p) \to x$ and $(g_m^{(j)})^{-1}(p) \to y_j$ as $m \to \infty$ for any point p. There exists a sequence $\{g^{(m)}\} \subset G$ such that $g_m^{(j)}(p) \to x$ and $(g_m^{(j)})^{-1}(p) \to y_j$ as $m \to \infty$ for any point p. There exists a sequence $\{g^{(m)}\} \subset G$ such that $g^{(m)}(p) \to x$ and $(g_m^{(m)})^{-1}(p) \to y$. Hence y is G-dual to x. If $y \in D(x)$, then there is a sequence $\{g_m\}$ in G such that $g_m(p) \to x$ and $g_m^{-1}(p) \to y$. Let g be an element of G. Replace p by $g^{-1}(p)$. By [3; Lemma 4.3.1], $g_m(g^{-1}(p)) \to x$. Consider the sequence $\{g_mg^{-1}\}$ in G. Since $g_mg^{-1}(p) \to x$ and $(g_mg^{-1})^{-1}(p) \to g(y)$, g(y) is contained in D(x). Assume that D(x) contains more than one point. Then it follows from [3; Lemma 4.3.3] that $D(x) \supset L(G)$. Thus we conclude that D(x) = L(G).

(d) Before showing this, we define an angle and prove a lemma.

Let $x, y \in \overline{B^n}$ and $p \in B^n$. Set

$$\Psi_p(x^*, y^*) = -\operatorname{Re}\left[\Phi(p^*, p^*)^{-2} \{\Phi(x^*, y^*)\Phi(p^*, p^*) - \Phi(x^*, p^*)\Phi(p^*, y^*)\}\right],$$

where $p^* \in \pi^{-1}(p)$, $x^* \in \pi^{-1}(x)$ and $y^* \in \pi^{-1}(y)$. We define the angle $\not\leq_p(x, y)$ $(0 \leq \not\leq_p(x, y) \leq \pi)$ at p between two geodesics \widehat{xp} and \widehat{yp} by

40

Notes on elements of U(1, n; C)

$$\cos \star_p(x, y) = \Psi_p(x^*, y^*) \{ \Psi_p(x^*, x^*) \Psi_p(y^*, y^*) \}^{-1/2}$$

We note that $\cos \star_p(x, y)$ is invariant under U(1, n; C).

LEMMA 2.11. Let p be a point in the geodesic γ having the end points x, y. Then

 $\bigstar_{z}(p, y) \leq \bigstar_{p}(z, x)$ for any point $z \in \mathbf{B}^{n}$.

PROOF. Without loss of generality, we may assume that x = (1, 0, ..., 0), y = (-1, 0, ..., 0), p = (t, 0, ..., 0), where $t \in (-1, 1)$. Write $z = (z_1, ..., z_n)$. Setting $s = 1 - \sum_{i=1}^{n} |z_i|^2$ and $x_1 = \text{Re}(z_1)$, we see that

$$\cos \star_{z}(p, y) = -[\operatorname{Re} \{(1+t)s - (1-tz_{1})(1+\overline{z_{1}})\}]$$
$$\times [\{-(1-t^{2})s + |1-tz_{1}|^{2}\}^{1/2}|1+z_{1}|]^{-1}$$

and

$$\cos \star_p(z, x) = (\operatorname{Re}(z_1) - t) \{ -(1 - t^2)s + |1 - tz_1|^2 \}^{-1/2}.$$

Let

$$F(t) = 1 - s - st + x_1 - tx_1 - t|z_1|^2 - |1 + z_1|(x_1 - t)$$

for $t \in [-1, 1]$. We observe that

$$F(-1) = 1 - s + s + x_1 + x_1 + |z_1|^2 - |1 + z_1|(x_1 + 1)$$

= 1 + 2x_1 + |z_1|^2 - |1 + z_1|(1 + x_1)
= |1 + z_1|^2 - |1 + z_1|(1 + x_1)
= |1 + z_1|\{|1 + z_1| - (1 + x_1)\} \ge 0

and

$$F'(t) = -s - x_1 - |z_1|^2 + |1 + z_1| \ge -1 - x_1 + |1 + x_1| \ge 0$$

These facts imply that $F(t) \ge 0$ in [-1, 1]. Therefore

$$\cos \bigstar_z(p, y) \ge \cos \bigstar_p(z, x)$$
.

Thus we have

 $\bigstar_z(p, y) \leq \bigstar_p(z, x)$.

Now we are ready to prove (d).

PROOF OF (d). Take $y \in \partial B^n - \{x\}$. Let γ be the geodesic with the end points x and y, and let p be a point on γ . Suppose that z is a point in

D(x). Then there is a sequence $\{g_k\}$ in G such that $g_k(p) \to z$ and $g_k^{-1}(p) \to x$ as $k \to \infty$. Using Lemma 2.11, we have

$$\bigstar_p(g_k(p), g_k(y)) = \bigstar_{g_k^{-1}(p)}(p, y)$$

$$\leq \bigstar_p(g_k^{-1}(p), x) \to 0 .$$

Hence $\not\leq_p(g_k(p), g_k(y)) \to 0$ as $k \to \infty$. Therefore $g_k(y) \to z$ as $k \to \infty$. Thus $D(x) \subset dG(y)$.

(e) To prove this, we prepare two lemmas.

LEMMA 2.12. Let x and y be two points of ∂B^n . Let G be a discrete subgroup of U(1, n; C) consisting only of elliptic elements all of which leave the set $\{x, y\}$ invariant. Then G is a finite group.

PROOF. By [3; Proposition 2.1.3], we may assume that x = (1, 0, ..., 0) and y = (-1, 0, ..., 0). We write $U_{x,y}$ for the subgroup of all elliptic elements g in U(1, n; C) such that g fixes x and y. It follows that an element in $U_{x,y}$ is of the form

$$\begin{bmatrix} \alpha & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & A \end{bmatrix},$$

where $|\alpha| = 1$ and $A \in U(n - 1; \mathbb{C})$. Let $G_{x,y} = \{g \in G | g(x) = x \text{ and } g(y) = y\}$. Since $U_{x,y}$ is compact, we see that $G_{x,y}$ is a finite group in the same manner as in the proof of Theorem 2.5. Therefore we have only to prove that $G - G_{x,y}$ is a finite set. Assume that $G - G_{x,y}$ is not a finite set, say, $G - G_{x,y} =$ $\{h_1, h_2, \ldots, h_k, \ldots\}$. Since each element of $G - G_{x,y}$ interchanges x and y, the set $\{h_1h_1, h_1h_2, \ldots, h_1h_k, \ldots\}$ is contained in $G_{x,y}$. Hence $\{h_1h_1, h_1h_2, \ldots, h_1h_k, \ldots\}$ is a finite set. This is a contradiction. Therefore there exist at most a finite number of elements in $G - G_{x,y}$. Thus G is a finite group.

LEMMA 2.13. If $\#(L(G)) \ge 3$, then there exists a point in L(G) which is not fixed by some element of G.

PROOF. It is easy to show our statement in the case where G contains a loxodromic or parabolic element. Therefore we have only to consider the case where all elements of G except the identity are elliptic. Assume that any point in L(G) is fixed by all elements of G. Using Lemma 2.12, we see that G is a finite group. This contradicts our assumption that $L(G) \neq \emptyset$. Thus our lemma is proved.

We now come to the proof of (e).

PROOF OF (e). If $L(G) = \{x\}$, then x is G-dual to itself by (b).

Next assume that $L(G) = \{x, y\}$. Since all elements of G leave the set $\{x, y\}$ invariant, there are no parabolic elements in G. Suppose that G contains only the identity and elliptic elements which leave $\{x, y\}$ invariant. Lemma 2.12 implies that G is a finite group. This contradicts our assumption that $L(G) \neq \emptyset$. Therefore G contains a loxodromic element with fixed points x and y. Thus x and y are G-dual.

Lastly assume that $\#(L(G)) \ge 3$. By Lemma 2.13, there exists a point ζ in L(G) such that some element f of G does not fix ζ . By (b), ζ has a dual point η in L(G). It follows from (c) that ζ and $f(\zeta)$ are contained in $D(\eta)$ and hence that $D(\eta) = L(G)$, that is, η is G-dual to every point in L(G).

Choose x and y in L(G) such that η , x and y are all distinct. Let W, U and V be disjoint open neighborhoods of η , x and y, respectively. Using Proposition 2.9, we can find two elements g and h in G such that g has fixed points in U and W and h has fixed points in V and W. Two elements g and h do not have a common fixed point in W, otherwise G would be non-discrete by [5; Theorem 3.1]. Therefore either g or h does not fix η . Let $g(\eta) \neq \eta$. This implies that D(x) contains at least two points η and $g(\eta)$. Using (c) again, we see that D(x) = L(G). Hence any two points in L(G) are G-dual.

REMARK 2.14. (1) According to Theorem 2.10 (c), D(x) = L(G) for any $x \in L(G)$ in case $\#(D(x)) \ge 2$. In case #(D(x)) = 1 it may happen that $D(x) \ne L(G)$. In fact, let g be a loxodromic element with fixed points x and y, and let G be a cyclic group generated by g. Then $D(x) = \{y\}$, $D(y) = \{x\}$ but $L(G) = \{x, y\}$.

(2) The argument in the proof of (e) shows that, if $\#(L(G)) \ge 3$, then there exist at least two loxodromic elements in G without a common fixed point.

Next we shall state the properties of the limit set L(G).

THEOREM 2.15. Let G be a discrete subgroup of U(1, n; C).

- (a) L(G) = dG(y) for any $y \in B^n$ if $\#(L(G)) \ge 3$.
- (b) Either $L(G) = \partial B^n$ or L(G) is nowhere dense on ∂B^n .
- (c) L(G) is a perfect set if $\#(L(G)) \ge 3$.

(d) L(G) is the closure of the set of points fixed by some loxodromic elements of G if $\#(L(G)) \ge 3$.

PROOF. (a) Since G is discontinuous in B^n , L(G) = dG(y) for any $y \in B^n$. Therefore we have only to show that dG(0) = dG(y) for any $y \in \partial B^n$.

First we shall prove that $dG(0) \subset dG(y)$. By (2) in Remark 2.14, there exists a loxodromic element h of G such that $h(y) \neq y$. Let ζ be a point of

dG(0). Take a point z of B^n in the geodesic connecting y to h(y). Then there exists a sequence $\{g_k\}$ of elements of G such that $g_k(z) \to \zeta$ as $k \to \infty$. By taking a subsequence, if necessary, we may assume that $g_k(y) \to \zeta_1$ and $g_k(h(y)) \to \zeta_2$ as $k \to \infty$. If $\zeta_1 = \zeta_2$, then $\zeta = \zeta_1 = \zeta_2$. Hence $dG(0) \subset dG(y)$. On the other hand, assume that $\zeta_1 \neq \zeta_2$. It follows from [3; Lemma 4.3.3] that $dG(0) \subset dG(y)$.

Next we shall show that $dG(0) \supset dG(y)$. Let ζ be a point of dG(y). Then there exists a sequence $\{g_k\}$ of elements of G such that $g_k(y) \to \zeta$, $g_k(0) \to \zeta_1$ and $g_k^{-1}(0) \to \zeta_2$. Suppose that $y \neq \zeta_2$. It follows from the proof of Proposition 2.7 that $g_k(y) \to \zeta_1$. Hence $\zeta = \zeta_1$, so ζ belongs to dG(0). Assume therefore that $y = \zeta_2$. Since dG(0) is invariant under G, $g_k(\zeta_2)$ is included in dG(0), hence $g_k(y) \in dG(0)$. As dG(0) is closed, ζ belongs to dG(0). Thus $dG(0) \supset dG(y)$.

(b) If $\#(L(G)) \leq 2$, then L(G) is nowhere dense on ∂B^n . Therefore we may assume that $\#(L(G)) \geq 3$. Let ζ be a point in L(G). Suppose that there is a point z in $\partial B^n - L(G)$. By (a), there exists a sequence $\{g_k\}$ of elements of G such that $g_k(z) \to \zeta$ as $k \to \infty$. Every neighborhood of ζ contains points in the complement of L(G), so L(G) is nowhere dense on ∂B^n .

(c) This statement is an immediate consequence of (a).

(d) By (2) in Remark 2.14, there is a loxodromic element in G with fixed points ζ_1, ζ_2 . Let M be the set of points fixed by some loxodromic elements of G. It follows from (a) that $L(G) = dG(\zeta_1)$. Since L(G) is closed and $L(G) \supset M \supset G(\zeta_1), L(G) \supset \overline{M} \supset \overline{G(\zeta_1)} \supset dG(\zeta_1)$. Thus $L(G) = \overline{M}$.

The groups for which $L(G) = \partial B^n$ are called groups of the *first kind*; those for which $L(G) \neq \partial B^n$ are called groups of the *second kind*.

Proposition 2.9 and (e) in Theorem 2.10 lead to

THEOREM 2.16 (cf. [4; Proposition 12]). If $\#(L(G)) \ge 3$, then the fixed points of the loxodromic elements of G are dense in $L(G) \times L(G)$, that is, for any points x, $y \in L(G)$ and open neighborhoods U, V of these points in ∂B^n , there is a loxodromic element in G which has one fixed point in U and the other in V.

COROLLARY 2.17. If G is of the first kind, then the fixed points of the loxodromic elements of G are dense in $\partial B^n \times \partial B^n$.

Acknowledgements

The author wishes to express his deepest appreciation to Professors M. Ohtsuka and H. Sato for valuable discussions and comments in the preparation of the manuscript.

References

- A. F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics 91, Springer, New York, Heidelberg, Berlin, 1983.
- [2] A. F. Beardon and J. Wilker, The norm of a Möbius transformation, Math. Proc. Camb. Phil. Soc. 96 (1984), 301-308.
- [3] S. S. Chen and L. Greenberg, Hyperbolic spaces, Contributions to Analysis, Academic Press, New York, (1974), 49-87.
- [4] L. Greenberg, Discrete subgroups of the Lorentz group, Math. Scand. 10 (1962), 85-107.
- [5] S. Kamiya, Notes on non-discrete subgroups of $\hat{U}(1, n; F)$, Hiroshima Math. J. 13 (1983), 501-506.
- [6] J. Lehner, Discontinuous groups and automorphic functions, Mathematical Surveys, No. VIII, American Mathematical Society, Providence, 1964.

Department of Mechanical Science, Okayama University of Science