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Abstract: Community detection in networks has drawn much attention
in diverse fields, especially social sciences. Given its significance, there has
been a large body of literature with approaches from many fields. Here we
present a statistical framework that is representative, extensible, and that
yields an estimator with good properties. Our proposed approach consid-
ers a stochastic blockmodel based on a logistic regression formulation with
node correction terms. We follow a Bayesian approach that explicitly cap-
tures the community behavior via prior specification. We further adopt a
data augmentation strategy with latent Pólya-Gamma variables to obtain
posterior samples. We conduct inference based on a principled, canonically
mapped centroid estimator that formally addresses label non-identifiability
and captures representative community assignments. We demonstrate the
proposed model and estimation on real-world as well as simulated bench-
mark networks and show that the proposed model and estimator are more
flexible, representative, and yield smaller error rates when compared to the
MAP estimator from classical degree-corrected stochastic blockmodels.

Keywords and phrases: Community detection, label non-identifiability,
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1. Introduction

Networks can be used to describe interactions among objects in diverse fields
such as physics (Newman, 2006), biology (Hancock et al., 2010), and especially
social sciences (Zachary, 1977; Adamic and Glance, 2005). In network theory,
objects are represented by nodes and their interactions by edges. Clusters of
nodes that share many edges between them but that, in contrast, do not inter-
act often with nodes in other clusters can be thought of as communities. This
characterization follows a traditional approach in social sciences that aims at
discerning the structure of a network according to relationship patterns among
“actors”, e.g. friendship or collaboration. These interaction patterns may reflect
“assortativity”, a concept that originated in the ecological and epidemiological
literature (Albert and Barabási, 2002): it refers to the tendency of nodes to
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associate with other similar nodes in a network. Among measures of similar-
ity, the degree of a node is of common interest in the study of assortativity in
networks (Newman, 2002, 2003; Vázquez, 2003), that is, assortative networks
usually show a preference for high-degree nodes to connect to other high-degree
nodes. We expect in some applications that actors exercise assortativity and pre-
fer to group themselves according to similarity or kinship in communities, and
so communities are dense in within-group associations but sparse in between-
group interactions. Thus, not surprisingly, community detection has sparked
great interest in many fields where recent applications aim at characterizing the
structure of a network by detecting its communities.

There have been many approaches to address community detection (see Sec-
tion 2 for a more thorough review), but a common modeling choice is to treat
actors as behaving similarly given their respective communities. This structural
equivalence assumption is at the core of blockmodels (Lorrain and White, 1971),
which were later extended to stochastic blockmodels (Holland and Leinhardt,
1981; Fienberg et al., 1985). Here, to tackle community detection, we adopt
a hierarchical Bayesian stochastic blockmodel where group labels are random.
We contend that a suitable prior specification is essential to accurately charac-
terize assortative behavior, and thus that a Bayesian approach is essential to
community detection (see, e.g., the examples in Section 7.1.) Our results can
be connected to the work of Nowicki and Snijders (2001), Karrer and Newman
(2011) and Hofman and Wiggins (2008) but we make two important distinctions:
(i) we capture community behavior by explicitly requiring that the probability
of within-group associations is higher than between-group relations; and (ii)
we address parameter and label non-identifiability issues directly by remapping
configurations to a unique canonical space. The first point is important in light
of the examples in the last section. The second point allows us to sample from
the posterior space of label configurations more efficiently and to formally define
an estimator based on a meaningful loss function. Moreover, our model can be
related to the work of Mariadassou et al. (2010) and Vu et al. (2013) as they are
all based on exponential-family clustering frameworks, but our model is different
from theirs in two respects besides the two points just mentioned: (i) we make
exact inference by adopting latent variables, rather than adopting approximate
variational approaches; and (ii) we add more flexibility by requiring hyper-prior
structure on model parameters controlling degree correction.

More specifically, we make the following contributions:

(1) We propose a Bayesian degree-corrected stochastic blockmodel for commu-
nity detection that explicitly characterizes community behavior. We discuss
this new model and how we account for parameter non-identifiability in
Section 3.

(2) We treat label non-identifiability issues by defining a canonical projection
of the space of label configurations in Section 4.

(3) We develop an efficient posterior sampler by identifying good initial con-
figurations through approximate mode finding and then exploring a Gibbs
sampler based on a data augmentation strategy in Section 5.
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(4) We propose a remapped centroid estimator for community inference in Sec-
tion 6. This new estimator is based on Hamming loss and is arguably a good
representative of a projected space of label configurations.

In Section 7 we show that our proposed method is efficient and able to fit
medium-sized networks with thousands of nodes in reasonable time. Moreover,
we show that our proposed estimator yields, in practice, smaller misclassification
rates due to a more refined loss function when compared to the ML-based esti-
mators. Finally, in Section 8, we offer some concluding remarks and directions
for future work.

2. Prior and related work

There is a large body of literature in community detection, given its significance
and interest. Traditional methods include graph partitioning (Kernighan and
Lin, 1970; Barnes, 1982), hierarchical clustering (Hastie et al., 2001), and spec-
tral clustering (Donath and Hoffman, 1973; Von Luxburg, 2007; Rohe et al.,
2011); while these methods are heuristic and thus suitable for large networks,
they do not address directly community detection but aim instead at partition-
ing the network according to edge densities between groups and thus identifying
connection “bottlenecks”.

The concept of modularity better captures community structure by also tak-
ing within-group edge densities into account (Newman and Girvan, 2004; New-
man, 2006). Optimization methods based on modularity can then be used to
detect communities, but since modularity optimization is NP-complete (Bran-
des et al., 2007), interest lies mostly in approximated methods such as the
greedy method of Newman (2004) and extremal optimization (Duch and Are-
nas, 2005; Bickel and Chen, 2009). However, there are still drawbacks: methods
based on modularity may fail in detecting small communities and thus exhibit
a “resolution limit” (Fortunato and Barthelemy, 2007). Latent space network
models (Hoff et al., 2002), latent variable models (Hoff et al., 2005), and latent
position cluster models (Handcock et al., 2007) assume that the probability
of an interaction depends on node-specific latent factors such as the distance
between two nodes in an unobserved continuous “social space”; these models
are generalizations of exponential random graph models [ERGMs; see (Robins
et al., 2007)] where community structure is assumed from cluster structure in
the latent space.

There are many other methods to mention [see, for example, the review in
(Parthasarathy et al., 2011)], but we focus on parametric statistical approaches
where inference on community structure is based on an assumed model of asso-
ciation. The motivation is that since there are many possible community con-
figurations, that is, assignment of actors to communities, we want to not only
infer communities, but to also assess how likely each configuration is according
to the model.

The first endeavors in such parametric models—albeit not in community
detection—are the p1 exponential family models due to Holland and Leinhardt
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(1981). These models follow a log-linear formulation (Fienberg and Wasser-
man, 1981) with parameters that are related to in- and out-degrees and edge
densities. Later, these models were extended to incorporate actor and group pa-
rameters (Fienberg et al., 1985; Tallberg, 2005; Daudin et al., 2008). Wang and
Wong (1987) further adapted the models to consider a block structure through
stochastic blockmodels [SBMs (Holland et al., 1983; Anderson et al., 1992)],
yielding p1 blockmodels. Zanghi et al. (2010), Mariadassou et al. (2010) and
Vu et al. (2013) proposed scalable approximate variational approaches based on
modified version of those p1 (block) models.

Stochastic blockmodels explore a simpler model structure where the proba-
bility of an association between two actors depends on the groups to which they
belong, that is, two actors within the same group are stochastically equivalent.
Karrer and Newman (2011) developed an SBM that allows for degree-correction,
that is, models where the degree distribution of nodes within each group can be
heterogeneous. Celisse et al. (2012), Choi et al. (2012) and Bickel et al. (2013)
addressed the asymptotic inference in SBM by use of maximum likelihood and
variational approaches, while Zhao et al. (2012) studied consistency of modu-
larity and maximum likelihood estimators for the degree-corrected SBM; more
recently, Yan et al. (2014) adopted belief propagation to fit these models, and
provided an approximate likelihood ratio test to assess the relevance of degree
correction. Degree correction has also been adopted in spectral methods and
has showed improved results; Qin and Rohe (2013) propose spectral clustering
based on a regularized Laplacian to account for degree heterogeneity, while, to
infer K communities, Jin (2015) clusters nodes based on the ratios of the sec-
ond through K-th largest eigenvectors to the leading eigenvalue to show that
node degrees become ancillary. More flexible approaches generalize the SBM by
adopting a hierarchical Bayesian setup that regards probabilities of association
as random and group membership as latent variables (Snijders and Nowicki,
1997; Nowicki and Snijders, 2001; Hofman and Wiggins, 2008). As in all latent
mixture models, label non-identifiability is a known problem since multiple la-
bel assignments yield the same partition into communities; ultimately, we only
care if two actors are in the same community or in different communities. It is
also possible to incorporate node attributes in the model (Kim and Leskovec,
2011; Fosdick and Hoff, 2013) and to allow actors to belong to more than one
community (Airoldi et al., 2008).

3. A Bayesian stochastic blockmodel for community detection

Under our community detection setup we assume a fixed number of groups
K ≥ 2 and we are given, as data, a matrix A with Aij representing relationships
between “actors” i and j in a network with n > K nodes. We represent the
assignment of actors to communities through σ : {1, . . . , n} �→ {1, . . . ,K}, a
vector of labels: σi = k codes for the i-th individual belonging to the k-th
community.

A simple stochastic blockmodel specifies that the probability of an edge be-
tween actors i and j depends only on their labels σi and σj , and that σ follows
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a product multinomial distribution:

Aij |σ, θ ind∼ Bern
(
θσiσj

)
, i, j = 1, . . . , n, i < j,

σi
iid∼ MN(1;π), i = 1, . . . , n,

(1)

where π is a vector of prior probabilities over K labels, parameter θkk is the
“within” probability of a relationship in community k, and θkl is the “between”
probability of a relationship for communities k and l, k, l = 1, . . . ,K, k < l. If we
define θw

.
= θ11 = · · · = θKK and θb

.
= θ12 = · · · = θK−1,K , we have a simpler

model with single within and between probabilities (Hofman andWiggins, 2008).
We regard SBMs as log-linear models and exploit this formulation to define

a node-corrected SBM by

Aij |σ, γ, η ind∼ Bern
(
logit−1(γσiσj + ηi + ηj)

)
(2)

where, in logit scale, parameters γ capture within and between community prob-
abilities of association and node intercepts η = (η1, . . . , ηn) capture the expected
degrees of the nodes. To avoid redundancies, we only code γkl for k ≤ l. We
note that without η, model (2) is equivalent to model (1) with γkl =logit(θkl).
We also remark that we call the above model node-corrected, which is arguably
more suitable for a broader generalized linear model formulation; in (Karrer and
Newman, 2011) and (Yan et al., 2014) approaches, for instance, the observed
Aij follow a Poisson distribution,

Aij |σ, γ, η ind∼ Poi
(
exp(γσiσj + ηi + ηj)

)
,

so η is related to expected log degrees, and hence their degree-correction de-
nomination.

3.1. Parameter identifiability

In what follows, to simplify the notation we first regard γ as a
(
K
2

)
-long vector,

namely, the vectorized form of the ragged array γkl for k ≤ l, collated row-
wise, then we group β = (γ, η), and define the design matrix X associated to
model (2) as

Aij |σ, β iid∼ Bern
(
logit−1(xij(σ)

�
β)

)
,

where each xij corresponds to the whole (i, j) row in X, with pairs ordered such
that i < j, by i first and then j. That is,

xij(σ)
�
β = ηi + ηj +

K∑
k=1

K∑
l=k

I
(
min{σi, σj} = k

)
I
(
max{σi, σj} = l

)
γkl,

where I(·) is the indicator function. Note that X has
(
n
2

)
rows—the number

of (i, j) pairs—and
(
K
2

)
+K + n columns—the length of β—and that we make

explicit the dependence of each row xij on the labels σ. Moreover, we also take
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A to be a vector indexed as the rows of X, that is, a pair-indexed vector, and
thus corresponding to the vectorized upper triangle of the network data. As
an example, consider four nodes connected in a cycle and σ = (1, 1, 2, 2) with

K = 2; in this case, β = (γ11, γ12, γ22, η1, η2, η3, η4)
�
, and the data A and design

matrix X are then

A =

⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦
1 (1,2)

0 (1,3)

1 (1,4)

1 (2,3)

0 (2,4)

1 (3,4)

and X =

γ11 γ12 γ22 η1 η2 η3 η4⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦
1 0 0 1 1 0 0 (1,2)

0 1 0 1 0 1 0 (1,3)

0 1 0 1 0 0 1 (1,4)

0 1 0 0 1 1 0 (2,3)

0 1 0 0 1 0 1 (2,4)

0 0 1 0 0 1 1 (3,4)

(3)

Model (2) has then
(
K
2

)
+K + n parameters, but it is non-identifiable with

K redundant parameters (see proof in Appendix 9.1):

Theorem 1. The design matrix associated with model (2) has K linearly de-
pendent columns.

Thus, to attain an identifiable model we remove K parameters from γ by
setting

γ11 = · · · = γKK = 0 (4)

and so γ = (γ12, . . . , γK−1,K), that is, the model is now

Aij |σ, γ, η ind∼ Bern
(
logit−1(γσiσjI(σi �= σj) + ηi + ηj)

)
. (5)

There are still problems with label identifiability that we address by label remap-
ping in Section 4, and this new parameterization has the advantage of allowing
for a straightforward remapping of community labels.

Model (5) still needs to satisfy one more condition for its design matrix to
be full ranked, as the next result shows (proof in Appendix 9.1).

Theorem 2. The design matrix associated with model (5) has full column rank
if and only if each community has at least two nodes.

Based on this last criterion, we modify the prior on σ to a constrained multi-
nomial distribution,

P(σ) ∝
K∏

k=1

I(Nk > 1)

n∏
i=1

π
I(σi=k)
k ,

where Nk =
∑

i I(σi = k) is the number of nodes in community k.
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3.2. Hierarchical model for community detection

We attain a more realistic model by further setting a hyper-prior distribution
on γ = (γ12, . . . , γK−1,K), η, and π,

β = (γ, η) ∼ I(γ ≤ 0) ·N
(
0, τ2In+(K2 )

)
,

π ∼ Dir(α1, . . . , αK),
(6)

where τ2 controls how informative the prior is. The prior on γ and η can be
seen as a ridge regularization for the logistic regression in (2). The constraint
γ ≤ 0 in this stochastic blockmodel is essential to community detection since
we should expect as many as or fewer edges between communities than within
communities on average, and thus that the log-odds of between and within
probabilities is non-positive. The conjugate prior on π adds more flexibility to
the model, and is important when identifying communities of varied sizes and
alleviating resolution limit issues.

4. Label identifiability

Since the likelihood in (2) only considers if individuals are in the same com-
munity or not, labels are not identifiable due to this stochastic equivalence.
Moreover, if π follows a strongly informative symmetric Dirichlet, α = W · 1K
with W large, then the marginal prior on σ is approximately non-identifiable:

P(σ) =

∫
P(σ |π)P(π)dπ =

∏
k Γ(Nk +W )/Γ(W )

Γ(n+KW )/Γ(KW )
≈

∏
k W

Nk

(KW )
n =

1

Kn
.

Since σi are i.i.d. multinomial, then if π is non-informative, π = (1/K, . . . , 1/K),
the labels are not identifiable in the posterior P(σ|A) either. In fact, non-
identifiability issues occur within a group of labels I whenever πi = πj for
all i, j ∈ I, but we discuss a non-informative π for simplicity and because that
is a common modeling choice.

A common approach in latent class models to fix label non-identifiability is
to fix an arbitrary order in the parameters (Gelman et al., 2003, Chapter 18),
e.g. γ12 < · · · < γK−1,K . However, as Nowicki and Snijders (2001) point out,
this solution can lead to imperfect identification of the classes if the parame-
ters are close with high posterior probability; a major drawback then is that
parameters and labels can be interpreted incorrectly. To address this problem,
a label switching algorithm was proposed by Stephens (2000) in the context
of MCMC sampling, but it is slow in practice. Another approach is to simply
focus on permutation-invariant functions; in particular, when estimating σ, we
can adopt a permutation-invariant loss, such as Binder’s loss (Binder, 1978).
We discuss such approach in more detail in Section 6. Next, we propose an
alternative, simpler procedure to remap labels and address non-identifiability.
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4.1. Canonical projection and remapping labels

Let L
.
= {1, . . . ,K} and L = {σ ∈ Ln : Nk(σ) > 1, k = 1, . . . ,K} be the

space of labels with positive prior probability. If ρ is any permutation of the
labels then P(σ|A) = P(ρ(σ)|A), where (ρ(σ))j = ρ(σj) for j = 1, . . . , n. Non-
identifiability here means that P(· |A) is invariant under ρ, and that σ and
ρ(σ) are P(·|A)-equivalent, which we denote by σ ∼P ρ(σ). Moreover, we can
partition L according to ∼P : if S is one such partitioned subspace, then any
σ ∈ S is such that σ is not P(· |A)-equivalent to any other label configuration
in S. To achieve label identifiability we anchor one such subspace as a reference
space Q and regard all other subspaces as permuted copies of Q.

Let ind(σ) be the vector with the first positions in σ where each label appears,
ind(σ)k

.
= min{i : σi = k}, and further define ord(σ) as the vector with the order

in which the labels appear in σ,

ord(σ)k = σ−1
[
ind(σ)(k)

]
, k ∈ L. (7)

Note that ind(σ)(k) is the k-th position in the ordered vector ind(σ). As an

example, if σ = (2, 2, 3, 1, 3, 4, 2, 1) with K = 4 (and n = 8) then ind(σ) =
(4, 1, 3, 6), ordered ind(σ) is (1, 3, 4, 6) and so ord(σ) = (2, 3, 1, 4). To maintain
identifiability we then simply constraint label assignments to the subset of L
where ord(·) is fixed. As a simple, natural choice, let us restrict assignments
to Q = {σ : ord(σ) = L}. Note that any σ can be mapped to its canonical
assignment by

ρ(σ)
.
= ord(σ)−1

(σ). (8)

Taking our previous example, σ = (2, 2, 3, 1, 3, 4, 2, 1) would then be mapped
to ρ(σ) = (1, 1, 2, 3, 2, 4, 1, 3). Thus, ρ guarantees a correspondence between
labels and order of appearance of a community in the label configuration. In
fact, node 1 always belongs to community 1, the next node not belonging to
community 1, at position ind(σ)[2], belongs to community 2, the next node not
belonging to communities 1 and 2, now at position ind(σ)[3], has label 3 and
so on. The definitions of ind and ord can then be used to derive a procedure
that remaps σ to ρ(σ); for completeness, we list an algorithm that implements
such remap procedure in Appendix 9.2. To keep label consistency in the model
parameters we also apply ρ to the community indices in π and γ to remap them:
for all labels k, l ∈ L such that ρ(k) < ρ(l) we set πρ(k) = πk and γρ(k)ρ(l) = γk′l′

with k′ = min{k, l} and l′ = max{k, l}.
Our proposed reference set above is also described by Q = {σ ∈ L : σ =

ρ(σ)}, the quotient space of L with respect to ord, L/ord: any pair of label
configurations σ1 and σ2 such that ρ(σ1) = ρ(σ2) are identified to a single label
ρ(σ1) in Q. By constraining the labels to a reference quotient space we achieve
not only identifiability, but also make the labels interpretable: label j marks the
j-th community to appear in the sequence of labels. As a consequence, we are not
restricted to estimating permutation-invariant functions of the labels, as in the
approach of Nowicki and Snijders (2001), since now, for example, P(σi = j |A) is
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meaningful. As a particular application, we derive a direct estimator of σ based
on Hamming loss in Section 6; in the next section we discuss how the constraint
to Q is implemented in practice.

5. Posterior sampling

To sample from the joint posterior on σ, β and π, we use a Gibbs sampler
(Geman and Geman, 1984; Robert and Casella, 1999) that iteratively alternates
between sampling from

[σ | γ, η, π,A], [π |σ, γ, η, A], [γ, η |σ, π,A]

until convergence. Next, we discuss how we obtain each conditional distribution
in closed form.

5.1. Sampling σ and π

Let us start with the most relevant parameters: the labels σ. We can sample a
candidate, unconstrained assignment for actor i, σi, conditional on all the other
labels σ[−i], parameters (β, π), and data A from a multinomial with probabilities:

P(σi = k |σ[−i], β, π,A) ∝ πk∏
j �=i

(
logit−1(γkσj + ηi + ηj)

)Aij
(
1− logit−1(γkσj + ηi + ηj)

)1−Aij

= πk

∏
j �=i

exp{Aij(γkσj + ηi + ηj)}
1 + exp{γkσj + ηi + ηj}

. (9)

To guarantee that parameters are identifiable, we reject the candidate σ if Nk ≤
1 for any community k. Moreover, to keep the labels identifiable, we remap σ
using the routine in Section 4 and remap γ accordingly.

As an example, consider the label samples obtained from running the Gibbs
sampler on the political blogs study in Section 7. In Figure 1 we plot a multidi-
mensional scaling [MDS (Gower, 1966)] representation of the samples. We have
K = 2 communities, and so L is partitioned into a reference quotient space in
the right and a “mirrored” space in the left; any point in the mirrored space can
be obtained by swapping labels 1 and 2 in the reference space and vice-versa.
The green arrow shows a valid sampling move σ(t) → σ(t+1) at iteration t that
does not require a remap, while the red arrow is an invalid move since it crosses
spaces. The blue arrow remaps σ(t+1) to ρ(σ(t+1)) in the reference space. The
dashed green arrow summarizes both operations.

For the nuisance parameter π we summon conjugacy to obtain

π |σ, β,A ∼ Dir(α+N(σ)), (10)

where N(σ) = (N1, . . . , NK) and Nk are community sizes.
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Fig 1. MDS representation of the two copies of the quotient space L/ord using posterior
samples for the political blogs example in Section 7. Arrows are described in text.

5.2. Sampling γ and η

Sampling β conditional on σ, π, and data A is more challenging since the logistic
likelihood in (2) does not specify a closed form distribution. However, if we
explore a data augmentation strategy by introducing latent variables from a
Pólya-Gamma distribution in a pair-indexed vector ω = (ωij)i<j:i,j∈{1,...,n},

then the above conditional distribution of β given ω is now available in closed
form (Polson et al., 2012). More specifically, if ωij |σ, β ∼ PG(1,xij(σ)

�
β), then

β |ω, σ,A ∼ I[γ ≤ 0] ·N(m,V )

where, with Ω = Diag(ωij) and latent weighted responses zij = (Aij − 1/2)ω−1
ij

organized in a pair-indexed vector z,

V =
(
X�ΩX +

1

τ2
In+(K2 )

)−1

and m = V X�Ωz. (11)

The assortativity constraint γ ≤ 0 in the β prior is clearly also present in
the conditional posterior, and so we can use a simple rejection sampling step
for the truncated normal: sample from unconstrained marginals N(m,V ) and
accept only if γ ≤ 0. However, since

β =

[
γ
η

] ∣∣∣∣∣ω, σ,A ∼ N

(
m =

[
mγ

mη

]
, V =

[
Vγ Vγη

Vηγ Vη

])
,
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we can adopt a more efficient way of sampling β by first sampling η marginally,

η |ω, σ,A ∼ N(mη, Vη), (12)

and then sampling

γ | η, ω, σ,A ∼ I(γ ≤ 0) ·N(mγ + VγηV
−1
η (η −mη), Vγ − VγηV

−1
η Vηγ) (13)

from a truncated normal. In practice, we compute the Schur complement of Vη,
Vγ − VγηV

−1
η Vηγ , using the SWEEP operator (Goodnight, 1979).

5.3. Gibbs sampler

To summarize, after setting initial parameters σ, β and π arbitrarily, we then
iterate until convergence the following Gibbs sampling steps:

1. Sample σ |β, π,A: for each node i,

(a) Sample σi |σ[−i], β, A from a multinomial distribution as in (9). If
Nk(σ) < 2 for some community k, reject and keep the previous value
of σi.

(b) Remap σ and then π and γ using the procedure in Section 4.

2. Sample π |σ, β,A from the Dirichlet distribution in (10).
3. Sample β |σ, π,A:

(a) Sample ω |σ, β, π,A: for each pair i < j, ωij |σ, β ∼ PG(1,xij(σ)
�
β).

(b) Sample β |σ, π, ω,A: computem and V as in (11), sample η marginally
as in (12), and then sample γ | η from a truncated multivariate normal
distribution as in (13).

To speed up convergence and improve precision, we set the initial σ to be an
approximate posterior mode obtained from a greedy optimization version of the
above routine, similar to a gradient cyclic descent method. The main changes
are:

1. In Step 1.a we take σi to be the mode of σi |σ[−i], β, A (but we might still
reject σi if Nk(σ) < 2 for some k) and remap σ, π, and γ in Step 1.b.

2. In Step 2, we take π to be the mode of the Dirichlet distribution in (10).
3. Step 3 is substituted by a regularized iterative reweighted least-squares

(IRLS) step. IRLS is usual when fitting logistic regression models (McCul-
lagh and Nelder, 1989). At the t-th iteration we define μij =

logit−1(xij(σ)
�
β(t)) and W = Diag(μij(1− μij)) to obtain the update

V =
(
X�WX +

1

τ2
In+(K2 )

)−1

and β(t+1) = V X�Wz(t)

where z(t) = Xβ(t) + W−1(A − μ) is now the “working response”. To
guarantee that the community constraints γ ≤ 0 are met, we use an active-
set method (Nocedal and Wright, 2006, Chapter 16).
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Since we expect the posterior space to be multimodal, we adopt a strategy
similar to Karrer and Newman (2011) and sample multiple starting points for σ
according to its prior distribution and then obtain approximate posterior modes
for each simulation. We elect the best approximate mode over all simulations as
the starting point for the Gibbs sampler, which is then run until convergence to
more thoroughly explore the posterior space. For convenience, the Gibbs sam-
pler and its optimization version are implemented in the R package sbmlogit,
available as supplementary material (Peng and Carvalho, 2016).

6. Posterior inference

The usual estimator for label assignment is the maximum a posteriori (MAP)
estimator,

σ̂M = argmin
σ̃∈{1,...,K}n

Eσ |A
[
I(σ̃ �= σ)

]
= argmax

σ̃∈{1,...,K}n

P(σ = σ̃ |A),

which, albeit based on a zero-one loss function (Besag, 1986), has the advantage
of being invariant to label permutations. However, given the flexibility in our
model due to the hierarchical levels, the posterior space is often complex and so
the MAP might fail to capture the variability and might focus on sharp peaks
that gather a small amount of posterior mass around them.

Another estimator for label assignment arises from minimizing Binder’s loss
B (Binder, 1978, 1981),

σ̂B = argmin
σ̃∈{1,...,K}n

Eσ |A
[
B(σ̃, σ)

]
, (14)

where

B(σ̃, σ) =
∑
i<j

I(σ̃i �= σ̃j)I(σi = σj) + I(σ̃i = σ̃j)I(σi �= σj).

The advantage of Binder’s loss is that since it penalizes pairs of nodes it is
invariant to label permutations—that is, B(σ̃, σ) = B(σ̃, φ(σ)) = B(φ(σ̃), σ) for
any permutation φ. However, Lau and Green (2007) have shown that minimizing
Binder’s loss is equivalent to binary integer programming, which is an NP-
hard problem. Moreover, as Fritsch and Ickstadt (2009) point out, even the
approximated solution given by Lau and Green (2007) is only feasible when the
dataset is of moderate size.

In contrast, when compared to MAP inference, centroid estimation (Carvalho
and Lawrence, 2008) offers a better representative of the space since it arises
from a loss function that is more refined:

σ̂H = argmin
σ̃∈{1,...,K}n

Eσ |A
[
H(σ̃, σ)

]
,

where H is Hamming distance, H(σ̃, σ) =
∑n

i=1 I(σ̃i �= σi). The centroid es-
timator also identifies the median probability model, and thus is known to of-
fer better predictive resolution that the MAP estimator (Barbieri and Berger,
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2004). However, Hamming loss is only invariant to double label permutations
but not to single label permutations, i.e., H(σ̃, σ) = H(φ(σ̃), φ(σ)) but it is not
necessarily true that H(σ̃, σ) = H(φ(σ̃), σ) or H(σ̃, σ) = H(σ̃, φ(σ)), and thus,
in order for Hamming loss to be meaningful for estimation when the labels are
non-identifiable we need to account for label aliasing. We then redefine the cen-
troid estimator to depend on a specific permutation, for instance the canonical
permutation ρ in (8),

σ̂C = ρ

(
argmin

σ̃∈{1,...,K}n

Eσ |A
[
H(σ̃, ρ(σ))

])
.

This remapped centroid estimator considers only one version of the posterior
space, namely the reference quotient space L/ord with ord in (7). The main
advantage of this new estimator is to allow the following characterization (see
Appendix 9.3 for the proof):

Theorem 3. The centroid estimator σ̂C is a mapped consensus estimator: if
P
∗(σ |A) is the induced posterior probability of σ ∈ L / ord and

(σ̂∗)i = argmax
k∈{1,...,K}

P
∗(σi = k |A)

then σ̂C = ρ(σ̂∗).

In practice, we estimate

P̂
∗(σi = k |A) ≈ 1

N

N∑
t=1

I(σ
(t)
i = k)

using the realizations from the Gibbs sampler presented in Section 5 to define
σ̂C . Since we only need to elect, for each actor, the most likely label, obtaining
the centroid estimator is much simpler computationally than MAP and Binder
estimation. Note that due to the remap step when sampling σ | θ,A, we are
always constrained to the quotient space L/ord and identifying label realizations
under ρ, and thus really approximating P

∗(σ |A).

6.1. Relating binder and centroid estimators

We start by noting that if we define an extended matched map M(σ) = {I(σi =
σj)}1≤i<j≤n that makes pairwise comparisons among labels in σ, then Binder
and Hamming losses are related through B(σ̃, σ) = H(M(σ̃),M(σ)) and so
Binder’s estimator in (14) is also a centroid estimator in the extended matched
space M(L).

Back to the original space L of labels, we observe that, in practice, the Binder
and centroid estimators are often close (in either loss.) To explain these obser-
vations, we need the next result relating Binder and Hamming losses (the proof
can be found in Appendix 9.4):
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Theorem 4. For any pair of label assignments σ̃ and σ, Binder loss is bounded
by Hamming loss through

B(σ̃, σ) ≤ H(σ̃, σ)
(
n− 1

2
H(σ̃, σ)

)
. (15)

Moreover, if K = 2 then B(σ̃, σ) = H(σ̃, σ)(n−H(σ̃, σ)).

From (15) we see that Binder’s loss can be approximately linearly bounded
by Hamming loss when the Hamming distance between σ̃ and σ is small. Thus,
when the marginal posterior distribution on σ has a compact cluster of label
configurations with high posterior mass we expect this cluster to contain the
centroid estimator and also, according to (15), the Binder estimator since min-
imizing the posterior expected Hamming loss is approximately equivalent to
minimizing the posterior expected Binder loss in this case. In the next section
we run experiments on simulated datasets and observe that the two estimators
are often close and show similar performance for simple networks (check, for
instance, Figure 7.)

7. Experimental results

In this section, we demonstrate the performance of the centroid estimator and
compare it to Binder estimator under our model and to KN estimator (Karrer
and Newman, 2011), Fast-Greedy (FG) estimator (Clauset et al., 2004), Multi-
Level (ML) estimator (Blondel et al., 2008), Walktrap (WT) estimator (Pons
and Latapy, 2004) and Label Propagation (LP) estimator (Raghavan et al.,
2007) through an empirical study and two case studies. In the case studies we
run repeated experiments on the same dataset and obtain error rates (ER) and
normalized mutual information (NMI) of the estimators mentioned above when
compared to known or bona fide ground truth references. When comparing two
label configurations σ̃ and σ we define ER(σ̃, σ) = H(σ̃, σ)/n and NMI(σ̃, σ) =
2MI(σ̃, σ)/(H(σ̃)+H(σ)), where MI stands for the mutual information andH(σ)
is the entropy of σ. The error rate is clearly related to the centroid estimator
since it is based on Hamming loss; however, as Danon et al. (2005) argue, NMI
is more precise since it is based on the whole confusion matrix of σ̃ and σ.
A related metric is accuracy, defined as 1 − ER(σ̃, σ). Note that we achieve
better performance with higher values of accuracy and NMI when compared to
ground truth references. To compare these estimators, we provide a five number
summary of the metric (NMI or error rate) over replications at 5%, 25%, 50%,
75%, and 95% percentiles.

Before discussing the experimental results, we present two illustrative exam-
ples next.

7.1. Illustrative examples

Even though the models reviewed above are flexible enough to identify social
block structure, they might fail to accurately recognize communities. We now
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show two simple examples to demonstrate how this happens, and compare our
proposed solution to the results from applying Karrer and Newman’s (KN)
popular degree-corrected SBM (Karrer and Newman, 2011).

The first dataset is a synthetic network, denoted as the “spike” dataset,
which we intentionally designed to show that degree correction is not suffi-
cient to elicit communities. The network considered is split into K = 2 ground
truth communities. The first community contains 2n1 nodes with n1 of them
being strongly connected as a complete graph Kn1 (a “kernel”) and having
a one-to-one connection with the remaining n1 nodes (a “crown”). The other
community is formed in a similar way, but with a complete Krn1 , r > 1, ker-
nel connected to a rn1 crown, totalling 2rn1 nodes. We add some between-
community edges in such a way that each node from the complete graph Kn1

in the first community is connected to r nodes from the complete graph Krn1

in the second community. Figure 2 showcases a spike network for n1 = 10 and
r = 5.

In this case, there are rn1 between-edges, rn1(rn1 + 1) within-edges in the
large community and n1(n1 +1) within-edges in the small community (see Fig-
ure 2, right). Another possible community assignment is to split the network
symmetrically with two communities having the same number of nodes, each
with half of Kn1 and half of Krn1 and their respective half crowns in order
to achieve a more homogeneous degree distribution within each community. In
this latter community assignment we have (rn1/2)

2
+(n1/2)

2
between-edges and

(rn1/2)(rn1/2 + 1) + (n1/2)(n1/2 + 1) within-edges in each community since
the assignment is symmetric (Figure 2, left).

We note that both community assignments can still be characterized as hav-
ing a community behavior since the edge density between communities is smaller
than the density within communities. Moreover, due to the crowns, we also need
to account for degree heterogeneity in each community. However, because the
number of edges within communities is closer to the number of between-edges
in the second assignment, it has a weaker community effect and so it might re-
quire a stronger prior on γ12 to reinforce community behavior. Moreover, there
are only two possible σ configurations that represent the ground truth (GT)
assignment (allowing for label aliasing only) while there are many more label
configurations that realize the second assignment. Thus, even if the GT as-
signment is more likely, mode-based estimators such as maximum-likelihood or
MAP estimators have a higher chance of getting stuck in local optima, while
this chance is reduced for our remapped centroid estimator since it corrects for
label aliasing. Figure 2 compares the KN estimator and our estimator and shows
that the kernel-crown structure of both communities might not be reflected in
KN estimator, in contrast to our estimator. The centroid estimator had per-
fect accuracy over 1,000 replications, while the KN estimator had a five number
summary of the error rate as (0, 0, 0, 0.5, 0.5), that is, getting stuck in the second
assignment at least a quarter of the time.

We observe that degree correction is not enough to correctly capture the com-
munity structure in the synthetic network that we designed. However, similar
results are also observed in some real-world datasets. Consider, for example, the



Bayesian degree-corrected stochastic blockmodels for community detection 2761

Fig 2. Spike network, n1 = 10, r = 5. Node sizes are proportional to degree; node colors
(red/green) represent groups in KN estimator (left) and our estimator (right.) Node borders
mark the reference.

“sampson” network reported by Sampson (1968) at time point T4 among a group
of 18 trainee monks at a New England monastery. Four types of relations—
affection, esteem, influence, and sanctioning—between the monks are collected.
In this network, each node represents a monk in the monastery, and two nodes
are considered to be connected if they considered each other as being in at least
one of the four relations when asked by Sampson. Sampson reported a parti-
tion of trainee monks into three communities (K = 3): Young Turks, Loyal
Opposition and Outcasts. Figure 3 compares KN estimator to our estimator
and shows a similar pattern where within group connections are sparser than
between group connections according to the KN estimate; in particular, there
are more edges between the red and green communities than within the green
community. In fact, the KN partition does not agree with any well-accepted
reference.

Fig 3. Sampson network at T4, n = 18. Node sizes are proportional to degree; node colors
mark KN estimator (left) and our estimator (right). Node borders mark the reference.

7.2. Empirical studies

First, we evaluate our estimator on simulated datasets with known references.
The networks are generated from a class of benchmark graphs that account
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for heterogeneities in node degree distributions and community sizes (Lanci-
chinetti et al., 2008). The model used in the simulation considers the following
parameters: both degree distribution and the community sizes are assumed to
follow power law distributions with exponents a and b, respectively; each net-
work consists of n nodes and has average degree 〈k〉; and mixing parameter μ
represents the proportion of the between-community edges. We simulate 100
networks for each combination of n = (100, 500), a = (2, 3), b = (1, 2), and
μ = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6). Figure 4 shows one realization of a benchmark
network as an example.

Fig 4. Left: one realization of the benchmark networks with n = 100 nodes, a = 2, b = 1, μ =
0.4, and 〈k〉 = 10. Right: Binder loss against Hamming loss tested on 50 graph realizations of
such benchmark networks. Colors mark different values of K. Lines correspond to the upper
bound in (15) for K > 2 and K = 2.

7.2.1. Comparison to non-degree corrected and unconstrained models

We start by comparing our proposed model against two simpler variations: a
non-degree corrected version, that is, with likelihood

Aij |σ, γ, η ind∼ Bern
(
logit−1(γσiσj + η)

)
and a version without community behavior constraints, that is, with the like-
lihood in (5) but with the unconstrained prior (γ, η) ∼ N

(
0, τ2In+(K2 )

)
. We

compare the centroid and Binder estimators for the three models with the KN
estimator under its regular model and an earlier non-degree corrected version.
As Figure 5 shows, the full model consistently outperforms all other variations
with respect to NMI (accuracy results are similar). Centroid and Binder per-
form comparably across variations, and the non-degree corrected version has
the worse performance. Figure 10 in the Appendix shows more results for a



Bayesian degree-corrected stochastic blockmodels for community detection 2763

larger range of scenarios and indicates that for more challenging configurations,
namely when b = 2 and there are more small communities, the unconstrained
version performs better under higher μ, that is, as community behavior becomes
fuzzier.

Fig 5. Benchmark networks of n = 100 and 500 nodes, exponents a = 2, b = 1, and with
different combinations of average degrees 〈k〉. Each boxplot corresponds to the NMI of the
estimator over 100 and 50 graph realizations for n = 100 and n = 500, respectively.

Next, to better understand the impact of degree correction and community
behavior constraints, we assess model complexity informally via posterior pre-
dictive loss (PPL, Gelfand and Ghosh, 1998), defined as:

PPL =
∑
i<j

(Aij − μ̂ij)
2
+ μ̂ij(1− μ̂ij),

where μ̂ij is the fitted value for the pair (i, j). This metric is a compromise
between model fit, as measured by the first term, and smoothness or predictive
fit, as measured by the second term. Figure 6 shows the PPL for 100 replications
under the more challenging scenario with n = 500, a = b = 2, and 〈k〉 = 10. As
can be seen, the full model attains the best fit but, unsurprisingly, community
constraints become less useful as μ increases, as we observed in the simulation
study.

7.2.2. Comparison to other methods

The NMI of centroid, Binder, KN, FG, ML, WT, LP and SCORE estima-
tors are summarized in Figure 7. We observe from the figure that the cen-
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Fig 6. Comparison of PPL between full model and two variations: community behavior un-
constrained and non-degree corrected. Networks were simulated 100 times with n = 500,
a = b = 2, and 〈k〉 = 10.

troid estimator yields better results than the KN estimator while performing
slightly better than Binder estimator in terms of mean NMI. Besides, the cen-
troid estimator performs comparably to FG, ML, WT, LP and SCORE es-
timators when the mixing parameter μ is small but outperforms these four
estimators to a large extent when the mixing parameter or the average de-
gree is relatively large. Interestingly, SCORE estimator performs worse on net-
works with few edges (μ = 0.1) compared with other methods. Not surpris-
ingly, all estimators perform worse as the mixing parameter μ increases (so
that the communities are defined in a weaker sense) or the average degree 〈k〉
decreases.

Similar results are found under other different combinations of (a, b, 〈k〉),
as shown in Figures 11 and 12 in the Appendix. Figures 13 and 14 measure
performance in terms of accuracy, for comparison. Interestingly, the centroid
outperforms all methods when b = 1, but shows lackluster performance when
b = 2. Higher values of b favor more communities in smaller and more varied
sizes, which becomes particularly challenging for model-based approaches that
do not explicitly account for community sizes, a difficulty akin to a resolution
limit. In any case, the loss in performance is not considerable in these cases and
the extra flexibility featured in our proposed approach when modeling degree
correction makes our model more robust, with better performances overall and
especially in more challenging, and perhaps more relevant, scenarios with higher
values of μ.
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Fig 7. Benchmark networks of n = 100 and 500 nodes, with different combinations of the
exponents a, b and the average degree 〈k〉 are used. Each boxplot corresponds to the precision
of the estimator over 100 and 50 graph realizations for n = 100 and n = 500, respectively.

7.3. Case studies

Next, we evaluate our estimator for community detection on two real-world
network datasets.

7.3.1. Political blogs

The first case study is the political blogs network (Adamic and Glance, 2005),
which is a medium real-world network containing over one thousand nodes. In
this network, each node is a blog over the period of two months preceding the
U.S. Presidential Election of 2004, and two nodes are considered to be connected
if they referred to one another and there was overlap in the topics they discussed.
The network is known to be split into two communities (K = 2), liberals and
conservatives, and has n = 1,222 nodes after isolated nodes are removed. It
is expected that blogs in favor of the same party are more likely to be linked
and discussing the same topics than those in favor of different parties, which
corroborates a community behavior.

The centroid estimator, depicted in the leftmost panel in Figure 8, agrees well
with the reference of this network, with an error rate of 62/1222. We estimate
each ηi for node i by its estimated posterior mean using the converged samples
and plot the estimated ηi against the logit normalized degree of node i in the
middle panel of Figure 8. There is a positive linear relationship between ηi
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and the logit of the normalized degrees, indicating that the expected degree,
thus the probability of having an edge, is positively related to the observed
degree of the node. If there is a community effect, that is, if the network can be
better explained by partitioning nodes into two different communities, then γ12
is expected to be significantly negative. The rightmost panel in Figure 8 shows
the estimated posterior distribution of γ12. An estimated 95% credible interval
for γ is [−3.16,−2.99], which shows a clear deviation from 0 and thus indicates
a strong community effect in the network.

We further compare the centroid estimator with two other estimators, Binder
and KN, as in the previous section. The five number summary of the NMI for
both centroid and Binder is (0.710, 0.713, 0.713, 0.713, 0.713) and for the KN
estimator is (0.722, 0.728, 0.728, 0.728, 0.737). In general, the three estimators
perform equally well while the KN estimator yields a slightly smaller error rate
on average, 58/1222. Here is a five number summary for the running times
in seconds of the KN procedure: (12.33, 13.35, 13.95, 14.60, 15.88). The running
times for our MAP procedure are comparable to the KN procedure, and a five
number summary for the running time in seconds of each iteration of our Gibbs
sampler is (2.62, 2.68, 2.73, 2.77, 3.31).

Fig 8. Political blogs network. Left: Node sizes are proportional to degree; node colors signal
the centroid estimators (red/green). Node color intensities are proportional to P̂

∗(σi |A) and
node borders mark the reference. Middle: ηi on logit(degreei/(n − 1)) for each node i; color
for each node i represents (σ̂C)i. Right: estimated posterior distribution for γ12.

7.3.2. Political books

Finally, we pick the political books dataset compiled by Valdis Krebs (unpub-
lished). This is a network of political books sold by the on-line bookseller Ama-
zon around the time of the US presidential election in 2004. The network is split
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into three communities: liberal, neutral, or conservative. An edge between two
books represents frequent co-purchasing by the same buyers. We also use weakly-
informative priors and run multiple chains. Interestingly, all replications yielded
the same community assignment for centroid, Binder, and KN estimators, with
NMI of 0.542 and error rate of 0.171. These results seem to indicate that this
solution has a considerable posterior mass under our model and assigns a high
likelihood to the data under the KN model, and so it is invariably recovered. The
reason why we observe large error rates under all estimation procedures analyzed
here might be that the reference provided by Valdis Krebs is not that reliable,
or that misclassified books appeal to buyers who purchase books from all three
political opinions. Most of the misclassified nodes are in the neutral (red) com-
munity. Five number summaries for the running times in seconds for the KN
procedure and for our procedure, including initial MAP and 1,000 Gibbs sampler
iterations, are (1.55, 1.59, 1.61, 1.64, 1.76) and (15.54, 16.14, 16.47, 16.74, 18.66),
respectively.

Figure 9 shows the centroid estimator of the political books network in the
right panel. The communities corresponding to liberal (blue) and conservative
(green) are clearly separated by the neutral (red) community and agree with the
reference well. The middle panel plots estimated ηi against normalized degrees
in logit scale; it is evident that the in-between red community has a differ-
ent intercept for η, indicating that it is less connected. The right panel shows
estimated marginal posterior distributions for γ. Not surprisingly, γ23 < γ12
and γ23 < γ13 with high posterior probability since communities 2 (green)
and 3 (blue) are separated by community 1 (red) and so do not share many
edges.

Fig 9. Political books network. Left: node sizes are proportional to degree; node colors signal
the centroid estimators. Node color intensities are proportional to P̂

∗(σi |A) and node borders
mark the reference. Middle: ηi on logit(degreei/(n− 1)) for each node i; color for each node
i represents (σ̂C)i. Right: estimated posterior distribution for γ.
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8. Discussion

In this paper we have proposed a Bayesian model based on degree-corrected
stochastic blockmodels that is tailored for community detection. More specifi-
cally, our model is flexible due to its hierarchical structure and aims to capture
the gregarious community behavior by requiring, through prior specification,
that the probability of within-community associations to be no smaller than the
probability of between-community associations. Moreover, we argue that the
model is a better representative of assortatively mixing networks with binary
data coding the associations instead of frequency counts, since we model bi-
nary observations using a suitable logistic regression with parameters for within
and between-community probabilities of association. We devise a Gibbs sampler
to obtain posterior samples and exploit a latent variable formulation to yield
closed-form conditionals.

We formally address label identifiability by restricting label configurations to
a canonical reference subspace, and propose a remap procedure to implement
this constraint in practice. As a consequence, labels are interpretable and we are
able to estimate any function of the labels as opposed to previous approaches
that were restricted to permutation-invariant functions. In particular, we pro-
pose a novel remapped centroid estimator to infer community assignments. We
contend that while the model can arguably represent the data well, the posterior
space can be complex and a bad estimator can spoil the analysis; it is then imper-
ative to adopt an estimator that arises from a principled and refined loss function
and thus better summarizes the posterior space. Our proposed remapped cen-
troid estimator is more similar to a posterior mean, and thus, while considering
the whole posterior distribution in the space of remapped label assignments,
tends to situate itself in regions of high concentration of posterior mass. From
a practical point of view, we show that the proposed estimator performs better
than MAP and Binder estimators and achieves lower misclassification rates.

In summary, the overall good performance of our proposed methodology
comes from the concerted application of (i) a model that is more represen-
tative of the data, via logistic regression, and community behavior, via prior
constraints on community effects, and (ii) a more robust estimator that alle-
viates multimodality issues due to label aliasing. While an estimator that is
robust to label aliasing can help explain good performance, we contend that our
model already induces a less complex posterior landscape since the community
behavior constraints assign more posterior mass to more meaningful community
assignments, and so our prior seems to be the main reason for the good results.

If the posterior space is multimodal then a single point estimator has diffi-
culty in representing the space, and the centroid estimator is not immune to
this problem. We intend to further extend the proposed estimation procedure
to account for multiple modes by exploring conditional estimators on partitions
of the space. While this can be done empirically by clustering posterior sam-
ples, we will pursue a more principled way of identifying partitions. As simple
extensions to the proposed model, we also intend to incorporate parameters for
node attributes as a way of avoiding confounding with community effects and
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of capturing differential assortativity patterns that are not due to community
behavior, and to generalize the model formulation to account for count, cate-
gorical, and ordinal data. Other directions for future work, albeit not related to
community detection, include extending the remap procedure to other settings
such as clustering and mixture model inference.

9. Appendix

9.1. Proof of Theorems 1 and 2

For the following proofs we first note that we can split each row xij in the design
matrices of models (2) and (5) according to γ and η entries, xij

.
= [bij cij ],

where

bij,kl = I
(
min{σi, σj} = k,max{σi, σj} = l

)
, k, l = 1, . . . ,K, k ≤ l,

cij,v = I(i = v) + I(j = v), v = 1, . . . , n,
(16)

that is, bij identifies the pair of communities at the endpoints of (i, j) for γ and
cij marks each node-correction for η. This row-wise division is carried to the
whole design matrix X and similarly induces two blocks for γ and η, B and C
respectively, so that X = [B C]. In the example at Equation (3), the γ and η
blocks in X are divided by a line.

Proof of Theorem 1. Let us pick an arbitrary community k and a pair (i, j).
There are then three ways to classify (i, j): (i) it is either outside of community
k; (ii) one of its endpoints is in community k; or (iii) it is inside community k.
If we now define dij,k =

∑
v:σv=k cij,v then (i, j) is classified exactly according

to dij,k: dij,k = 0, 1, or 2 if (i, j) is in cases (i), (ii), or (iii), respectively. Thus,
it follows that

2bij,kk +
∑
l �=k

bij,kl =
∑

v:σv=k

cij,v,

for each k = 1, . . . ,K, and so X has K constraints in its columns.

Proof of Theorem 2. Note that the updated X is full column-ranked if and only
if X�X is invertible, so we just need to show that X�X is invertible if Nk ≥ 2
for k = 1, . . . ,K. Let B = [bij,12, . . . , bij,K−1K ]i<j and C = [cij,1, . . . , cij,n]i<j be
matrices corresponding to the updated γ block, without γkk terms, k = 1, . . . ,K,
and η block, respectively. Then

X�X =

[
B�B B�C
C�B C�C

]
.

Thus, X�X is invertible if and only if both B�B and the Schur complement of

C�C, Δ
.
= C�[I −B(B�B)

−1
B�]C are invertible. First,

B�B = Diag

(∑
i<j

I[σi = k, σj = l or σi = l, σj = k]

)
= Diag(NkNl),
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Fig 10. Assessing community behavior constraints and degree correction using benchmark
networks of n = 500 nodes with different combinations of the exponents a ∈ {2, 3}, b ∈ {1, 2}
and average degree 〈k〉 ∈ {10, 15, 25}. Each boxplot corresponds to the NMI of the estimator
over 100 graph realizations.

and so, for this diagonal matrix to be invertible we needNk �= 0 for k = 1, . . . ,K.
As for the Schur complement Δ, we have that

Δii = n− 1−
∑
k �=i

∑
l �=i I[σi �= σk = σl]

NσiNσk

,

and, for i < j,

Δij = 1−
∑
k �=i

∑
l �=j I[σi = σj �= σk = σl or σi = σl �= σk = σj ]

NσiNσk

.

But if σi �= σj ,

Δij = 1−
∑
k �=i

∑
l �=j I[σi = σl �= σk = σj ]

NσiNσk

= 0,

and otherwise, if σi = σj ,

Δij = 1−
∑
k �=i

∑
l �=i I[σi �= σk = σl]

NσiNσk

, (17)



Bayesian degree-corrected stochastic blockmodels for community detection 2771

Fig 11. Assessing community detection estimator using benchmark networks of n = 100
nodes with different combinations of the exponents a ∈ {2, 3}, b ∈ {1, 2} and average degree
〈k〉 ∈ {10, 15, 25}. Each boxplot corresponds to the NMI of the estimator over 100 graph
realizations.

and so Δii −Δij = n− 2. Thus, after some row and column operations, Δ can
be written as a block diagonal matrix where each block of size Nk has the form:⎡⎢⎢⎢⎣

p q · · · q
q p · · · q
...

. . .
...

q q · · · p

⎤⎥⎥⎥⎦
with q = Δij in (17) and p = n− 2 + q. The determinant of the block diagonal
matrix is nonzero if and only if n �= 2 and Nk �= 1. Moreover, the determinant of
X�X is the same as that of the block diagonal matrix since one can be obtained
from the other through row and column operations. Thus, the conditions Nk �= 0
from B�B and now Nk �= 1 can be summarized into Nk ≥ 2.

9.2. Remap Algorithm

Algorithm 1 lists a routine that finds the canonical map ρ based on the canonical
order in σ as in Equation (8) and remaps σ in-place.
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Algorithm 1 Remapping labels in σ to ρ(σ).

assigned ← {}
ρ ← {}
n ← 0 {number of different labels in σ}
for i = 1, . . . , |σ| do {obtain ρ

.
= ord(σ)−1}

if not assigned(σ(i)) then {first appearance?}
assigned(σ(i)) ← true {mark σ(i)}
n ← n+ 1
ρ(σ(i)) ← n

end if
end for
for i = 1, . . . , |σ| do {remap σ}

σ(i) ← ρ(σ(i))
end for
return σ

9.3. Proof of Theorem 3

It is sufficient to find the pre-map estimator

σ̂∗ .
= argmin

σ̃∈{1,...,K}n

Eσ |A
[
H(σ̃, ρ(σ))

]
since, by definition, σ̂C = ρ(σ̂∗).

Denoting Σ = {1, . . . ,K}n and Σ∗ = Σ / ord, we have that

Eσ |A
[
H(σ̃, ρ(σ))

]
=

∑
σ∈Σ

H(σ̃, ρ(σ))P(σ |A)

=
∑
σ∈Σ∗

∑
σ∗:ρ(σ∗)=σ

H(σ̃, σ)P(σ∗ |A).

Since P(σ∗ |A) = P(σ |A) follows from the lack of identifiability we further
obtain

Eσ |A
[
H(σ̃, ρ(σ))

]
=

∑
σ∈Σ∗

n(σ)H(σ̃, σ)P(σ |A),

where n(σ) = |{σ∗ : ρ(σ∗) = σ}| = K!/(K−k(σ))! is the number of assignments
that are identified to σ through ord, and k(σ) is the number of different labels
in σ. We can then define P∗(σ |A) .

= n(σ)P(σ |A) as the induced measure in the
quotient space Σ∗ to thus have

Eσ |A
[
H(σ̃, ρ(σ))

]
=

∑
σ∈Σ∗

H(σ̃, σ)P∗(σ |A) =
∑
σ∈Σ∗

n∑
i=1

I(σ̃i �= σi)P
∗(σ |A)

= n−
n∑

i=1

∑
σ∈Σ∗

I(σ̃i = σi)P
∗(σ |A) = n−

n∑
i=1

P
∗(σi = σ̃i |A).

But then

argmin
σ̃∈{1,...,K}n

Eσ |A
[
H(σ̃, ρ(σ))

]
= argmax

σ̃∈{1,...,K}n

n∑
i=1

P
∗(σi = σ̃i |A)
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Fig 12. Assessing community detection estimator using benchmark networks of n = 500
nodes with different combinations of the exponents a ∈ {2, 3}, b ∈ {1, 2} and average degree
〈k〉 ∈ {10, 15, 25}. Each boxplot corresponds to the NMI of the estimator over 100 graph
realizations.

and so
(σ̂∗)i = argmax

k∈{1,...,K}
P
∗(σi = k |A),

that is, σ̂∗ is a consensus estimator, as desired.

9.4. Proof of Theorem 4

To compare σ̃ and σ let us define nij
.
=

∑
k,l I(σk = i, σ̃l = j), the number

of nodes that belong to community i in σ and to community j in σ̃. Then,
B(σ̃, σ) =

∑
i

∑
j<k(nijnik + njinki), H(σ̃, σ) =

∑
i �=j nij , and n =

∑
i,j nij .

For instance, if K = 2 then H(σ̃, σ) = n12 + n21 and

B(σ̃, σ) = (n11n12 + n21n22) + (n11n21 + n12n22)

= (n12 + n21)(n11 + n22)

= H(σ̃, σ)
(
n−H(σ̃, σ)

)
.

More generally, for K > 2, we have:

nH(σ̃, σ) =
∑
i �=j

nij

∑
i,j

nij =
∑
i �=j

nij

(∑
i �=j

nij +
∑
i

nii

)
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Fig 13. Assessing community detection estimator using benchmark networks of n = 100
nodes with different combinations of the exponents a ∈ {2, 3}, b ∈ {1, 2} and average degree
〈k〉 ∈ {10, 15, 25}. Each boxplot corresponds to the accuracy of the estimator over 100 graph
realizations.

=
∑
i �=j

nij

∑
i �=j

nij +
∑
i �=j

nij

∑
i

nii

=
∑
i �=j

n2
ij︸ ︷︷ ︸

A

+
∑

i �=j,k �=l

k �=i,j �=l

nijnkl

︸ ︷︷ ︸
B

+2
∑

i �=j,i �=k

j<k

(nijnik + njinki)

︸ ︷︷ ︸
C

+
∑

i �=j,i �=k

j �=k

niinjk

︸ ︷︷ ︸
D

+
∑
i �=j

(niinij + niinji)︸ ︷︷ ︸
E

.

Thus, B(σ̃, σ) = C + E and, in particular,

H2(σ̃, σ) =
(∑

i �=j

nij

)(∑
i �=j

nij

)
=

∑
i �=j

n2
ij +

∑
i �=j,k �=l
k �=i,j �=l

nijnkl + 2
∑

i �=j,i �=k
j<k

(nijnik + njinki)

= A+B + 2C.
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Fig 14. Assessing community detection estimator using benchmark networks of n = 500
nodes with different combinations of the exponents a ∈ {2, 3}, b ∈ {1, 2} and average degree
〈k〉 ∈ {10, 15, 25}. Each boxplot corresponds to the accuracy of the estimator over 100 graph
realizations.

The bound B(σ̃, σ) ≤ H(σ̃, σ)(n−H(σ̃, σ)/2) then follows from

nH(σ̃, σ)−B(σ̃, σ)− 1

2
H2(σ̃, σ) =

1

2
A+

1

2
B +D ≥ 0

since A,B and D are all non-negative.

Supplementary Material

Supplementary material for “Bayesian degree-corrected stochastic
blockmodels for community detection”
(doi: 10.1214/16-EJS1163SUPP; .zip).
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