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Abstract: Mass spectrometry (MS) data are becoming common in recent
years. Prior to other statistical inferential procedures, alignment of spectra
may be needed to ensure that intensities of the same protein/peptide are ac-
curately located/identified. However, the enormous number of peaks poses
challenge in handling such data. Direct applications of available curve align-
ment methods often do not produce satisfactory results. In this work, we
propose an Automated Pairwise Piecewise Landmark Registration (APPLR)
method for aligning MS data. For a pair of spectra, the most prominent
peaks are given the priority to be aligned first. A weighted Gaussian kernel
based similarity score is used to test warp these top peaks and spectra are
then aligned according to the best match. The algorithm is implemented
in an iterative way until all spectra are aligned. We illustrated the new
method and two other curve alignment methods to the unlabeled total ion
count data.
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registration, pairwise, spectrometry data, time warping.
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1. Introduction

MS technology measures the mixture of proteins/peptides of biological samples
to obtain relative abundance. The data are often in the format of a spectrum
with a big spike as intensity associated with protein mass/charge ratios or time-
of-flight in a certain range. Investigators are interested in examining spectra
to identify differentially expressed proteins among groups under different con-
ditions, e.g., between samples of healthy and diseased individuals, which may
serve as potential targets of cancer therapy (Baggerly et al. [1]; Li et al. [5]; Pet-
ricoin and Liotta [6]). The unlabeled total ion count (TIC) data are an example
of MS data and are introduced in Koch et al. [3].
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A key feature of scientific interest in MS data is the large number of peaks
because they can be used to infer the existence of a particular peptide. In prac-
tice, there may be mis-alignment of such peaks among data from different labs
or data generated over a long period of time in the same lab. As it can be seen,
there is a rigid shift in major peaks in the unlabeled TIC data. Such misalign-
ment must be corrected to ensure that the same protein intensities are correctly
identified in a sample (Wong et al. [10]).

For this purpose, curve alignment/synchronization in functional data analy-
sis may be applied. To illustrate, we applied the pairwise curve synchronization
(PCS, Tang and Müller [8, 9]) and the curve alignment by moments (CAM,
James [2]) to the TIC data. We noted, however, that direct application of these
methods did not produce satisfactory results (see the results section). The rea-
son may be that these methods do not take into consideration the TIC data
characteristics, i.e., the extreme large number of peaks.

To address this problem, we propose an Automated Pairwise Piecewise Land-
mark Registration (APPLR) method that focuses on the peaks. Starting with a
pair of spectra, a Gaussian kernel based similarity measure is used to determine
the shift in a piecewise manner to all identified peaks between the pair. The
intermediate resulting average spectrum is then warped to one of the remaining
spectrum with a weight proportional to the number of spectra that are used to
obtain the average spectrum. These steps iterate till all spectra get in. The pro-
cedure is applied to the TIC data. Results indicate that the performance is much
better than those of PCS and CAM in recovering the underlying spectrum.

The paper is organized as follows. The underlying model and algorithm are
described in section 2. Illustration to the TIC data is presented in section 3.
Some discussion and concluding remarks are given in section 4.

2. The APPLR model and algorithm

2.1. The APPLR model

Assume a collection of n spectra are observed. Let (tij , fij) be the observed
pairs of time points and responses for the ith sample at the jth measurement,
i = 1, . . . , n; j = 1, . . . , ni. Further, we denote by Xi the underlying continuous
spectrum of the ith sample. We start with a simple time-shift model (Leng and
Müller [4]) as follows:

fij = X(tij) + ǫij , Xi(t) = µ(t− τi) + δZi(t− τi),

where µ(t) is the shared unknown shape function and Zi are i.i.d. realizations
of a stochastic process Z with mean 0 and EZ2(t) < ∞. The τi are time shifts
and δ is a small positive constant. In this way, δZi can be viewed as a small
perturbation to the shape function. And ǫij are i.i.d. errors with mean 0 and
finite variance σ2

e .
It is apparent that this model does not require measurements at the same

time points for different subjects. We partly employ this model because there
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are noticeable rigid shifts among spectra of samples from the same subject. In
addition, a simple global shift may not work well (as will be seen in the result
section) for extreme large number of peaks present in the TIC data. Therefore,
we will apply the model to all prominent peaks in a piecewise manner for a pair
of spectra.

Because the proposed method is based on prominent peaks (landmarks), peak
quantification is a necessary pre-processing step. This involves the process of
identifying peak locations on the time scales. Peaks are identified in each spec-
trum by computing a local maximum within some neighboring window (Yasui
et al. [11]). Details will be described in the algorithm section.

2.2. The algorithm

In the TIC data, we have two groups of patients, responders vs non-responders.
It is reasonable to align spectra within each group first. The basic idea behind
the algorithm is to take two groups of curves A and B that have their peaks
aligned within each group, interpolate their x-values to the same scale, average
each group to generate a template curve, then warp pairs of peaks in each group
to align with each other by performing linear dilations on the part of the curves
between the nearest two previously aligned peaks (or the ends of the curve). If
the ends are denoted by l and r, the x-value of the peak denoted by p and the
target x-value by t, then this dilation can be expressed as changing the left end

x-value from l to p to l + (x−l)(t−l)
p−l

and the right end x-value from r to p to

r −
(r−x)(r−t)

r−p
. As this is done, the same linear dilation is performed on each

of the curves under the template curve. The heart of the algorithm, then, only
involves aligning two curves with each other, and is explained below.

After performing a baseline correction and determining the peaks using a
window threshold of 1, rejecting all peaks under a certain height, the main
algorithm loop starts.

1. At the n-th iteration of the loop, there are n − 1 aligned peaks in each
curve, partitioning the curve into n blocks.

2. Within each block (with edge x-coordinates of l and r, the top-ten peaks of
curve A with coordinates (xai, yai) (all the peaks if less than ten) are each
test-warped against all the top peaks in curve B (coordinates (xbj , ybj))
using a Gaussian kernel based similarity score. In particular,

a. Similarity scores for each of the top peaks are determined, by cal-
culating which peak in the other curve matches up best with it. For
peak i in curve A, this similarity score is expressed by

S
ij
ai = max

j






min

(

yai

ybj
,
ybj

yai

)

e
−

(

x
ij
ai

−x
ij
bj

r−l

)

2

· 1
θ






,

where θ is a data-adaptive parameter. Data-driven methods, such as
cross validation, can be used to select the θ value. In application to
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the TIC data, results were robust (i.e., overall shapes of the resulting
mean spectra are almost invariant) over a range of θ values (e.g.,
[480, 520]). We choose θ = 500 in this data set.

This similarity score factors in the ratio between the heights of the
peaks and the x-distance between the peaks. The latter is deter-
mined using a Gaussian kernel that severely penalizes peaks that are
too far apart on the x-axis, and is scaled by the domain of the par-
titioned block. We assume that the curve is relatively well-behaved,
and doesn’t have peaks that are significantly mismatched relative to
their neighboring peaks.

b. The similarity scores are then weighted by the height of the top peaks
and normalized, so that each test-warp has a maximum similarity
score of 1, making the overall similarity score between peak i in curve
A and peak j in curve B as follows:

Sij =

∑

ai

yaiS
ij
ai +

∑

bj

ybjS
ij
bj

∑

ai

yai +
∑

bj

ybj
.

c. The test-warp with the maximum similarity score among all the parti-
tioned blocks is then actually performed on the two curves, increasing
the number of aligned peaks by one.

3. After each test-warp, the x-coordinates get shifted to x
ij
ai and x

ij
bj , which

is the average location of xai and xbj . Other parts go through a linear
dilation as described previously.

The main loop is iterated until the maximum similarity score drops below
a certain minimum threshold, upon which the two curves are considered to be
sufficiently well-matched.

When no such clear groupings are present, the algorithm can start with any
pair of spectra, align them with each other using the above algorithm, get the
average; pick any spectrum among the rest spectra, align it with the average of
the pair, . . . , until all spectra get in and we then get the final average. Using the
final average as the template, one can also apply the algorithm to each spectrum
and the template to get the aligned individual spectrum.

We observe that the best matches often pair the top peaks of two curves
along the diagonal entries, which makes intuitive sense. In addition, one does
not want to do an extreme warping of the time axis which may cause unrealistic
distortions.

3. Results

We illustrated the APPLR model to the TIC data. Fig. 1 (a) shows the raw
(no-alignment) data with 14 markers corresponding to the key peaks in this
data. These peaks locations across samples differ a lot and can be considered
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Fig 1. Data with 14 markers corresponding to the key peaks in the (a) raw data, i.e., no align-
ment, and (b) after alignment data using the APPLR model. The x−axis is time (in minutes)
and the y−axis is smoothed log10 transformed intensity. The aligned curves exhibit good align-
ment of almost all 14 marked peaks.

to be misaligned. Fig. 1 (b) shows a similar plot with the aligned curves using
our method. Almost all 14 peaks are well aligned except the first and the last
peaks. A closer examination shows that these two peaks are absent among some
of the 15 samples. And one can more clearly discern the general pattern of the
spectra based on the aligned curves.

We also carried out analysis on the TIC data using the two recently developed
methods CAM (James [2]) and PCS (Tang and Müller [8, 9]). In particular, for
CAM method, we used linear synchronization function, with several choices of
smoothing degree freedom and penalty parameter. The result did not change
much. For PCS, we tried knots number in the range of 5 to 30 and outcome did
not change much either.

Although curve alignment has become an increasingly important statistical
approach over the last two decades, there is no universally applicable objective
measure to assess the performance of different methods in real data example
where the truth is unknown. An appealing visual alternative in the literature
is to look at important features in the aligned mean curve, e.g., the maximums
or minimums and their locations (see also the discussion section). Table 1 sum-
marizes these three methods in terms of the most prominent peak location and
magnitude. We can see both CAM and PCS work no better than the no align-
ment (cross-sectional) method – the magnitude of the most prominent peak are

Table 1

Maximum magnitudes and locations for TIC data from three methods (Raw mean data also
included under the No Alignment column)

Quantity No Alignment CAM model PCS model APPLR
Peak Location 108.0 103.4 98.1 106.9
Peak Magnitude 7.52 7.47 7.58 8.42
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Fig 2. Mean spectra from (a) raw data, i.e., no alignment, (b) CAM model, (c) PCS model,
and (d) APPLR model. The x−axis is time (in minutes) and the y−axis is smoothed log10
transformed intensity. It can be seen that CAM and PCS could not recover the apparent
pattern of a typical spectrum and they performed no better than the cross-sectional mean. In
contrast, APPLR did very well in recovering the typical pattern of each spectrum.

7.47 and 7.58, respectively, comparing to that of 7.52 from the no alignment
method. The proposed APPLR works very well – the magnitude of the most
prominent peak in the mean spectrum is 8.42.

We further investigate differences between resulting mean spectra profiles of
these methods. Fig. 2 displays the mean spectra from methods of no-alignment
(panel (a)), CAM (panel (b)), PCS (panel (c)), and APPLR (panel (d)), respec-
tively. According to Fig. 2, cross sectional mean (no-alignment), CAM and PCS
have similar poor performance. They could not recover the apparent pattern
of each TIC spectrum, i.e., several major peaks among large number of minor
peaks. Instead, major peaks were almost washed out in an averaging process.
This may be due to the fact that these peaks are not well aligned through these
methods because they cannot handle the extreme large number of peaks well.
On the contrary, using the APPLR method, most prominent peaks are consis-
tently identified in the resulting mean spectrum across spectra. The pattern of
each spectrum is very well recovered. As a side note, the average number of
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peaks identified and aligned in APPLR is 46.8. Different sample spectra may
have different number of peaks – the range is [40, 52] and the median is 47 in
the TIC data.

In summary, for the most important feature in these TIC spectra – several
big spikes scattered with large number of minor peaks, the APPLR model gave
meaningful mean spectrum as well as better shape by focusing on the most
prominent peaks.

4. Conclusions and discussion

When mis-alignment problems are apparent in the TIC or similar MS data, one
needs to make adjustment through steps of alignment so that the confidence
in identifying peaks may be increased. We develop a procedure that can auto-
matically align TIC data in a piecewise and pairwise way which makes use of
information inherent in large number of peaks.

As noted, it may not be fair to compare performance of these methods by
the success achieved in aligning the most prominent peak because this peak
is the primary focus of APPLR whereas in the other two methods the focus
is more global. In fact, similar in spirit to PCS and CAM, curve alignment
methods are often designed (through the implementation of the time warping
functions) to capture important features of the curves, e.g., peaks, troughs and
their locations, or global characteristics, e.g., the slope of the curve over time.
In particular, the Berkeley growth data (Ramsay and Silverman [7]) were used
in both PCS and CAM to demonstrate that the onset times and magnitudes of
the two growth spurts could be well captured. The most prominent peak in the
TIC data is the most obvious landmark. One would expect these two methods
will at least recover it well, if not other features.

Further, our attempt here is not necessarily to show that our approach will
outperform the other two methods using some objective measure. Rather, we
want to illustrate that the APPLR method can give viable result given the
situation that the other two methods fail to capture the pattern when the TIC
data exhibit such large number of peaks.

In the APPLR model, we implicitly assumed that the peak location variation
(of the same peak across different samples) range is much smaller than the
minimal distance of two adjacent peaks (different peaks). This is reasonable
because generally speaking, the variation of the peak locations in the average
spectrum should be relatively small. Also, Yu et al. [12] showed the accumulation
effect of peak shift with different processing order can be ignored by using
permutation experiment. This result suggests the impact of process ordering
may not be very large.
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