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ON HIGHER NIL GROUPS OF GROUP RINGS
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(communicated by Charles Weibel)

Abstract
Let G be a finite group and Z[G] its integral group ring.

We prove that the nil groups N jK2(Z[G]) do not vanish for
all j > 1 and for a large class of finite groups. We obtain from
this that the iterated nil groups N jKi(Z[G]) are also nonzero
for all i > 2, j > i− 1.

1. Introduction

Let Γ be a discrete group and Z[Γ] its integral group ring. The Farrell-Jones
Isomorphism Conjecture [13] predicts that the algebraic K-theory groups Ki(Z[Γ])
may be computed from homological information of Γ and the algebraic K-theory
of group rings R[V ], where V runs over the virtually cyclic subgroups of Γ. When
the Farrell-Jones Isomorphism Conjecture holds there have been explicit examples
like [8, 9, 20] and it has been the case that these computations may even be reduced
further to the case where V runs over the finite subgroups of Γ [9, 20]; see Section 4
for a precise formulation. The groups that prevent such reductions are the nil groups
of the group rings of finite subgroups of Γ; see H. Bass [5] for definitions. In this
paper we show that, in principle, such reductions cannot be achieved for Ki(Z[Γ])
for i > 1. Our main result is the following:

Theorem 1.1. Let G be a nontrivial finite cyclic group or a split extension of a
nontrivial finite cyclic group. Then

N jKi(Z[G]) 6= 0 for all i > 2 and j > i− 1.

The above is related to an old question by H. Bass [6, Prob. VI]. We conjecture
that this nonvanishing result must hold for every finite group.
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2. Preliminaries

Let R be an associative ring with unity and Kn(R) its nth algebraic K-theory;
cf. D. Quillen [21]. Let G be a group and R[G] its corresponding group ring. It
is natural to compare the K-theory of R to that of its polynomial ring R[t]. This
leads to the definition of the nil groups: Let ε : R[t] → R be the augmentation map,
induced by evaluating at t = 0. The ith nil group of R is defined as

NKi(R) = ker(Ki(R[t]) ε∗−→ Ki(R)).

By iterating this to polynomial rings in more variables we get the iterated nil
groups N jKi(R) = N(N j−1Ki(R)), j > 1. These nil K-groups have geometric sig-
nificance as they occur as obstructions to geometric problems; see for example [11].
We are interested in the study of these nil K-groups in the case when R = Z[G] and
G is a finite group.

Recall that when R is a regular ring, it follows that NKi(R) = 0 for all i; cf. [21].
The rings Z[G] are never regular when G is a finite group. However, some vanishing
results are available: if G is a finite group of square-free order, then NKi(Z[G]) = 0
for i = 0, 1; see Harmon [16]. In fact, NKi(Z[G]) = 0 for all i 6 −1 and any finite
group G; [5, XII, 10.2]. It has been conjectured by W.C. Hsiang that this last
property should hold for any integral group ring. This has been verified for large
classes of groups as a consequence of the Farrell-Jones Conjecture in [18].

Another instance in which these nil K-groups appear naturally is in the setup of
the Farrell-Jones Conjecture; see Section 4.

3. Nonvanishing results

In [15], Guin-Waléry and Loday proved that NK2(Z[Cp]) ∼= xZ/p[x], and is gen-
erated by Dennis-Stein symbols 〈(1− σ)xj , (1 + σ + · · ·σp−1)〉, where Cp stands for
the finite cyclic group of prime order p and generated by σ.

Theorem 3.1. Let Cn be a cyclic group of finite order n > 2. Then NK2(Z[Cn])
6= 0.

Proof. As there is a split summand Cn ³ Cpr , we may assume that n = pr for
some prime p and integer r > 2. Let σ be a generator of Cn. Observe that as
(1− σ)(1 + σ + · · ·+ σpr−1) = 1− σpr

= 0 in Z[Cn], the symbol

〈(1 + σ + · · ·+ σpr−1)x, (1− σ)〉
is a well-defined Dennis-Stein symbol in K2(Z[Cn][x]). We will prove that this is
not trivial as long as r > 1. Let

ϕ : K2(Z[Cn][x]) → K2(Fp[Cn][x])

be induced from mod p reduction. We see that

Fp[Cn][x] ∼= Fp [ε] /εpr

[x] ∼= Fp[ε, x]/(εpr

),

and, under the above identifications, σ is taken to 1− ε. On the other hand, let I be
the ideal generated by ε in Fp[ε, x]/(εpr

); thus
(
Fp[ε, x]/(εpr

)
)
/I ∼= Fp[x]. From the
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long exact sequence associated to the pair (Fp[ε, x]/(εpr

), I), the fact that K3(Fp[x])
is isomorphic to K3(Fp), which is a group of order prime to p, and by [19, Corol-
lary 2.7], the first group below is a p-group, so we have a monomorphism

K2(Fp[ε, x]/(εpr

), I) ↪→ K2(Fp[ε, x]/(εpr

)).

Now observe that

ϕ(〈(1 + σ + · · ·+ σpr−1)x, (1− σ)〉)
= 〈(1 + (1− ε) + (1− ε)2 + · · ·+ (1− ε)pr−1)x, ε〉
= 〈εpr−1x, ε〉.

This element 〈εpr−1x, ε〉 as an element of K2(Fp[ε, x]/(εpr

)) comes from the relative
group K2(Fp[ε, x]/(εpr

), I) and is a generator of order p in the relative group by the
computations of W. van der Kallen and J. Stienstra in [19, Corollary 2.7]. Finally,
observe that this element really is in NK2(Fp[ε]/(εpr

), (ε)) ∼= NK2(Fp[ε]/(εpr

)).

C. Weibel, proved (see [23, Application III.3.4.2]) that for any ring if NsKi(R)
= 0, it follows that N jKi(R) = 0 for j = 1, 2, . . . , s− 1. As a corollary we have

Corollary 3.2. Let Cn be a nontrivial finite cyclic group, then

N jK2(Z[Cn]) 6= 0, for all j > 1.

This contrasts with NK1(Z[Cn]) where it is known [7] that

NK1(Z[Cn]) = 0 if and only if n is square-free.

By the fundamental theorem in algebraic K-theory, the NK2 terms are direct
summands in the group K2(Z[Cn × T s]), where T s is the free abelian group of rank
s, and s > 1. Moreover, by [12] we see that if NK2 is nontrivial then it is not finitely
generated. Thus we have the following

Corollary 3.3. Let Cn be a nontrivial finite cyclic group and T s a free abelian
group of rank s, s > 1. Then K2(Z[Cn × T s]) is not finitely generated.

A ring R is called Kn-regular if N jKn(R) = 0 for all j > 1. T. Vorst proved in
[22, Proposition 2.1] that if N2Kn(R) = 0 then NKn−1(R) = 0. Hence, if R is such
that NK2(R) 6= 0 it follows that N jKi(R) 6= 0 for j > i− 1 and for all i > 2. From
this we have the following corollary:

Corollary 3.4. Let Cn and T s be a finite cyclic group of order n, n > 2, and the
free abelian group of rank s > 1, respectively. Then

1. N jKi(Z[Cn]) 6= 0 for all i > 2 and all j > i− 1,

2. Ki(Z[Cn × T s]) is not finitely generated for all i > 2, and s > i− 1.
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The results in the previous section immediately give the proof of Theorem 1.1.

Proof. The cyclic case is Theorem 3.1. Let r : G → C be a split surjection onto a
cyclic group C. Then the splitting s : C → G induces an injection N jKi(Z[C]) ↪→
N jKi(Z[G]); thus our result follows from Theorem 3.1 and the above.

4. Examples

Our results contrast with those for lower K-theory where it is known that
NK−i(Z[G]) = 0 for all i > 1 and all finite groups G; see H. Bass [5, XII, 10.2].
On the other hand, if G is a finite group of square-free order it is known that
NKi(Z[G]) = 0 for i = 0, 1; see [16]. The following examples show consequences of
our results for infinite groups of geometric relevance.

We begin by recalling some terminology: a group V is called virtually cyclic if it
contains a cyclic group of finite index. It follows that either V is finite or it contains
a unique maximal normal finite subgroup F such that either:

1. V/F is infinite cyclic or

2. V/F is infinite dihedral.

We call V orientable if the first case above holds and is nonorientable in the second
case; see [17].

Example 4.1. Let G be a word hyperbolic group in the sense of Gromov; see [14].
Assume that all finite subgroups of G satisfy the hypotheses of Theorem 1.1 and
that the only infinite virtually cyclic subgroups of G are of the form F × Z, where F
is a finite subgroup of G. Let R be an associative ring, and KR be the algebraic K-
theory spectrum defined in [10]. Given X a G-CW-complex, write HG

∗ (X;KR) for
the associated equivariant homology theory applied to X. This theory is such that
for any H 6 G, HG

∗ (G/H;KR) is naturally isomorphic to the algebraic K-groups
K∗(RH). The following description of this equivariant homology for hyperbolic
groups is found in [17, Corollary 19 and Remark 7]: For any word hyperbolic group
G as above, there is an isomorphism

HG
n (EG;KZ) ∼= HG

n (EG;KZ)⊕
⊕

Conj(V )

NKn(Z[fin(V )])⊕NKn(Z[fin(V )]),

where

• Conj(V ) denotes representatives of conjugacy classes of maximal infinite vir-
tually cyclic subgroups of G,

• fin(V ) is the finite maximal subgroup of V ,

• the spaces EG and EG are universal spaces for actions with virtually cyclic
and finite isotropy respectively.

As a corollary of the above, we have:

Corollary 4.2. Let G be as in Example 4.1; then HG
2 (EG;KZ) is not finitely gen-

erated.
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Remark 4.3. It has been announced by A. Bartels, H. Reich and W. Lück that the
Farrell-Jones Isomorphism Conjecture in K-theory holds for hyperbolic groups [3];
hence HG

n (EG;KZ) is really Kn(Z[G]).

Example 4.4. Let Γ be a discrete group. Assume that Γ has nontrivial torsion, that
the finite subgroups of Γ satisfy the hypotheses of Theorem 1.1, and that the Farrell-
Jones Isomorphism Conjecture holds for Z[Γ] [13]. Then, the algebraic K-theory of
Z[Γ] is isomorphic to the generalized equivariant homology theory (Example 4.1):

HΓ
n (EΓ;KZ),

where EΓ denotes the universal space for actions with virtually cyclic isotropy.
On the other hand, we may take HΓ

n (EΓ;KZ), where EΓ denotes the universal
space for actions with finite isotropy. There is a natural map induced by inclusions

A : HΓ
n (EΓ;KZ) → HΓ

n (EΓ;KZ).

We say that the K-theory of Z[Γ] reduces to finite groups of Γ ifA is an isomorphism.
A. Bartels shows in [1] that A is a split injection and its cokernel is built from

the nil K-groups of the rings Z[G], where G runs over the finite subgroups of Γ
and other types of nil K-groups. By our results, these nil K-groups rarely vanish
in higher K-theory, hence, in principle, higher K-theory does not reduce to finite
groups.
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