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Abstract: The aim of this paper is to provide a new design strategy for re-
sponse adaptive randomization in the case of normal response trials aimed
at testing the superiority of one of two available treatments. In particular,
we introduce a new test statistic based on the treatment allocation propor-
tion ensuing the adoption of a suitable response adaptive randomization
rule that could be more efficient and uniformly more powerful with re-
spect to the classical Wald test. We analyze the conditions under which the
suggested strategy, derived by matching an asymptotically best response
adaptive procedure and a suitably chosen target allocation, could induce
a monotonically increasing power that discriminates with high precision
the chosen alternatives. Moreover, we introduce and analyze new classes of
targets aimed at maximizing the power of the new statistical test, show-
ing both analytically and via simulations i) how the power function of the
suggested test increases as the ethical skew of the chosen target grows,
namely overcoming the usual trade-off between ethics and inference, and
ii) the substantial gain of inferential precision ensured by the proposed
approach.
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1. Introduction

The demands of individual care and experimental information often come into
conflict and the ensuing ethical problem, usually referred to as individual-versus-
collective ethics, is how to balance the welfare of the patients in the trial against
a possible knowledge gain that will improve the care of future patients. In the
context of clinical trials, especially in phase-III trials for treatment comparisons,
it is widely accepted that Response Adaptive (RA) randomization is a possible
answer and this is the reason for which over the past two decades there has
been a growing stream of statistical papers on this topic [for a recent review see
2, 5].

Often the conflicting goals related to the ethical demand of maximizing the
subjects care and to the statistical aim of drawing correct inferential conclusions
with high precision can be formalized into suitable (constrained/combined) op-
timization problems; in this setting, several authors derived target allocations
of the treatments that could be regarded as a valid trade-off among ethics
and inference [see e.g. 19, 22, 4]. Generally, these targets depend on the un-
known model parameters and they can be approached asymptotically by using
suitable RA randomization procedures, namely sequential allocation rules that
change at each step the probabilities of treatment assignments to the patients
on the basis of earlier responses and past allocations, in order to converge to
the chosen target. Classical examples are the well-known doubly-adaptive bi-
ased coin design [13] and the efficient randomized adaptive design (ERADE)
[14].

Although U.S. government agencies and Health Authorities encourage the
adoption of RA procedures [9, 10], their use remains controversial due to some
inferential problems that could arise [20, 21]. Indeed, due to the adaptation pro-
cess, RA designs induce a complex dependence structure between the outcomes;
moreover, the allocations are themselves informative on the model parameters
and therefore the ensuing statistical inference must be unconditional on the
design, so it should take into account the randomness of the design as well
[see 12, 5]. In this context, several authors provide the conditions under which
the maximum likelihood estimators (MLESs) retain the strong consistency and
asymptotic normality properties, that allow one to apply the usual asymptotic
inference like, e.g., the classical Wald test. However, the large majority of the
design literature is focused on the problem of optimizing the estimation of the
treatment effects, while little attention is devoted to hypotheses testing, which
has been approached almost exclusively for binary response trials. In particular,
Hu and Rosenberger [11, 12] showed that the asymptotic power of the Wald
test for testing the equality of the probabilities of success of the treatments is
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negatively affected by the variability of the design; then, they introduced the
concept of asymptotically best design, namely RA procedures which, by satisfy-
ing a CLT property with asymptotic variance attaining its minimum (i.e., the
Rao-Cramér lower bound), guarantee an asymptotically best power (like, for
instance, the ERADE). Adopting a large deviations approach, Azriel et al. [3]
derived an optimal target allocation in the case of two treatments that max-
imizes the asymptotic power of Wald test, showing that the ensuing target is
quite close to the balanced one (namely the target allocation optimizing the
power under homoscedastic outcomes), and so significantly different from the
Neyman allocation (i.e., the optimal target under heteroscedasticity). Moreover,
Yi and Wang [23] compared the performances of Wald, score, and likelihood ra-
tio tests under RA designs for binary outcomes, showing how these tests are
still asymptotically equivalent, with a slight superiority of Wald test. While in
the case of homoscedastic normal response trials, Baldi Antognini et al. [6] re-
cently showed how some target allocations may induce an anomalous behaviour
of the power of Wald test, that could be locally decreasing or could vanish
as the difference between the treatment effects grows, also suggesting a suit-
able modified version of Wald statistic which avoids some degenerate scenar-
ios.

Since in some circumstances the treatment allocation proportion ensuing the
adoption of an RA design behaves as a proper estimator of the chosen target,
that could be consistent and asymptotically normal, the aim of this paper is
to provide a new statistical test for clinical trials with normal responses which,
based on the proportion of treatment assignments, is very simple to implement
and allows one to discriminate with high precision the chosen alternatives. By
combining this new test with both i) an asymptotically best RA procedure and
ii) a suitably chosen target allocation, it is possible to identify a new design
strategy that could be more efficient with respect to the classical Wald test,
even if matched with the balanced target in the case of homoscedastic outcomes
or the Neyman allocation under heteroscedasticity.

More specifically, we derive the conditions on the suggested design strategy
under which the power function of the new test monotonically increases as the
sample size or the difference between the treatment effects grows. Moreover, we
analyze classes of targets aimed at maximizing the power of the new test, also
showing how this power function monotonically increases as the ethical skew of
the chosen target grows, namely overcoming the usual trade-off between ethics
and inference. Throughout the paper, some simulation studies are performed in
order to show the consistent gain of inferential precision ensured by the proposed
approach, which leads to a substantial gain of power, in some circumstances 10%
higher than the classical Wald test’s one.

The paper is structured as follows. Starting from some preliminaries in Sec-
tion 2, Section 3 introduces the new test for normal homoscedastic outcomes,
while Section 4 deals with the case of heteroscedasticity. Several examples are
provided and some simulations are performed in order to validate the theoret-
ical results, stressing also some practical implications related to the proposed
methodology. Finally, Section 5 deals with some conclusions.
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2. Some preliminaries
2.1. Normal model and target allocations

Suppose that patients come to the trial sequentially and are assigned to one
of two competing treatments, say A and B. At each step ¢ > 1, let J§; be the
indicator managing the allocation of the ith subject, more specifically §; = 1
if he/she is assigned to A and 0 otherwise, and let Y; be the corresponding
response. Conditionally on the allocations, patients’ responses are assumed to
be independent following (almost approximately) normal distributions with

E(Y) =8 pa+(1—=6) pp, V(YY) =06 0%+ (1 —8) 0%, i=1,....n,

where p; and 0]2- denote the mean and the variance under treatment j = A, B.
After n assignments, let i, be the MLE of the treatment effect u; (i.e., the
corresponding sample mean), while 7, = n~'Y "  §;, and (1 — m,) are the
allocation proportions to A and B, respectively.

Under this setting, inference is usually focused on the difference y = s —pup
between the treatment effects, so that from now on suppose that the interest
lies in testing the superiority of a treatment (say A) in a “the-larger-the-better
scenario”, namely testing the null hypothesis Hy : p = 0 against the right-tailed
alternative Hy; : p > 0 (the two-tailed alternative can straightforwardly be
derived). Notice that, under this scenario, pp is usually regarded as a nuisance
parameter; moreover, when 04 = 0% = o2 this corresponds to test the stochastic
dominance of treatment A over B with respect to the usual stochastic order;
while in the case of heteroscedastic responses, when 0% > 0% it corresponds to
check if A is greater than B in monotone convex order.

The ethical concern consisting in assigning more patients to the better treat-
ment collides with the inferential goal of deriving correct statistical conclusions
with high precision. This duality could be overcome by means of the adoption
of a suitable target allocation p to A (conversely, 1 — p to B) combining these
goals. Generally, these targets should depend on both i) the difference u € R
between the treatment effects, in order to skew the assignments to the better
performing treatment, and ii) a tuning parameter T > 0 which manages the
randomization component of the target, namely low values of T" accentuate the
ethical skew to the better treatment, while as T grows the ethical component
vanishes and the target tends to the balanced one. Thus, from now on we take
into account target allocations p(u) = p(u, T') satisfying for any fixed T > 0 the
following properties:

Al: p:R— (0,1) with p(z) =1 — p(—x);
A2: p(x) is increasing in « with lim,_,o p(z) = k € (1/2,1] (usually k = 1);
A3: p(x) is twice continuously differentiable in z.

These are natural conditions widely satisfied by the target allocations suggested
in the literature. In particular, Al ensures that both treatments are treated
symmetrically, namely the target does not change if the treatment labels are
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switched. The ethical requirement A2 ensures that the superior treatment should
be favored, while A3 is a technical condition.

As discussed in Baldi Antognini et al. [6], for any chosen T' the behaviour of
the target p could be represented by the cdf of a continuous r.v. centered at 0
and having support on R, like the Normal target suggested in Bandyopadhyay
and Biswas [8] and Atkinson and Biswas [1]:

pn(z) =@(z/T), z€R, (2.1)

where @ is the cdf of the standard normal. This target also coincides with the
one proposed by Ivanova et al. [15] in the homoscedastic case with T' = 20+/2.

From A1, p could also be characterized by re-scaling the cdf of a continuous
random variable defined in R™ U {0}, such as the exponential one

M, 2>0 (2.2)
(i.e., the Laplace cdf). Letting dp/dx = pl,, then pl (-) can be regarded as the
connected pdf: from A2 p/(z) > 0 for any z € R and, accordingly to A3,
lim, 00 p(2) = 0 and lim, o zpl, () = 0 to ensure integrability. Finally, ob-
serve that any given target p satisfying A2 with £ = 1 can be univocally re-scaled
to any desired threshold k € (1/2,1) by letting p = (2k — 1)p+ 1 — k.

Clearly, the target function could not only depend on the difference p be-
tween the treatment effects, but also on some nuisance parameters. In this case,
condition Al could be replaced by

pe(r) =1-

A1: p(x) : R — (0,1) is invariant under label permutation of the treatments
with p(0) = 1/2.

For instance, to encompass “the-larger-the-better” framework, Zhang and Ro-
senberger [24] (page 564) briefly discussed the target

plz) = TA\HA _ 0AVZ + B
oa/ltA+0B\EB oaJTF+ B+ oB/iB
As correctly stated by the authors, this target does not have any natural inter-

pretation. Clearly, it satisfies A1’ only in the homoscedastic case; whereas, for
heteroscedastic outcomes

oA " 1
O = — = —
p(0) oiton P # 5

HA, B > 0.

where p* is the well-known Neyman allocation, one of the most commonly cited
targets. However, p* does not have any ethical appeal, since it could assign the
majority of patients to the worst treatment, and it does not satisfy assumptions
AT-A2.

2.2. Wald test for RA designs

Given a desired target p(u), RA randomized procedures could be employed to
converge to it. After an initial sample size of ng allocations to both treatments
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in order to derive non-trivial estimates, at each step n > 2ng, u is estimated by
means of fi,, = fian— fipn and the target is estimated accordingly by p, = p(fin);
then, the next assignment is forced to the better performing treatment and the
allocation proportion m, progressively approaches p as n grows. Given a target
satisfying A1-A3, several authors [see e.g. 17, 7] provided the conditions under
which the allocation proportion is a strong consistent estimator of the target,
namely lim, . 7, = p(n) a.s. These conditions, usually satisfied by the RA
rules suggested in the literature (like, e.g., the sequential ML design [17], the
doubly adaptive biased coin design and the ERADE; for a general discussion
see [12, 5]), also guarantee the strong consistency and the asymptotic normality
of the MLEs, i.e., limy, oo (fian, fiBn) = (a4, uB) a.s. and, as n — oo,

2

A S G G
R g on)
that implies
iU - N

Taking now into account the case of homoscedastic outcomes with unknown
common variance 02 = 04 = 0% (for the heteroscedastic case see Section 4),

Wald test statistic is
n . n —
Wo = [ =5 fn v/ p(fin) [1 = p(itn)]; (2.5)

where 62 is the usual pooled sample variance. Since lim, o m, = p() a.s.,
then lim,, o 62 = 02 and lim,, o p(f1n) = p(p) a.s. Under Hy, W, converges
in distribution to a standard normal r.v. so that, letting 2z, be the a-percentile
of @, the power of the right-sided test W,, of level a can be approximated
by

o <\fu p()[1 = p(p)] — 21—a> . pu>0, (2.6)
since in a large sample set-up 62 ~ o2 and p(fi,) ~ p(u). When o? is a-
priori known, Wald test (2.5) has the same form with 62 replaced by o2 and
therefore the corresponding power function can still be approximated by (2.6).
As is well-known, power (2.6) is maximized when the allocations are balanced,
namely if p(p) = 1/2 for any p, which conversely does not satisfy any ethical
issue.

Within this framework, a first fundamental requirement of Wald test W,
is that the corresponding power function should tend to one as n grows, that
is clearly satisfied for every fixed p > 0. Moreover, for any fixed n (sufficiently
large for the CLT approximation), other additional properties are that the power
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should i) converge to one as p grows and ii) be monotonically increasing in p.
As showed in Baldi Antognini et al. [6], these requirements induce the following
restrictions on the adopted target p:
lim z2[1 — p(z)] = oo, (2.7)
r—r 00

namely i) is fulfilled for targets with a low ethical improvement (or targets with
k <1in A2), while

p(@)[L = p(@)] = wp,(2)lpla) — 1/2],  forevery x>0,  (28)

in order to satisfy ii). Note that these conditions are not trivial and involve the
entire functional form of the chosen target. For instance, they fail for py and
pE, while both of them are satisfied by the targets

1 x

=+ forz>0 2.9
2 T rax) TS (2.9)

and

1
ps(x) = 5 + __Vr for z > 0. (2.10)

2(T + x)’
3. The new design-based test for homoscedastic normal outcomes

When the desired target satisfies A1-A3, then p(-) is monotone in p and so in-
vertible: in this setting, testing the equality of the treatment effects Hy : p =0
is equivalent to testing Hy : p(u) = 1/2 (alternative one- or two-tailed hypothe-
ses can be derived accordingly). At the same time, if the chosen RA procedure
converges almost surely to the desired target, p,, and the allocation proportion
T, are competing estimators of p. Moreover, when the RA rule satisfies also
a CLT property, then the allocation proportion itself could be regarded as a
strong consistent and asymptotically normal estimator of p and if the design is
asymptotically best, then the asymptotic variance of the allocation proportion
achieves its minimum.

Thus, in the following we will focus on asymptotically best RA rules, namely
RA procedures such that, as n — oo,

Vi, — plu) = N(0,2%) (3.1)

with asymptotic variance attaining the Rao-Cramér lower bound
N= R (3.2)

(recalling that 1 = a4 — pp, Op(pa — pp)/Opa = —0p(pa — pp)/Ops). Thus,
letting A2 = 62 [p}, (fin)]?[mn (1 —m,)] ! be a suitable consistent estimator of the
asymptotic variance A2, which employs the current allocation proportion m,, to
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estimate p(u) in order to prevent degenerate scenarios [see 6, for a thorough
discussion|, we propose the following test statistic

« 1

Zn =\, /0 (m - 5) . (3.3)
Under Hy, Z, converges to a standard normal distribution and therefore the
rejection region is

anlfa 1

Vn 2
Thus, given the consistency of An, the power of the right-tailed test Z,, of level
« can be approximated by

(£

Ty >

} p(u)[l—p(u)]—m), ps0. (34)

Remark 3.1. Due to the complex dependence structure induced by RA ran-
domization, the exact distribution of the MLEs as well as that of a given test
statistic is not available for a fixed sample size. Therefore, the exact power of
a test cannot be computed. Within this framework, the approximated power
functions in (2.6) and (3.4) are based on the CLT for the corresponding test
statistics. These normal-type approximations have been suggested and applied
by several authors (see, e.g., Chapter 3 of Lehmann [16] for a general discussion
and [18, 12, 22] for their application to the clinical context) and they are ex-
tremely accurate and particularly effective in a moderate-large sample setting,
namely the most representative framework in the context of phase-III clinical
trials, instead of an asymptotic one (note that, from an asymptotic viewpoint,
under the “local alternative” approach the alternative hypothesis takes the form
Hi : p=46/+/n, so the power functions of W,, and Z,, converge to the same limit
d (% — zl,a), namely these tests perform equally since their asymptotic local
powers coincide).

Thus, in this paper we compare tests W,, and Z, from a methodological
viewpoint on the basis of the approximated power functions in (2.6) and (3.4),
henceforth referred to as power or approximated power, likewise. The ensuing
theoretical properties will also be explored through simulations, where the be-
haviour of the simulated power confirms our analytical results.

3.1. Properties of the power of test Z,

To analyze the behaviour of the power of test Z, it is suitable to rewrite (3.4)
as ¢ (\/ﬁcf*lpG(u) - zl_a), since the power depends on p only through the
adopted target by the function

6= 6w = PO @@L es0 @39)
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Firstly, observe that ,G(x) > 0 for any « > 0, so that the power of test Z,
tends to one as n grows regardless of the adopted target. Whereas, function
(3.4) tends to one as p grows if and only if the target is chosen such that
lim; o ,G(2) = 00, namely if p satisfies the following condition:

L—p(x)

lim = o0. (3.6)

a0 [pf, (z)]?
This is trivially fulfilled for targets with k& € (1/2,1) in A2; whereas when
k =1, it is easy to check that condition (3.6) is also satisfied by any previously
introduced target.
The following Lemma 1 and Corollary 3.1 provide the conditions on the
chosen target under which the ensuing approximated power of test Z,, is mono-
tonically increasing in p.

Lemma 1. Approzimated power function (3.4) is monotonically increasing in
w if and only if the target is chosen such that

) R )
L @ p@)] 2 @ P Y frany >0 (3D

Proof. From (3.5),

[0, (2)]* = ply () [p(x) — 1/2] vyl [p(x) —1/2)?
[0 (x)]? Pt = ple)] p(z)[1 — p(a)]

pG./x(if) =

Y

so that power function (3.4) is increasing in y if and only if inequality (3.7) is
verified. O

In order to identify suitable classes of targets satisfying (3.7), for any given p
let us introduce the corresponding hazard function ,h(z) = pl(x)/[1 — p(x)] for
x > 0. The following Corollary provides some sufficient conditions on the target
allocation guaranteeing that the approximated power of test Z,, is monotonically
increasing in p.

Corollary 3.1. Given a target allocation p, the approrimated power function
of test Z,, is monotonically increasing in p if

12— p) AL

p)l=p(@)] (@) —

Moreover, additional conditions guaranteeing the non-negativity of the LHS of
(3.8), and therefore the monotonicity in p, are:

for every x > 0. (3.8)

ol (z) <0,  for every x > 0, (3.9)
or

ohl(z) >0 and ,h*(x) > 2,k (x)p(x), for every x > 0. (3.10)



A new test for RA randomization 2463

Proof. See Appendix A.1 O

Example 3.1. Taking into account pg in (2.2), the corresponding hazard

puh(x) = T71 is constant in  and therefore the approximated power of test

Z,, is monotonically increasing in u. The same conclusion still holds for pg in

(2.10), since , h(z) = [2(T/x + z)]~! is decreasing in z for every T > 0.
Inspired by the Logistic cdf, assuming now the following target

po(z) =1 +exp(—z/T)]", zeR. (3.11)

The resulting hazard ,, h(z) = exp(z/T)[T exp(z/T) + T]~* satisfies condition
(3.10), since it is increasing in « and [exp(z/T) — 1][exp(z/T") + 1] > 0 for every
x,T > 0; therefore, the power is increasing in u.

3.2. Gain of power

Now we compare the performances of test Z, to those of the Wald’s one given
the same desired target allocation p(u). The following Theorem shows how Z,,
could induce a gain of power with respect to Wald test.

Theorem 3.1. Adopting a given target p, test Z, is uniformly more powerful
than Wald test W,, (i.e., the approzimated power (3.4) is uniformly greater than
the one in (2.6)) if and only if

p(z) —1/2 > zpl (z), for any x > 0, (3.12)

with a strict inequality for certain values of x > 0. Whereas, Wald test cannot
be uniformly more powerful than test Z,.

Proof. The first statement follows directly from (2.6) and (3.4). Moreover, the
non-superiority of Wald test could be easily argued by observing that, due to
the property of the target function p, the RHS of (3.12) goes to 0 as = grows,
while the LHS tends to k — 1/2 > 0. Therefore, it does not exists a target such
that p(x) — 1/2 < zpl (z) for every z > 0. O

Example 3.2. By adopting pz, in (3.11), test Z,, is uniformly more powerful
than W,,. Indeed, from (3.12),

exp(z/T) — 1 S xexp(x/T)
2lexp(z/T) +1] = Tlexp(z/T) + 1)’

i.e., Tlexp(22/T) —1] > 2z exp(x/T) for any 2, T > 0. The same conclusion still
holds for pg in (2.9) and pg in (2.10), via simple algebra. Moreover, condition
(3.12) is also fulfilled by pg in (2.2), since T'[1 —exp(—z/T)] > xexp(—z/T) for
every z,T > 0, and for py in (2.1) because

(x/T) = w
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is satisfied for any z, T > 0 (indeed, for z > 0 the LHS is greater than 1/2,
while at # = T the RHS attains its maximum given by (2me)~1/2 = 0.242).
Taking now into account the following target

1 1 z \"
— 4z _ > 1
pB(T) 5 + 5 (1 x) , x>0, (3.13)

condition (3.12) is satisfied only for T' < 1; indeed,

1 z \" < 1 T z \"©

2 (x+1) T 2x+1 <x+l>
only when > T — 1 and therefore test Z,, is more powerful than W,, only for
T<1.

In order to validate these theoretical results and provide some practical im-
plications of the suggested methodology, we have performed a simulation study
by adopting ERADE (with randomization parameter 0.5) and starting sample
size ng = 1. The results come from 5000 simulations with n = 250, where the
responses are assumed homoscedastic normal with 02 = 1 and up = 1. Figure 1
compares the simulated power of Wald test W,, (dashed line) with those of Z,
(solid line) under targets pg and pg for T =1 and 5.

The simulations show the gain of power induced by the adoption of the pro-
posed design strategy. Notice that, even if in this Figure p varies between 0 and
0.8 — to highlight the differences between the power functions — pg does not
satisfy (2.7) and (2.8) and therefore under this target the power of Wald test is
not monotonically increasing and vanishes as p grows (see Table 1 and [6]).

Note that, when the target has a high ethical component (in particular, when
p, grows extremely fast locally around zero), slightly inflated type-I errors of
test Z, could be present (in any case, not greater than 6.5% and not higher
than 1.5% with respect to the one of Wald test). This is due to the functional
form of the chosen target which, around zero, could induce a slightly unstable
behaviour of 7, as an estimator of p(u). However, this inflated type-I error
for test Z, is not present for every target. For instance, Table 1 compares the
simulated power of W,, and Z,, adopting pn and py with 7" =1 (we stress the
degenerate behaviour of the power of Wald test for large values of y due to the
fact that these targets do not satisfy conditions (2.7) and (2.8)).

We now compare the approximated power of test Z,, ensuing from the adop-
tion of an asymptotically best RA design converging to a given target p(u) with
the one of the classical Wald test under its optimal scenario, namely when the
allocations are balanced, showing the conditions on the chosen target guaran-
teeing the superiority of the proposed design strategy also in this situation.

Theorem 3.2. Adopting an asymptotically best RA design converging to a tar-
get p chosen such that

[p(x) — 1/2]\/p(x)[1 — p(z)]
Pl ()
then test Z, is uniformly more powerful than W, equipped by balance.

> g, for any x > 0, (3.14)
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Power of tests W,, and Z,

T=1 T=5
1.00- 1.00-
0.75- 0.75-
LU
Q 0.50 - 0.50-
0.25- 0.25-
0.00 - i i i i i 0.00-I i i
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4
u i
T=1 T=5
1.00- 1.00-
0.75- 0.75-
o
< 0.50 - 0.50-
0.25- 0.25-
0.00 - i i i i i 0.00-I
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4
u i
tests
Wn - Zn

Fic 1. Simulated power of tests Wy, (dashed line) and Z,, (solid line) under the ERADE with

targets pp and pR.
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Proof. In the case of balance, the approximated power function of Wald test
simply becomes ® ((20)~'/np — z1-q), for g > 0; therefore, condition (3.14)

follows directly from (3.4).

Example 3.3. Adopting an asymptotically best RA design converging to pr,
test Z,, is uniformly more powerful than W,, under the balanced design. Indeed,

condition (3.14) becomes

Tlexp(a/T) — 1]
exp(z/T)

which is satisfied for any x, T > 0. This still holds for pg, since

Texp(—z/T)lexp(x/T) — 1]\/2exp(z/T) — 1 > =z, for any =, T > 0,
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TABLE 1
Simulated power of tests Wy, and Zy,, adopting pn and py, with T = 1.

PN PL

0.0 | 0.05 0.05 | 0.05 0.05
0.1 0.20 0.21 | 0.20 0.21
0.2 0.46 0.47 | 046 0.51
03 | 076 0.76 | 0.76  0.78
0.4 | 093 093 | 093 0.95
0.5 0.99 0.99 | 0,99 0.99
0.6 1.00 1.00 | 1.00 1.00
1.0 1.00 1.00 | 1.00 1.00
2.0 | 0.93 1.00 | 1.00 1.00
3.0 | 0.50 1.00 | 1.00 1.00
4.0 | 0.08 1.00 | 1.00 1.00
5.0 | 0.00 1.00 | 1.00 1.00
80 | 0.00 1.00 | 0.90 1.00
10.0 | 0.00 1.00 | 0.05 1.00

for pr (because \/T(T 4+ 2x) > T for any z,T > 0) and for pg (since T/2 <
VT(T + 2/x) for any z,T > 0). Whereas, adopting py or pp condition (3.14)
does not hold.

Under the same simulation scenario of Example 3.2, Figure 2 shows how the
proposed design strategy with targets pg and pr outperforms in terms of power
the classical Wald test equipped by balance (note that, in our setting, when
p(u) = 1/2 for every p, then the ERADE becomes an Efron’s coin with bias
parameter 0.75). As regards test Z,, the gain of power is quite evident and
verifies the previously obtained theoretical results. Clearly, as T increases the
ethical component of the targets vanishes and, asymptotically, the allocations
tend to be balanced. Therefore, in this case the simulated power of tests Z,, and
W, tend to coincide. As previously showed, test Z, presents slightly inflated
type-I errors, while W, is quite conservative (due to the balanced allocation)
with a type-I error of 0.046. As discussed in Example 3.2, the inflated type-I
error of test Z,, can be overcome by taking into account target allocations with
a low slope around p = 0, like pr. Table 2 quantifies numerically the gain in
terms of power induced by the proposed strategy, stressing also the ethical im-
pact related to the chosen target. In particular, we compare the values of the
power of tests W,, (equipped by balance) and Z,, adopting pr and p; (with
T = 1) as p varies, showing a substantial improvement in terms of inferential
precision and ethics as well. For instance, taking into account pgr, the gain of
power is about 11% at pu = 0.2 (also assigning 8% more subjects to the best
treatment), while the inflation of type-I error is around 1%. Whereas, adopt-
ing pr the type-I error is preserved and the gain in terms of power wrt Wald
test is rather high even if lower with respect to pr (around 5% at p = 0.2
with an ethical improvement of 5%). We stress that, adopting ethical targets
p = p(p), although Wald test preserves the nominal type-I error, its power
could be locally decreasing or could even vanish as p grows (see, e.g., [6] and
Table 1).
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Fic 2. Simulated power of tests Wy, (dashed line) under the balanced allocation and Z, (solid
line) adopting targets pp and pr for T =1 and 5.

3.3. Ethics tmproves inference

Taking into account the suggested design strategy, this subsection deals with the
improvement in terms of power that could be induced by increasing the ethical
skew of suitably chosen targets. In order to stress the dependence on 7', in what
follows we denote the target function by p = p(z,T) and, analogously, ,h =
oh(z,T) and ,G = ,G(x,T). Since T manages the randomization component
increasingly, while the ethical skew grows as T" — 0, from now on we assume
that p(z,T') is differentiable in T with p/-(z,T") < 0 for any z, T (analogously to
the previous notation, for any function ¢(s,t) we let ¢!, = dp/0s, @, = dp/0t
and ¢, = 0%¢p/0s0t).

The following results show how, by adopting the new test Z,,, it is possi-
ble to overcome the usual trade-off between ethical demands and inferential
precision.
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TABLE 2
Simulated power of tests Wy, under the balanced allocation and Zy, adopting pr and pr, with
T =1 (within brackets the percentage of subjects allocated to the best treatment).

Whn n
| p=1/2 PR PL
0.0 0.05 0.06 (50%) 0.05 (50%)
01| 020 | 026(55%) 021 (53%)
02| 046 | 057 (58%) 0.51 (55%)
03| 077 | 0.82(62%) 0.78 (57%)
)
)
)

04 | 093 | 0.95(64%) 0.95 (
0.5 | 099 | 099 (67%) 0.99 (62%
0.6 | 1.00 | 1.00 (69%) 1.00 (65%

Theorem 3.3. If the target p(x,T) is chosen such that, for any =, T > 0,

1 1 hp(z, T
TR eV AR ey ey s s e SR
then the approximated power function of test Z, is decreasing in T .
Proof. See Appendix A.2. O
Corollary 3.2. Any given target p(x,T) under which the function
% (3.16)

is increasing in T satisfies (3.15).
Proof. From (3.15), a sufficient condition for the decreasingness in 7' is that

1 phip(x,T)
p(e, 1)~ 172 = Jh(e. D)o@, 1)’

for any z,T > 0,

ie.,
M@ T) e T)
e Sk o Sk >0, foranyz,T >0,
oh(z,T)  p(z,T)—1/2 ~ Y
which is fulfilled if the function In{,h(z,T)/[p(x,T) — 1/2]} is increasing in T
Given the positiveness of ,h(z,T)/[p(x, T)—1/2], the thesis follows directly. [

Example 3.4. Target pr in (2.9) satisfies Corollary 3.2, since ,,h(z,T) =
(T + x)~! and therefore
I)Rh(z7T) 2

pr(,T) =12
The same conclusion still holds for pp in (3.13); indeed, the function
pph(x,T) _ 2T
PB (QS, T) - 1/2

z(z+1)
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is increasing in T because its partial derivative with respect to 7" is non-negative
for any x,T > 0, since

NESICEARR

Whereas pg does not satisfy Corollary 3.2 but fulfills condition (3.15), since

1 N exp(z/T)
exp(z/T)—1  2exp(z/T) -1

T
> =
x

for every z,T > 0.

The same holds for py and pg after simple algebra.

Figure 3 shows the behaviour of the simulated power of test Z,, under targets
pL, pr and pr for T =1 (solid line) and T' = 3 (dashed line); results come from
the same simulation scenario as before (see Example 3.2). This Figure confirms
that, for any considered target, a high ethical component (i.e., low values of T')
induces a gain of power.

Thus, adopting test Z,, with a target satisfying (3.15) (or, analogously, (3.16)),
small values of T' guarantee that more subjects will be assigned to the better
treatment and, at the same time, a gain in terms of power to discriminate with
higher precision the chosen alternative.

Remark 3.2. It is worth noticing that the classical Wald test does not share
this peculiarity. Indeed, from (2.6), the approximated power function of

W,, could be expressed as ® (\/ﬁa_lpé(x,T) - 21_a>, where now pé(x,T) =

z\/p(x,T)[1 — p(z,T)] for z,T > 0. Recalling that pf(z,T) < 0 for any z,T
> 0, then

_zpp(@, Dpla, T) —1/2]
Vo, D)L - p(z, T)]

and therefore the approximated power is increasing in 7.

oGl (x,T) = 0, for every z,T > 0,

The adoption of test Z,, induces a partial order between targets on the ba-
sis of ,G, namely given two targets p; and p then p; >g po if and only if
G2, T) > ,,G(x,T) for every z,T > 0 (i.e., p; guarantees a uniformly more
powerful test than ps). Within this framework, if two targets have the same
functional form with different values of the randomization parameter (namely,
pi = p(z,T;)), then Theorem 3.3 and Corollary 3.2 characterize the classes of
targets guaranteeing a simultaneous improvement of the ethical skew and the
approximated power of test Z,,.

Furthermore, for any fixed T, it is possible to find classes of targets having
better performances in terms of power with respect to others, as the following
Remark shows.

Remark 3.3. Taking into account targets pp in (2.2) and pr, in (3.11), then
PE >G prL, since for any fixed T > 0
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Fic 3. Simulated power of test Z, adopting targets pr, pg and pr with T =1 (solid line)
and T = 3 (dashed line).

o G, T) = 4 exp(—a/T)exp(e/T) — 1]y/Zexp(a/T) 1

> Tlexp(z/T) — 1] = .Gz, T)
2/exp(z/T)

for every = > 0.
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Fi1G 4. Simulated power of test Zy adopting pg (solid line) and pr, (dashed line) for T = 3
and 10.

Under the previous simulation scenario, Figure 4 shows the gain of power
induced by pgp with respect to pr when T = 3 and 10. This gain is quite
substantial for high values of T', while, even if it is still present when T < 2, this
gain is not graphically appreciable.

4. Extension to the case of heteroscedastic outcomes

4.1. Wald test

Under heteroscedasticity, from (2.4) the Wald statistic becomes

_ il p(ﬂnaT)[l_p(ﬂan)]
W = “”\/ Tl — s T + i T (1

where 6]2n denotes the usual sample variance of treatment j = A, B. Given the
consistency of p(fin,,T) and (}Jzn, under Hj statistics W,, converges in distribution
to a standard normal random variable; therefore, the power of the right-sided
test of level v can be approximated by

v op(p, T)[L = p(p, T
® (H”\/l —p(u.T) +vp(u, T) Zlo‘) » k>0 4.2)
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where v = 0% /0%. As is well-known, function (4.2) is maximized by assuming

the Neyman target p* = (1 +/v) ! (discussed in Section 2).
Letting now for any 7" > 0,

LGz, T) = x\/ plz, D1 = plw, T)] for z > 0, (4.3)

1—p(z,T)+vp(x,T)’

it is straightforward to check that pé (z,T) > 0 for every z,T,v > 0, and there-
fore power function (4.2) tends to one as n — oco. Moreover, (2.7) is still valid
to ensure that the power goes to one as p grows, while the following Theorem
provides the condition under which the power of Wald test is monotonically
increasing in p.

Theorem 4.1. A target p induces a monotonically increasing approzimated
power function of Wald test W, if and only if, for T > 0,

20l (2,T)
2 )
Proof. See Appendix A.3. O

1—p(z,T) > for any x > 0. (4.4)

Example 4.1. Target pg in (2.9) satisfies condition (4.4), since for any T > 0

T S Tx
T+z = 2(T+x)?

for every = > 0,

and therefore the power of test W,, is monotonically increasing in u. The same
holds for pg after simple algebra, since 4T + 3/ > 0 for every T,z > 0.

On the contrary, condition (4.4) is not met by pr, (since 271 + exp(z/T)] >
xexp(z/T) does not hold for any « > 0) and by pg (because (4.4) is satisfied
only for z < 2T).

4.2. The new test under heteroscedasticity

In the case of heteroscedastic outcomes, the asymptotic variance of the treat-
ment allocation proportion under an asymptotically best RA procedures is

2051 — p(p, T)] + oBp(p, T)
p(u, Y1 = p(p, T)]

which can be consistently estimated at each step n by

A= [, (1, T)]

(4.5)

. 52,1 — T + 6%, 7
A2 =10 (4. T 20l n BnTn
n = [P (fin, T)] T — )

Under Hy, test Z, = A;'\/n (m, —1/2) asymptotically converges to a standard
normal distribution and therefore the power of the right-tailed test of level «
can be approximated by

o (ﬁ {pw) - 1/2} \/ p(, T)[1 = p(u, T)]

-— —Zl—a |, p>0. (46
oa l ) J\T=pmD) o) > ) (49)
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Clearly, for every =, T,v > 0, approximated power (4.6) tends to one as n grows.
Moreover, condition (3.6) still guarantees that function (4.6) tends to one as u
grows.

The following Theorem provides the condition for the adopted target to pre-
serve the monotonicity in p of the approximated power function of test Z,, for
heteroscedastic responses.

Theorem 4.2. A target p induces a monotonically increasing power of test Z,
if and only if, for every z,T > 0,

@, T)—1/22  plu(z, T)lp(x,T) —1/2]
plz, T)[1 = p(z,T)] (ot (2, T)]?
[p(z,T) —1/2](v — 1)
— 201 —p(z,T)+vp(z,T)]

Proof. See Appendix A.4. O

For instance, targets pr and pg satisfy condition (4.7) via straightforward
algebra.

The following result provides sufficient conditions on a target for inducing a
monotonically increasing approximated power of test Z,.

Corollary 4.1. Given a target p, the approximated power of test Z, is increas-
ing in p if, for v < 1, condition (3.8) of Corollary 3.1 holds; whereas, when
v > 1, a sufficient condition is

1 2_ T /! T
/2=p(z,T)  pl(x,T) > —3/2, for every x > 0. (4.8)

plz, T)[1 = p(z,T)]  [pi(x, T)* —

Proof. See Appendix A.5. O

Thus, regardless of v, (4.8) guarantees that the approximated power of test
Z,, is monotonically increasing in p and therefore conditions (3.9) and (3.10) of
Corollary 3.1 are still sufficient. Thus, from Example 3.1, adopting pg, pr, and
ps the power of test Z,, is increasing in pu.

Remark 4.1. Given a target p, from (4.2) and (4.6) it is straightforward to show
that test Z,, is uniformly more powerful than Wald test W, if p(z,T) — 1/2 >
zpl (x,T) for any =, T > 0, i.e., the same condition in the case of homoscedastic
outcomes (see Theorem 3.1).

The next result compares the power of test Z,, ensuing from the adoption of
an asymptotically best RA design converging to a given target with those of the
classical Wald test under the Neyman allocation.

Corollary 4.2. Test Z, ensuing from the adoption of an asymptotically best
RA design converging to a target p chosen such that, for every xz,T > 0,
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o, T) = 1/2/ple. D= (e, D] /1= pl@.T) + vp(, T)
o (@, T) = [+ Vo |

s uniformly more powerful than W, under the Neyman allocation. Thus, re-
gardless of v, a sufficient condition for (4.9) is

p(z, T)—1/2]\/1 = p(z,T) > xpl(2,T), Yz, T > 0. (4.10)

Proof. Adopting the Neyman allocation, from (4.2) the approximated power
function of Wald test becomes @ (o;'v/nu(l+v)™t —2_4), for p > 0.
Therefore, condition (4.9) follows directly from (4.6), while (4.10) can be eas-
ily derived by observing that \/p(z,T)(1 + /v) > \/1— p(x,T) + vp(x,T) for
every z,T,v > 0. O

(4.9)

Conditions (4.9) and (4.10) are quite restrictive: within the class of targets
previously defined, only pg in (2.10) satisfies (4.10) and therefore guarantees the
superiority of test Z, with respect to the Wald’s one combined with Neyman
allocation, regardless of the values of 04 and 0%.

Finally, the next result extends Theorem 3.3 to the case of heteroscedastic
responses, showing how test Z, could overcome the usual trade-off between
ethical demands and inferential precision.

Corollary 4.3. If the target p(x,T) is chosen such that, for any x,T,v > 0,
201 — p(, T) + vpl, T, G, T) + G, T, TY(1 1) <0, (411)

then the approximated power of test Z, is decreasing in T. Moreover, for any
v > 0, the increasingness in T of function (3.16) is sufficient to guarantee the
decreasingness in T of the power.

Proof. See Appendix A.6. O

Therefore, from Example 3.4, adopting pgr, ps and pp the power of test Z,
is still decreasing in T' even under heteroscedasticity.

5. Discussion

In general, the ethical issue of assigning more subjects to the better treatment
and the aim of improving the care of future patients by maximizing the infer-
ential precision are two conflicting demands. In this paper, we provided a novel
statistical test that allows one — under mild conditions on the adopted target
as well as the chosen RA rule — to have a simultaneous improvement regarding
both the ethical demands and the power of the test. Under this design strategy,
that combines an asymptotically best RA procedure, the proposed test and a
suitably chosen target allocation, the compromise among ethics and inference
translates into a trade-off between the ethical skew of the target and a pos-
sible slightly inflated type-I error. This is particularly true when the sample
size is small and the chosen target p(u) is characterized by a strong ethical im-
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provement, since in this case the treatment allocation proportion m, tends to
be slightly unstable as an estimator of p(u). However, this does not hold for
targets pr and py coupled with T = 1 which, under our strategy, are able to
control type-I errors.

Moreover, as further simulations omitted here for brevity have showed, for
sample sizes lower than 200 combined with a target having a high ethical com-
ponent and/or small values of T, an inflation of type-I errors could be present
for both the suggested test and the classical Wald’s one. In order to overcome
this drawback, in the case of low sample sizes the ethical component of the
target should be quite low, while targets having a strong ethical skew — under
which Wald test is not suitable, since its power is not monotonically increasing
[6] — require adequately large samples.

In particular, we showed both analytically and via simulations that the choice
of target pr with T close to 1 not only preserves nominal type-I errors, but
also guarantees a gain in terms of both power and ethics. For instance, under
the homoscedastic normal model, if compared with the classical Wald test, our
design strategy with py (T = 1) guarantees a gain of power of Z,, around 5%
and assigns 5% more patients to the better treatment when py = 0.2.

Whereas taking into account pg (with T' = 1), a slightly inflated type-I error
is matched with a gain of power around 8% for p = 0.2 and 9% more patients
assigned to the better treatment. In contrast, despite Wald test preserves in
general nominal type-I errors, adopting the exponential target it induces an
anomalous behaviour of the power that is locally decreasing and vanishes as the
difference between the treatment effects grows [6].

Further research beyond the work in the present paper is needed. For in-
stance, a possible way to overcome the instability induced by the discontinuous
allocation function of ERADE could be the employment of the Doubly-Adaptive
Biased Coin Design [13] with extremely high values of the randomization pa-
rameter (indeed, as the deterministic component in the allocation increases, this
design tends to be asymptotically best). Moreover, another open topic is how
to generalize our design strategy to multi-treatment clinical trials with more
complex statistical models. Although the case of several treatments could seem
a straightforward extension, the definition and the properties of the RA de-
signs as well as those of the vectorial target functions are not yet available. For
instance, ERADE has still not been generalized to the case of several treat-
ments and therefore, up to now, there is not an RA procedure able to con-
verge to any desired target allocation attaining its minimum asymptotic vari-
ance.
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Appendix A: Proofs
A.1. Proof of Corollary 3.1

Given a target p, let

oH(z) = 2= p@) _ pas() for z > 0, (A1)

p)1 = p(@)] (o (x)]*

then

[ 12 e )
A= @ " m T rw

, forz>0. (A.2)
From equation (3.7), easy algebraic manipulations lead to

1
A=

where the right-hand side in (A.3) is monotonically increasing in z, tends to
negative infinity for # — 0 and reaches —2 as @ — oco. Then, ,H(z) > —2 is
sufficient to induce an increasing power function for test Z,.

Moreover, if ,h.(z) < 0 for every z > 0, then [p}(z)]* < —[1 — p(x)]p,(x).
Thus, from equation (A.2), for every x > 0

(A.3)

12— o)) _pla@ L o [2=p@]
ph() o(2) o (z) > ph(z) (@) + ph(x) >0

and therefore ,H (z) > 0 for every = > 0.

Whereas, if the hazard is increasing, then pl(x) > 0 and [p)(z)]*> > —[1 —
p(x)]p. (x) for every x > 0. From the first derivative of the hazard we can write
ph(x) = phi(2)[1 — p(x)] —, h(z)p,(x) and therefore, from equation (A.2),
ph?(z) > 2 ,h! (x)p(x) for every x > 0 implies that ,H (z) > 0 for every z > 0.

A.2. Proof of Theorem 3.3

Proof. Starting from equation (3.5), note that

G/ (x T) _ p/T(Qi,T)\/p(l‘,T)[l B p(l‘,T)] _ p/T('TaT)[p(va) - 1/2]2
S P (@, T) (2, T)/p(@, T)[1 — p(, T)]
o pgc/T[p(va) — 1/2]\//)(va)[1 — p(va)]
(% (, T)]? '

and thus the power of test Z,, is decreasing in T if and only if, for any x, T > 0,

pe(@, T)pp(@,T) [ 1=p(,T)  pl@,T)—1/2

1= p,T) |pT)—1/2  p(z,T) < (e, T).  (A4)
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Since

) _ Py, 1) py(a, T)pyp(z, T)
Ph’T(va) - 1 —Tp(JT,T) + [1 — p(xj,jT)]Q )

then (A.4) can be written as

1—p(z,T) 1 < 1—p(x,T) phip(z,T)
p(x,T)—1/2  2p(z,T) ~ pr(z,T) Ph(va)

and therefore (3.15) follows directly. O

A.3. Proof of Theorem 4.1

Proof. Starting from equation (4.3), after straightforward calculation it can be
shown that ,G/ (z,T) > 0 if and only if, for T > 0,

plz, T)[L = p(a, D)1 = p(a,T) +vp(a,T)] >

A.
(y—1)+p(x,T)—%}, Yz >0, (4-5)

which directly coincides with (2.8) in the case of homoscedasticity (i.e., for
v = 1). After some manipulations, condition (A.5) can be rewritten as

2y, T)[1 = pla TP

: >
ot P { G e} e

pla, T)[1 = p(a,T)* +
(A.6)

which is always satisfied if its RHS is non-positive, namely when

(@, T)
: .

]-*p(xaT) >

On the other hand, observe that if 2[1 — p(x,T)] < zp,(z,T) for some x € RT,
then there always exists a sufficiently large value of v that makes (A.6) false. O

A.4. Proof of Theorem 4.2

Proof. For any given target p, let now ,A(z,T) = \/p(z,T)[1 — p(z,T)], ,B(x,
T,v)=+/1—p(x,T)+vp(z,T) and

lpla, T) = 1/2]/p(@, )1 — p(@)]
o (e, )1 = p(@, 1) + vp(e. T)

pg(xaT) = x,T > 0, (A?)

then,
pG(Iv T)

S B T

z,T > 0. (A.8)
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Therefore,

A%(@,T) — [p(x,T) —1/2]

Pg:;(xv T) = [p;(ac, T)}QPB(‘a T, V) £

pA(z,T)
ot 1) - 1/2) e, 1) 2l BT L (A T 2 ),

so that the power function is monotonically increasing if and only if, for any
x>0,

to - LT = V2
AT DB =D 4wt ) - 1/2)
Thus, the thesis follows by means of simple algebraic manipulations. O
A.5. Proof of Corollary 4.1
Proof. Recalling that, from (A.1),
ple,T) —1/2 Piz (2, T)

D) = = e D= e, D] [0, T

straightforward algebraic manipulations on condition (4.7) lead to

v—1
o0, 1) —1/2 21— p(a, T) + vpla, T))

JH(z,T) > — Vz>0. (A.9)

Notice that the RHS of (A.9) is non-positive for v < 1 and therefore (A.9) is
satisfied if H(z,T) > —2. Whereas when v > 1, if we let

v—1

o= p(e. 1) + vp(@, T)]

flv) =

then f:R* — R is increasing in v with lim, ., f(v) = [2p(x,T)]~!; then the
RHS of (A.9) is negative since

3 1 . v—1 —1—2p(x,T) 3
o T) 172 O p(a D) 4 opw )] Zp(e el T) — 1] © 2

because 5p(x, T)[1 — p(z,T)] > 0 > [p(z,T) + 1][p(x,T) — 1]. Thus, for v > 1,
condition (A.9) is satisfied if H(z,T) > —3/2. O
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A.6. Proof of Corollary 4.3

Proof. Starting from (A.8),

_ pGr(@,T) pG(z, T)py (2, T)(1 —v)
V1=p(@ T)+vp(,T) 2[1—p( T)+vp(x,T)?

Pgé“(ma T)

and therefore the power is decreasing in T if and only if (4.11) holds. Moreover,
when v < 1 condition (3.15) is sufficient because ,G7. and pf. are both non-
positive. Whereas for v > 1, (4.11) could be rewritten as
Gl (x, T -1
M > ,G(x,T) v ’
pT(va) 2[17P($,T)+I/p($,T)]

where (v —1)/[1 — p(z,T) + vp(z,T)] < p(z,T)~! for any v > 0. Therefore,

(A.10)

PGIT(xa T) > PG(‘Tv T)

> , forevery z,T,v >0, A1l
g T) = 20(e,T) (A-11)

ie.,
ZPG/T(x’T) < p/T(va)
oG, T) — p(x,T)’

for every z,T,v > 0, (A.12)

is sufficient for (A.10). Thus, due to the positiveness of ,G and p, condition
(A.12) is satisfied if the function p(z,T)/,G?*(x,T) is increasing in T', where

pe.T) _ h(x,T)pl (e, T) _ ( iz, T)
G T) [ ) - 127\l

2
e !

that is clearly satisfied when function (3.16) is increasing in 7T |
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