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Abstract: A new estimation method for the two-component mixture model
introduced in [29] is proposed. This model consists of a two-component mix-
ture of linear regressions in which one component is entirely known while
the proportion, the slope, the intercept and the error distribution of the
other component are unknown. In spite of good performance for datasets
of reasonable size, the method proposed in [29] suffers from a serious draw-
back when the sample size becomes large as it is based on the optimization
of a contrast function whose pointwise computation requires O(n2) oper-
ations. The range of applicability of the method derived in this work is
substantially larger as it relies on a method-of-moments estimator free of
tuning parameters whose computation requires O(n) operations. From a
theoretical perspective, the asymptotic normality of both the estimator
of the Euclidean parameter vector and of the semiparametric estimator
of the c.d.f. of the error is proved under weak conditions not involving
zero-symmetry assumptions. In addition, an approximate confidence band
for the c.d.f. of the error can be computed using a weighted bootstrap
whose asymptotic validity is proved. The finite-sample performance of the
resulting estimation procedure is studied under various scenarios through
Monte Carlo experiments. The proposed method is illustrated on three real
datasets of size n = 150, 51 and 176,343, respectively. Two extensions of
the considered model are discussed in the final section: a model with an
additional scale parameter for the first component, and a model with more
than one explanatory variable.
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1. Introduction

Practitioners are frequently interested in modeling the relationship between
a random response variable Y and a d-dimensional random explanatory vec-
tor X by means of a linear regression model estimated from a random sam-
ple (Xi, Yi)1≤i≤n of (X, Y ). Quite often, the homogeneity assumption claim-
ing that the linear regression coefficients are the same for all the observations
(X1, Y1), . . . , (Xn, Yn) is inadequate. To allow different parameters for different
groups of observations, a Finite Mixture of Regressions (FMR) can be consid-
ered; see [9, 16] for nice overviews.

Statistical inference for the fully parametric FMR model was first considered
in [20] where an estimation method based on the moment generating function
was proposed. An EM estimating approach was investigated in [6] in the case of
two components. Variations of the latter approach were also considered in [14]
and [24]. The problem of determining the number of components in the para-
metric FMR model was investigated in [11] using methods derived from the
likelihood equation. In [13], the authors proposed a Bayesian approach to esti-
mate the regression coefficients and also considered an extension of the model
in which the number of components is unspecified. The asymptotics of max-
imum likelihood estimators of parametric FMR models were studied in [32].
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More recently, an ℓ1-penalized method based on a Lasso-type estimator for a
high-dimensional FMR model with d≫ n was proposed in [22].

As an alternative to parametric estimation of a FMR model, some authors
suggested the use of more flexible semiparametric approaches. This research di-
rection finds its origin in [10] where d-variate semiparametric mixture models
of random vectors with independent components were considered. The authors
showed in particular that, for d ≥ 3, it is possible to identify a two-component
model without parametrizing the distributions of the component random vec-
tors. To the best of our knowledge, Leung and Qin [17] were the first to estimate
a FMR model semiparametrically. In the two-component case, they studied the
situation in which the components are related by Anderson’s exponential tilt
model [1]. Hunter and Young [12] studied the identifiability of an m-component
semiparametric FMR model and numerically investigated an EM-type algorithm
for estimating its parameters. Vandekerkhove [29] proposed an M -estimation
method for a two-component semiparametric mixture of regressions with sym-
metric errors in which one component is known. The latter approach was applied
to data extracted from a high-density microarray and modeled in [18] by means
of a parametric FMR.

The semiparametric approach proposed in [29] is of interest for two main
reasons. Due to its semiparametric nature, the method allows to detect complex
structures in the error of the unknown regression component. It can additionally
be regarded as a tool to assess the relevance of results obtained using EM-type
algorithms. The approach has however three important drawbacks. First, it is
not theoretically valid when the errors are not symmetric. Second, it is very
computationally expensive for large datasets as it requires the optimization of a
contrast function whose pointwise evaluation requires O(n2) operations. Third,
the underlying optimization method requires the choice of a weight function and
initial values for the Euclidean parameters, neither choices being data-driven.

The object of interest of this paper is the two-component FMR model stud-
ied in [29] in which one component is entirely known while the proportion, the
slope, the intercept and the error distribution of the other component are un-
known. The estimation of the Euclidean parameter vector is achieved through
the method of moments. Semiparametric estimators of the c.d.f. and the p.d.f.
of the error of the unknown component are proposed. The proof of the asymp-
totic normality of the Euclidean and functional estimators is not based on zero-
symmetry-like assumptions frequently found in the literature but only involves
finite moments of order eight for the explanatory variable and the boundness
of the p.d.f.s of the errors and their derivatives. The almost sure uniform con-
sistency of the estimator of the p.d.f. of the unknown error is obtained under
similar conditions. A consequence of these theoretical results is that, unlike
for EM-type approaches, the estimation uncertainty can be assessed through
large-sample standard errors for the Euclidean parameters and by means of an
approximate confidence band for the c.d.f. of the unknown error. The latter is
computed using a weighted bootstrap whose asymptotic validity is proved.

From a practical perspective, it is worth mentioning that the range of ap-
plicability of the resulting semiparametric estimation procedure is substantially
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larger than the one proposed in [29] as its computation only requires O(n) oper-
ations and no tuning of parameters such as starting values or weight functions.
As a consequence, very large datasets can be easily processed. For instance, as
shall be seen in Section 6, the estimation of the parameters of the model from
the ChIPmix data considered in [18] consisting of n = 176, 343 observations
took less than 30 seconds on one 2.4 GHz processor. The estimation of the same
model from a subset of n = 30, 000 observations using the method in [29] took
more than two days on a similar processor.

The paper is organized as follows. Section 2 is devoted to a detailed de-
scription of the model, while Section 3 is concerned with its identifiability. The
estimators of the Euclidean parameter vector and of the functional parameter
are investigated in detail in Section 4. The finite-sample performance of the pro-
posed estimation method is studied for various scenarios through Monte Carlo
experiments in Section 5. In Section 6, the proposed method is applied to the
tone data analyzed, among others, in [12], to the aphids dataset studied initially
in [3], and to the ChIPmix data considered in [18]. Two extensions of the FMR
model under consideration are discussed in the last section: a model with an
additional scale parameter for the first component, and a model with more than
one explanatory variable.

Note finally that all the computations reported in this work were carried out
using the R statistical system [21] and that the main corresponding R functions
are available on the web page of the second author (http://ikojadin.perso.
univ-pau.fr).

2. Problem and notation

Let Z be a Bernoulli random variable with unknown parameter π0 ∈ [0, 1],
let X be an X -valued random variable with X ⊂ R, and let ε∗, ε∗∗ be two
absolutely continuous centered real valued random variables with finite variances
and independent of X . Assume additionally that Z is independent of X , ε∗ and
ε∗∗. Furthermore, for fixed α∗

0, β
∗
0 , α

∗∗
0 , β

∗∗
0 ∈ R, let Ỹ be the random variable

defined by

Ỹ = (1− Z)(α∗
0 + β∗

0X + ε∗) + Z(α∗∗
0 + β∗∗

0 X + ε∗∗),

i.e.,

Ỹ =

{

α∗
0 + β∗

0X + ε∗ if Z = 0,
α∗∗
0 + β∗∗

0 X + ε∗∗ if Z = 1.
(1)

The above display is the equation of a mixture of two linear regressions with Z
as mixing variable.

Let F ∗ and F ∗∗ denote the c.d.f.s of ε∗ and ε∗∗, respectively. Furthermore, α∗
0,

β∗
0 and F ∗ are assumed known while α∗∗

0 , β∗∗
0 , π0 and F

∗∗ are assumed unknown.
The aim of this work is to propose and study an estimator of (α∗∗

0 , β
∗∗
0 , π0, F

∗∗)
based on n i.i.d. copies (Xi, Ỹi)1≤i≤n of (X, Ỹ ). Now, define Y = Ỹ −α∗

0−β∗
0X ,

http://ikojadin.perso.univ-pau.fr
http://ikojadin.perso.univ-pau.fr
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α0 = α∗∗
0 − α∗

0 and β0 = β∗∗
0 − β∗

0 , and notice that

Y =

{

ε∗ if Z = 0,
α0 + β0X + ε if Z = 1,

(2)

where, to simplify the notation, ε = ε∗∗ and F = F ∗∗. It follows that the previ-
ous estimation problem is equivalent to the problem of estimating (α0, β0, π0, F )
from the observation of n i.i.d. copies (Xi, Yi)1≤i≤n of (X,Y ).

As we continue, the unknown c.d.f.s of X and Y will be denoted by FX and
FY , respectively. Also, for any x ∈ X , the conditional c.d.f. of Y given X = x
will be denoted by FY |X(·|x), and we have

FY |X(y|x) = (1− π0)F
∗(y) + π0F (y − α0 − β0x), y ∈ R. (3)

It follows that, for any x ∈ X , fY |X(·|x), the conditional p.d.f. of Y givenX = x,
can be expressed as

fY |X(y|x) = (1− π0)f
∗(y) + π0f(y − α0 − β0x), y ∈ R, (4)

where f∗ and f are the p.d.f.s of ε∗ and ε, assuming that they exist on R.
Note that, as shall be discussed in Section 7, it is possible to consider a

slightly more general version of the model stated in (2) involving an unknown
scale parameter for the first component. This more elaborate model remains
identifiable and estimation through the method of moments is theoretically pos-
sible. However, from a practical perspective, estimation of this scale parameter
through the method of moments seems quite unstable insomuch as that an alter-
native estimation method appears to be required. Notice also that another more
straightforward extension of the model will be considered in Section 7 allowing
to deal with more than one explanatory variable.

3. Identifiability

Since (2) is clearly equivalent to

Y = (1− Z)ε∗ + Z(α0 + β0X + ε), (5)

we immediately obtain that

E(Y |X) = π0α0 + π0β0X a.s. (6)

It follows that the coefficients λ0,1 = π0α0 and λ0,2 = π0β0 can be identified
from (6) if |X | > 1. In addition, we have

E(Y 2|X) = E[{(1− Z)ε∗ + Z(α0 + β0X + ε)}2|X ] a.s.

= E(1 − Z)E{(ε∗)2}+ E(Z)E{(α0 + β0X)2 + ε2|X} a.s.

= (1− π0)(σ
∗
0)

2 + π0
(

α2
0 + 2α0β0X + β2

0X
2 + σ2

0

)

a.s.

= (1− π0)(σ
∗
0)

2 + π0(α
2
0 + σ2

0) + 2π0α0β0X + π0β
2
0X

2 a.s., (7)
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where σ∗
0 and σ0 are the standard deviations of ε∗ and ε, respectively. If X

contains three points x1, x2, x3 such that the vectors {(1, x1, x21), (1, x2, x22),
(1, x3, x

2
3)} are linearly independent then, from (7), we can identify the coef-

ficients λ0,3 = (1− π0)(σ
∗
0)

2 + π0(α
2
0 + σ2

0), λ0,4 = 2π0α0β0 and λ0,5 = π0β
2
0 . It

then remains to identify α0, β0 and π0 from the equations






















λ0,1 = π0α0

λ0,2 = π0β0
λ0,3 = (1− π0)(σ

∗
0)

2 + π0(α
2
0 + σ2

0)
λ0,4 = 2π0α0β0 = 2α0λ0,2
λ0,5 = π0β

2
0 = β0λ0,2.

(8)

From the above system, we see that α0, β0 and π0 can be identified provided
π0β0 6= 0. If π0 = 0, then α0 and β0 cannot be identified, and, as shall become
clear in the sequel, neither can F . If β0 = 0, then the model in (2) coincides
with the model studied in [4] where it was shown that identifiability does not
necessary hold even if ε∗ is assumed to have a zero-symmetric distribution. It
follows that for identifiability to hold it is necessary that the unknown compo-
nent actually exists (π0 ∈ (0, 1]) and that its slope is non-zero (β0 6= 0). The
latter conditions will be assumed in the rest of the paper.

Before discussing the identifiability of the functional part of the model, it is
important to notice that the conditions on X stated above are merely sufficient
conditions. For instance, if X = {−1, 1}, then λ0,1 = π0α0 and λ0,2 = π0β0 can
be identified from (6) and λ0,4 = 2π0α0β0 can be identified from (7), which is
enough to uniquely determine (α0, β0, π0).

Let us finally consider the functional part F of the model. For any η =
(α, β) ∈ R2, denote by J(·,η) the c.d.f. defined by

J(t,η) = Pr(Y ≤ t+ α+ βX), t ∈ R. (9)

For any t ∈ R, this can be rewritten as

J(t,η) =

∫

R

FY |X(t+ α+ βx|x)dFX (x)

= (1− π0)

∫

R

F ∗(t+ α+ βx)dFX(x)

+ π0

∫

R

F{t+ (α− α0) + (β − β0)x}dFX(x).

For η = η0 = (α0, β0), we then obtain

J(t,η0) = (1− π0)

∫

R

F ∗(t+ α0 + β0x)dFX (x) + π0F (t), t ∈ R.

Now, for any η ∈ R2, let K(·,η) be defined by

K(t,η) =

∫

R

F ∗(t+ α+ βx)dFX (x), t ∈ R. (10)
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It follows that F is identified since

F (t) =
1

π0
{J(t,η0)− (1− π0)K(t,η0)} , t ∈ R. (11)

The above equation is at the root of the derivation of an estimator for F .

4. Estimation

Let P be the probability distribution of (X,Y ). For ease of exposition, we will
frequently use the notation adopted in the theory of empirical processes as
presented in [15, 25, 27] for instance. Given a measurable function f : R2 → Rk,
for some integer k ≥ 1, Pf will denote the integral

∫

fdP . Also, the empirical
measure obtained from the random sample (Xi, Yi)1≤i≤n will be denoted by
Pn = n−1

∑n
i=1 δXi,Yi

, where δx,y is the probability distribution that assigns a
mass of 1 at (x, y). The expectation of f under the empirical measure is then
Pnf = n−1

∑n
i=1 f(Xi, Yi) and the quantity Gnf =

√
n(Pnf − Pf) is the

empirical process evaluated at f . The arrow ‘ ’ will be used to denote weak
convergence in the sense of Definition 1.3.3 in [27] and, for any set S, ℓ∞(S)
will stand for the space of all bounded real-valued functions on S equipped
with the uniform metric. Key results and more details can be found for instance
in [15, 25, 27].

4.1. Estimation of the Euclidean parameter vector

To estimate the Euclidean parameter vector (α0, β0, π0) ∈ R×R\{0}×(0, 1], we
first need to estimate the vector λ0 = (λ0,1, . . . , λ0,5) ∈ R5 whose components
were expressed in terms of α0, β0 and π0 in (8). From (6) and (7), it is natural
to consider the regression function

dn(λ) = Pnϕλ, λ ∈ R
5,

where, for any λ ∈ R5, ϕλ : R2 → R is defined by

ϕλ(x, y) = (y − λ1 − λ2x)
2 + (y2 − λ3 − λ4x− λ5x

2)2, x, y ∈ R. (12)

As an estimator of λ0 = argminλ Pϕλ, we then naturally consider λn =
argminλ dn(λ) that satisfies

ḋn(λn) = Pnϕ̇λn
= 0,

where ϕ̇λ, the gradient of ϕλ with respect to λ, is given by

ϕ̇λ(x, y) = −2













y − λ1 − λ2x
x(y − λ1 − λ2x)

y2 − λ3 − λ4x− λ5x
2

x(y2 − λ3 − λ4x− λ5x
2)

x2(y2 − λ3 − λ4x− λ5x
2)













, x, y ∈ R.
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Now, for any integers p, q ≥ 1, define

XpY q =
1

n

n
∑

i=1

Xp
i Y

q
i ,

and let

Λn = 2













1 X 0 0 0

X X2 0 0 0

0 0 1 X X2

0 0 X X2 X3

0 0 X2 X3 X4













and Υn = 2













Y
XY

Y 2

XY 2

X2Y 2













,

which respectively estimate

Λ0 = 2













1 E(X) 0 0 0
E(X) E(X2) 0 0 0
0 0 1 E(X) E(X2)
0 0 E(X) E(X2) E(X3)
0 0 E(X2) E(X3) E(X4)













and Υ0 = 2













E(Y )
E(XY )
E(Y 2)
E(XY 2)
E(X2Y 2)













.

The linear equation Pnϕ̇λn
= 0 can then equivalently be rewritten as Λnλn =

Υn. Provided the matrices Λn and Λ0 are invertible, we can write λn = Λ−1
n Υn

and λ0 = Λ−1
0 Υ0. Notice that, in practice, this amounts to performing an

ordinary least-squares linear regression of Y on X to obtain λn,1 and λn,2, while
λn,3, λn,4 and λn,5 are given by an ordinary least-squares linear regression of
Y 2 on X and X2.

To obtain an estimator of (α0, β0, π0), we use the relationships induced by (6)
and (7) and recalled in (8). Leaving the third equation aside because it involves
the unknown standard deviation σ0 of ε, we obtain three possible estimators
of α0:

α(1)
n =

λn,1λn,5
λ2n,2

, α(2)
n =

λn,4
2λn,2

, or α(3)
n =

λ2n,4
4λn,1λn,5

,

three possibles estimators of β0:

β(1)
n =

λn,5
λn,2

, β(2)
n =

λn,4
2λn,1

, or β(3)
n =

λn,2λ
2
n,4

4λn,5λ2n,1
,

and, three possibles estimators of π0:

π(1)
n =

λ2n,2
λn,5

, π(2)
n =

2λn,1λn,2
λn,4

, or π(3)
n =

4λ2n,1λn,5

λ2n,4
.

There are therefore 27 possible estimators of (α0, β0, π0). Their asymptotics can
be obtained under reasonable conditions similar to those stated in Assumptions
A1 and A2 below. Unfortunately, all 27 estimators turned out to behave quite
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poorly in small samples. This prompted us to look for alternative estimators
within the “same class”.

We now describe an estimator of (α0, β0, π0) that was obtained empirically
and that behaves significantly better for small samples than the aforementioned
ones. The new regression function under consideration is dn(γ) = Pnϕγ , γ ∈ R

8,
where, for any (x, y) ∈ R2,

ϕγ(x, y) = (y − γ1 − γ2x)
2 + (y2 − γ3 − γ4x

2)2

+ (x− γ5)
2 + (x2 − γ6)

2 + (x3 − γ7)
2 + (x4 − γ8)

2. (13)

As previously, let γn = argminγ dn(γ) be the estimator of γ0 = argminγ Pϕγ ,
and notice that the main difference between the approach based on (12) and
the approach based on (13) is that the former involves the linear regression of
Y on X and X2, while the latter relies on the linear regression of Y 2 on X2

only, which appears to result in better estimation accuracy. Now, let

Γn = 2

























1 X 0 0 0 0 0 0

X X2 0 0 0 0 0 0

0 0 1 X2 0 0 0 0

0 0 X2 X4 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

























and θn = 2



























Y
XY

Y 2

X2Y 2

X

X2

X3

X4



























,

which respectively estimate

Γ0 = 2

























1 E(X) 0 0 0 0 0 0
E(X) E(X2) 0 0 0 0 0 0
0 0 1 E(X2) 0 0 0 0
0 0 E(X2) E(X4) 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

























and θ0 = 2

























E(Y )
E(XY )
E(Y 2)

E(X2Y 2)
E(X)
E(X2)
E(X3)
E(X4)

























.

Then, proceeding as for the estimators based on (12), we have, provided the
matrices Γn and Γ0 are invertible, that γn = Γ−1

n θn and γ0 = Γ−1
0 θ0. In prac-

tice, γn,1 and γn,2 (resp. γn,3 and γn,4) merely follow from the ordinary least-

squares linear regression of Y on X (resp. Y 2 on X2), while γn,4+i = X i for
i ∈ {1, . . . , 4}.

To obtain an estimator of (α0, β0, π0), we immediately have from the second
term in (13) corresponding to the linear regression of Y 2 on X2 that

γ0,4 =
cov(X2, Y 2)

V(X2)
=

cov(X2, Y 2)

γ0,8 − γ20,6
,
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where the second equality comes from the fact that γ0,4+i = E(X i) for i ∈
{1, . . . , 4}. Now, using (5), we obtain

cov(X2, Y 2) = cov[X2, {(1− Z)ε∗ + Z(α0 + β0X + ε)}2]
= π0β

2
0V(X

2) + 2π0α0β0cov(X
2, X).

From the first term in (13) corresponding to the linear regression of Y on X
and (6), we have that γ0,1 = π0α0 and γ0,2 = π0β0. Combining these with the
previous display, we obtain

cov(X2, Y 2) = γ0,2β0(γ0,8 − γ20,6) + 2γ0,1β0(γ0,7 − γ0,5γ0,6).

This leads to the following estimator of (α0, β0, π0):

βn = gβ(γn) =
γn,4

γn,2 + 2γn,1(γn,7 − γn,5γn,6)/(γn,8 − γ2n,6)
,

πn = gπ(γn) =
γn,2
βn

,

αn = gα(γn) =
γn,1
πn

.

As we continue, the subsets of R8 on which the functions gα, gβ and gπ exist and
are differentiable will be denoted by Dα, Dβ and Dπ, respectively, and Dα,β,π

will stand for Dα ∩ Dβ ∩ Dπ.

To derive the asymptotic behavior of (αn, βn, πn) = (gα(γn), g
β(γn), g

π(γn)),
we consider the following assumptions:

A1. (i) X has a finite fourth order moment; (ii) X has a finite eighth order
moment.

A2. the variances of X and X2 are strictly positive and finite.

Clearly, Assumption A1 (ii) implies Assumption A1 (i), and Assumption A2
implies that the matrix Γ0 defined above is invertible.

The following result, proved in Appendix A, characterizes the asymptotic
behavior of the estimator (αn, βn, πn).

Proposition 4.1. Assume that γ0 ∈ Dα,β,π.

(i) Under Assumptions A1 (i) and A2, (αn, βn, πn)
a.s.−−→ (α0, β0, π0).

(ii) Suppose that Assumptions A1 (ii) and A2 are satisfied and let Ψγ be the
3 by 8 matrix defined by

Ψγ =















∂gα

∂γ1

· · · ∂gα

∂γ8

∂gβ

∂γ1

· · · ∂gβ

∂γ8

∂gπ

∂γ1

· · · ∂gπ

∂γ8















(γ), γ ∈ Dα,β,π.
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Then,

√
n(αn − α0, βn − β0, πn − π0) = −Gn(Ψγ0

Γ−1
0 ϕ̇γ0

) + oP (1),

where Gn =
√
n(Pn − P ). As a consequence,

√
n(αn − α0, βn − β0, πn −

π0) converges in distribution to a centered multivariate normal random
vector with covariance matrix Σ = Ψγ0

Γ−1
0 P (ϕ̇γ0

ϕ̇⊤
γ0
)Γ−1

0 Ψ⊤
γ0
, which can

be consistently estimated by Σn = Ψγn
Γ−1
n Pn(ϕ̇γn

ϕ̇⊤
γn

)Γ−1
n Ψ⊤

γn
in the sense

that Σn
a.s.−−→ Σ.

An immediate consequence of the previous result is that large-sample stan-
dard errors of αn, βn and πn are given by the square root of the diagonal ele-
ments of the matrix n−1Σn. The finite-sample performance of these estimators
is investigated in Section 5 and they are used in the illustrations of Section 6.

4.2. Estimation of the functional parameter

To estimate the unknown c.d.f. F of ε, it is natural to start from (11). For a
known η = (α, β) ∈ R2, the term J(·,η) defined in (9) may be estimated by the
empirical c.d.f. of the random sample (Yi − α− βXi)1≤i≤n, i.e.,

Jn(t,η) =
1

n

n
∑

i=1

1(Yi − α− βXi ≤ t), t ∈ R.

Similarly, since F ∗ (the c.d.f. of ε∗) is known, a natural estimator of the term
K(t,η) defined in (10) is given by the empirical mean of the random sample
{F ∗(t+ α+ βXi)}1≤i≤n, i.e.,

Kn(t,η) =
1

n

n
∑

i=1

F ∗(t+ α+ βXi), t ∈ R.

To obtain estimators of J(·,η0) and K(·,η0), it is then natural to consider the
plug-in estimators Jn(·,ηn) and Kn(·,ηn), respectively, based on the estimator
ηn = (αn, βn) = (gα, gβ)(γn) of η0 proposed in the previous subsection.

We shall therefore consider the following nonparametric estimator of F :

Fn(t) =
1

πn
{Jn(t,ηn)− (1− πn)Kn(t,ηn)} , t ∈ R. (14)

Note that Fn is not necessarily a c.d.f. as it is not necessarily increasing and
can be smaller than zero or greater than one. In practice, we shall consider the
partially corrected estimator (Fn ∨ 0)∧ 1, where ∨ and ∧ denote the maximum
and minimum, respectively.

To derive the asymptotic behavior of the previous estimator, we consider the
following additional assumptions on the p.d.f.s f∗ and f of ε∗ and ε, respectively:

A3. (i) f∗ and f exist and are bounded on R; (ii) (f∗)′ and f ′ exist and are
bounded on R.
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Before stating one of our main results, let us first define some additional
notation. Let FJ and FK be two classes of measurable functions from R2 to R

defined respectively by

FJ =
{

(x, y) 7→ ψJ
t,η(x, y) = 1(y − α− βx ≤ t) : t ∈ R,η = (α, β) ∈ R

2
}

and

FK =
{

(x, y) 7→ ψK
t,η(x, y) = F ∗(t+ α+ βx) : t ∈ R,η = (α, β) ∈ R

2
}

.

Furthermore, let Dα,β,π
γ0

be a bounded subset of Dα,β,π containing γ0, and let

Fα,β,π be the class of measurable functions from R2 to R3 defined by

Fα,β,π =
{

(x, y) 7→ −ΨγΓ
−1
0 ϕ̇γ(x, y)

=
(

ψα
γ (x, y), ψ

β
γ(x, y), ψ

π
γ (x, y)

)

: γ ∈ Dα,β,π
γ0

}

.

With the previous notation, notice that, for any t ∈ R,
√
n{Jn(t,η0)−J(t,η0)} = Gnψ

J
t,η0

and
√
n{Kn(t,η0)−K(t,η0)} = Gnψ

K
t,η0

,

and that, under Assumptions A1 (ii) and A2, Proposition 4.1 states that
√
n (αn − α0, βn − β0, πn − π0) = Gn

(

ψα
γ0
, ψβ

γ0
, ψπ

γ0

)

+ oP (1).

Next, for any γ ∈ Dα,β,π
γ0

, let

ψF
t,γ =

1

π
ψJ
t,η + f(t)ψα

γ + f(t)E(X)ψβ
γ − 1− π

π
ψK
t,η +

PψK
t,η − PψJ

t,η

π2
ψπ
γ , (15)

with η = (α, β) = (gα, gβ)(γ) and π = gπ(γ).
The following result, proved in Appendix B, gives the weak limit of the em-

pirical process
√
n(Fn − F ).

Proposition 4.2. Assume that γ0 ∈ Dα,β,π and that Assumptions A1, A2 and
A3 hold. Then, for any t ∈ R,

√
n{Fn(t)− F (t)} = Gnψ

F
t,γ0

+Qn,t,

where supt∈R
|Qn,t| = oP (1) and the empirical process t 7→ Gnψ

F
t,γ0

converges

weakly to t 7→ GψF
t,γ0

in ℓ∞(R) with G a P -Brownian bridge.

Let us now discuss the estimation of the p.d.f. f of ε. Starting from (11) and
after differentiation, it seems sensible to estimate E {f∗(t+ α0 + β0X)}, t ∈ R,
by the empirical mean of the observable sample {f∗(t + αn + βnXi)}1≤i≤n.
Hence, a natural estimator of f can be defined, for any t ∈ R, by

fn(t) =
1

πn

{

1

nhn

n
∑

i=1

κ

(

t− Yi + αn + βnXi

hn

)

− (1− πn)

n

n
∑

i=1

f∗(t+ αn + βnXi)

}

, (16)
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where κ is a kernel function on R and (hn)n≥1 is a sequence of bandwidths
converging to zero.

In the same way that Fn is not necessarily a c.d.f., fn is not necessarily a
p.d.f. In practice, we shall use the partially corrected estimator fn ∨ 0. A fully
corrected estimator (so that, additionally, the estimated density integrates to
one) can be obtained as explained in [8].

Consider the following additional assumptions on (hn)n≥1, κ and f∗ :

A4. (i) hn = cn−α with α ∈ (0, 1/2) and c > 0 a constant; (ii) κ is a p.d.f. with
bounded variations on R and a finite first order moment; (iii) the p.d.f. f∗

has bounded variations on R.

The following result is proved in Appendix C.

Proposition 4.3. If γ0 ∈ Dα,β,π, and under Assumptions A1 (i), A2, A3
and A4,

sup
t∈R

|fn(t)− f(t)| a.s.−−→ 0.

Finally, note that, in all our numerical experiments, the kernel part of fn was
computed using the ks R package [7] in which the univariate plug-in selector
proposed in [30] was used for the bandwidth hn.

4.3. A weighted bootstrap with application to confidence bands for F

In applications, it may be of interest to carry out inference on F . The result
stated in this section can be used for that purpose. It is based on the uncon-
ditional multiplier central limit theorem for empirical processes [see e.g. 15,
Theorem 10.1 and Corollary 10.3] and can be used to obtain approximate inde-
pendent copies of

√
n(Fn − F ).

Given i.i.d. mean 0 variance 1 random variables ξ1, . . . , ξn with
∫∞

0 {Pr(|ξ1| >
x)}1/2dx <∞, and independent of the random sample (Xi, Yi)1≤i≤n, let

G
′
n =

1√
n

n
∑

i=1

(ξi − ξ̄)δXi,Yi
,

where ξ̄ = n−1
∑n

i=1 ξi. Also, let (ψ̂α
γn
, ψ̂β

γn
, ψ̂π

γn
) = −Ψγn

Γ−1
n ϕ̇γn

and, for any
t ∈ R, let

ψ̂F
t,γn

=
1

πn
ψJ
t,ηn

+fn(t)ψ̂
α
γn

+fn(t)X̄ψ̂
β
γn

− 1− πn
πn

ψK
t,ηn

+
Pnψ

K
t,ηn

− Pnψ
J
t,ηn

π2
n

ψ̂π
γn

(17)
be an estimated version of the influence function ψF

t,γ0
arising in Proposition 4.2,

where ηn = (αn, βn) = (gα, gβ)(γn) and πn = gπ(γn).

The following proposition, proved in Appendix D, suggests, when n is large,
to interpret t 7→ G′

nψ̂
F
t,γn

as an independent copy of
√
n(Fn − F ).
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Proposition 4.4. Assume that γ0 ∈ Dα,β,π, and that Assumptions A1, A2, A3
and A4 hold. Then, the process (t 7→ Gnψ

F
t,γ0

, t 7→ G′
nψ̂

F
t,γn

) converges weakly to

(t 7→ GψF
t,γ0

, t 7→ G′ψF
t,γ0

) in {ℓ∞(R)}2, where t 7→ G′ψF
t,γ0

is an independent

copy of t 7→ GψF
t,γ0

.

Let us now explain how the latter result can be used in practice to obtain

an approximate confidence band for F . Let N be a large integer and let ξ
(j)
i ,

i ∈ {1, . . . , n}, j ∈ {1, . . . , N}, be i.i.d. random variables with mean 0, vari-

ance 1, satisfying
∫∞

0
{Pr(|ξ(j)i | > x)}1/2dx < ∞, and independent of the data

(Xi, Yi)1≤i≤n. For any j ∈ {1, . . . , N}, let G(j)
n = n−1/2

∑n
i=1(ξ

(j)
i − ξ̄(j))δXi,Yi

,

where ξ̄(j) = n−1
∑n

i=1 ξ
(j)
i . Then, a consequence of Propositions 4.2 and 4.4 is

that
(√

n(Fn − F ), t 7→ G
(1)
n ψ̂F

t,γn
, . . . , t 7→ G

(N)
n ψ̂F

t,γn

)

 

(

t 7→ GψF
t,γ0

, t 7→ G
(1)ψF

t,γ0
, . . . , t 7→ G

(N)ψF
t,γ0

)

in {ℓ∞(R)}N+1, where G(1), . . . ,G(N) are independent copies of the P -Brownian
bridge G. From the continuous mapping theorem, it follows that

(

sup
t∈R

|√n(Fn − F )|, sup
t∈R

|G(1)
n ψ̂F

t,γn
|, . . . , sup

t∈R

|G(N)
n ψ̂F

t,γn
|
)

 

(

sup
t∈R

|GψF
t,γ0

|, sup
t∈R

|G(1)ψF
t,γ0

|, . . . , sup
t∈R

|G(N)ψF
t,γ0

|
)

in [0,∞)N+1. The previous result suggests to estimate quantiles of supt∈R
|√n(Fn−

F )| using the generalized inverse of the empirical c.d.f.

Gn,N (x) =
1

N

N
∑

j=1

1

{

sup
t∈R

|G(j)
n ψ̂F

t,γn
| ≤ x

}

. (18)

A large-sample confidence band of level 1 − p for F is thus given by Fn ±
G−1

n,N (1 − p)/
√
n. Examples of such confidence bands are given in Figures 1, 2

and 3, and the finite-sample properties of the above construction are empiri-
cally investigated in Section 5. Note that in all our numerical experiments, the

random variables ξ
(j)
i were taken from the standard normal distribution, and

that the supremum in the previous display was replaced by a maximum over
100 points U1, . . . , U100 uniformly spaced over the interval [min1≤i≤n(Yi −αn −
βnXi),max1≤i≤n(Yi − αn − βnXi)].

Finally, notice that Proposition 4.2 implies that, for any fixed t ∈ R, the
random variable Gnψ

F
t,γ0

converges in distribution to GψF
t,γ0

. This suggests to

estimate the variance of GψF
t,γ0

as the variance of Gnψ
F
t,γ0

, which is equal to

V{ψF
t,γ0

(X,Y )} = P (ψF
t,γ0

)2 − (PψF
t,γ0

)2. Should γ0 be known, a natural es-
timate of the latter would be the empirical variance of the random sample
{ψF

t,γ0
(Xi, Yi)}1≤i≤n. As γ0 is unknown, the sample of “pseudo-observations”

{ψ̂F
t,γn

(Xi, Yi)}1≤i≤n can be used instead. This suggests to estimate the stan-
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dard error of Fn(t) as

n−1/2{Pn(ψ̂
F
t,γn

)2 − (Pnψ̂
F
t,γn

)2}1/2. (19)

The finite-sample performance of this estimator is investigated in Section 5 for
several values of t.

5. Monte Carlo experiments

A large number of Monte Carlo experiments was carried out to investigate the
influence on the estimators of various factors such as the degree of overlap of the
mixed populations, the proportion of the unknown component π0, or the shape
of the noise ε involved in the unknown regression model. Starting from (2), the
following generic data generating models were considered:

WO : ε∗ ∼ N (0, 1), (α0, β0) = (2, 1), X ∼ N (2, 32), E(ε2) = 1,

MO : ε∗ ∼ N (0, 1), (α0, β0) = (2, 1), X ∼ N (2, 32), E(ε2) = 4,

SO : ε∗ ∼ N (0, 1), (α0, β0) = (1, 0.5), X ∼ N (1, 22), E(ε2) = 4.

The abbreviations WO, MO and SO stand respectively for “Weak Overlap”,
“Medium Overlap” and “Strong Overlap”. Three possibilities were considered
for the distribution of ε: the centered normal (the corresponding data generating
models will be abbreviated by WOn, MOn and SOn), a gamma distribution with
shape parameter equal to two and rate parameter equal to a half, shifted to have
mean zero (the corresponding models will be abbreviated by WOg, MOg and
SOg) and a standard exponential shifted to have mean zero (the corresponding
models will be abbreviated by WOe, MOe and SOe). Depending on the model
they are used in, all three error distributions are scaled so that ε has the desired
variance.

Examples of datasets generated from WOn, MOg and SOe with n = 500 and
π0 = 0.7 are represented in the first column of graphs of Figure 1. The solid
(resp. dashed) lines represent the true (resp. estimated) regression lines. The
graphs of the second column represent, for each of WOn, MOg and SOe, the
true c.d.f. F of ε (solid line) and its estimate Fn (dashed line) defined in (14).
The dotted lines represent approximate confidence bands of level 0.95 for F
computed as explained in Subsection 4.3 with N = 10, 000. Finally, the graphs
of the third column represent, for each of WOn, MOg and SOe, the true p.d.f.
f of ε (solid line) and its estimate fn (dashed line) defined in (16).

For each of the three groups of data generating models, {WOn, MOn, SOn},
{WOg, MOg, SOg} and {WOe, MOe, SOe}, the values 0.4 and 0.7 were con-
sidered for π0, and the values 100, 300, 1000 and 5000 were considered for n.
For each of the nine data generating scenarios, each value of π0, and each value
of n, M = 1000 random samples were generated. Tables 1, 2 and 3 report the
number m of samples out of M for which πn 6∈ (0, 1], as well as the estimated
bias and standard deviation of αn, βn, πn, Fn{F−1(0.1)}, Fn{F−1(0.5)} and
Fn{F−1(0.9)} computed from the M −m valid estimates.
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Fig 1. First column, from top to bottom: datasets generated from WOn, MOg and SOe,
respectively, with n = 500 and π0 = 0.7; the solid (resp. dashed) lines represent the true
(resp. estimated) regression lines. Second column, from top to bottom: for WOn, MOg and
SOe, respectively, the true c.d.f. F of ε (solid line) and its estimate Fn (dashed line) defined
in (14). The dotted lines represent approximate confidence bands of level 0.95 for F computed
as explained in Subsection 4.3 with N = 10, 000. Third column, from top to bottom: for WOn,
MOg and SOe, respectively, the true p.d.f. f of ε (solid line) and its estimate fn defined
in (16) (dashed line).

A first general comment concerning the results reported in Tables 1, 2 and 3
is that the number m of samples for which πn 6∈ (0, 1] is the highest for the
SO scenarios followed by the MO scenarios and then the WO scenarios. Also,
for a fixed amount of overlap between the two mixed populations, it is when
the distribution of ε is exponential that m tends to be the highest followed by
the gamma and the normal cases. Hence, as expected, the SO scenarios are the
hardest and, for a given degree of overlap, the most difficult problems are those
involving exponential errors for the unknown regression component.
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Influence of the shape of the p.d.f. of ε. A surprising result, when observing
Tables 1, 2 and 3, is that the nature of the distribution of ε appears to have very
little influence on the performance of the estimators αn, βn and πn. Under weak
and moderate overlap in particular, the estimated bias and standard deviations
of the estimators are almost unaffected by the distribution of the error of the
unknown component.

The effect of the degree of overlap. As expected, the performance of the esti-
mators αn, βn and πn is strongly affected by the degree of overlap. Notice how-
ever that the results obtained under the WO and MO data generating scenarios
are rather comparable, while the performance of the estimators gets significantly
worse when switching to the SO scenarios, especially for πn. Notice also that,
overall, the biases of αn and βn are negative under WO and MO and positive
under SO, while, for all the scenarios under consideration, πn tends to have a
positive bias.

The influence of π0. For a given degree of overlap and sample size, the pa-
rameter that seems to affect the most the performance of the estimators is the
proportion π0 of the unknown component. On one hand, the number of samples
for which πn /∈ (0, 1] is lower for π0 = 0.4 than for π0 = 0.7. On the other hand,
when considering the samples for which πn ∈ (0, 1], the finite-sample behavior
of αn and βn improves very clearly when π0 switches from 0.4 to 0.7.

Performance of the functional estimator. The study of Fn{F−1(p)} for p ∈
{0.1, 0.5, 0.9} clearly shows that, for a given degree of overlap between the two
mixed populations, the performance of the functional estimator is the best when
the distribution of ε is normal followed by the gamma and the exponential
settings. In addition, it appears that Fn{F−1(p)}, p ∈ {0.1, 0.5}, behaves the
best under the MO scenarios, and that, somehow surprisingly, Fn{F−1(0.9)}
achieves its best results under the SO scenarios.

Asymptotics. The results reported in Tables 1, 2 and 3 are in accordance with
the asymptotic theory stated in the previous section. In particular, as expected,
the estimated biases and standard deviations of all the estimators tend to zero
as n increases. Notice for instance that under SOg and SOe with π0 = 0.4 (two
of the most difficult scenarios), the estimated standard deviation of αn is greater
than 7 for n = 100, drops below 0.7 for n = 300, and becomes very reasonable
for n = 1000 and 5000.

Comparison with the method proposed in [29]. The results reported in Ta-
ble 1 for models WOn, MOn and SOn, and for n ∈ {100, 300}, can be directly
compared with those reported in [29, Table 2]. The scenarios with gamma and
exponential errors considered in this work have however no analogue in [29]
as the method therein was derived under zero-symmetry assumptions for the
errors. A comparison of Table 1 with Table 2 in [29] reveals that the standard
deviations of our estimators of α0, β0 and π0 are between 1.5 and 3 times larger,
while the two sets of estimators are rather comparable in terms of bias. It is
however important to recall that the results reported in [29] were obtained after
a careful adjustment of the tuning parameters of the estimation method while
the approach derived in this work is free of tuning parameters. Indeed, in the
Monte Carlo experiments reported in [29], the underlying gradient optimization
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method is initialized at the true value of the parameter vector (α0, β0, π0) and
the choice of the weight distribution function involved in the definition of the
contrast function is carefully hand-tuned to avoid numerical instability [see 29,
Section 4.2].

Let us now present the results of the Monte Carlo experiments used to in-
vestigate the finite-sample performance of the estimators of the standard errors
of αn, βn, πn and Fn{F−1(p)}, p ∈ {0.1, 0.5, 0.9}, mentioned below Proposi-
tion 4.1 and in (19), respectively. The setting is the same as previously with
the exception that n ∈ {100, 300, 1000, 5000, 25000}. The results are partially
reported in Table 4 which gives, for scenarios WOn, MOg and SOe and each of
the aforementioned estimators, the standard deviation of the estimates multi-
plied by

√
n and the mean of the estimated standard errors multiplied by

√
n.

As can be seen, for all estimators and all scenarios, the standard deviation of
the estimates and the mean of the estimated standard errors are always very
close for n = 25, 000. The convergence to zero of the difference between these
two quantities appears however slower for Fn{F−1(p)}, p ∈ {0.1, 0.5, 0.9}, than
for αn, βn and πn, the worst results being obtained for Fn{F−1(0.1)}. The
results also confirm that the SO scenarios are the hardest. Notice finally that
the estimated standard errors of αn and βn seem to underestimate on average
the variability of αn and βn, and that the variability of πn and Fn{F−1(p)},
p ∈ {0.1, 0.5, 0.9} appears to be underestimated on average for the WO and MO
scenarios, and overestimated on average for the SO scenarios.

We end this section by an investigation of the finite-sample properties of the
confidence band construction proposed in Subsection 4.3. Table 5 reports the
proportion of samples for which

max
t∈{U1,...,U100}

|Fn(t)− F (t)| > n−1/2G−1
n,N (0.95),

where Gn,N is defined as in (18) with N = 1000, and U1, . . . , U100 are uniformly
spaced over the interval [min1≤i≤n(Yi−αn−βnXi),max1≤i≤n(Yi−αn−βnXi)].
As could have been partly expected from the results reported in Table 4, the
confidence bands are too narrow on average for the WO and MO scenarios,
the worse results being obtained when the error of the unknown component
is exponential. The results are, overall, more satisfactory for the SO scenarios.
In all cases, the estimated coverage probability appears to converge to 0.95,
although the convergence appears to be slow.

6. Illustrations

We first applied the proposed method to a dataset initially reported in [5] and
subsequently analyzed in [6] and [12], among others. As we shall see, the model
studied in this work and stated in (2) appears as a rather natural candidate for
this dataset. For other datasets for which it is less natural to assume that one
of the two components is known, the derived method can be used to assess the
relevance of the results of EM-type algorithms for estimating two-component
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Table 5

For M = 1000 random samples generated under each of the nine scenarios considered in
Section 5, number m of samples out of M for which πn 6∈ (0, 1], and proportion p out of the

M −m remaining samples for which Fn is not in the approximate confidence band
computed as explained in Subsection 4.3

Generic ε ∼ Normal ε ∼ Gamma ε ∼ Exp
scenario π0 n m p m p m p

WO 0.4 100 22 0.306 27 0.362 24 0.444
300 0 0.238 0 0.251 2 0.334

1000 0 0.126 0 0.182 0 0.226
5000 0 0.082 0 0.080 0 0.133

25000 0 0.064 0 0.055 0 0.092
0.7 100 32 0.169 32 0.195 24 0.290

300 2 0.138 5 0.160 3 0.231
1000 0 0.092 0 0.108 0 0.168
5000 0 0.073 0 0.074 0 0.090

25000 0 0.056 0 0.041 0 0.081

MO 0.4 100 45 0.088 42 0.177 48 0.334
300 0 0.114 2 0.205 1 0.296

1000 0 0.103 0 0.127 0 0.207
5000 0 0.073 0 0.095 0 0.126

25000 0 0.050 0 0.073 0 0.085
0.7 100 76 0.088 60 0.117 67 0.247

300 7 0.102 13 0.146 12 0.215
1000 0 0.084 0 0.082 0 0.140
5000 0 0.054 0 0.067 0 0.096

25000 0 0.049 0 0.065 0 0.070

SO 0.4 100 259 0.003 327 0.030 316 0.072
300 103 0.006 128 0.057 182 0.117

1000 4 0.027 14 0.067 29 0.142
5000 0 0.029 0 0.077 0 0.123

25000 0 0.042 0 0.045 0 0.087
0.7 100 328 0.001 413 0.036 405 0.099

300 166 0.005 249 0.037 280 0.094
1000 32 0.028 91 0.043 119 0.083
5000 0 0.036 2 0.062 2 0.088

25000 0 0.044 0 0.061 0 0.071

mixtures of linear regressions. Two such datasets will be analyzed: the aphids
dataset initially considered in [3], and the NimbleGen high density array dataset
studied in [18].

6.1. The tone dataset

The dataset, available in the mixtools R package [2], consists of n = 150 obser-
vations (xi, ỹi) where the xi are actual tones and the ỹi are the corresponding
perceived tones by a trained musician. The detailed description of the dataset
given in [12] suggests that it is natural to consider that the equation of the
tilted component is y = x. The transformation yi = ỹi − xi was then applied to
obtain a dataset (xi, yi) that fits into the setting considered in this work. The
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Fig 2. Upper left plot: the original tone data; the dashed lines represent the regression lines ob-
tained in [12] using a semiparametric EM-like algorithm without zero-symmetry assumptions.
Upper right plot: the transformed data; the solid line represents the estimated regression line;
the dashed line represents the corresponding (transformed) regression line obtained in [12].
Lower left plot: the estimate (Fn∨0)∧1 (solid line) of the unknown c.d.f. F of ε as well as an
approximate confidence band (dotted lines) of level 0.95 for F computed as explained in Sub-
section 4.3 with N = 10, 000. Lower right plot: the estimate fn∨0 of the unknown p.d.f. f of ε.

original dataset and the transformed dataset are represented in the upper left
and upper right plots of Figure 2, respectively.

The approach proposed in this paper was applied under the assumption that
the distribution of ε∗ in (2) is normal with standard deviation 0.079. The latter
value was obtained by considering the upper right plot of Figure 2 and by
computing the sample standard deviation of the yi such that yi ∈ (−0.25, 0.25)
and xi < 1.75 or xi > 2.25.

The estimate (1.652,−0.817, 0.790) was obtained for the parameter vector
(α0, β0, π0) with (0.217, 0.108, 0.104) as the vector of estimated standard errors.
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The estimated regression line is represented by a solid line in the upper right
plot of Figure 2. The dashed line represents the corresponding (transformed) re-
gression line obtained in [12] using a semiparametric EM-like algorithm without
zero-symmetry assumptions (see Table 1 in the latter paper for more results).
The estimate (Fn∨0)∧1 (resp. fn∨0) of the unknown c.d.f. F (resp. p.d.f. f) of
ε is represented in the lower left (resp. right) plot of Figure 2. The dotted lines
in the lower left plot represent an approximate confidence band of level 0.95 for
F computed as explained in Subsection 4.3 using N = 10, 000. Note that, from
the results of the previous section, the latter is probably too narrow. Numerical

integration using the R function integrate gave
∫ 1

−1(fn ∨ 0) ≈ 1.01.

6.2. The aphids dataset

We next considered a dataset initially analyzed in [3] and available in the mixreg
R package [23]. The data were obtained from 51 experiments. Each experiment
consisted of releasing a certain number of green peach aphids (flying insects)
in a chamber containing 81 tobacco plants arranged in a 9 × 9 grid. Among
these plants, 12 were infected by a certain virus and 69 were healthy. After
24 hours the chambers were fumigated to kill the aphids, and the previously
healthy plants were moved and monitored to detect symptoms of infection. The
number of infected plants was recorded. The dataset thus consists of n = 51
observations (xi, ỹi) where the xi are the number of released aphids and the
ỹi are the corresponding number of infected plants. The resulting scatterplot is
represented in the upper left plot of Figure 3. The dashed lines represent the
regression lines obtained in [24, Table 1] using a standard EM algorithm with
normal errors. With the notation of (1) and the convention that σ∗

0 and σ∗∗
0

are the standard deviations of ε∗ and ε∗∗, respectively, the author obtained the
estimate (0.859, 0.002, 1.125) for (α∗

0, β
∗
0 , σ

∗
0), the estimate (3.47, 0.055, 3.115) for

(α∗∗
0 , β

∗∗
0 , σ∗∗

0 ) and the estimate 0.5 for π0 [see also 31, Table 4].
To show how the semiparametric approach studied in this work could be

used to assess the relevance of the results reported in [24], we arbitrarily made
the assumption that the almost horizontal component in the upper left plot of
Figure 3 was perfectly estimated, i.e., that the known component has equation
y = 0.859 + 0.002x and that the distribution of the corresponding error is
normal with standard deviation 1.125 as estimated in [24]. The transformation
yi = ỹi − 0.859− 0.002xi was then applied to obtain a dataset (xi, yi) that fits
into the setting considered in this work. The resulting scatterplot is represented
in the upper right plot of Figure 3.

The estimate (2.281, 0.067, 0.454) was obtained for the parameter (α0, β0, π0)
with (2.538, 0.016, 0.120) as the vector of estimated standard errors. The esti-
mated regression line is represented by a solid line in the upper right plot of
Figure 3. The dashed line represents the corresponding regression line obtained
in [24]. The estimate (Fn ∨ 0) ∧ 1 (resp. fn ∨ 0) of the unknown c.d.f. F (resp.
p.d.f. f) of ε is represented in the lower left (resp. right) plot of Figure 3. The
dashed curve in the lower left (resp. right) plot represents the c.d.f. (resp. p.d.f.)
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Fig 3. Upper left plot: the original aphid data; the dashed lines represent the regression
lines reported in [24, Table 1] and obtained using a standard EM approach with normal
errors. Upper right plot: the transformed aphid data; the solid line represents the estimated
regression line; the dashed line represents the corresponding (transformed) regression line
obtained in [24]. Lower left plot: the estimate (Fn∨0)∧1 (solid line) of the unknown c.d.f. F
of ε, the c.d.f. of the parametric estimation of ε∗∗ obtained in [24] (dashed line) as well as an
approximate confidence band (dotted lines) of level 0.95 for F computed as explained in Sub-
section 4.3 with N = 10, 000. Lower right plot: the estimate fn∨0 (solid line) of the unknown
p.d.f. f of ε and the p.d.f. of the parametric estimation of ε∗∗ obtained in [24] (dashed line).

of the parametric estimation of ε∗∗ obtained in [24], which is normal with stan-
dard deviation equal to σ∗∗

0 = 3.115. The dotted lines in that the lower left
plot represent an approximate confidence band of level 0.95 for F computed as
explained in Subsection 4.3 using N = 10, 000. Note again that, from the results
of the previous section, the latter is probably too narrow. Numerical integration

using the R function integrate gave
∫ 15

−20(fn ∨ 0) ≈ 1.07. The results reported
in Figure 3 show no evidence against a normal assumption for the error of the
second component.



Mixture of linear regressions in which one component is known 2629

8 10 12 14 16

8
1

0
1

2
1

4
1

6

x

y

8 10 12 14 16

−
2

0
2

4

x

y

−4 −2 0 2 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

t

F
n

(t
)

−4 −2 0 2 4

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

x

d
n

o
rm

(x
, 

s
d

 =
 0

.8
)

Fig 4. Upper left plot: the original ChIPmix data and the regression lines obtained in [18]
using a standard EM algorithm with normal errors. Upper right plot: the transformed data; the
solid line represents the regression line estimated by the method derived in this work, while the
dashed (resp. dotted) line is the corresponding regression line estimated in [18] (resp. in [29]).
Lower left plot: the estimate (Fn ∨ 0) ∧ 1 (solid line) of the unknown c.d.f. F of ε and the
c.d.f. of the parametric estimation of the corresponding error obtained in [18] (dashed line).
Lower right plot: the estimate fn ∨ 0 (solid line) of the unknown p.d.f. f of ε and the p.d.f.
of the parametric estimation of the corresponding error obtained in [18] (dashed line).

6.3. The NimbleGen high density array dataset

As a final application, we considered the NimbleGen high density array dataset
analyzed initially in [18]. The dataset, produced by a two color ChIP-chip exper-
iment, consists of n = 176, 343 observations (xi, ỹi). The corresponding scatter
plot is represented in the upper left plot of Figure 4. A parametric mixture of
linear regressions with two unknown components was fitted to the data in [18]
under the assumption of normal errors using a standard EM algorithm. The esti-
mates are reported in [29, Section 4.4] in the homoscedastic and heteroscedastic
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cases, and the regression lines obtained in the heteroscedastic case are repre-
sented by dashed lines in the upper left plot of Figure 4. As for the aphids
dataset, we used the approach derived in this work to assess the relevance of the
latter results. We arbitrarily considered that the component with the smallest
slope was precisely estimated, i.e., that it has equation y = 1.48+0.81x, and that
the distribution of the corresponding error is normal with a standard deviation
of 0.56 as obtained in [18] and reported in [29, Section 4.4]. The transformation
yi = ỹi− (1.48+0.81xi) was then performed to obtain a dataset (xi, yi) that fits
into the setting considered in this work. The transformed dataset is represented
in the upper right plot of Figure 4.

The estimate (0.297, 0.068, 0.536) was obtained for the parameter (α0, β0, π0)
with (0.021, 0.002, 0.009) as the vector of estimated standard errors. The esti-
mated regression line is represented by a solid line in the upper right plot of
Figure 4 while the dashed line represents the corresponding (transformed) re-
gression line estimated in [18] under the assumption of normal errors. Note
that the estimate of π0 obtained therein is 0.32. The regression line obtained
in [29, Section 4.4] from a subsample of n = 30, 000 observations and under
zero-symmetry assumptions for the errors is represented as a dotted line. The
estimate (Fn ∨ 0) ∧ 1 (resp. fn ∨ 0) of the unknown c.d.f. F (resp. p.d.f. f) of
ε is represented in the lower left (resp. right) plot of Figure 4 as a solid line.
The computed approximate confidence band of level 0.95 for F is not displayed
because it cannot be distinguished from the estimated c.d.f. (which could have
been expected given the huge sample size). The dashed curve in the lower left
(resp. right) plot represents the c.d.f. (resp. p.d.f.) of the parametric estima-
tion of the corresponding error, which is normal with standard deviation equal
to 0.8 as reported in [29, Section 4.4]. The latter parametric c.d.f. lies clearly
outside the confidence band. The estimation of (α0, β0, π0, f, F ), implemented
in R, took less than 30 seconds on one 2.4 GHz processor while more than two
days of computation on a similar processor were necessary in [29] to estimate
the same parameters from a subsample of size n = 30, 000. Based on Figure 4
and given the huge sample size, it seems sensible to reject both the assumptions
of normality considered in [18] and the assumption of symmetry on which the
method in [29] is based.

7. Conclusion and possible extensions of the model

The identifiability of the model stated in (2) was investigated and estimators
of the Euclidean and functional parameters were proposed. The asymptotics
of the latter were studied under weak conditions not involving zero-symmetry
assumptions for the errors. In addition, a consistent procedure for computing
an approximate confidence band for the c.d.f. of the error was proposed using a
weighted bootstrap.

As mentioned by a referee, the model considered in this work is very specific.
It is the constraint that the first component is assumed to be entirely known
that enabled us to propose a relatively simple and numerically efficient estima-
tion procedure. It is that same constraint that made it possible to obtain, unlike
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for EM-type algorithms, asymptotic results allowing to quantify the estimation
uncertainty. The latter advantages clearly come at the price of a restricted ap-
plicability. As we shall see in the next subsection, it is possible in principle to
improve this situation by introducing an unknown scale parameter for the first
component. In the second subsection, we briefly discuss another extension of
the model adapted to the situation where there is more than one explanatory
variable.

7.1. An additional unknown scale parameter for the first component

From the illustrations presented in the previous section, we see that the price to
pay for no parametric constraints on the second component is a complete spec-
ification of the first component. As mentioned in Section 2, from a theoretical
perspective, it is possible to improve this situation by introducing an unknown
scale parameter for the first component. Using the notation of Sections 2 and 3,
the extended model that we have in mind can be written as

Y =

{

σ∗
0 ε̄

∗ if Z = 0,
α0 + β0X + ε if Z = 1,

(20)

where ε̄∗ is assumed to have variance one and known c.d.f. F̄ while σ∗
0 is un-

known. With respect to the model given in (2), this simply amounts to writing
ε∗ as σ∗

0 ε̄
∗ and the c.d.f. F ∗ of ε∗ as F ∗ = F̄ (·/σ∗

0). The Euclidean parame-
ter vector of this extended model is therefore (α0, β0, π0, σ

∗
0) and the functional

parameter is F , the c.d.f. of ε.
The model given in (20) is identifiable provided X , the set of possible values of

X , contains four points x1, x2, x3, x4 such that the vectors {(1, xi, x2i , x3i )}1≤i≤4

are linearly independent. This can be verified by using, in addition to (6) and (7),
the fact that

E(Y 3|X) = π0α0(α
2
0 + 3σ2

0) + 3π0β0(α
2
0 + σ2

0)X + 3π0α0β
2
0X

2 + π0β
3
0X

3 a.s.
(21)

By proceeding as in Section 3, one can for instance show that

(σ∗
0)

2 =
λ0,3λ0,5 − λ0,7λ0,2

λ0,5 − λ20,2
, (22)

where λ0,2 is the coefficient of X in (6), λ0,3 and λ0,5 are the coefficients of 1
and X2, respectively, in (7), and λ0,7 is the coefficient of X2 in (21).

From a practical perspective however, using relationship (22) for estimation
(or a similar equation resulting from (6), (7) and (21)) turned out to be highly
unstable. The reason why estimation of σ∗

0 by the method of moments does
not work satisfactorily seems to be due to the fact that (σ∗

0)
2 is always the

difference of two positive quantities. The estimation of each quantity is not
precise enough to ensure that their difference is close to (σ∗

0)
2, and the difference

is often negative. As an alternative estimation method, an iterative EM-type
algorithm could be used to estimate all the unknown parameters of the extended
model. Unfortunately, a weakness of such algorithms is that, up to now, the
asymptotics of the resulting estimators are not known.
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7.2. More than one explanatory variable

Assuming that there are d explanatory random variables X1, . . . , Xd for some
integer d ≥ 1, and using the notation of Sections 2 and 3, an immediate extension
of the model stated in (2) is

Y =

{

ε∗ if Z = 0,
β⊤X + ε if Z = 1,

(23)

where β = (β0, . . . , βd) ∈ R
d+1 is the Euclidean parameter of the unknown

component and X = (1, X1, . . . , Xd). Then, with the convention that X0 = 1,
we have

E(Y |X) =

d
∑

i=0

π0βiXi a.s.

and

E(Y 2|X) = (1−π0)(σ∗
0)

2+π0(β
2
0+σ

2
0)+

∑

0≤i<j≤d

2π0βiβjXiXj+

d
∑

i=1

π0β
2
iX

2
i a.s.

Now, let















̺i = π0βi, i ∈ {0, . . . , d},
ς = (1− π0)(σ

∗
0)

2 + π0(β
2
0 + σ2

0)
µ{i,j} = 2π0βiβj , {i, j} ⊂ {0, . . . , d},
νi = π0β

2
i , i ∈ {1, . . . , d}.

(24)

Adapting mutatis mutandis the approach described in Section 3, we have that
̺i, i ∈ {0, . . . , d}, can be identified provided that the set X ⊂ Rd of possible
values of (X1, . . . , Xd) is such that the space spaned by {(1,x) : x ∈ X} is of
dimension d+ 1. A similar (but painful to write) sufficient condition on X can
be stated ensuring that ς , µ{i,j}, {i, j} ⊂ {0, . . . , d}, and νi, i ∈ {1, . . . , d}, can
be identified. Then, it can be verified that the system in (24) can be solved
provided π0 ∈ (0, 1] and there exists k ∈ {1, . . . , d} such that βk 6= 0. In that
case, we obtain βk = νk/̺k and βj = µ{j,k}/2̺k for any j ∈ {0, . . . , d}, j 6= k.
In other words, a necessary condition to be able to identify β is that π0 ∈ (0, 1]
and there exists k ∈ {1, . . . , d} such that βk 6= 0.

As far as estimation of β and π0 is concerned, the system in (24) suggests
a large number of possible estimators. Many additional estimators could be
obtained by generalizing the approach used in the second half of Section 4.
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Appendix A: Proof of Proposition 4.1

Proof. Let us prove (i). From Assumption A1 (i) and (5), we have that E(XpY q)
is finite for all integers p, q ∈ {0, 1, 2}. It follows that all the components of the
vector of expectations E{ϕ̇γ0

(X,Y )} = Pϕ̇γ0
are finite. The strong law of large

numbers then implies that Pnϕ̇γ0

a.s.−−→ Pϕ̇γ0
. Using the fact that γ0 is a zero

of γ 7→ Pϕ̇γ , that Pnϕ̇γ0
= Γnγ0 − θn, and that Pnϕ̇γn

= Γnγn − θn = 0, we

obtain that Γn(γn − γ0)
a.s.−−→ 0. The strong law of large numbers also implies

that Γn
a.s.−−→ Γ0. Matrix inversion being continuous with respect to any usual

topology on the space of square matrices, Assumption A2 implies that Γ−1
n

a.s.−−→
Γ−1
0 . The continuous mapping theorem then implies that Γ−1

n Γn(γn − γ0) =

γn − γ0
a.s.−−→ 0. Since γ0 ∈ Dα,β,π, the strong consistency of (αn, βn, πn) is

finally again a consequence of the continuous mapping theorem as the function

γ 7→
(

gα, gβ, gπ
)

(γ) = (α, β, π) (25)

from R8 to R3 is continuous on Dα,β,π.
Let us now prove (ii). Using the fact that Pϕ̇γ0

= 0 and Pnϕ̇γn
= 0, we have

Pnϕ̇γ0
− Pϕ̇γ0

= −(Pnϕ̇γn
− Pnϕ̇γ0

) = −Pn(ϕ̇γn
− ϕ̇γ0

) = −Γn(γn − γ0),

which implies that Gnϕ̇γ0
= −Γn

√
n(γn−γ0). From Assumption A1 (ii) and (5),

we have that the covariance matrix of the random vector ϕ̇γ0
(X,Y ) is finite. The

multivariate central limit theorem then implies that Gnϕ̇γ0
converges in distri-

bution to a centered multivariate normal random vector Gϕ̇γ0
with covariance

matrix Pϕ̇γ0
ϕ̇⊤
γ0
. Since (Gnϕ̇γ0

,Γn)  (Gϕ̇γ0
,Γ0) and under Assumption A2,

we obtain, from the continuous mapping theorem, that

√
n(γn − γ0) = −Γ−1

n Gnϕ̇γ0
 −Γ−1

0 Gϕ̇γ0
.

The map defined in (25) is differentiable at γ0 since γ0 ∈ Dα,β,π. We can thus
apply the delta method with that map to obtain that

√
n(αn − α0, βn − β0, πn − π0) = −Ψγ0

Γ−1
n Gnϕ̇γ0

+ oP (1).

Since Γ−1
n

a.s.−−→ Γ−1
0 under Assumption A2, we obtain that

√
n(αn − α0, βn − β0, πn − π0) = −Ψγ0

Γ−1
0 Gnϕ̇γ0

+ oP (1).

It remains to prove that Σn
a.s.−−→ Σ. Under Assumption A1 (ii), the strong law of

large numbers implies that Pnϕ̇γ0
ϕ̇⊤
γ0

a.s.−−→ Pϕ̇γ0
ϕ̇⊤
γ0
. The fact that Pnϕ̇γn

ϕ̇⊤
γn

=

Pnϕ̇γ0
ϕ̇⊤
γ0

+ Pn(ϕ̇γn
ϕ̇⊤
γn

− ϕ̇γ0
ϕ̇⊤
γ0
)

a.s.−−→ Pϕ̇γ0
ϕ̇⊤
γ0

is then a consequence of the

fact that γn
a.s.−−→ γ0 and the continuous mapping theorem. Similarly, since

γ0 ∈ Dα,β,γ , we additionally have that Ψγn

a.s.−−→ Ψγ0
. Combined with the fact

that, under Assumption A2, Γ−1
n

a.s.−−→ Γ−1
0 , we obtain that Σn

a.s.−−→ Σ from the
continuous mapping theorem.



2634 L. Bordes et al.

Appendix B: Proof of Proposition 4.2

The proof of Proposition 4.2 is based on three lemmas.

Lemma B.1. The classes of functions FJ and FK are P -Donsker. So is the
class Fα,β,π provided Assumptions A1 (ii) and A2 hold, and γ0 ∈ Dα,β,π.

Proof. The class FJ is the class of indicator functions (x, y) 7→ 1{(x, y) ∈ Ct,η},
where Ct,η = {(x, y) ∈ R2 : y ≤ t+α+βx}. The collection C = {Ct,η : t ∈ R,η =
(α, β) ∈ R2} is the set of all half-spaces in R2. From [27, Exercise 14, p 152],
it is a Vapnik-Čhervonenkis (V C) class with V C dimension 4. By Lemma 9.8
in [15], FJ has the same V C dimension as C. Being a set of indicator functions,
FJ clearly possesses a square integrable envelope function and is therefore P -
Donsker.

The class FK is a collection of monotone functions, and it is easy to verify
that it has V C dimension 1. Furthermore, it clearly possesses a square integrable
envelope function because the elements of FK are bounded. It is therefore P -
Donsker.

The components classes of class Fα,β,π are well defined since Assumption
A2 holds and γ0 ∈ Dα,β,π. It is easy to see that they are linear combinations
of a finite collection of functions that, from Assumption A1 (ii), is P -Donsker.
The components classes of Fα,β,π are therefore V C classes. They possess square
integrable envelope functions because Dα,β,π

γ0
is a bounded set. The class Fα,β,π

is therefore P -Donsker.

Lemma B.2. Under Assumptions A1 (i) and A3 (i),

sup
t∈R

P (ψJ
t,η−ψJ

t,η0
)2 → 0 and sup

t∈R

P (ψK
t,η−ψK

t,η0
)2 → 0 as η → η0.

Proof. For class FJ , for any t ∈ R, we have

P (ψJ
t,η − ψ

J
t,η0

)2 = |P (ψJ
t,η + ψ

J
t,η0

− 2ψJ
t,ηψ

J
t,η0

)|

= P{(ψJ
t,η − ψ

J
t,η0

)1(α0 + β0x < α+ βx)}+ P{(ψJ
t,η0

− ψ
J
t,η)1(α0 + β0x > α+ βx)}

=

∫

R

{

FY |X(t+ α+ βx|x)− FY |X(t+ α0 + β0x|x)
}

1(α0 + β0x < α+ βx)dFX(x)

+

∫

R

{

FY |X(t+ α0 + β0x|x)− FY |X(t+ α+ βx|x)
}

1(α0 + β0x > α+ βx)dFX(x)

≤

∫

R

∣

∣FY |X(t+ α0 + β0x|x)− FY |X(t+ α+ βx|x)
∣

∣dFX(x),

where FY |X is defined in (3). Since fY |X(·|x) defined in (4) exists for all x ∈ X ,
the mean value theorem enables us to write, for any t ∈ R and x ∈ X ,

FY |X(t+ α+ βx|x) − FY |X(t+ α0 + β0x|x) = fY |X(t+ α̃x,t + β̃x,tx|x)
× {(α − α0) + x(β − β0)} ,
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where α̃x,t + β̃x,tx is between α+ βx and α0 + β0x. It follows that

sup
t∈R

P (ψJ
t,η − ψJ

t,η0
)2

≤ sup
t∈R

∫

R

fY |X(t+ α̃x,t + β̃x,tx|x) |(α − α0) + x(β − β0)| dFX(x)

≤
{

sup
t∈R

f∗(t) + sup
t∈R

f(t)

}

{|α− α0|+ E(|X |)|β − β0|} .

Under Assumption A3 (i), the supremum on the right of the previous display
is finite and, under Assumption A1 (i), so is E(|X |). We therefore obtain the
desired result.

For class FK , we have

sup
t∈R

P (ψK
t,η − ψK

t,η0
)2 =

∫

R

{F ∗(t+ α+ βx) − F ∗(t+ α0 + β0x)}2dFX(x)

≤
∫

R

|F ∗(t+ α+ βx)− F ∗(t+ α0 + β0x)|dFX (x),

from the convexity of x 7→ x2 on [0, 1]. Proceeding as previously, by the mean
value theorem, we obtain that

sup
t∈R

P (ψK
t,η − ψK

t,η0
)2 ≤

{

sup
t∈R

f∗(t)

}

{|α− α0|+ E(|X |)|β − β0|} .

Under Assumptions A1 (i) and A3 (i), the right-hand side of the previous in-
equality tends to zero as η → η0.

Lemma B.3. Under Assumptions A1 (ii), A2 and A3 (ii), for any t ∈ R,

√
n{Jn(ηn, t)− J(η0, t)} =

√
n
(

Pnψ
J
t,ηn

− PψJ
t,η0

)

= Gn

(

ψJ
t,η0

+ [(1− π0)E{f∗(t+ α0 + β0X)}+ π0f(t)]ψ
α
γ0

+ [(1− π0)E{Xf∗(t+ α0 + β0X)}+ π0f(t)E(X)]ψβ
γ0

)

+RJ
n,t,

and

√
n{Kn(ηn, t)−K(η0, t)} =

√
n
(

Pnψ
K
t,ηn

− PψK
t,η0

)

= Gn

(

ψK
t,η0

+ E{f∗(t+ α0 + β0X)}ψα
γ0

+ E{Xf∗(t+ α0 + β0X)}ψβ
γ0

)

+RK
n,t,

where supt∈R
|RJ

n,t| →p 0 and supt∈R
|RK

n,t| →p 0.

Proof. We only prove the first statement as the proof of the second statement
is similar. For any t ∈ R, we have

√
n
(

Pnψ
J
t,ηn

− PψJ
t,η0

)

= Gn

(

ψJ
t,ηn

− ψJ
t,η0

)

+Gnψ
J
t,η0

+
√
nP
(

ψJ
t,ηn

− ψJ
t,η0

)

.
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Using the fact that ηn
a.s.−−→ η0, Lemma B.1, and Lemma B.2, we can apply

Theorem 2.1 in [28] to obtain that

sup
t∈R

∣

∣Gn

(

ψJ
t,ηn

− ψJ
t,η0

)∣

∣→p 0.

Furthermore, for any t ∈ R, we have

√
nP
(

ψJ
t,ηn

− ψJ
t,η0

)

=
√
n

∫

R

{

FY |X(t+ αn + βnx|x) − FY |X(t+ α0 + β0x|x)
}

dFX(x),

where FY |X is defined in (3). Since f ′
Y |X(·|x), the derivative of fY |X(·|x), exists

for all x ∈ X from Assumption A3 (ii) and (4), we can apply the second-order
mean value theorem to obtain

√
nP
(

ψJ
t,ηn

− ψJ
t,η0

)

=
√
n

∫

R

fY |X(t+ α0 + β0x|x){(αn − α0) + (βn − β0)x}dFX(x) +RJ
n,t,

where

RJ
n,t =

√
n

2

∫

R

f ′
Y |X(t+ α̃x,t,n + β̃x,t,nx|x){(αn − α0) + (βn − β0)x}2dFX(x),

and α̃x,t,n + β̃x,t,nx is between α0 + β0x and αn + βnx. Now, from (4),

sup
t∈R

|RJ
n,t| ≤

√
n

{

sup
t∈R

(f∗)′(t) + sup
t∈R

f ′(t)

}

×
{

(αn − α0)
2 + (βn − β0)

2
E(X2) + 2|αn − α0||βn − β0|E(|X |)

}

.

The supremum on the right of the previous inequality is finite from Assumption
A3 (ii), and so are E(|X |) and E(X2) from Assumption A1 (ii). Furthermore,
under Assumptions A1 (ii) and A2, we know from Proposition 4.1 that

√
n(αn−

α0, βn−β0) converges in distribution while (αn, βn)
a.s.−−→ (α0, β0). It follows that

supt∈R
|RJ

n,t| →p 0. Hence, we obtain that

√
nP
(

ψJ
t,ηn

− ψJ
t,η0

)

= E{fY |X(t+ α0 + β0X |X)}√n(αn − α0)

+ E{XfY |X(t+ α0 + β0X |X)}√n(βn − β0) +RJ
n,t, t ∈ R.

The desired result finally follows from the expression of fY |X given in (4) and
Proposition 4.1.

Proof of Proposition 4.2. Under Assumptions A1 (ii) and A2, and since γ0 ∈
Dα,β,π, we know, from Lemma B.1, that the classes FJ , FK and Fα,β,π are
P -Donsker. It follows that

(

t 7→ Gnψ
J
t,η0

, t 7→ Gnψ
K
t,η0

,Gnψ
α
γ0
,Gnψ

β
γ0
,Gnψ

π
γ0

)
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converges weakly in {ℓ∞(R)}2 × R3. Assumption A3 (i) then implies that the
functions t 7→ E{fY |X(t + α0 + β0X |X)}, t 7→ E{XfY |X(t + α0 + β0X |X)},
t 7→ E{f∗(t+α0+β0X)}, and t 7→ E{Xf∗(t+α0+β0X)} are bounded. By the
continuous mapping theorem, we thus obtain that




t 7→ Gn

(

ψJ
t,η0

+ E{fY |X(t+ α0 + β0X|X)}ψα
γ0

+ E{XfY |X(t+ α0 + β0X|X)}ψβ
γ0

)

t 7→ Gn

(

ψK
t,η0

+ E{f∗(t+ α0 + β0X)}ψα
γ0

+ E{Xf∗(t+ α0 + β0X)}ψβ
γ0

)

Gnψ
π
γ0





converges weakly in {ℓ∞(R)}2×R. It follows from Proposition 4.1 and Lemma B.3
that √

n (Jn(ηn, ·)− J(η0, ·),Kn(ηn, ·)−K(η0, ·), πn − π0) ,

converges weakly in {ℓ∞(R)}2 × R. The desired result is finally a consequence
of (14) and the functional delta method applied with the map (J,K, π) 7→
{J − (1− π)K} /π.

Appendix C: Proof of Proposition 4.3

Proof. The assumptions of Proposition 4.1 being verified, we have that πn
a.s.−−→

π0 6= 0. Then, as can be verified from (16), to show the desired result, it suffices
to show that

sup
t∈R

∣

∣

∣

∣

∣

1

nhn

n
∑

i=1

κ

(

t− Yi + αn + βnXi

hn

)

− (1− π0)

n

n
∑

i=1

f∗(t+ αn + βnXi)− π0f(t)

∣

∣

∣

∣

∣

a.s.−−→ 0.

The previous supremum is smaller than In + (1− π0)IIn, where

In = sup
t∈R

∣

∣

∣

∣

∣

1

nhn

n
∑

i=1

κ

(

t− Yi + αn + βnXi

hn

)

− (1 − π0)

∫

R

f∗(t+ α0 + β0x)fX(x)dx − π0f(t)

∣

∣

∣

∣

,

and

IIn = sup
t∈R

∣

∣

∣

∣

∣

1

n

n
∑

i=1

f∗(t+ αn + βnXi)−
∫

R

f∗(t+ α0 + β0x)fX(x)dx

∣

∣

∣

∣

∣

.

Let us first show that In
a.s.−−→ 0. Consider the class F of measurable functions

from R2 to R defined by

F =

{

(x, y) 7→ ψη,t,h(x) = κ

(

t− y + α+ βx

h

)

: η = (α, β) ∈ R
2,

t ∈ R, h ∈ (0,∞)} ,
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and notice that

Pnψηn,t,hn
=

1

n

n
∑

i=1

κ

(

t− Yi + αn + βnXi

hn

)

, t ∈ R,

where ηn = (αn, βn). Then, In ≤ I ′n + I ′′n , where

I ′n =
1

hn
sup
t∈R

|Pnψηn,t,hn
− Pψηn,t,hn

| = 1

hn
√
n
sup
t∈R

|Gnψηn,t,hn
| , (26)

and

I ′′n = sup
t∈R

∣

∣

∣

∣

1

hn
Pψηn,t,hn

− g(t)

∣

∣

∣

∣

,

with

g(t) = (1− π0)

∫

R

f∗(t+ α0 + β0x)fX(x)dx + π0f(t), t ∈ R.

Let us first deal with I ′′n . From (4), notice that

g(t) =

∫

R

fY |X(t+ α0 + β0x|x)fX(x)dx, t ∈ R.

Also, for any t ∈ R,

Pψηn,t,hn
=

∫

R

{∫

R

κ

(

t− y + αn + βnx

hn

)

fY |X(y|x)dy
}

fX(x)dx,

which, using the change of variable u = (t − y + αn + βnx)/hn in the inner
integral, can be rewritten as

Pψηn,t,hn
= hn

∫

R

{∫

R

κ(u)fY |X(t+ αn + βnx− uhn|x)du
}

fX(x)dx.

Since κ is a p.d.f. from Assumption A4 (ii), it follows that, for any t ∈ R,

1

hn
Pψηn,t,hn

− g(t) =

∫

R

[∫

R

κ(u)
{

fY |X(t+ αn + βnx− uhn|x)− fY |X(t+ α0 + β0x|x)
}

du

]

fX(x)dx.

As f ′
Y |X(·|x), the derivative of fY |X(·|x), exists for all x ∈ X under Assumption

A3 (ii), the mean value theorem enables us to write

I ′′n ≤
{

sup
t∈R

(f∗)′(t) + sup
t∈R

f ′(t)

}

×
∫

R

[∫

R

κ(u) {|αn − α0|+ |βn − β0||x|+ |u|hn}du
]

fX(x)dx.
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Hence,

I ′′n ≤
{

sup
t∈R

(f∗)′(t) + sup
t∈R

f ′(t)

}

×
{

|αn − α0|+ |βn − β0|E(|X |) + hn

∫

R

|u|κ(u)du
}

,

which, from Assumptions A1 (i), A3 (ii), A4 (ii), and Proposition 4.1 (i), implies

that I ′′n
a.s.−−→ 0.

Let us now show that I ′n
a.s.−−→ 0. Since κ has bounded variations from As-

sumption A4 (ii), it can be written as κ1−κ2, where both κ1 and κ2 are bounded
nondecreasing functions on R. Without loss of generality, we shall assume that
κ, κ1 and κ2 are bounded by 1. Then, for j = 1, 2, we define

Fj =

{

(x, y) 7→ κj

(

t− y + α+ βx

h

)

: (α, β, t) ∈ R
3, h ∈ (0,∞)

}

.

Proceeding as in [19, proof of Lemma 22], let us first show that Fj is a V C class
for j = 1, 2. Let κ−j be the generalized inverse of κj defined by κ−j (c) = inf{x ∈
R : κj(x) ≥ c}, c ∈ R. We consider the partition {C1, C2} of R defined by

{x ∈ R : κj(x) > c} =

{

(κ−j (c),∞) if c ∈ C1,
[

κ−j (c),∞) if c ∈ C2.

Given (α, β, t) ∈ R3 and h ∈ (0,∞), the set

{

(x, y, c) ∈ R
3 : κj

(

t− y + α+ βx

h

)

> c

}

(27)

can therefore be written as the union of

{

(x, y, c) ∈ R
2 × C1 : t− y + α+ βx− hκ−j (c) > 0

}

and
{

(x, y, c) ∈ R
2 × C2 : t− y + α+ βx − hκ−j (c) ≥ 0

}

.

Now, let fα,β,t,h(x, y, c) = t− y+ α+ βx− hκ−j (c). The functions fα,β,t,h, with

(α, β, t) ∈ R3 and h ∈ (0,∞), span a finite-dimensional vector space. Hence,
from Lemma 18 (ii) in [19], the collections of all sets {(x, y, c) ∈ R2 × C1 :
fα,β,t,h(x, y, c) > 0} and {(x, y, c) ∈ R2 × C2 : fα,β,t,h(x, y, c) ≥ 0} are V C
classes. It follows that the collection of subgraphs of Fj defined by (27), and
indexed by (α, β, t) ∈ R3 and h ∈ (0,∞), is also V C, which implies that Fj is a
V C class of functions.

Given a probability distribution Q on R2, recall that L2(Q) is the norm
defined by (Qf2)1/2, with f a measurable function from R2 to R. Given a class
G of measurable functions from R2 to R, the covering number N(ε,G, L2(Q)) is
the minimal number of L2(Q)-balls of radius ε > 0 needed to cover the set G.
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From Lemma 16 in [19], since F = F1 − F2, and since F1 and F2 have for an
envelope the constant function 1 on R2, we have

sup
Q
N(2ε,F , L2(Q)) ≤ sup

Q
N(ε,F1, L2(Q))× sup

Q
N(ε,F2, L2(Q)),

for probability measures Q on R2. Using the fact that both F1 and F2 are V C
classes of functions with constant envelope 1, from Theorem 2.6.7 in [27] (see
also the discussion on the top of page 246), we obtain that there exist constants
u > 0 and v > 0 that depend on F1 and F2 such that

sup
Q
N(ε,F , L2(Q)) ≤

(u

ε

)v

, for every 0 < ε < u.

Then, by Theorem 2.14.9 in [27], there exists constants c1 > 0 and c2 > 0 such
that, for ε > 0 large enough,

Pr∗

(

sup
f∈F

|Gnf | > ε

)

≤ c1ε
c2 exp(−2ε2).

Starting from (26), we thus obtain that, for every ε > 0 and n large enough,

Pr∗(I ′n > ε) = Pr∗
(

sup
t∈R

|Gnψηn,t,hn
| > √

nhnε

)

≤ Pr∗

(

sup
f∈F

|Gnf | >
√
nhnε

)

≤ c1(
√
nhnε)

c2 exp(−2nh2nε
2) = an.

From Assumption A4 (i), it can be verified that an+1/an → 1 and that n(an+1/an−
1) → −∞. It follows from Raabe’s rule that the series with general term an con-

verges. The Borel-Cantelli lemma enables us to conclude that I ′n
a.s.−−→ 0, and we

therefore obtain that In
a.s.−−→ 0.

Since f∗ has bounded variations from Assumption A4 (iii), one can proceed

along the same lines to show that IIn
a.s.−−→ 0.

Appendix D: Proof of Proposition 4.4

The proof of Proposition 4.4 is based on the following lemma.

Lemma D.1. Let Θ ⊂ Rp and H0 ⊂ Rq for some integers p, q > 0, let F =
{fθ,ζ : θ ∈ Θ , ζ ∈ H0} be a class of measurable functions from R2 to R, and let
ζn be an estimator of ζ0 ∈ H0 such that Pr(ζn ∈ H0) → 1. If F is P -Donsker
and

sup
θ∈Θ

P (fθ,ζn − fθ,ζ0)
2 →p 0,

then,
sup
θ∈Θ

|G′
n(fθ,ζn − fθ,ζ0)| →p 0.



Mixture of linear regressions in which one component is known 2641

Proof. The result is the analogue of Theorem 2.1 in [28] in which Gn is replaced
by G′

n. The proof of Theorem 2.1 relies on the fact that Gn  G in ℓ∞(F)
and on the uniform continuity of the sample paths of the P -Brownian bridge G;
see [25, proof of Theorem 19.26] and [26]. From the functional multiplier central
limit theorem [see e.g. 15, Theorem 10.1], we know that (Gn,G

′
n) converges

weakly in {ℓ∞(F)}2 to (G,G′), where G′ is an independent copy of the G. The
desired result therefore follows from a straightforward adaptation of the proof
of Theorem 2.1 in [28].

Proof of Proposition 4.4. Since Assumptions A1 (ii) and A2 hold, we have from
Lemma B.1 that FJ , FK and Fα,β,π are P -Donsker. Furthermore, E(X) is
finite from Assumption A1 (i), the function f is bounded from Assumption
A3 (i), and so is the function t 7→ P (ψK

t,η0
− ψJ

t,η0
) from the definitions of J

and K given in (9) and (10). Hence, from the functional multiplier central limit
theorem [see e.g. 15, Theorem 10.1] and the continuous mapping theorem, we
obtain that

(

t 7→ Gnψ
F
t,γ0

, t 7→ G
′
nψ

F
t,γ0

)

 

(

t 7→ GψF
t,γ0

, t 7→ G
′ψF

t,γ0

)

in {ℓ∞(R)}2, where ψF
t,γ0

is defined in (15) and t 7→ G′ψF
t,γ0

is an independent

copy of t 7→ GψF
t,γ0

. It remains to show that

sup
t∈R

∣

∣

∣G
′
n

(

ψ̂F
t,γn

− ψF
t,γ0

)∣

∣

∣→p 0.

From (15) and (17), for any t ∈ R, we can write

∣

∣

∣G
′
n

(

ψ̂F
t,γn

− ψF
t,γ0

)∣

∣

∣ ≤
∣

∣

∣

∣

G
′
n

(

1

πn
ψJ
t,ηn

− 1

π0
ψJ
t,η0

)∣

∣

∣

∣

+
∣

∣

∣G
′
n

(

fn(t)ψ̂
α
γn

− f(t)ψα
γ0

)∣

∣

∣+
∣

∣

∣G
′
n

(

fn(t)X̄ψ̂
β
γn

− f(t)E(X)ψβ
γ0

)∣

∣

∣

+

∣

∣

∣

∣

G
′
n

(

1− πn
πn

ψK
t,ηn

− 1− π0
π0

ψK
t,η0

)∣

∣

∣

∣

+

∣

∣

∣

∣

∣

G
′
n

(

Pnψ
K
t,ηn

− Pnψ
J
t,ηn

π2
n

ψ̂π
γn

− PψK
t,η0

− PψJ
t,η0

π2
0

ψπ
γ0

)∣

∣

∣

∣

∣

. (28)

The last absolute value on the right of the previous display is smaller than

∣

∣

∣

∣

∣

Pnψ
K
t,ηn

− Pnψ
J
t,ηn

π2
n

− PψK
t,η0

− PψJ
t,η0

π2
0

∣

∣

∣

∣

∣

∣

∣G
′
nψ

π
γ0

∣

∣

+

∣

∣

∣

∣

∣

PψK
t,η0

− PψJ
t,η0

π2
0

∣

∣

∣

∣

∣

∣

∣

∣G
′
n

(

ψ̂π
γn

− ψπ
γ0

)∣

∣

∣ . (29)
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Now,

sup
t∈R

∣

∣Pnψ
K
t,ηn

− Pnψ
J
t,ηn

− PψK
t,η0

+ PψJ
t,η0

∣

∣

≤ n−1/2 sup
t∈R

∣

∣Gn

(

ψK
t,ηn

− ψJ
t,ηn

− ψK
t,η0

+ ψJ
t,η0

)∣

∣

+ n−1/2 sup
t∈R

∣

∣Gn

(

ψK
t,η0

− ψJ
t,η0

)∣

∣+ sup
t∈R

∣

∣P
(

ψK
t,ηn

− ψJ
t,ηn

− ψK
t,η0

+ ψJ
t,η0

)∣

∣ .

(30)

Applying the mean value theorem as in the proof of Lemma B.2, we obtain that,

sup
t∈R

∣

∣P
(

ψK
t,η − ψJ

t,η − ψK
t,η0

+ ψJ
t,η0

)∣

∣→ 0 as η → η0,

which, combined with the fact that ηn
a.s.−−→ η0 implies that the last term on the

right of (30) converges to zero in probability. From Lemma B.2 and Theorem
2.1 in [28], we obtain that the first term on the right of (30) converges to
zero in probability. The second term on the right of (30) converges to zero in
probability because the classes FJ and FK are P -Donsker. The convergence to
zero in probability of the term on the left of (30) combined with the fact that

πn
a.s.−−→ π0 and that |G′

nψ
π
γ0
| is bounded in probability implies that the first

product in (29) converges to zero in probability uniformly in t ∈ R. Furthermore,
Fα,β,π being P -Donsker, and since P‖Ψγn

Γ−1
n ϕ̇γn

−Ψγ0
Γ−1
0 ϕ̇γ0

‖2 →p 0 under

Assumptions A1 (ii) and A2, we have from Lemma D.1 thatG′
n(ψ̂

π
γn

−ψπ
γ0
) →p 0,

which implies that the second product in (29) converges to zero in probability
uniformly in t ∈ R.

One can similarly show that the other terms on the right of (28) converge to
zero in probability uniformly in t ∈ R using, among other arguments, the fact
that, from Lemma D.1,

sup
t∈R

∣

∣G
′
n

(

ψJ
t,ηn

− ψJ
t,η0

)∣

∣ , sup
t∈R

∣

∣G
′
n

(

ψK
t,ηn

− ψK
t,η0

)∣

∣ ,

G
′
n(ψ̂

α
γn

− ψα
γ0
), and G

′
n(ψ̂

β
γn

− ψβ
γ0
)

converge to zero in probability, as well as supt∈R
|fn(t)−f(t)| since the assump-

tions of Proposition 4.3 are satisfied.
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