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Abstract: Recent exploration of the optimal individual treatment rule
(ITR) for patients has attracted a lot of attentions due to the potential het-
erogeneous response of patients to different treatments. An optimal ITR is
a decision function based on patients’ characteristics for the treatment that
maximizes the expected clinical outcome. Current literature mainly focuses
on two types of methods, model-based and classification-based methods.
Model-based methods rely on the estimation of conditional mean of out-
come instead of directly targeting decision boundaries for the optimal ITR.
As a result, they may yield suboptimal decisions. In contrast, although
classification based methods directly target the optimal ITR by convert-
ing the problem into weighted classification, these methods rely on using
correct weights for all subjects, which may cause model misspecification.
To overcome the potential drawbacks of these methods, we propose a sim-
ple and flexible one-step method to directly learn (D-learning) the optimal
ITR without model and weight specifications. Multi-category D-learning is
also proposed for the case with multiple treatments. A new effect measure is
proposed to quantify the relative strength of an treatment for a patient. We
show estimation consistency and establish tight finite sample error bounds
for the proposed D-learning. Numerical studies including simulated and
real data examples are used to demonstrate the competitive performance
of D-learning.

Keywords and phrases: Precision medicine, multiple treatments, kernel
learning, prescriptive variable selection.
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1. Introduction

Precision Medicine has recently gained increasing attention in scientific research.
The goal of precision medicine is to identify the optimal individual treatment
rule (ITR) by considering the patients’ heterogeneity, such as demographics,
background and genetic information, to maximize each patient’s expected clin-
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ical outcome. Mathematically speaking, ITR is a function mapping from the
covariate space into the treatment space.

There is a fast growing literature on estimating ITRs based on observational
studies or randomized clinical trials. Existing approaches could be categorized
into two main types, model-based and classification-based methods. Q-Learning
([33], [23], [26], [24]) and A-learning ([22], [25]) are two representative model-
based methods in precision medicine. Q-learning models the conditional mean of
clinical outcomes given the patients’ covariates and treatment, while A-learning,
which can be more robust to model misspecification than Q-learning, models
the contrast function of outcome between treatments. Recently, [35] proposed a
doubly robust augmented inverse propensity score weighted (IPSW) estimator
to estimate the ITR. [30] proposed a modified covariates regression method to
estimate the ITR, and [9] proposed a new concordance-assisted learning method
to estimate the optimal ITR.

As an interesting alternative approach, the classification-based method was
first proposed by [37]. They showed that maximizing the individual clinical out-
come is equivalent to minimizing a weighted classification error, and they pro-
posed the outcome weighted learning (OWL) method by using clinical outcomes
as the classification weights. To further improve the finite sample performance
of OWL, [20] proposed an augmented OWL method, and [39] considered a resid-
ual weighted learning method (RWL). Tree-based methods ([16, 7]) under the
classification framework were considered to enhance the interpretability of ITR.

In precision medicine, variables that have qualitative interactions with the
treatment are called prescriptive variables ([12]). Correctly identifying prescrip-
tive variables can help save time and the cost of collecting unnecessary infor-
mation in clinical practice. Although modern variable selection techniques have
been used in model-based methods, they mainly focus on variables for predic-
tion and may neglect the prescriptive variables that have weak predictive power
but are important for decision making. This may cause the mismatch between
predicting clinical outcomes and optimizing ITRs for model-based methods. [12]
and [8] proposed methods using an additional step to fill the gap between pre-
scriptive variables and prognostic variables.

For classification-based methods, OWL effectively formulated the problem as
a weighted classification framework ([37]). Despites its success, OWL may be
affected by a constant shift of the clinical outcome and tends to keep the treat-
ment assignments that patients actually received in randomized trials ([39]).
RWL by [39] uses a model-based method to compute the weights to improve
the finite sample performance of OWL and also incorporates a variable selec-
tion procedure. Although RWL could alleviate some potential issues of OWL,
it may suffer from the potential main effect model misspecification problem
in calculating residuals as the weights for classification. In addition, the com-
putational cost of RWL can be high due to the use of the non-convex ramp
loss function, especially when the dimension is large. Recently, [27] proposed a
sparse OWL under the classification framework for variable selection. Despite
these existing methods, more developments are needed for effective ITR estima-
tion.
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In this paper, we propose a novel one-step method to directly learn (D-
learning) the optimal ITR without specifying the main effect model and weights
for both binary and multiple treatment settings, and simultaneously perform
variable selection on prescriptive variables for linear models. The extensions to
nonlinear models by kernel regression are discussed as well. The proposed D-
learning is very simple and flexible. It combines the advantages of both model-
based and classification-based methods. Furthermore, we propose a new measure
to quantify the relative strength of all treatments. Such a measure can pro-
vide additional information among the treatments beyond ITRs for doctors and
patients to make better decisions. We also present comprehensive theoretical
results of D-learning under both linear and nonlinear models.

The remainder of this paper is organized as follows. In Section 2, we briefly
review some existing methods and introduce D-learning for estimating the op-
timal ITR. In Section 3, we establish estimation consistency and convergence
rates of D-learning under various settings. In Section 4, we conduct an extensive
simulation study to evaluate D-learning by comparing it with several alterna-
tive methods. In Section 5, we analyze acquired immune deficiency syndrome
(AIDS) randomized clinical trial data ([13]) using D-learning and compare with
several other alternative methods. We conclude the paper with some discussion
in Section 6.

2. Direct learning for individual treatment rules

For notation, we use boldface capital and lowercase symbols to denote matrices
and vectors respectively, with the exception of the random vector X defined be-
low. We first consider the framework of a binary treatment randomized trial. For
each patient, we observe a treatment A ∈ A = {1,−1}, the baseline information
X = (1, X1, · · · , Xp)

T ∈ X , treatment assignment of patients during the study
and the clinical outcome R after receiving the treatment. Without loss of gener-
ality, we assume the larger R is, the better condition a patient is in. The treat-
ment rules are the set of deterministic decision functions that map the patient’s
covariate space into the treatment space. We define π(a, x) = P[A = a|X = x]
to be the probability of a patient being assigned to treatment a conditioning
on the covariates X under the randomized trial framework. For observational
studies, π(a, x) denotes the propensity score and can be estimated via various
methods such as logistic regression. We assume π(a, x) > 0 for any a ∈ A,
given X ∈ X almost surely. For simplicity, we assume π(a, x) is known for our
discussion.

An optimal ITR is defined as the decision rule that maximizes the expected
clinical outcome among all candidate rules. According to [24], the expected
clinical outcome under the rule d could be written as

V (d) = E[R|A = d(X)] = E[
R

π(A,X)
I(A = d(X))], (2.1)

where I(•) is the indicator function. This quantity is called the value function,
which we denote as V (d) associated with the treatment rule d. Then the optimal
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rule is defined
d0(X) = argmaxd∈DV (d) (2.2)

for a specific class of treatment rules D. Before introducing D-learning, we high-
light three previous methods for comparison.

2.1. Previous related methods

[24] proposed l1-PLS as one of fundamental model based methods. They de-
veloped a two-stage procedure to estimate the optimal ITR. The first step is
to compute the conditional mean of the clinical outcome, E[R|X, A], given co-
variates and treatment by using l1 penalized regression. The second stage is to
compare this computed conditional mean under different treatments to derive
the estimated ITR. The l1-PLS method is effective by using a rich class of func-
tions to approximate the conditional mean ofR, and is interpretable by including
the variable selection procedure. However, l1-PLS does not directly target on
prescriptive variables and the performance guarantee relies on the correctness of
model specification. The implicit goal of l1-PLS focuses on the prediction accu-
racy of the conditional clinical response which may be suboptimal in optimizing
the decision rule.

To avoid modeling R directly, [37] proposed a very interesting OWL method
to maximize (2.1) under the weighted classification framework by showing

d0(X) = argmind∈DE[
R

π(A,X)
I(A �= d(X))]. (2.3)

They use the convex hinge loss in the Support Vector Machine ([5]) to substitute
the 0-1 loss function in (2.3). In particular, OWL is to find an optimal ITR by
minimizing

1

n

n∑
i=1

Ri(1−Aif(Xi))+
π(Ai,Xi)

+ λ||f ||2,

where (·)+ = max(·, 0) and ||f || is some norm of function f . Although OWL
directly targets on the prescriptive variables and could possibly make a better
decision, it requires positive R to compute and the resulting treatment rule
tends to keep treatment assignments that the patients actually received in the
randomized trial ([39]).

[39] recently proposed RWL to improve the finite performance of OWL by
developing a two-step procedure. The first step is to calculate the residuals as
weights ri by regressing R on X. After calculating the weights which can be
negative, they used a non-convex ramp loss function T to compute the optimal
ITR under the classification framework. In particular, RWL aims to minimizing

1

n

n∑
i=1

riT (Aif(Xi))

π(Ai,Xi)
+ λ||f ||2.

An effective difference of convex algorithm was applied in RWL. However, RWL
may require relative large computational costs especially in high dimensional or



D-learning 3605

nonlinear decision boundary settings. More importantly, RWL highly relies on
the correct calculation of the residuals and may fail if the model for residual
calculation in the first step is misspecified. Furthermore, additional variability
may be introduced by using a two-step procedure. Both OWL and RWL were
designed for binary treatment settings. In Section 2.2, we propose an effective
method to combine the strengths of both model-based and classification-based
methods.

2.2. D-learning

Our goal is to estimate the optimal ITR by a single step and reduce the risk of
model misspecification. In particular, model-based methods impose certain re-
gression model assumptions to fit E[R|X, A]. For the classification based method
RWL, calculating the residual ri is needed before the weighted classification step.
One of the main motivations of D-learning is to avoid such model assumptions.
As shown in both [24] and [37], we could rewrite the optimal ITR in (2.2) as

d0(X) = sign(E[R|X, A = 1]−E[R|X, A = −1]) := sign(f0(X)). (2.4)

Note that the optimal decision function f0(X) could be further written as

f0(X) = E[R|X, A = 1]−E[R|X, A = −1]

= E[
RA

π(A,X)
|X, A = 1]π(1,X) +E[

RA

π(A,X)
|X, A = −1]π(−1,X)

= E[
RA

π(A,X)
|X].

(2.5)
We observe that (2.5) gives us a direct way to learn the optimal ITR by estimat-
ing the conditional expectation E[ RA

π(A,X) |X]. Then the estimated ITR is based

on the sign of the estimated E[ RA
π(A,X) |X]. In contrast to OWL which requires all

rewards to be nonnegative, f0(X) is invariant to a constant shift for the reward
R. If R is replaced by R + c(X) for any random variable c(X) depending only
on X, then

E[
(R+ c(X))A

π(A,X)
|X] = E[

RA

π(A,X)
|X] +E[

c(X)A

π(A,X)
|X]

= E[
RA

π(A,X)
|X] +E[c(X)− c(X)]

= E[
RA

π(A,X)
|X] = f0(X).

(2.6)

Using the results in (2.5), our D-learning estimates f0(X) and uses sign(f0(X))
as the estimated ITR. To further understand D-learning, we would like to point
out an interesting interpretation. Assume that the clinical outcome R could be
expressed as

R = m(X) + δ(X)A+W, (2.7)
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where W is the mean zero random error term, m(X) is the main effect of co-
variates X for both treatments. Then one can see that f0(X) = E[ RA

π(A,X) |X] =

2δ(X), which captures the heterogeneity between the two treatment effects with-
out the need of estimatingm(X). The general form of R for a multiple treatment
setting can be represented as

R = m(X) +

K∑
k=1

δk(X)1(A = k) +W.

The next lemma provides us a way to estimate f0(X).

Lemma 1. Under the assumption of interchange between differentiation and
expectation, f0(X) ∈ argminf E[ 1

π(A,X) (2RA− f(X))2].

Lemma 1 offers a simple way to estimate f0(X). Specifically, there are many
existing regression methods we can adopt to estimate f0(X). In the next two
subsections, we consider both linear and nonlinear D-learning to estimate ITR.

2.2.1. D-learning for linear decision rules

We first consider the setting of a two-arm randomized trial. Assume we observe
independent identically distributed triplet data {(Ai,Xi, Ri); i = 1, · · · , n}. If
we consider F := {f(X) = XTβ,β ∈ Rp} to be the class of linear functions to
approximate f0(X), then the ordinary least square (OLS) estimator is given by

β̂ols
n = argminβ

1

n

n∑
i=1

1

π(Ai,Xi)
(2RiAi −XT

i β)
2. (2.8)

However, in high dimensional settings especially when p > n, OLS may fail to
estimate the parameter vector β with risk of potential over-fitting. Therefore, it
is desirable to perform sparse regularization to improve the prediction accuracy
and interpretability of the model. In our case, this will not only help us identify
the crucial prescriptive variables but also enhance the estimation accuracy of
the decision boundary.

There are many linear regression techniques in the literature. The Least Ab-
solute Shrinkage and Selection Operator (LASSO) is one of the most famous
variable selection methods in high dimensional regression and the estimator is
given by:

β̂lasso
n = argminβ

1

n

n∑
i=1

1

π(Ai,Xi)
(2RiAi −XT

i β)
2 + 2λ

p∑
i=1

|βi|, (2.9)

where λ is the tuning parameter for the l1 penalty. Then the resulting ITR is
given by

d̂n(X) = sign(f̂0(n)(X)) = sign(XT β̂lasso
n ). (2.10)

Besides the LASSO, one could also use other convex penalties such as the elastic
net ([40]), and non-convex penalties such as SCAD ([10]) and MCP ([36]).
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2.2.2. D-learning for nonlinear decision rules

While linear D-learning is simple and interpretable, more complex nonlinear
decision rules may be necessary sometimes in practice. Thus we consider two
nonlinear methods to estimate f0(X), Kernel Ridge Regression (KRR) ([6]) and
the Component Selection and Smoothing Operator (COSSO) ([19]).

KRR combines the kernel trick in machine learning with ridge regression by
optimizing the following objective function to estimate the decision rule

min
f∈HK

1

n

n∑
i=1

1

π(Ai,Xi)
(2RiAi − f(Xi))

2 +
λ

2
||f ||2HK

, (2.11)

where HK denotes the Reproducing Kernel Hilbert Space (RKHS) and ‖ • ‖HK

is the corresponding norm. By the representer theorem ([15]), we can express
the function f(Xi) =

∑n
j=1 cjK(Xi,Xj), where K denotes the n × n kernel

matrix and K(Xi,Xj) denotes the (i, j)-entry of K. The RKHS norm could be
evaluated as ||f ||2HK

= cTKc. Then the optimization is equivalent to optimizing
over c ∈ Rn via

min
c∈Rn

1

n

n∑
i=1

1

π(Ai,Xi)
(2RiAi − [Kc]i)

2 +
λ

2
cTKc, (2.12)

where [Kc]i denotes the i-th element of the vector Kc. Note that KRR maps the
covariates into an infinite dimensional space and is computationally efficient due
to the kernel trick. However, it does not provide model selection for nonlinear
function estimation. In order to perform model selection in nonlinear function
estimation, we use the COSSO proposed by [19] based on the smoothing spline
analysis of variance (SS-ANOVA) model ([32]). The SS-ANOVA model can be
written as

f(x) = α+

p∑
i=1

fi(xi) +
∑
j<k

fjk(xj , xk) + · · · ,

where α is the intercept, Xi = (x1, · · · , xp)
T , fi’s are baseline functions and

fjk’s are two-way interactions, etc. Then the functional space in the SS-ANOVA
model could be written as

HK = {1} ⊕H1 with H1 = ⊕d
i=1Hi,

where Hi; i = 1, · · · , d, are d orthogonal subspaces of HK . If the model is only
related to baseline functions, then d = p. For a two-way interaction model,

d = p(p+1)
2 . With HK in place, COSSO estimates f via minimizing

min
f∈HK

1

n

n∑
i=1

1

π(Ai,Xi)
(2RiAi − f(Xi))

2 + 2λ
d∑

j=1

||P if ||, (2.13)

where P if is the orthogonal projection of f on Hi and || • || is the pseudonorm
in RKHS. [19] showed that (2.13) could be solved efficiently via alternative
minimization methods.
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As a remark, we would like to point out that [30] used a similar formula
as (2.9) for estimating interactions between a treatment and covariates while
the working model is linear. However, in addition to linear learning, we also
propose D-learning for nonlinear decision rules, which can capture a broader
class of functions. This is not equivalent to fitting a kernel regression using the
formulation in [30]. More importantly, in Section 2.3, we extend our proposed
D-learning to handle multiple treatments in ITR problems.

2.3. Multi-category D-learning

Most existing methods for estimating optimal ITRs only focus on binary treat-
ment settings. However, in practice, it often has applications with multiple treat-
ment settings ([1]). To the best of our knowledge, few research attempts settings
with more than two treatments. In this section, we consider a K-armed treat-
ment setting, where A ∈ A = {1, · · · ,K}. For simplicity, we focus on the class
of linear decision rules to approximate the optimal ITR while the extension
to nonlinear setting can be derived similarly. In addition, the notations and
assumptions remain the same as before.

Expanding the equation (2.1), for K treatments we can get:

V (d) = E[

K∑
k=1

E[R|X, A = k]I(d(X) = k)].

Similar to the binary treatment setting, the optimal ITR is given by

d0(X) = argmax
k∈{1,··· ,K}

E[R|X, A = k]. (2.14)

Without changing the order of each element, we can further write the optimal
ITR as

d0(X) = argmax
k∈{1,··· ,K}

KE[R|X, A = k]−
K∑
i=1

E[R|X, A = i]

= argmax
k∈{1,··· ,K}

K∑
i �=k

{E[R|X, A = k]−E[R|X, A = i]}

= argmax
k∈{1,··· ,K}

K∑
i �=k

E[
RAki

πki(Aki,X)
|X, A = k or i]

:= argmax
k∈{1,··· ,K}

K∑
i �=k

fki(X) := argmax
k∈{1,··· ,K}

fk(X),

(2.15)

where Aki is a binary random variable with πki(1,X) = P[A = k|X, A =

k or i] = π(k,X)
π(k,X)+π(i,X) and πki(−1,X) = P[A = i|X, A = k or i] = π(i,X)

π(i,X)+π(k,X) .

For each fki(X), where k, i = 1, · · · ,K, i �= k, it is equivalent to a binary setting,
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where we can use previously proposed D-learning method for estimation. The
function fk(X), which we name as the effect measure of treatment k, is the sum
of pairwise decision functions between the k-th treatment over other treatments.

One of the key differences between our method and fitting a regression model
with treatment-by-covariate interactions is that D-learning avoids modeling the
main effect functions, but directly targets on decision functions. The difference
is significant because of the mismatch between minimizing the prediction error
and maximizing the value function in finding optimal ITRs. Model-based meth-
ods are focused on predicting responses, i.e., minimizing the prediction error.
In contrast, although our proposed D-learning also has the regression form, it
directly targets on maximizing the value function. This difference can be more
substantial for nonlinear learning due to the potential over-fitting.

In practice, among K treatments, one may be interested in learning the rela-
tive strengths of all treatments besides the estimated ITR. For example, if two
treatments have similar effect measure, the doctor and patient may decide to
use the suboptimal one if it costs less or has less potential side effects. Thus,
our effect measure provides additional useful information besides the ITR for
precision medicine. If there exits multiple treatment options producing the same
largest expected treatment effect, other possible outcomes besides the current
outcome may be considered for decision making. For example, assume that we
also observe Z, the side effect after a patient receives a treatment. Similar to
the treatment effect measure fk(X) in our proposed D-learning, we can esti-
mate the side effect measure of each treatment, such as gk(X), for each patient
by the multi-category D-learning method. Then we can use fk(X) + τgk(X) to
decide the best treatment for each patient, where τ is used to balance these two
outcomes and can be decided by doctors. In theory, if multiple treatments have
the same largest expected outcome, these treatments are equivalent in terms
of consistency. However, one can pick a treatment among these equivalent ones
using other factors, such as costs, etc.

Our proposed multi-category D-learning first estimates fki(X) separately for
1 ≤ i < k ≤ K. Then the decision rule is based on the maximum of estimated
effect measures f̂k(n)(X) for k = 1, · · · ,K according to (2.15). Here the sub-
script (n) means that the estimated function depends on the sample size n. We

would like to point out that it is sufficient to estimate K(K−1)
2 decision functions

because fij(X) = −fji(X) by definition.

There is a close relationship between our multi-category D-learning and
the standard majority vote One-vs-One (OVO) multi-category classification
method. For K-category classification, the OVO multi-category classification

method needs to build K(K−1)
2 classifiers, each of which distinguishes a pair of

classes i and j for i, j = 1, · · · ,K. If the corresponding classifier gij for the
(i, j) pair is positive, then we assign 1 to class i and −1 to class j, otherwise

reverse the assignment. Then the final classifier g = argmaxi
∑K

j=1 sign(gij).
The key difference is that this OVO multi-category classification approach uses
the majority vote to assign the class label while multi-category D-learning is
based on the effect measure as the cumulative pairwise contrast value among all
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treatments. Note that if we replace
∑K

i �=k fki(X) by
∑K

i �=k sign(fki(X)) in (2.15),
then it becomes similar as the majority vote OVO classification. However, by
our derivation, the majority vote is not suitable for D-learning.

As a remark, from (2.15) we observe that
∑K

k=1 fk(X) = 0, which implies
that one of the effect measures is redundant. This is similar as the sum-of-
zero constraint in simultaneous multi-category classification methods, where
the constraint is used to guarantee the consistency of classifiers ([34]).

2.4. Tuning parameter selection

For existing methods such as l1-PLS, OWL and RWL, the tuning parameter is
selected via cross-validation, mainly based on maximizing the empirical value
function on validation data defined as

V̂ (d) =
En[RI(A = d(X))/π(A,X)]

En[I(A = d(X))/π(A,X)]
, (2.16)

where En denotes the empirical average.
For D-learning, since it directly estimates the decision boundary, we consider

an alternative way to select the tuning parameter λ. In particular, we select
the choice of λ which minimizes the mean square error (MSE) on the validation
data. For example, in the binary treatment setting, it is defined as

MSE(f̂) = En[(2RA− f̂)2],

where f̂ is the estimated decision boundary function. Since it is the same pro-
cedure as standard regression techniques such as LASSO, it can be easily im-
plemented via standard software package such as glmnet ([11]) in R software to
estimate the optimal ITR. We would like to point out that unlike tuning crite-
rion (2.16) for previous methods, both our model building and tuning match in
the sense that they both use the least square loss.

3. Theoretical properties of D-learning

In this section, we establish the estimation consistency of D-learning and obtain
a value reduction bound of the estimated ITR from the optimal ITR. Fast con-
vergence rates can be achieved under some reasonable assumptions. We consider
linear and nonlinear D-learning in Section 3.1 and 3.2 respectively.

3.1. Consistency and value reduction bounds under linear decision
rules

We first state the generalized Margin condition (gMC) used in our theoretical
results.

Assumption (gMC). For any ε > 0, there exists some constants C > 0 and
α > 0 such that
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P (|fi(X)− fj(X)| ≤ 2ε) ≤ Cεα, (3.1)

for i, j = 1, · · · ,K.

Theorem 1. For the estimated effect measures f̂k(n)(X) for i = 1, · · · , k and

the corresponding ITR d̂n by multi-category D-learning, we have

V (d0)− V (d̂n) ≤
K − 1

K

K∑
k=1

(E||fk(X)− f̂k(n)(X)||22)
1
2 . (3.2)

Furthermore, if we assume the gMC holds, then we could improve the rate as

V (d0)− V (d̂n) ≤ C ′(K)(

K∑
k=1

E[||fk(X)− f̂k(n)(X)||22])
1+α
2+α , (3.3)

where C ′ depends on the constant C, α and K.

Remark 1. Theorem 1 provides an approach to bound the reduction in the value
function by the prediction error

∑K
k=1 E||fk(X) − f̂k(n)(X)||2. The gMC (3.1)

characterizes the behavior of the distribution of the decision function near 0. If
the gMC holds, then the larger α is, the larger the exponent 1+α

2+α is, and the
corresponding shaper upper bound in (3.3) can be achieved. In addition, if the
data are fully separated in the sense that there exists an ε > 0, one can have

P (|fi(X)− fj(X)| ≤ 2ε) = 0, (3.4)

for i, j = 1, · · · ,K. Then we could further improve the bound as

V (d0)− V (d̂n) ≤
1

2ε

K − 1

K

K∑
k=1

E||fk(n)(X)− f̂k(X)||22. (3.5)

For the special case when K = 2, Theorem 1 implies

V (d0)− V (d̂n) ≤ (E||f0(X)− f̂0(n)(X)||22)
1
2 , (3.6)

where f0(X) and f̂0(n)(X) are the optimal decision function and corresponding
estimation as defined in the previous section. With the gMC assumption, we
have

V (d0)− V (d̂n) ≤ C ′(E[||f0(X)− f̂0(n)(X)||22)
1+α
2+α , (3.7)

where C ′ depends on the constant C and α.

Theorem 1 indicates that our D-learning in minimizing the empirical predic-
tion error can estimate the optimal ITR. In particular, for linear D-learning, we
consider F := {f(X) = XTβ,β ∈ Rp} to be the class of linear functions to
approximate f0(X). For the remaining theoretical results, without loss of gen-
erality, we assume that π(A,X) = 1

2 for any A ∈ A,X ∈ X and K = 2. The
resulting prediction error consists of the approximation error and the estimation
error since we do not require the true function f0(X) lies in F .
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Before we characterize the prediction error bound, we say a subset S ⊆
{1, 2, · · · , p} satisfies the compatibility condition ([3]), if for some constant
φ(S) > 0 and for all β ∈ Rp, with ||βSc ||1 ≤ 3||βS ||1, we have

||βS ||21 ≤ (βT Σ̂β)|S|/φ2(S), (3.8)

where |S| is the cardinality of S, Sc is the complement of set S, and the j-th
element of βS denoted by βS,j = βjI(j ∈ S). In addition, we use Xn to denote

the design matrix with n samples. Then Σ̂ = 1
nX

T
nXn. Furthermore, we let Ω be

the collection of index sets S satisfying the compatibility condition. We provide
the finite sample bound for prediction errors.

Before establishing the error bound for the proposed D-learning, we state our
assumptions below:

(i) Assume Ri = m(Xi) + Aiδ(Xi) +Wi for i = 1, · · · , n. Let εi = 2RiAi −
E[ RiAi

π(Ai,Xi)
|Xi] = 2m(Xi)Ai + 2WiAi; i = 1, ..., n.

(ii) Assume the main effect is the linear function with m(Xi) = XT
i γ0, where

||γ0||2 ≤ O(
√

log(2p)).
(iii) For anyX ∈ X , there exists some constant a, such that max1≤i≤p |Xi| ≤ a.
(iv) For the design matrix Xn, there exists ρ > 0, such that

γT Σ̂γ ≤ ρ||γ||22,

for any vector γ.
(vi) The compatibility condition (3.8) holds for all S ∈ Ω.

(vii) Assume ||Xnβ
∗ − f0||22/n ≤ λ||β̂S∗ − β∗

S∗
||1, where S∗ = {j : β∗

j �= 0},
β̂j,S∗ = β̂jI(j ∈ S∗), and λ is the tuning parameter in (2.9).

Define the oracle β∗ = argminβ:Sβ∈Ω{||Xnβ− f0(Xn)||22/n+
4λ2sβ
φ2(Sβ)}. Then we

have following theorem.

Theorem 2. Assume assumptions (i)–(vii) hold. For t > 0, let the tuning
parameter be

λ = 16
√
2t2

√
log2(2p)

n
. (3.9)

Then for the constant C1 which depends on the constants a, ρ and σ2 and t
sufficiently large, with the probability at least 1− C1

t2 , we have

2||Xnβ̂ − f0||22
n

+ 3λ||β̂ − β∗||1 ≤ 6||Xnβ
∗ − f0||22/n+

24λ2s∗
φ2
∗

. (3.10)

Remark 2.
(1) The first term in right hand side of (3.10) is the approximation error to the
true function f0. The second term is the estimation error decided by sparsity s∗,
the compatibility constant φ∗ and the tuning parameter λ. Furthermore, if we
assume the underlying function is linear, i.e. f0 = XTβ∗, then the right hand

side of (3.10) can be reduced to O( log
2(2p)
n ) by setting λ = 16

√
2t2

√
log2(2p)

n .
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(2) The main difference between our theoretical result and those in the usual
LASSO lies in the unequal variance of the error term for each observation. Thus
assumptions (ii)–(iv) are needed to bound the tail of the error term. Specifically,
we bound the prediction error using the Nemirovski moment inequality ([31])
under some mild assumptions on the baseline function m(X). The price we
need to pay for unequal variances among the observations is that the tuning

parameter needs to be larger, i.e, O(
√

log2(p)
n ) compared with O(

√
log(p)

n ) in the

LASSO theory. In addition, the probability bound for (3.10) converges to 1 in a
polynomial rate, slower than the exponential rate in the theory of LASSO.

Theorem 3. Suppose the true decision function is linear, and let the tuning
parameter be the one defined in Theorem 2. If the gMC and assumptions in
Theorem (2) hold, then with probability at least 1 − C1

t2 , with C1 depending on
a,Φ and σ2, we have

V (d∗)− V (d̂) ≤ C2(
log(2p)

n
)

1+α
2+α , (3.11)

for the constant C2 determined by the gMC constant, t, φ∗, and s∗.

Remark 3. The inequality (3.11) gives us the value reduction bound between

the optimal ITR and the estimated ITR as O(( log(2p)n )
1+α
2+α ). If the dimension

p does not grow exponentially faster than the sample size n, then as n → ∞,
V (d̂) → V (d∗). If we fix the dimension p, the convergence rate is at least of

order n− 1
2 , i.e., α = 0. If the data are completely separable, then by remark 1,

the fast convergence rate of order 1
n can be achieved. Our results are consistent

with those derived by [24].

3.2. Value reduction bounds under nonlinear decision rules

In this section, we establish the value reduction bounds for the nonlinear Model
(2.11). For Model (2.13), we refer to [19] for the finite sample error bounds under
the fixed design setting. We assume the outcome R is bounded, i.e., |R| ≤ C0

almost surely for some constant C0 and recall that we let π(x, a) = 1
2 as discussed

in Section 3.1.
Before proceeding our results, we need the following definitions.

Definition 1. Consider F to be a class of real value measurable functions f :
Z → R. The Rademacher complexity of F is defined as

Rn(F) := E[sup
f∈F

1

n

n∑
i=1

σif(Zi)], (3.12)

where Z1, · · · , Zn are drawn i.i.d from some probability distribution PZ and
Rademacher random variables σ1, · · · , σn are drawn i.i.d from a uniform distri-
bution over {1,−1}.
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The corresponding empirical Rademacher complexity of F is defined as

R̂n(F) := E[sup
f∈F

1

n

n∑
i=1

σif(Zi)|Z1, · · · , Zn], (3.13)

where we can see that E[R̂n(F)] = Rn(F).
Let Y = 2RA and correspondingly Yi = 2RiAi, for i = 1, · · · , n. Define

L(f) = E[D(f)], where D(f) = (Y − f(X))2 and let fλn = argminf∈HL(f) +
λn

2 ||f ||2H, where H is RKHS. Then A(λn) := L(fλn) +
λn

2 ||fλn ||2H − L(f0) is
consider to be the approximation error. The empirical version of L(f) is defined
as Ln(f) =

1
n

∑n
i=1(Yi − f(Xi))

2.
According to Theorem 1, we need to establish bounds for the prediction error

under Model (2.11) in order to get the value reduction bound for our estimator.
Note that

L(f)− L(f0) = E[Y − f(X)]2 −E[Y − f0(X)]2

= −2E[Y f(X)] +E[f2(X)] + 2E[Y f0(X)]−E[f2
0 (X)]

= −2E[f0(X)f(X)] +E[f2(X)] +E[f2
0 (X)]

= E[f0(X)− f(X)]2,

(3.14)

where the third equality is based on the definition of f0(X) in Lemma 1. Thus

bounding the prediction error is equivalent to bounding the excess risk: L(f̂)−
L(f0), where f̂ is the estimator under Model (2.11). Based on statistical learning
theory, we have the following lemma.

Lemma 2. For any distribution P over (X, A,R) with |R| ≤ C0, if we use
bounded kernels in Model (2.11), then with probability at least 1 − ε, we can
have

L(f̂)− L(f0) ≤ 4M3Rn(Π) +M2

√
8 log( 1ε )

n
+A(λn), (3.15)

where Π = {f | f ∈ H1,
λn

2 ||f ||2H ≤ M1}, for some constants M1,M2 and M3.

Remark 4. This lemma quantifies the excess risk by two parts: the estimation
error and the approximation error. The estimation error corresponds to the first
two terms of the right hand side in (3.15). The approximation error A(λn) is
controlled by the tuning parameter λn.

Theorem 4. Consider HK in Model (2.11) to be RKHS with the Gaussian
kernel and suppose assumptions in Lemma 2 hold. If A(λn) ≤ C1λ

ω
n, where

ω ∈ (0, 1], then by choosing λn = O(n− 1
2ω+1 ), we have

L(f̂)− L(f0) ≤ c1n
− ω

2ω+1 ,

with probability at least 1− ε, for some constant c1 that is independent of n and
decreasing in ε.
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Remark 5. This theorem shows that the excess risk converges to 0 in probability
under some conditions. The upper bound assumption on the approximation error
A(λn) is standard in the statistical learning literature such as [29] to derive the
convergence rate. Replacing this upper bound assumption by the assumption that
X belongs to a compact metric space, convergence of the excess risk to 0 can still
be established by the universal consistency property of the Gaussian kernel ([28]).

Corollary 4.1. Let the tuning parameter be the one defined in Theorem 4. If
all the assumptions in Lemma 2 and Theorem 4 hold, and also gMC holds, then
with probability at least 1− ε, we have

V (d∗)− V (d̂) ≤ C3n
− ω(1+α)

(2ω+1)(2+α) (3.16)

for some constant C3, which is determined by the gMC constant and c1 in The-
orem 4.

Remark 6. Corollary 4.1 gives us the convergence rate of the value reduc-
tion bound for Model (2.11). The result does not require strong model assump-
tions, which can further demonstrate the robustness of our nonlinear D-learning
method.

4. Simulation study

In this section, we conduct extensive simulation studies to investigate D-learn-
ing’s finite sample performance. The outcome is generated following Model (2.7)
with W ∼ N (0, σ2), where σ is set to be 1 or 4. Each covariate is independently
generated by a uniform distribution between −1 and 1. The randomized treat-
ment A follows a uniform distribution among treatments. The number of repli-
cations is 100 times. We evaluate D-learning under both linear and nonlinear
settings in Sections 4.1 and 4.2 for binary treatments, and in Section 4.3 we
consider the multi-category setting.

4.1. Linear decision boundary study

We consider the sample size n = 100, 400 and the dimension p from 30 to 1920
increased by a factor of 4. We compare D-learning with the following three
methods:

(1) l1-PLS by [24] with basis function (1,X, A,XA);
(2) OWL by [37] with linear kernel;
(3) RWL by [39] with linear kernel.

The following four linear boundary scenarios are considered:

(1) m(X) = 1 + x1 + x2 + 2x3 + 0.5x4, δ(X) = 1.8(0.3− x1 − x2);
(2) m(X) = 1 + x1 + x2 + 2x3 + 0.5x4, δ(X) = 0.442|x3|(1− x1 − x2);
(3) m(X) = 1 + 2x1 + x2 + 0.5x3, δ(X) = 0.3(0.9− x1);
(4) m(X) = 1 + x2

1 + x2
2, δ(X) = 1.8(0.3− x1 − x2).
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The first scenario was considered in [39]. The second scenario corresponds to the
situation that x3 interacts with the treatment but does not affect the treatment
selection strategy. The third scenario represents the situation where prescriptive
variables have weak power to predict the outcome but are vital for decision
making, in terms of the effective size (ES) defined in [4]

ES =
|E[R|A = 1]−E[R|A = −1]|√
V ar[R|A = 1] + V ar[R|A = −1]

.

We can check that the effective size in the third scenario is small (less than
0.2). Thus it is hard to estimate the optimal ITR correctly, especially for the
l1-PLS method. The fourth scenario considers the nonlinear main effect m(X)
to evaluate the robustness of D-learning. In all four scenarios, optimal ITRs
depend on the first two covariates. We use 10-fold cross-validation to select
the tuning parameter based on the empirical value function over the validation
dataset. We evaluate all the methods based on two criteria. The first criterion
is the misclassification rate of the estimated ITR from the optimal ITR based
on the independently generated test data. The second criterion is the empirical
value function of the estimated ITR on the test data via (2.16). Specifically, we
generate 10, 000 independent test data to assess the performance based on these
two criteria.

Figure 1 shows the misclassification rates for all four scenarios when n = 100
and σ = 1. Additional simulation results are provided in the appendix. Based
on the results, we can conclude that for all situations, D-learning has compet-
itive low misclassification error rates than the other three methods, especially
when the noise is large. Specifically, for the first linear scenario, D-learning has
comparable performance with l1-PLS but performs better than OWL and RWL
in low dimensions. When the dimension gets higher, D-learning performs the
best among all methods. One potential reason of the competitive performance
of our proposed D-learning is the effective prescriptive variable selection in high
dimensional settings. For the second scenario, our method performs better than
l1-PLS because our proposed method can effectively identify prescriptive vari-
ables that have qualitative interactions with the treatment. For the third sce-
nario, l1-PLS performs worse than D-learning and RWL due to the mismatch
between prediction and ITR estimation in l1-PLS. The interaction effect term
in this example has little power in prediction. For the last scenario, since the
main effect is non-linear, RWL performs worse than D-learning and l1-PLS be-
cause of the improper residual calculation due to the model misspecification.
Our proposed D-learning does not need to modify the weights. Figure 2 corre-
sponds to the empirical value functions of estimated ITRs on test data for all
four scenarios. D-learning performs the best among most scenarios. Finally, we
compare D-learning with l1-PLS in selecting true prescriptive variables using
the average False Positive (FP) and False Negative (FN). Table 1 shows that
D-learning has comparable small average FNs as l1-PLS but much smaller aver-
age FPs than l1-PLS for both low and high dimensional problems. We conclude
that D-learning can better identify true variables of the optimal ITR for these
examples.
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Fig 1. Comparison of misclassification error rates for simulated examples n = 100 and σ = 1
on the test data. From left to right, each represents scenarios (1)–(4) respectively. The y-axis
denotes the misclassification error rates for four methods and the x-axis is the dimension p
from 30 to 1920 increased by a factor 4. Overall, D-learning performs the best compared to
other three methods.

4.2. Nonlinear decision boundary study

In this subsection, we evaluate D-learning when the true decision boundary
is nonlinear. We consider the sample size to be n = 100, 400 and dimension
of covariates p = 5, 50. We compare our methods including linear D-learning,
Gaussian kernel KKR D-learning, and Gaussian Kernel COSSO D-learning with
the following three alternative methods:

(1) l1-PLS with basis function (1,X, A,XA);
(2) RWL with linear kernel;
(3) RWL with Gaussian kernel.

We consider the following two nonlinear boundary scenarios:

(1) m(X) = 1 + x1 + x2 + 2x3 + 0.5x4, δ(X) = 3.8(0.8− x2
1 − x2

2);
(2) m(X) = 1 + x2

1 + x2
2 + x2

3 + 0.5x2
4, δ(X) = 1.3(x2 − 2x2

1 + 0.3).
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Fig 2. Comparison of empirical value functions for simulated examples with n = 100 and
σ = 1 on the test data. From left and right, each represents scenarios (1)–(4) respectively. The
y-axis denotes the empirical value functions for four methods and the x-axis is the dimension
p from 30 to 1920 increased by a factor 4. Overall, D-learning performs the best compared to
other three methods.

These examples were considered in [39]. The first scenario decision boundary
is a parabola while the second scenario corresponds to a circle boundary. From
Tables 2 and 3, we can see that, in general, nonlinear D-learning methods per-
form better than the other three methods, especially when the sample size is
large. In addition, our linear D-learning performs competitively even the deci-
sion function δ(X) is misspecified. In practice, the choice of kernel functions can
be viewed as part of the tuning parameter selection. One can use various kernel
functions such as linear, polynomial and Gaussian kernels, and then select the
best one using cross-validation. The optimal value is calculated via Ed[R] since
we know the optimal decision rule in simulation studies.

4.3. Multi-category linear decision boundary study

In this subsection, we evaluate our proposed multi-category D-learning when
the true decision boundary is linear. For comparison, we extend OWL and RWL
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Table 1

Variable selection performance for four linear scenarios based on average (std) FNs (%)
and FPs (%). The noise level σ is 1. The best average FNs and FPs are in bold.

n = 100, p = 30

FN (l1-PLS) FN (D-learning) FP (l1-PLS) FP (D-learning)

Scenario 1 0.01 (0.009) 0.00 (0.00) 10.79 (0.90) 6.12 (0.45)
Scenario 2 0.85 (0.09) 1.40 (0.07) 11.19 (0.86) 2.34 (0.32)
Scenario 3 0.00 (0.00) 0.00 (0.00) 8.32 (0.86) 5.50 (0.38)
Scenario 4 0.51 (0.05) 0.84 (0.04) 12.40 (0.98) 1.97 (0.24)

n = 100, p = 240

FN (l1-PLS) FN (D-learning) FP (l1-PLS) FP (D-learning)

Scenario 1 0.05 (0.03) 0.03 (0.02) 14.30 (0.79) 9.81 (0.86)
Scenario 2 1.80 (0.04) 1.65 (0.06) 12.72 (0.90) 6.67 (0.98)
Scenario 3 0.03 (0.02) 0.04 (0.02) 8.32 (0.94) 12.45 (0.89)
Scenario 4 0.97 (0.02) 0.92 (0.03) 12.58 (0.94) 5.11 (0.96)

Table 2

Results of average means (std) of empirical value functions and misclassification rates for
two simulations of nonlinear scenarios with 5 covariates on the test data. The best value

functions and minimal misclassification rates are in bold.

n = 100 n = 400

Value Misclassification Value Misclassification

Scenario 1 (Optimal value 1.96)

l1-PLS 1.69 (0.04) 0.23 (0.02) 1.72 (0.03) 0.22 (0.01)
KKR 1.48 (0.18) 0.31 (0.06) 1.60 (0.12) 0.26 (0.05)
RWL-Linear 1.64 (0.08) 0.25 (0.04) 1.73 (0.03) 0.24 (0.02)
RWL-Gaussian 1.73 (0.09) 0.21 (0.05) 1.88 (0.04) 0.11 (0.03)
D-learning 1.62 (0.1) 0.27 (0.05) 1.71 (0.05) 0.24 (0.02)
D-learning KKR 1.63 (0.1) 0.26 (0.05) 1.73 (0.07) 0.22 (0.04)
D-learning COSSO 1.79 (0.12) 0.17 (0.08) 1.92 (0.04) 0.07 (0.03)

Scenario 2 (Optimal value 3.88)

l1-PLS 2.96 (0.15) 0.38 (0.04) 3.02 (0.04) 0.37 (0.01)
KKR 3.01 (0.03) 0.37 (0.01) 3.07 (0.02) 0.37 (0.01)
RWL-Linear 3.12 (0.16) 0.35 (0.05) 3.27 (0.04) 0.31 (0.01)
RWL-Gaussian 3.62 (0.13) 0.19 (0.05) 3.81 (0.04) 0.11 (0.02)
D-learning linear 2.92 (0.17) 0.39 (0.07) 3 (0.06) 0.37 (0.02)
D-learning KKR 3.23 (0.1) 0.31 (0.03) 3.24 (0.1) 0.31 (0.03)
D-learning COSSO 3.61 (0.13) 0.30 (0.08) 3.85 (0.07) 0.09 (0.03)

methods to multi-category scenario by using the OVO multi-category classifi-
cation scheme. Here we consider two versions. One is to use the majority vote
OVO multi-category classification method, and the other is to use the procedure
similar to the effect measure used for D-learning as discussed in Section 2.3. We
name the first version as the hard OVO and the second one as the soft OVO.
We consider the sample size to be n = 800, 1600 and dimension of covariates
the same as the binary linear decision boundary study. Here we set σ to be 1
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Table 3

Results of average mean (std) of empirical value functions and misclassification rates for
two simulation of nonlinear scenarios with 50 covariates on the test data. The best value

functions and minimal misclassification rates are in bold.

n = 100 n = 400

Value Misclassification Value Misclassification
Scenario 1 (Optimal value 1.96)

l1-PLS 1.66 (0.06) 0.25 (0.03) 1.71 (0.03) 0.23 (0.01)
KKR 0.98 (0.19) 0.5 (0.06) 1.02 (0.11) 0.48 (0.04)
RWL-Linear 1.40 (0.13) 0.37 (0.04) 1.60 (0.06) 0.29 (0.03)
RWL-Gaussian 1.38 (0.14) 0.38 (0.04) 1.62 (0.06) 0.28 (0.03)
D-learning linear 1.56 (0.09) 0.31 (0.04) 1.68 (0.07) 0.25 (0.03)
D-learning KKR 1.46 (0.08) 0.35 (0.02) 1.48 (0.03) 0.35 (0.01)
D-learning COSSO 1.48 (0.2) 0.32 (0.08) 1.71 (0.09) 0.22 (0.05)

Scenario 2 (Optimal value 3.88)

l1-PLS 2.84 (0.19) 0.42 (0.05) 3 (0.04) 0.37 (0.01)
KKR 3.01 (0.02) 0.37 (0.01) 3.07 (0.02) 0.37 (0.00)
RWL-Linear 2.88 (0.17) 0.40 (0.05) 2.99 (0.05) 0.38 (0.01)
RWL-Gaussian 2.86 (0.19) 0.42 (0.05) 2.95 (0.09) 0.40 (0.02)
D-learning linear 2.91 (0.2) 0.4 (0.05) 2.99 (0.07) 0.38 (0.02)
D-learning KKR 2.93 (0.16) 0.39 (0.04) 3.01 (0.03) 0.37 (0.01)
D-learning COSSO 2.78 (0.22) 0.43 (0.05) 3.28 (0.32) 0.3 (0.09)

and simulation results with large σ are in the appendix. We compare our multi-
category D-learning with the following methods:

(1) l1-PLS with basis function (1,X, A,XA);
(2) hard OVO-OWL, soft OVO-OWL;
(3) hard OVO-RWL, soft OVO-RWL.

We consider the main model to be

R = m(X) + δ1(X)1(A = 1) + δ1(X)1(A = 2) + δ1(X)1(A = 3), (4.1)

with the following two linear boundary scenarios

(1) m(X) = 1 + x1 + x2 + 2x3 + 0.5x4,
δ1(X) = (0.3− x1 − x2), δ2(X) = 0.2x1 − x2, δ3(X) = 0;

(2) m(X) = 1 + x2
1 + x2

2,
δ1(X) = (0.3− x1 − x2), δ2(X) = 0.2x1 − x2, δ3(X) = 0.

The only difference between these two scenarios is the functional form of the
main effect. Figure 3 shows the misclassification rates for these two scenarios
with n = 1600 and σ = 1. Since it is often to have ties for the hard OVO-OWL
and OVO-RWL, according to our simulation study, the corresponding results of
the hard version are significantly worse than the soft version. We include the
comparison between hard and soft methods and additional simulation results
in the appendix. Based on the results, we can conclude that for both scenarios,
multi-category D-learning has the lowest error rates than the other three meth-
ods. Figure 4 corresponds to the empirical value functions of the estimated ITR
on the test data for these two scenarios. Our proposed multi-category D-learning
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Fig 3. Comparison of misclassification error rates for simulated examples with n = 1600 and
σ = 1 on the test data. From left to right, each represents multi-category scenarios (1)–(2)
respectively. The y-axis denotes the misclassification error rates for four methods and the
x-axis is the dimension p from 30 to 1920 increased by a factor 4.

Fig 4. Comparison of empirical value functions for simulated examples n = 1600 and σ = 1
on the test data. From left to right, each represents scenarios (1)–(2) respectively. The y-axis
denotes the empirical value functions for four methods and the x-axis is the dimension p from
30 to 1920 increased by a factor 4.

has the largest value functions among most scenarios. Finally, we compare the
computational time of D-learning with all other three methods in Table 4. Due
to the simplicity of D-learning, our proposed multi-category D-learning has the
lowest computational cost in most settings. As the dimension gets large, our pro-
posed multi-category D-learning is even faster than l1-PLS since l1-PLS needs
to fit LASSO regression with Kp + 2 variables and multi-category D-learning

only needs to fit K(K−1)
2 separate LASSO regression problems, each with p+ 1

variables.

5. Applications to AIDS clinical data

In this section, we apply D-learning with linear kernel to the data from AIDS
Clinical Trials Group (ACTG) 175 ([13]). This trial was designed to evaluate
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Table 4

Results of the average means (std) of CPU computational time for two multi-category
treatment settings. The lowest time costs are in bold.

n = 800 n = 1600

p = 30 p = 1920 p = 30 p = 1920n

Scenario 1

l1-PLS 0.41(0) 42.7(0.23) 0.45(0) 83.43(0.56)
soft OVO-OWL 35.84(0.27) 643.6(12.36) 102.21(0.59) 2493.02(47.6)
soft OVO-RWL 55.48(0.56) 340.76(7.02) 43.11(0.43) 556.96(10.23)
Multi D-learning 0.44(0) 10.56(0.05) 0.11(0) 32.71(0.22)

Scenario 2

l1-PLS 0.4(0) 41.24(0.26) 0.43(0) 79.48(0.42)
soft OVO-OWL 51.32(0.35) 1021.66(19.85) 152.19(0.83) 3786.63(62.21)
soft OVO-RWL 59.5(0.65) 398.88(8.31) 45.86(0.42) 667.63(8.82)
Multi D-learning 0.44(0) 10.82(0.07) 0.11(0) 33.5(0.25)

whether a single treatment of HIV infection is worse than the combination
treatments based on the counts of CD4+ T cells of patients. In this trial, 2139
patients with HIV infection were randomly assigned to four treatment groups
with the same probability: zidovudine (ZDV) monotherapy, ZDV + didanosine
(ddI), ZDV + zalcitabine (ZAL), and ddI monotherapy.

We choose the difference between early stage CD4+ T(cells/mm3) cell amount
and the baseline CD4+ T prior to trial as the clinical outcome. The larger this
change is, in general the better condition the patient is. In addition to the treat-
ment, we consider 12 clinical covariates in our model as done in [21] and [9].
Five of these covariates are continuous: weight (kg), CD4+ T cells amount at
baseline, CD8 amount at baseline(cells/mm3), age (year) and Karnofsky score
(scale at 0-100). The remaining seven covariates are binary: gender (0=female,
1=male), race (0=white, 1=non-white), homosexual activity (0 = no, 1 = yes),
history of intravenous drug use (0=no, 1=yes), symptomatic status (0=asymp-
tomatic, 1=symptomatic), antiretroviral history (0=naive, 1=experienced) and
hemophilia (0=no, 1=yes). For the interpretablity of the decision rule, we con-
sider to use linear D-learning to estimate ITR.

5.1. Pairwise comparison

Our first goal is to estimate the optimal ITR for the following four scenarios:

• Scenario 1: A = 1 for ZDV alone vesus A = −1 for the other three treat-
ments, with π(A = 1) = 0.25;

• Scenario 2: A = 1 for ZDV + ddI vesus A = −1 for ZDV + Zal, with
π(A = 1) = 0.5;

• Scenario 3: A = 1 for ZDV + ddI vesus A = −1 for ddI, with π(A = 1) =
0.5;



D-learning 3623

• Scenario 4: A = 1 for ZDV + Zal vesus A = −1 for ddI, with π(A = 1) =
0.5.

For scenario 1, the only non-zero coefficient of the estimated ITR by D-
learning is the intercept with a negative number, implying that the other three
treatments are better than ZDV.

For scenario 2, linear D-learning identifies three important prescriptive vari-
ables: age, homosexual activity, and baseline CD4+ T cell amount. The esti-
mated ITR is sign(41.38+14.03×age−13.45×baseline CD4+ cell−9.55×homo),
which is similar to the result in [21] but identifies one more variable: baseline
CD4+ T cell amount. For young patients having homosexual activity experi-
ence with high baseline CD4 + T cell amount, the estimated ITR assigns them
to the treatment ZDV + Zal. For old patients not having homosexual activity
experience with low baseline CD4 + T cell amount, the estimated ITR assigns
them to the treatment ZDV + ddI.

For scenario 3, D-learning identifies four important prescriptive variables: age,
homosexual activity, baseline CD4+ T cell and the history of intravenous drug
use. The estimated ITR is sign(37.19+7.94×age−25.20×baseline CD4+ cell−
25.19× homo+ 33.10× drug), which is similar to the results in [21] and [9] but
identifies one more variable: history of intravenous drug use. For young patients
having homosexual activity experience with the high baseline CD4 + T cell
amount but without using intravenous drug before, the estimated ITR assigns
them to the treatment ddI. For old patients not having homosexual activity
experience with low baseline CD4 + T cell amount but did use intravenous
drug before, the estimated ITR assigns them to the treatment ZDV + ddI.

For scenario 4, D-learning identifies one important prescriptive variable: his-
tory of intravenous drug use. The estimated ITR is sign(−10.43+ 9.45× drug).
However, the estimated ITR is always −1, which means the treatment ddI is
always preferable to the treatment ZDV + Zal. The efficacy of these two treat-
ments is similar when the patients have the history of using intravenous drug.

To compare D-learning with l1-PLS, linear OWL and linear RWL, we report
the empirical value functions in Table 5. We split the data into three folds and
use two of them as training data and the remaining as test data. The procedure
is repeated 1200 times.

From Table 5, we could see that D-learning has the highest empirical value
function in the first two scenarios. In the last two scenarios, while D-learning
is not the highest, it still performs well (second place). Overall, D-learning per-
forms better than the other three methods in finding the optimal ITR.

5.2. Overall comparison

So far, we have considered several binary problems to find the ITRs for each pair
of treatments separately. Compared with several alternative methods, the results
show that D-learning gives us better decision boundaries for choosing ITRs
between two treatments in order to maximize the outcome. Our second goal is
to estimate the optimal ITR for considering four treatments simultaneously.
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Table 5

Results of empirical value functions on test data for four scenarios of AIDS data. The best
empirical value function in each scenario is in bold.

l1-PLS OWL RWL D-learning

Scenario 1 33.32 (0.12) 24.93 (0.16) 34.61 (0.13) 36.15 (0.13)
Scenario 2 53.05 (0.27) 41.52 (0.26) 52.38 (0.26) 53.66 (0.25)
Scenario 3 54.82 (0.26) 42.03 (0.26) 57.83 (0.26) 56.04 (0.26)
Scenario 4 24.99 (0.30) 28.97 (0.19) 22.79 (0.30) 25.7 (0.21)

Table 6

Results of empirical value functions on the test data. The best empirical value function is in
bold.

l1-PLS 51.82 (0.33) hard OVO-RWL 21.32(1.03)
hard OVO-OWL 20.36(0.26) soft OVO-RWL 52.55 (0.29)
soft OVO-OWL 24.28 (0.37) Multi D-learning 55.95 (0.26)

Table 7

Results of estimated coefficients for comparison functions.

Variable Name (1-7) ZDV (f1(X))ZDV+ddI (f2(X))ZDV+Zal(f3(X))ddI (f4(X))
Intercept -165.26 163.63 -17.28 18.91

Age -8.24 30.89 -14.38 -8.27
Weight 0 0 0 0

Karnofsky Score -3.66 3.66 0 0
CD4 baseline 19.78 -57.71 11.33 26.59

Days pre-anti-retroviral therapy 0 0 0 0
Hemophilia 0 0 0 0

Homosexual activity 4.92 -41.00 10.44 25.64
History of drug use -19.48 53.03 19.09 -52.64

Race 16.53 -16.53 0 0
Gender 10.01 -10.01 0 0

Antiretroviral history 0 0 0 0
Symptomatic indicator 0 0 0 0

We first compare our proposed multi-category D-learning with l1-PLS, linear
OVO-OWL and linear OVO-RWL based on the empirical value function. Fol-
lowing the same procedure as before, we random split the data into three folds
and use two of them as the training data and the remaining as the test data.
The procedure is repeated 1200 times. The results are shown in Table 6. We
can see that multi-category D-learning has an significant advantage over other
three methods based on the value function. For further investigations, we report
coefficient estimation of linear comparison functions f̂k, where k = 1, · · · , 4 in
Table 7. Besides the important prescriptive variables identified in Section 5.1,
multi-category D-learning identifies three more variables: Karnofsky score (scale
at 0-100), gender and race, which play a moderate role in deciding the decision
rule because the absolute values of such coefficients are not large. Compared
with the coefficient estimation of prescriptive variables identified in Section 5.1,
the sign of multi-category D-learning coefficient estimation for those prescriptive
variables is consistent with the previous study. According to the previous study
by [13], treatment with ZDV + ddI, ZDV + Zal or ddI alone slows the pro-
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gression of HIV disease and is superior to the treatment with ZDV alone. This
is consistent with our findings. As found in [14], Zal has most serious adverse
event among other two treatments so it is general not recommended. Our finding
also supports this suggestion because the absolute value of coefficient estima-
tion of f3(X) is relatively small compared with others. In addition, according to
VIDEX (didanosine) released by Federal Drug Administration (FDA) http://
www.accessdata.fda.gov/drugsatfda docs/label/2006/020154s50,

20155s39,20156s40,21183s16lbl.pdf, ddI has a significant interaction with
allopurinol, which is sold by IV drug and tablet. Thus one should avoid using
them together. The large negative coefficient estimation of IV drug in f4(X) by
D-learning also supports this recommendation.

6. Discussion

In this article, we propose a direct learning (D-learning) method to estimate the
optimal ITR by reformulating the optimal decision function. D-learning is very
simple and flexible with highly competitive performance.

The goal of D-learning is to estimate the optimal ITR by combining the ad-
vantage of model-based methods such as l1-PLS and classification-based meth-
ods such as RWL and OWL. Because of its direct formulation, D-learning is
robust to potential model misspecification, and can unify the goal of predic-
tion and identification of the optimal ITR. Moreover, D-learning can be applied
to multiple treatment settings. The proposed D-learning methods indeed can
achieve better performance compared with several existing methods based on
the simulation and real data studies.

In this paper, we consider randomized clinical studies where propensity score
π(A,X) is assumed to be known. Although it can be estimated by statistical
models such as multinomial logistic regression in observational studies, it may
suffer from potential model misspecification in estimating propensity scores.
This limitation may be addressed by the results in [35]. In their work, by using
the augmented inverse probability weighting strategy, their methods have dou-
bly robust properties for observational studies. In particular, either the correct
postulated regression model or correct propensity score model gives the consis-
tency results. Another possible approach to relieve the risk of misspecification
to propensity score estimation in our proposed methods is to use nonparametric
methods, such as regression trees, to estimate π(A,X).

Several possible extensions can be explored for future study. The current
framework of D-learning focuses on estimating the single stage optimal ITR.
Extensions of D-learning to multiple-stage ITR problems can be obtained. Sev-
eral methods have been developed to explore the dynamic ITR such as [22],
[38] and [20]. We refer [17] for a review. It would be interesting to compare the
performance of D-learning in multiple stages with existing methods. Another
possible extension is to develop D-learning for other types of outcomes such as
binary data and survival time.

http://www.accessdata.fda.gov/drugsatfda_docs/label/2006/020154s50,20155s39,20156s40,21183s16lbl.pdf
http://www.accessdata.fda.gov/drugsatfda_docs/label/2006/020154s50,20155s39,20156s40,21183s16lbl.pdf
http://www.accessdata.fda.gov/drugsatfda_docs/label/2006/020154s50,20155s39,20156s40,21183s16lbl.pdf
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7. Appendix

7.1. More simulation results

For D-learning in the linear boundary case, we consider more situations where
σ can be 1 or 4 and sample size is 400. Figure 5 shows misclassification rates
for various settings. We can find the similar results as the case of n = 100
and σ = 1. When the σ becomes large, our proposed D-learning has the lowest
error rate than the other three methods. The corresponding value functions as
shown in Figure 6 is consistent with misclassification results. For multi-category
treatment settings, we present the simulation results for the remaining settings
such as n = 800, σ = 1, n = 800, σ = 4 and n = 1600, σ = 4. Our proposed
multi-category D-learning has the lowest error rate and highest empirical value
functions among all the methods as shown in Figures 7 and 8 respectively. In
addition, according to our results in Figures 9 and 10, we conclude that the
performance of soft OVO-OWL and OVO-RWL is better than hard OVO-OWL
and OVO-RWL.

7.2. Proof

Proof of Lemma 1

Proof. If the differential operator and expectation could exchange, let g(f) =
E 1

π(A,X) (2RA− f)2, and we have

∂g(f)

∂f
= EX{E[− 2

π(A,X)
(2RA− f(X))|X]]}

= EX{fE[
2

π(A,X)
|X]− 4E[

RA

π(A,X)
|X]}

= 4EX{f(X)−E[
RA

π(A,X)
|X]}

= 4EX{f(X)− f0(X)}.

Then ∂g(f0)
∂f0

= 0 and by convexity, we have

f0(X) ∈ argminE
1

π(A,X)
(2RA− f)2.
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Fig 5. Comparison of misclassification error rates on test data for simulated examples. From
top to bottom, each row represents scenarios (1)–(4) respectively. The y-axis denotes the
misclassification error rates for four methods and the x-axis is the dimension p from 30 to
1920, increased by a factor 4.

Proof of Theorem 1

Proof. For any decision rule d, we have

V (d) = E[
R

π(A,X)
I(A = d(X))]
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Fig 6. Comparison of empirical value functions on test data for simulated examples. From
top to bottom, each row represents scenarios (1)–(4) respectively. The y-axis denotes the
empirical value functions for four methods and the x-axis is the dimension p from 30 to 1920,
increased by a factor 4.

= E{
K∑

k=1

E[R|X, A = k]I(d(X) = k)}

= E{E[R|A = i,X] +
K∑
k �=i

(E[R|X, A = i]−E[R|X, A = k])I(d(X) = k)}
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Fig 7. Comparison of misclassification error rates on test data for simulated examples. From
top to bottom, each row represents multi-category scenarios (1)–(2) respectively. The y-axis
denotes the misclassification error rates for four methods and the x-axis is the dimension p
from 30 to 1920, increased by a factor 4. Overall, multi-category D-learning performs the best
compared to other three methods.

= E{E[R|A = i,X] +

K∑
k �=i

fki(X)I(d(X) = k)}.

By repeating this for K times with different i in the above, we can get

V (d) =
1

K

K∑
i=1

{E{E[R|A = i,X] +

K∑
k �=i

fki(X)I(d(X) = k)}}

= E{ 1

K

K∑
i=1

E[R|A = i,X]}+ 1

K

K∑
k=1

fk(X)I(d(X) = k)}.

Then, we have the value difference to be

V (d0)− V (d̂n)

= E[
1

K

K∑
k=1

fk(X)I(d0(X) = k)]− E[
1

K

K∑
k=1

fk(X)I(d̂(X) = k))]

=
1

K
E[

K∑
k=1

fk(X)(I(d0(X) = k)− I(d̂(X) = k))]

≤ 1

K
E[

K∑
i �=j

|fi(X)− fj(X)|(I(d0(X) = i, d̂(X) = j)]
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Fig 8. Comparison of empirical value functions on test data for simulated examples. From
top to bottom, each row represents scenarios (1)–(2) respectively. The y-axis denotes the
empirical value functions for four methods and the x-axis is the dimension p from 30 to 1920,
increased by a factor 4. Overall, multi-category D-learning performs the best compared to
other three methods.

≤ 1

K
E[

K∑
i �=j

|fi(X)− fj(X)|I((fi(X)− fj(X))(f̂i(X)− f̂j(X)) < 0)]

≤ 1

K
E[

K∑
i �=j

|fi(X)− fj(X)− (f̂i(X)− f̂j(X))|

× I((fi(X)− fj(X))(f̂i(X)− f̂j(X)) < 0)]

≤ K − 1

K

K∑
k=1

(E[||fk(X)− f̂k(X)||22])
1
2 ,

where the Hölder and Minkowski inequality are used in the last inequality. If
Condition (3.1) is assumed as well, then we have

V (d0)− V (d̂n)

≤ 1

K
E[

K∑
i �=j

|fi(X)− fj(X)|I((fi(X)− fj(X))(f̂i(X)− f̂j(X)) < 0)]

≤ 1

K

K∑
i �=j

{2εE[I(|fi(X)− fj(X)| ≤ 2ε)I((fi(X)− fj(X))(f̂i(X)− f̂j(X))< 0)]

+
1

2ε
E[(fi(X)− fj(X))2I((fi(X)− fj(X))(f̂i(X)− f̂j(X)) < 0)]}
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Fig 9. Comparison of misclassification rates on test data for simulated examples. From top
to bottom, each row represents scenarios (1)–(2) respectively. The y-axis denotes the misclas-
sification rates for soft and hard versions of OVO-OWL and OVO-RWL and the x-axis is
the dimension p from 30 to 1920, increased by a factor 4. Overall, the soft version performs
better than the hard version.

Fig 10. Comparison of empirical value functions on test data for simulated examples. From
top to bottom, each row represents scenarios (1)–(2) respectively. The y-axis denotes the
empirical value functions for soft and hard versions of OVO-OWL and OVO-RWL and the
x-axis is the dimension p from 30 to 1920 increased by a factor 4. Overall, the soft version
performs better than the hard version.

≤ 1

K

K∑
i �=j

{εP (|(fi(X)− fj(X))| ≤ ε)

+
1

ε
E||fi(X)− fj(X)− (f̂i(X)− f̂j(X))||22}

≤ 1

K

K∑
i �=j

{2Cεα+1 +
1

2ε
E[||fi(X)− f̂i(X)||]22 +

1

2ε
E[||fj(X)− f̂j(X)))|]|22}
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≤ 2(K − 1)Cεα+1 +
1

2ε

K − 1

K

K∑
k=1

(E[||fk(X)− f̂k(X)||22])
1
2 .

Choosing ε = (
∑K

k=1 E[||fk(X)−f̂k(X)||2]
KC )

1
α+2 to minimize the above upper bound

yields

V (d0)− V (d̂n) ≤ C ′(K)(

K∑
k=1

E[||fk(X)− f̂k(X)||22])
1+α
2+α . (7.1)

When K = 2, the result is similar.

Proof of Theorem 2

Lemma 3 (Nemirovski moment inequality). For m ≥ 1 and p ≥ em−1, we have
the following inequality

E max
1≤j≤p

|
n∑

i=1

(γj(Zi)−Eγj(Zi)|m ≤ [8 log(2p)]
m
2 E[ max

1≤j≤p

n∑
i=1

γ2
j (Zi)]

m
2 . (7.2)

Next we prove Theorem 2.

Proof. We start from the following basic inequality

||X(β̂ − f0)||22/n+ λ||β̂||1 ≤ 2εTX(β̂ − β∗)/n+ λ||β∗||1 +
||Xβ∗ − f0||22

n
. (7.3)

For the first term in the left hand, by the Hölder’s inequality we can have

2|εTX(β̂ − β0)/n| ≤ ( max
1≤j≤p

2|εTX(j)|/n)||β̂ − β0||1.

Let λ0 = 16
√
2t2

√
log2(2p)

n and define a set

Λ := {2 max
1≤j≤p

|εTX(j)|/n ≤ λ0}. (7.4)

By applying Lemma 3 with m = 2, we can bound P (Λc) as follow:

P (Λc) = P ({2 max
1≤j≤p

|εTX(j)|/n ≥ λ0})

≤ Emax1≤j≤p 4|εTX(j)|2/n2

λ2
0

≤
4[8 log(2p)/n]E[max1≤j≤p

∑n
i=1 ε

2
iX

2
ij/n]

16× 32t2 log2(2p)
n

≤ a2
∑n

i=1 Eε2i /n

16t2 log(2p)
=

a2(4||Xγ0||22/n+ 4σ2)

t2 log(2p)

≤ a2(Φ||γ0||22 + σ2)

4t2 log(2p)
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≤ a2(ΦO(log(2p)) + σ2)

4t2 log(2p)

≤ C

t2
.

Thus we have

P (Λ) ≥ 1− C

t2
for any t > 0.

With probability at least 1− α, where α = C
t2 for sufficiently large t, we have

||X(β̂ − f0)||22/n+ λ||β̂||1

≤ ( max
1≤j≤p

2|εTX(j)|/n)||β̂ − β∗||1 + λ||β∗||1 +
||Xβ∗ − f0||22

n

≤ λ0||β̂ − β∗||1 + λ||β∗||1 +
||Xβ∗ − f0||22

n
.

Let λ ≥ 4λ0 = 16
√
2t2

√
log2(2p)

n , then we have the following lemma.

Lemma 4. On the set Λ, with λ ≥ 2λ0,

4||X(β̂ − f0)||22/n+ 3λ||β̂Sc
∗ ||1 ≤ 5λ||β̂S∗ − β∗

S∗ ||1 + 4||Xβ∗ − f0||22/n, (7.5)

where S∗ = {j : β∗
j �= 0}.

Proof. Focusing on the event Λ, by (7.3), and λ = 4λ0, we have

4||X(β̂ − β0)||22/n+ 4λ||β̂||1 ≤ λ||β̂ − β0||1 + 4λ||β0||1.
By the triangle inequality

||β̂||1 = ||β̂S∗ ||1 + ||β̂Sc
∗ ||1

= ||βS∗ − (β∗
S∗ − β̂S∗)||1 + ||β̂Sc

∗ ||1
≥ ||βS∗ ||1 + ||β∗

S∗ − β̂S∗ ||1 + ||β̂Sc
∗ ||1,

(7.6)

and ||β̂−β∗||1 = ||β∗
S∗

− β̂S∗ ||1+ ||β̂Sc
∗ ||1. Then the desired inequality holds.

By using this lemma, we have

4||X(β̂ − f0)||22/n+ 3λ||β̂ − β∗||1
=4||X(β̂ − β∗)||22/n+ 3λ||β̂S∗ − β∗

S∗ ||1 + 3λ||β̂Sc
∗ ||1

≤12λ||β̂S∗ − β∗
S∗ ||1 ≤ 12

√
s∗λ||X(β̂ − β∗)S∗ ||2/(

√
nφ∗)

≤√
s∗||Xβ̂ − f0 + f0 −Xβ∗||2/(

√
nφ∗)

≤12
√
s∗||Xβ̂ − f0||2/(

√
nφ∗) + 12

√
s∗||Xβ∗ − f0||2/(

√
nφ∗)

≤6||Xβ∗ − f0||22/n+
24λ2s∗
φ2
∗

+ 2||Xβ̂ − f0||2.

(7.7)

Then
2||Xβ̂−f0||22

n +3λ||β̂−β∗||1 ≤ 6||Xβ∗−f0||22/n+ 24λ2s∗
φ2
∗

. In particular, if the

underlying function f0 is linear, i.e. there exists a β∗ such that f0 = xTβ∗, then
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the first term of the right hand is 0, and
2||Xβ̂−f0||22

n + 3λ||β̂ − β∗||1 ≤ 24λ2s∗
φ2
∗

=

O( log(2p)n ).

Proof of Theorem 3

The results follow directly by combining Theorems 1 and 2.

Proof of Theorem 2

Proof. We first decompose the excess risk into estimation error and approxima-
tion error as follows:

L(f̂)− L(f0)

≤L(f̂)− Ln(f̂) + Ln(f̂) +
λn

2
||f̂ ||2H

−(Ln(fλn) +
λn

2
||fλn ||2H) + Ln(fλn)− L(fλn) +A(λn)

≤(L(f̂)− Ln(f̂)) + (Ln(fλn)− L(fλn)) +A(λn)

=(I) + (II) +A(λn),

where the first two terms (I) and (II) are estimation errors. The last inequality

is because of the definition of f̂ .
In order to bound the estimation error, we first obtain the bounds for ||f̂ ||H

and ||fλn ||H correspondingly. By the definition of f̂ in Model (2.11), we have

Ln(f̂) +
λn

2
||f̂ ||2H ≤ Ln(0),

where Ln(0, 0) =
1
n

∑n
i=1 R

2
i ≤ M1, since R is bounded by C0 by assumption.

Since Ln ≥ 0, we can have λn

2 ||f̂ ||2H ≤ M1 and |Ln(f̂)| ≤ M1, or equivalently

D(f̂(Xi)) = (Ri − f̂(Xi))
2 ≤ M2 since |f̂(Xi)| ≤ ||f̂ ||H supX∈X K(X,X). By

the similar argument, we can also obtain λn

2 ||fλn ||2H ≤ M1 and |D(fλn)| ≤ M2.
Define the following functional class

Ξ := {D(f) | f ∈ H,
λn

2
||f ||2H ≤ M1, |D(f)| ≤ M2}.

Let {Zi}ni=1 = {Xi, Ai, Ri}ni=1 and Pn be the corresponding empirical measure
on Zn. We first derive the bound for the estimation errors (I) and (II). For
the term (I), note that (I) ≤ supΞ PD(f) − PnD(f), where P is probability
measure of (X, A,R). When any (Xi, Ai, Ri) changes, by the definition of Ξ,
supΞ PD(f)− PnD(f) is changed no more than M2

n . Then by the McDiarmid’s
inequality, with probability at least 1− ε

2 , we can get

sup
Ξ

PD(f)− PnD(f) ≤ E[sup
Ξ

PD(f)− PnD(f)] +M2

√
2 log( 1ε )

n
. (7.8)
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Using the idea of symmetrization by introducing data {Z ′
i}ni=1 and Rademacher

variables {σi}ni=1, where σi is uniform over {1− 1}, we can obtain

E[sup
Ξ

PD(f)− PnD(f)] ≤ E[sup
Ξ

E[P ′
nLS(f, α)− PnLS(f, α)]]

≤ E[sup
Ξ

P ′
nD(f)− PnD(f)]

= E[sup
Ξ

Pnσ(D(f)−D′(f)]

≤ E[sup
Ξ

PnσD(f)] +E[sup
Ξ

−PnσD(f)]

= 2E[sup
Ξ

PnσD(f)]

= 2Rn(Ξ).

For the term (II), by the similar argument, we can show with probability at
least 1− ε

2 that

(II) ≤ sup
Ξ

PnD(f)− PD(f)

≤ E[sup
Ξ

PnD(f)− PD(f)] +M2

√
2 log( 1ε )

n

≤ 2Rn(Ξ) +M2

√
2 log( 1ε )

n
.

(7.9)

Then combining bounds of (I) and (II) together gives that with probability at
least 1− ε,

(I) + (II) ≤ 4Rn(Ξ) +M2

√
8 log( 1ε )

n
. (7.10)

Define a class of functions as

Π := {f | f ∈ H,
λn

2
||f ||2H ≤ M1}.

Note that D(f) is Lipschitz with constant M3 over Ξ. By Corollary 3.17 in [18],
we have

Rn(Ξ) ≤ M3Rn(Π). (7.11)

Thus, combining together, with probability 1− ε,

L(f̂)− L(f0) ≤ 4M3Rn(Π) +M2

√
8 log( 1ε )

n
+A(λn).

Proof of Theorem 4

Proof. Based on the assumptions and the definition of Π, by Lemma 22 in [2],
we have

Rn(Π) ≤
√

2M1

nλn
.
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According to Theorem 2 and assumptions on the approximation error, with
probability 1− ε,

L(f̂)− L(f0)

≤4M1Rn(Π) +M2

√
8 log( 1ε )

n
+A(λn)

≤max(
√

32M2
1 ,M2

√
8 log(

1

ε
))

√
1

nλn
+ C1λ

ω
n .

Then optimizing the right hand side with respect to λn, we can let λn =

O((n− 1
2ω+1 ) and obtain the final result in the sense that with probability at

least 1− ε,

L(f̂)− L(f0) ≤ c1n
− ω

2ω+1 ,

for some constant c1 decreasing in ε.

Proof of Corollary 4.1

Proof. The results follow directly by combining Theorems 1 and 4.
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