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1. Introduction

Over the past years, boosted by applications and computer performance, prob-
lems in high-dimensions have been explored in a number of statistical studies.
If no additional structure is assumed, high-dimensional data processing suffers
from some intrinsic difficulties such as the curse of dimensionality that results
in a loss in the efficiency of statistical procedures, and inconsistency of classi-
cal statistical procedures — even in the linear regression model — unless the
dimension of variables is less than the sample size.

In order to overcome the curse of dimensionality in a nonparametric frame-
work, where typical functional classes are Sobolev, Holder, or Besov balls, some
additional conditions, including additivity or tensor product structure, are as-
sumed, see, for instance, [20, 6, 18, 14, 15, 16] and references therein. Even if
one of these conditions is assumed, yet it is required that the sample size is
to be larger than the data dimension. One way to free oneself from the latter
condition is to impose an additional sparsity constraint.

In this paper we focus on the problem of detection of high-dimensional sig-
nal functions in the Gaussian white noise model. To avoid difficulties stemming
from high-dimensional settings, we suppose that a signal function satisfies an
additional structural condition. Specifically, it is assumed to be sparse additive.
This means that a high-dimensional function of interest is a sum of few uni-
variate functions. Formally, we consider an d-dimensional (d ∈ N and d > 0)
Gaussian white noise model

dX(t) = f(t)dt+ ǫdW (t), t ∈ [0, 1]d, (1.1)

where W (t) is the Wiener process, ǫ > 0 is the noise level, and f , the quantity
of interest, is the signal function. The additive sparse structure means that f is
the sum of d univariate functions fj :

f(t) =
d∑

j=1

ξjfj(tj), tj ∈ [0, 1], (1.2)

where the ξj ’s are unknown but deterministic taking their values in {0, 1}:
‘0’ means that the jth component fj is non active whereas ‘1’ means that
fj is active. Denote by K the positive number of active components, that is,

K =
∑d

j=1 ξj , and assume that K = d1−b, where b ∈ (0, 1) is the sparsity index.

If d1−b is not an integer then take K as its integer part. Denote by Fd,b the
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functional class of additive sparse signals f of the form (1.2) with K = d1−b

active components and db non-active components. Model (1.1) with the sparse
additive structure (1.2) is a natural generalization of the sparse linear model: the
nonparametric nature of the problem suggests to consider more flexible models.

There is a huge statistical literature on estimation in sparse models, see, for
instance, [1, 2, 3] and references therein. In particular, there are many works
related to the well-known Lasso introduced by Tibshirani [21] in 1996. There are
also a number of papers that deal with nonparametric estimation in sparse ad-
ditive models. For a complete review of these topics, we refer to [19], where min-
imax estimation rates in sparse additive models are obtained, to [5], where the
Lasso-type estimate in sparse additive models is studied, and to [20], where
various structural assumptions on models in high dimensions are discussed.

Back to our study, the detection problem at hand can be expressed in terms
of a nonparametric hypothesis testing problem with the null hypothesis stat-
ing that ‘the signal is a constant’, and ‘there is no signal’ being a particular
case of the null hypothesis. In order to specify an alternative hypothesis, recall
that, within the minimax framework, it is impossible to detect signal functions
that are ‘too close’ to the null one, as well as to test the null and alternative
hypotheses for too large alternative classes. Therefore, we are interested in the
following nonparametric hypothesis testing problem:

H0 : f = const0 versus H1 : f = const1 + f1, f1 ∈ Fd(τ, rǫ, b), (1.3)

where






const0, const1 are some constants,

Fd(τ, rǫ, b) = {f ∈ Fd,b : ∀j, fj ∈ S̃τ and ‖fj‖2 ≥ rǫ}, τ > 0, rǫ > 0,

S̃τ = {f ∈ L2([0, 1]) :
∫ 1

0 f(t)dt = 0, ‖f‖(τ)2 ≤ 1}.
The L2-norm ‖ · ‖2 is used to separate the nonparametric alternative from the
null hypothesis. The functional class S̃τ is the Sobolev ball, expressed via the

Sobolev semi-norm ‖·‖(τ)2 , that contains τ -smooth functions, which are assumed
1-periodic and orthogonal to a constant. Due to the periodic constraints, it is

possible to express ‖ · ‖(τ)2 in terms of Fourier coefficients; this will be done in
Section 2. The quantity τ is the smoothness parameter. Both the smoothness
condition and the separation condition between H0 and H1 are expressed in
terms of the components fj that are linked to the whole signal f via (1.2): each
active component fj is smooth and is separated from the null hypothesis in the
L2-norm by a positive value rǫ.

In Section 6, we generalize the hypothesis testing problem (1.3) by considering
a more general class of alternatives that consists of signals f equal, up to a
constant, to a function f1 ∈ Fd,b, which is separated from the null hypothesis in
the L2([0, 1]

K)-norm, and whose smoothness is expressed in terms of the whole
function f .

For these two hypothesis testing problems, the main questions are: what are
the separation rates in the problem, i.e., what are the asymptotics for the min-
imal rǫ such that one can distinguish between H0 and H1? And, also, what are
the optimal test procedures that provide distinguishability?
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To answer these questions, we use asymptotically minimax approach that pro-
vides detection boundaries or distinguishability conditions, i.e., necessary and
sufficient conditions for the possibility of successful detection; these detection
boundaries yield asymptotics for the minimal rǫ separating the areas of distin-
guishability and non-distinguishability (between H0 and H1). The asymptotics
for the minimal values of rǫ are called either the (minimax) separation rates
or the minimax rates of testing; in the present paper, the separation rates are
denoted by r⋆ǫ .

In connection with the current study, a number of works on detection and
classification boundaries in Gaussian sequence models could be mentioned, see,
for example, [7, 8, 9, 13, 12, 4, 15, 16, 11]. Also, in [17], rather than considering
a Gaussian sequence model, the authors generalize the problem of finding a
detection boundary in the linear regression model. Another paper [10] deals
with the signal detection problem in a multichannel model in the functional
framework. At the end of the next paragraph, we explain what are the differences
between the results in [10] and our study.

The main contribution of this paper consists of extending the results on de-
tection boundaries obtained for d-dimensional sparse Gaussian vectors, see, for
instance, [12], to the functional case. In particular, we obtain the same detec-
tion boundaries as in the vectorial case. However, in the case of high sparsity
when b > 1/2, an additional assumption on the growth of d as a function of
ǫ is required. Distinguishability is possible when the sum of the type I error
probability and the maximum over alternatives of the type II error probability
vanishes asymptotically, and distinguishability is not possible when this sum
tends to one. Boundary conditions depend on the quantity a(rǫ) = a(rǫ, d, τ),
which is a solution of a certain extremal problem stated in Section 4. In the
vectorial case, the quantity a(rǫ) corresponds to the energy of a signal (see [12]
and [10]). In the functional case, this quantity characterizes the distinguisha-
bility in a one-variable hypotheses testing problem. The minimax separation
rates obtained in this paper depend on the value of b: for large b they are worse
than for small b. Such a behaviour is expected because, with large b, only few
components are active, and hence the problem of distinguishing between the
alternative and null hypothesis becomes more difficult.

For the most difficult case of b ∈ (1/2, 1), not only separation rates, but
also sharp separation rates, that include both rates and constants, are obtained.
We also provide optimal test procedures for which minimax rates of testing are
achieved asymptotically. Depending on the value of b, we propose two types of
test procedures: one is of a χ2 type, the other one is related to a Higher-Criticism
statistic introduced in [4] and based on the Tukey’s ideas. In the case of b ∈
(1/2, 1), our test procedure is adaptive in the sparsity index b, see Remark 5.3.

In the paper [10], which is focused on a similar problem of multichannel
signal detection, the optimal rates are obtained. In our study, we obtain sharp
separation rates for b ∈ (1/2, 1). The main difference between the study of [10]
and our work is in the quantity a(rǫ) that characterizes the distinguishability:
in our work, it is just a solution of a certain extremal problem, whereas in [10],
it is obtained directly from the use of the respective test procedures.
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The rest of the paper is organized as follows. Section 2 is concerned with the
problem of finding detection boundary in a sparse Gaussian d-vectors model. In
Section 3, we give a new formulation of the problem (1.3) in terms of sequence
spaces. Section 4 is devoted to the description of the extremal problem that gives
the distinguishability characteristics. The main results are stated in Section 5.
In Section 6, we generalize the hypothesis testing problem (1.3) by considering
more general alternatives. The proofs are given in Section 7.

2. Detection boundaries in a vectorial Gaussian model

Hypothesis testing problems for d-dimensional vectors, under the sparse con-
ditions similar to the ones we use, were studied in [7, 12, 4]. Namely, let
X = (X1, . . . , Xd) be a random vector of the form Xj = vj + ηj , where

ηj
i.i.d.∼ N (0, 1), j = 1, . . . , d, and

vj = ξja, a > 0, ξj ∈ {0, 1}, K =

d∑

j=1

ξj = d1−b, b ∈ (0, 1). (2.1)

Let Vd(a, b) ⊂ R
d be the set of all vectors v = (v1, . . . , vd) of the form (2.1).

Then, the testing problem is stated as follows: it is required to test H0 : v = 0
against the alternative H1 : v ∈ Vd(a, b). Here the questions of interest are: what
are the asymptotics for a = ad as d → +∞ for which the hypotheses H0 and
H1 separate asymptotically? Also, what are the optimal test procedures that
provide the distinguishability (or separation) of H0 and H1?

The answer to each question depends essentially on the sparsity index b ∈
(0, 1), see [7, 12, 4]. The detection boundaries are expressed in terms of a, d
and b: if b ≤ 1/2 (moderate sparsity), then the distinguishability is impossible
when ad1/2−b = o(1), and it is possible when ad1/2−b → +∞. This is achieved

by the test procedure based on a simple linear statistic t = d−1/2
∑d

i=1Xi. If
b > 1/2 (high sparsity), then the distinguishability conditions look as follows: the
distinguishability is impossible when lim sup a/Td < ϕ(b), and it is possible when
lim inf a/Td > ϕ(b), where Td =

√

log(d) and the function ϕ(b), b ∈ (1/2, 1) is
defined by

ϕ(b) =

{

ϕ1(b) =
√
2b− 1, 1/2 < b ≤ 3/4,

ϕ2(b) =
√
2(1−

√
1− b), 3/4 < b < 1.

(2.2)

Observe that the function ϕ is positive, continuous, and increasing in b ∈ (0, 1].
The test procedure that provides distinguishability in the high-sparsity case

is based on the Higher-Criticism statistics introduced in [4]. It is defined as
Ld = maxs>s0 Ld(s), for any s0 > 0, with

Ld(s) =
1

√

dΦ(s)Φ(−s)

d∑

i=1

(1(Xi>s) − Φ(−s)), (2.3)
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where, here and later, Φ stands for the standard Gaussian cumulative distribu-
tion function. Note that it suffices to take the maximum of Ld over a discrete
grid of the form sl = ulTd, ul = δdl, l = 1, . . . , L, such that uL ≤

√
2 and

δd = o(1) is small enough.

3. Transformation of the statistical testing problem

Consider the tensor structure of the space L2([0, 1]
d), i.e., L2([0, 1]

d) =
L2([0, 1])⊗ · · · ⊗L2([0, 1]). Then, the corresponding orthonormal basis (φ̃dl )l∈Zd

of L2([0, 1]
d) has the form

φ̃dl (t) =

d∏

j=1

φ1lj (tj), t = (t1, . . . , td) ∈ [0, 1]d, l = (l1, . . . , ld) ∈ Z
d,

where (φ1k)k∈Z is an orthonormal basis of L2([0, 1]). It is assumed that φ10 = 1.
For any (j, k) ∈ {1, . . . , d} × Z, let us define φ̄dj,k as

φ̄dj,k(t) = φ̃dl (t) = φ1k(tj), l = (0, . . . , k, 0, . . . , 0),

where k is the j-th component of l. Observe that φ̄dj,0 = 1. Using the or-

thonormal system (φ̄dj,k)(j,k)∈{1,...,d}×Z, consider the statistics (xj)1≤j≤d =
{xj,k; k ∈ Z}1≤j≤d defined by

xj,k =

∫

[0,1]d
φ̄dj,k(t)dX(t)

= ξj

∫

[0,1]

φ1k(tj)fj(tj)dtj + ǫηj,k

= ξjθj,k + ǫηj,k, (3.1)

where the random variables ηj,k =
∫

[0,1]d
φ̄dj,k(t)dW (t) are i.i.d. real standard

Gaussian random variables and θj,k =
∫

[0,1]
φ1k(tj)fj(tj)dtj . Set θj = (θj,k)k∈Z

and θ = (θj)1≤j≤d.
Thanks to the periodic constraints, we may consider (φ1k)k∈Z as the standard

Fourier basis. Then the Sobolev semi-norm of fj can be expressed in terms of its

Fourier coefficients as follows: ‖fj‖(τ)2 = ((2π)2τ
∑

k∈Z
|k|2τθ2j,k)1/2. Therefore,

the functional class Fd(τ, rǫ, b) can be equivalently represented as the sequence
space Θd(τ, rǫ, b):

Θd(τ, rǫ, b)= {θ=(θ1ξ1, . . . , θdξd) :

d∑

j=1

ξj = d1−b; ∀j ∈{1, . . . , d}, θj ∈Θ(τ, rǫ)},

where

Θ(τ, rǫ) = {θ ∈ l2(Z) : (2π)2τ
∑

k∈Z

|k|2τ θ2k ≤ 1;
∑

k∈Z

θ2k ≥ r2ǫ}.
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The testing problem of interest (1.3) can be rewritten in the form

H0 : θ = 0 versus H1 : θ ∈ Θd(τ, rǫ, b).

Denote by P0 and P
θ
the distributions under the null and alternative hy-

potheses, respectively. Also, denote by E0, Var0, Eθ
, and Var

θ
the expectations

and variances with respect to P0 and P
θ
, respectively. The notation Pθj , Eθj and

Varθj also will be used: they are related to the distribution of the observations
xj = (xj,k)k∈Z.

For any test procedure ψ, that is, for any function measurable with respect to
the observations and taking its values on the interval [0, 1], let ω(ψ) = E0(ψ) be
the type I error probability and let β(ψ,Θd(τ, rǫ, b)) = sup

θ∈Θd(τ,rǫ,b)
E
θ
(1−ψ)

be the maximal type II error probability over the set Θd(τ, rǫ, b). Also, consider
the total error probability γ(ψ,Θd(τ, rǫ, b)) = ω(ψ) + β(ψ,Θd(τ, rǫ, b)), and de-
note by γ or γ(Θd(τ, rǫ, b)) the minimax total error probability over Θd(τ, rǫ, b),
that is,

γ = γ(Θd(τ, rǫ, b)) = inf
ψ
γ(ψ,Θd(τ, rǫ, b)), (3.2)

where the infimum is taken over all test procedures. One can not distinguish
between H0 and H1 if γ → 1, and distinguishability occurs if it exists ψ such
that either γ(ψ,Θd(τ, rǫ, b)) → 0 or β(ψ,Θd(τ, rǫ, b)) = o(1) once ψ has a given
asymptotic level.

The aim of this paper is to provide separation rates for the alternatives
Θd(τ, rǫ, b) and to determine statistical procedures ψ and/or ψα asymptotically
of level α, i.e., ω(ψα) ≤ α+ o(1), for which these separation rates are achieved.

By the separation rates we mean a family r⋆ǫ such that







if
rǫ
r⋆ǫ

→ 0 then, γ → 1,

if
rǫ
r⋆ǫ

→ +∞ then,







γ(ψ,Θd(τ, ǫ, b)) → 0,
and/or
∀ α ∈ (0, 1) β(ψα,Θd(τ, rǫ, b)) → 0.

By the sharp separation rates, we mean a family r⋆ǫ such that







if lim sup
rǫ
r⋆ǫ

< 1 then, γ → 1,

if lim inf
rǫ
r⋆ǫ

> 1 then,







γ(ψ,Θd(τ, rǫ, b)) → 0,
and/or
∀ α ∈ (0, 1) β(ψα,Θd(τ, rǫ, b)) → 0.

Typically, asymptotics for models like model (1.1) are given as ǫ → 0. How-
ever, we are mainly interested in high-dimensional settings when d → +∞.
Therefore, here and later, asymptotics and symbols o, O, ∼ and ≍ are used
when ǫ → 0 and d → +∞, except for the cases when it is explicitly specified,

say, od is used when d→ +∞. The notation A
∆
= B means that we use notation

A for quantity B.
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4. Extremal problem

In this section, we explain what is the quantity a(rǫ) that corresponds to the
energy of a signal in the vectorial case. Only in this section, we assume that the
observations have the form xk = θk+ ǫηk for k ∈ Z, where the ηk’s are i.i.d. real
standard Gaussian random variables. The quantity a(rǫ) denotes the solution
of the extremal problem

a2(rǫ) =
1

2ǫ4
inf

θ∈l2(Z)

∑

k∈Z

θ4k subject to

{

(2π)2τ
∑

k∈Z
|k|2τθ2k ≤ 1

∑

k∈Z
θ2k ≥ r2ǫ

(4.1)

and characterizes distinguishability in the minimax detection problem for one-
variable functions lying in S̃τ and separated from the null hypothesis in L2 by
positive values rǫ, i.e., for t ∈ [0, 1], f(t) =

∑

k∈Z
θkφ

1
k(t) with f ∈ S̃τ and

‖f‖2 ≥ rǫ.
Namely, if a(rǫ)→ 0 then the minimax total error probability γ(Θ(τ, rǫ))→ 1,

and if a(rǫ) → +∞, then γ(Θ(τ, rǫ)) → 0.

Furthermore, let θ⋆
∆
= θ⋆(rǫ) be a sequence in l2(Z) that provides solution to

the extremal problem (4.1). Set

wk(rǫ) =
1

2

(θ⋆k(rǫ))
2

a(rǫ)ǫ2
, k ∈ Z. (4.2)

Suppose that
a(rǫ) ≍ 1, sup

k∈Z

wk(rǫ) = o(1). (4.3)

Then, we get the sharp asymptotics

γ(Θ(τ, rǫ)) = 2Φ(−a(rǫ)/2) + o(1).

For the reader’s convenience, we give a sketch of the proofs of these results.
The proofs are based on the methods and results of Sections 3.1, 3.3, 4.3 in [13].
In the vectorial case in hand, we also describe the structure of asymptotically
minimax tests.

In order to obtain lower bounds, we consider the Bayesian hypothesis testing
problem with the product prior distribution on θ, using the symmetric two-point
factors: π =

∏

k∈Z
πk, πk = 1

2 (δ−θk + δθk) for θ ∈ Θ(τ, rǫ), and δ is the Dirac
mass. Let Pπ be the mixture of measures Pθ over π. Observe that

dPπ
dP0

((xk)k∈Z) =
∏

k∈Z

dPπk

dP0
(xk) =

∏

k∈Z

exp(−θ2k/2ǫ2) cosh(xkθk/ǫ2).

For the sake of simplicity, set dPπ

dP0

∆
= dPπ

dP0
((xk)k∈Z). Since π(Θ(τ, rǫ)) = 1, we

have, see Proposition 2.12 in [13],

γ(Θ(τ, rǫ)) ≥ 1− 1

2
E0|dPπ/dP0 − 1|

≥ 1− 1

2
(E0(dPπ/dP0 − 1)2)1/2

= 1− 1

2
((E0(dPπ/dP0)

2)− 1)1/2.



Detection of sparse functional signals 1417

This yields γ(Θ(τ, rǫ)) → 1 as soon as E0(dPπ/dP0)
2 → 1. Simple calculations

and the inequality cosh(x) ≤ exp(x2/2) give

E0(dPπ/dP0)
2 =

∏

k∈Z

E0(dPπk
/dP0)

2

=
∏

k∈Z

cosh((θk/ǫ)
2) ≤ exp

(

1

2ǫ4

∑

k∈Z

θ4k

)

.

Therefore, providing the “asymptotically least favorable prior” of the type under
consideration leads to the problem (4.1).

Under assumption (4.3), taking the prior based on the extremal sequence
in the problem (4.1), one can show that the Bayesian log-likelihood ratio is
asymptotically Gaussian:

log(dPπ/dP0) =
∑

k∈Z

(

− (θ⋆k)
2

2ǫ2
+ log(cosh(xkθ

⋆
k/ǫ

2))

)

= −a2(rǫ)/2+a(rǫ)ηǫ+ρǫ,

where ηǫ → η ∼ N (0, 1) and ρǫ → 0 in P0-probability. The proof is based on
Taylor’s expansion, see Section 4.3.1 of [13]. This yields the sharp lower bounds.

In order to obtain upper bounds, take a sequence q = (qk)k∈Z such that
qk ≥ 0,

∑

k q
2
k = 1/2, and consider tq, a centered and normalized (under P0)

statistic of a weighted χ2-type:

tq =
∑

k∈Z

qk

(

(
xk
ǫ
)2 − 1

)

.

Consider also the test procedures ψH,q = 1tq>H . Observe that E0tq = 0,
Var0tq = 1, and tq are asymptotically standard Gaussian under P0. These obser-
vations imply w(ψH,q) = Φ(−H)+o(1). Denote by κ(θ, q) and κ(q) the following
functions:

κ(θ, q) =
∑

k∈Z

qkθ
2
k, κ(q) = κ(Θ(τ, rǫ), q) = inf

θ∈Θ(τ,rǫ)
κ(θ, q). (4.4)

Then,

Eθtq = ǫ−2κ(θ, q), Varθtq = 1 + 4ǫ−2
∑

k

q2kθ
2
k = 1 +O((max

k
qk)Eθtq),

and hence, by Chebyshev’s inequality, β(ψH,q,Θ(τ, rǫ)) → 0 when ǫ−2κ(q) →
+∞ and H ≤ cǫ−2κ(q), c ∈ (0, 1). Under assumption (4.3), one can check that
the statistic t̂q = tq − Eθtq is asymptotically standard Gaussian under Pθ such
that Eθtq = O(1). Therefore

β(ψH,q,Θ(τ, rǫ)) ≤ Φ(H − ǫ−2κ(q)) + o(1).

In order to determine ‘asymptotically the best sequence’ (qk)k∈Z, it suffices to
find a solution of the following maximin problem:

ã(rǫ) = ǫ−2 sup
∑

k q
2
k=1/2,qk≥0

κ(q). (4.5)
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First, we change the variables for v = (vk)k∈Z and (pk)k∈Z, where vk = θ2k/
√
2,

pk =
√
2qk. Then, by convexity of the set

V + = {v ∈ l1(Z) : vk ≥ 0; (2π)2τ
∑

k∈Z

k2τvk ≤ 2−1/2;
∑

k∈Z

vk ≥ 2−1/2r2ǫ}, (4.6)

and using the minimax theorem, we get

ã(rǫ) = ǫ−2 sup
∑

k p
2
k=1,pk≥0

inf
v∈V +

∑

k

pkvk = ǫ−2 sup
∑

k p
2
k≤1,pk≥0

inf
v∈V +

∑

k

pkvk

= ǫ−2 inf
v∈V +

sup
∑

k p
2
k≤1,pk≥0

∑

k

pkvk = ǫ−2 inf
v∈V +

(
∑

k

v2k

)1/2

=
1√
2 ǫ2

inf
θ∈Θ(τ,rǫ)

(
∑

k

θ4k

)1/2

= a(rǫ).

Thus, asymptotically the best sequence (qk)k∈Z is the sequence w(rǫ)
∆
=

(wk(rǫ))k∈Z of the form (4.2), and the value of the problem (4.5) coincides with
the value of the problem (4.1). Setting H = a(rǫ)/2, we get the upper bounds
and the structure of asymptotically minimax tests.

Note that the above evaluations entail (see also Proposition 4.1 in [13]) that

inf
θ∈Θ(τ,rǫ)

1

ǫ2
κ(θ, w(rǫ)) ≥ a(rǫ). (4.7)

Moreover if (
∑

k∈Z
θ2k)

1/2 is larger than rǫ, then κ(θ, w(rǫ)) becomes rather
large. Namely, let us denote

κ(rǫ, B) = inf
θ∈Θ(τ,Brǫ)

κ(θ, w(rǫ)), B > 0.

Proposition 4.1. Let B ≥ 1, then

1

ǫ2
κ(rǫ, B) ≥ B2a(rǫ).

Proof. Set Θ(τ, A, rǫ) = {θ ∈ l2(Z) : (2π)
2τ
∑

k∈Z
|k|2τθ2k ≤ A2,

∑

k∈Z
θ2k ≥ r2ǫ},

A > 0. Since Θ(τ, Brǫ) ⊂ Θ(τ, B,Brǫ), we have

inf
θ∈Θ(τ,Brǫ)

κ(θ, w(rǫ)) ≥ inf
θ∈Θ(τ,B,Brǫ)

κ(θ, w(rǫ))

= B2 inf
θ∈Θ(τ,rǫ)

κ(θ, w(rǫ)) ≥ B2ǫ2a(rǫ),

where the last inequality follows from (4.7). This completes the proof.

The solution of the extremal problem (4.1) is obtained in Ingster & Suslina
[13], Section 4.3. Adapting the derivations on pages 146–147 of Section 4.3.2.
in [13] to our case, we set c3 = 1

4τ B(a, b), c2 = 1
4τ B(b, c) and c0 = 1

8τ B(a, d),
where B(·, ·) is the Euler Beta function, a = 1

2τ , b = 1 + 1
2τ , c = 2 and d = 3.
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Lemma 4.1. The solution of the extremal problem (4.1) is given by

a(rǫ) ∼ (c1(τ))
1/2 r2+1/(2τ)

ǫ ǫ−2 as rǫ → 0, (4.8)

where c1(τ) = c0πc
−2
2 (

c2
c3
)(4τ+1)/2τ is a positive constant. (4.9)

Remark 4.1. One must note that rǫ → 0 is the only condition we need to
obtain the asymptotic solution of (4.1). In particular, it is not required that
ǫ→ 0 and Lemma 4.1 is valid whatever the value of ǫ > 0 is.

Proof. Sketch of the proof of Lemma 4.1.
Following Chapter 4 in [13], observe that by setting vk = θ2k/

√
2 for all k ∈ Z,

one can transform the minimization problem under constraints (4.1) into the
following one:

v2ǫ = inf
(vk)k∈Z∈V +

∑

k∈Z

v2k,

where V + is defined by Eq. (4.6). The space l+1 (Z) contains non-negative se-
quences lying in l1(Z). Note that v2ǫ = ǫ4a2(rǫ). The convexity of the set V +

assures the uniqueness of v2ǫ . In order to determine the solution, rewrite as
in Section 4.3 in [13] the sequence (vk)k∈Z as follows: vk = v0ζ(k/m), where
ζ(y) = (1− |y|2τ )1(|y|≤1) and m > 0. By using the Lagrange multipliers rule, it
is possible to obtain the following relations, as rǫ → 0 and m→ +∞:

c3v0m ∼ 2−1/2r2ǫ , v2ǫ ∼ c0v
2
0m, c2v0m

2τ+1 ∼ 2−1/2(2π)−2τ , (4.10)

which entail the existence of v2ǫ satisfying v2ǫ ∼ c1(τ)r
4+1/τ
ǫ , and thus a2(rǫ) ∼

c1(τ)ǫ
−4r

4+1/τ
ǫ .

If rǫ → 0, then the first and second relations in (4.10) entail that

v0 ≍ v2ǫ r
−2
ǫ ≍ r2+1/τ

ǫ , (4.11)

which implies that m → +∞ since the third relation in (4.10) yields m ≍
v
−1/(2τ+1)
0 ≍ r

−1/τ
ǫ .

Remark 4.2. The form of function ζ and Relation (4.11) imply that
supk vk ≤ v0 = o(1).

5. Main results

Depending on the values of b, we distinguish between two types of sparsity:
the moderate sparsity case with b ∈ (0, 1/2] and the high sparsity case with
b ∈ (1/2, 1). In each case, although being of different types, the ‘best’ test
procedures that achieve the separation rates are based on the χ2-type statistics
(tj)1≤j≤d determined in the same way as the ‘best statistic’ tq of a weighted
χ2-type in Section 4.
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Let us introduce a general version of the χ2-type statistics of interest. For j
in {1, . . . , d}, put

tj =
∑

k∈Z

wk

(

(
xj,k
ǫ

)2 − 1
)

, (5.1)

where (wk)k∈Z is the sequence of weights such that wk ≥ 0 for all k in Z and
∑

k∈Z
w2
k = 1

2 . Set also

tj,k = wk

(

(
xj,k
ǫ

)2 − 1
)

, (5.2)

so that tj =
∑

k∈Z
tj,k.

Recall that Td =
√
log d (see Section 2). Similarly to (2.3) and for any u ∈

(0,
√
2], let us define the statistics L(u) on which the Higher-Criticism type test

procedure is built:

L(u) = Cu

d∑

j=1

(1(tj>uTd) − Φ̃0(uTd)), (5.3)

where

Φ̃0(x) = P0(tj > x), (5.4)

Cu = (dΦ̃0(uTd)(1− Φ̃0(uTd)))
−1/2. (5.5)

Taking into account the sparsity condition, we consider a particular sequence

of weights (wk(r
⋆
ǫ ))k∈Z defined by Eq. (4.2) with r⋆ǫ

∆
= r⋆ǫ (b) being the separations

rates depending on b in (0, 1). Then, for all j ∈ {1, . . . , d}, we consider the
statistics tj,b as in (5.1) with the weight sequence (wk(r

⋆
ǫ ))k∈Z, that is,

tj,b =
∑

k∈Z

wk(r
⋆
ǫ )
(

(
xj,k
ǫ

)2 − 1
)

.

Also, denote by tb the normalized empirical mean of the tj,b’s:

tb =
1√
d

d∑

j=1

tj,b. (5.6)

Similarly, replacing tj by tj,b, consider the statistics L(u, b), Cu,b, and Φ̃0,b de-
fined by the equations (5.3), (5.5) and (5.4) respectively, that is,

L(u, b) = Cu,b

d∑

j=1

(1(tj,b>uTd) − Φ̃0,b(uTd)), (5.7)

Cu,b = (dΦ̃0,b(uTd)(1 − Φ̃0,b(uTd)))
−1/2,

Φ̃0,b(x) = P0(tj,b > x).
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5.1. Moderate sparsity

In case of moderate sparsity, for any α ∈ (0, 1), consider the χ2-type test pro-
cedure:

ψχ
2

α
∆
= ψχ

2

α,b = 1(tb>Tα), (5.8)

where tb is defined in (5.6) and Tα is the (1 − α)-quantile of a real standard
Gaussian random variable.

Theorem 5.1. Assume that rǫ → 0 and let a(rǫ) be given by (4.8). Then, the
following results hold true.

(i) Lower bound.

If a(rǫ)d
1/2−b = o(1), then γ → 1.

If a(rǫ)d
1/2−b = O(1), then lim inf γ > 0.

(ii) Upper bound. Let r⋆ǫ = r⋆ǫ (b) be determined by the relation a(r⋆ǫ ) ≍ db−1/2

and ψχ
2

α be defined by (5.8). Then,

Type I error: ∀α ∈ (0, 1), ω(ψχ
2

α ) = α+ o(1).

Type II error: if a(rǫ)d
1/2−b → +∞, then β(ψχ

2

α ,Θd(τ, rǫ, b)) = o(1).

Remark 5.1. Note that we obtain the same detection boundaries as
in the vectorial case (see Section 2): the areas of distinguishability and
non-distinguishability depend on the limit of d1/2−ba(rǫ). The condition
d1/2−ba(rǫ) ≍ a(rǫ)/a(r

⋆
ǫ ) → +∞ is equivalent to rǫ/r

⋆
ǫ → +∞ where by (4.8)

r⋆ǫ ≍ (ǫ4d2b−1)τ/(4τ+1). (5.9)

In order to use Lemma 4.1, the condition rǫ → 0 is required. Note that the
requirement r⋆ǫ → 0 is always fulfilled for b ∈ (0, 1/2) whatever the value of
ǫ > 0 is as soon as d → +∞. For b = 1/2, the condition r⋆ǫ → 0 holds when
ǫ→ 0.

5.2. High sparsity

Let us define the Higher-Criticism type test procedure. Let r⋆ǫ = r⋆ǫ (b) be de-
termined by the relation a(r⋆ǫ ) ∼ ϕ(b)Td, where ϕ(b) is given by (2.2). Set
u(b) = min(2ϕ(b),

√
2), i.e., u(b) = 2ϕ(b) for b ∈ (1/2, 3/4], and u(b) =

√
2 for

b ∈ (3/4, 1]. Consider the test

ψL = 1{ max
1≤l≤N−1

L(ul, bl) > H}, ul = u(bl),

where the function L is defined in (5.7) and (bl)1≤l≤N consists of a regular grid
on (1/2, 1], that is, bl = 1/2 + lδ, where δ is a positive parameter that satisfies
δ = od(1), Tdδ → +∞ and Nδ = 1/2. This entails that N = Od(δ

−1) and
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thus N = od(Td). Take a positive H such that H ∼ (log d)C for some positive
constant C satisfying C > 1

4 .

For a constant D >
√
2, consider also the test

ψmax = 1{ max
1≤j≤d

max
1≤l≤N

tj,bl > DTd}.

Finally, combining ψL and ψmax, we define the test procedure

ψHC = ψLψmax, (5.10)

that rejects H0 if both ψL and ψmax reject H0.
For the high sparsity case, not only separation rates but also sharp asymp-

totics are obtained; two ranges of b should be distinguished: the range of b in
(1/2, 3/4], called the intermediate sparsity case, and the range of b in (3/4, 1),
called the highest sparsity case.

Theorem 5.2. Assume that rǫ → 0 and that log d = o(ǫ−2/(2τ+1)). Let a(rǫ)
be given by (4.8) and let ϕ be given by (2.2).

(i) Lower bound. If lim sup a(rǫ)/Td < ϕ(b), then lim inf γ → 1.
(ii) Upper bound: errors of ψHC defined by (5.10).

Type I error: ω(ψHC) = o(1).

Type II error: if lim inf a(rǫ)/Td > ϕ(b), then β(ψHC ,Θd(τ, rǫ, b)) = o(1).

Remark 5.2.

• Set a(r⋆ǫ ) = Tdϕ(b). In our sparse functional framework, the distinguisha-
bility conditions are the same as for a d-dimensional sparse vector (see,
e.g., [12]), with the only difference that in our case the assumption log d =
o(ǫ−2/(2τ+1)) is required. Under this assumption, the result of Theorem 5.2
means that distinguishability is impossible if lim sup a(rǫ)/a(r

⋆
ǫ ) < 1 and

it is possible if lim inf a(rǫ)/a(r
⋆
ǫ ) > 1. Due to (4.8), these conditions pro-

vide sharp separation rates since they are equivalent to lim sup rǫ/r
⋆
ǫ < 1

and lim inf rǫ/r
⋆
ǫ > 1, respectively, where

r⋆ǫ ∼ (ǫ4 T 2
d (c1(τ))

−1ϕ2(b))τ/(4τ+1), (5.11)

and c1(τ) is defined by (4.9). Note that the condition r⋆ǫ → 0 is fulfilled
under the assumption log d = o(ǫ−2/(2τ+1)).
The values r⋆ǫ mark the border between the areas of distinguishability and
non-distinguishability. Indeed, for rǫ → 0 such that lim sup rǫ/r

⋆
ǫ < 1, the

alternatives separated from the null hypothesis by rǫ are not distinguish-
able and, on the other side, for rǫ → 0 such that lim inf rǫ/r

⋆
ǫ > 1, the

alternatives separated from the null hypothesis by rǫ are distinguishable.
• Actually, the assumption log d = o(ǫ−2/(2τ+1)) is equivalent to

(r⋆ǫ )
1/(2τ)Td = o(1), (5.12)
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which is required when dealing with the asymptotic behavior of the tail
distribution of tj,b (see Lemma 7.1) since Td supk wk(r

⋆
ǫ ) ≤ (r⋆ǫ )

1/(2τ)Td.
Relation (5.12) follows from the relations in Eq. (4.10). Concerning the
lower bound, Condition (5.12) is necessary when we evaluate the second
moment of the Bayesian likelihood ratio under the null hypothesis.

• Note that the condition log d = o(ǫ−2/(2τ+1)) is essential for b ∈ (1/2, 1).
Namely, it follows from Theorem 2 in [10] that if lim inf(log d ǫ2/(2τ+1))> 0,
then the separation rates are of the form r⋆ǫ = ǫ

√
log d for any b ∈ (1/2, 1).

Observe that if log d ≥ cǫ−2 for some c > 0, then the separation rates are
bounded away from zero, i.e., it is impossible to detect functions lying in
Θd(τ, rǫ, b) with small enough rǫ > 0.

Remark 5.3. Adaptation.

In the high sparsity case, a family of test procedures ψHC provides the dis-
tinguishability for all b ∈ (1/2, 1). Moreover, it follows from the proofs that our
result is uniform over b ∈ (1/2 + ρ, 1 − ρ) for any ρ ∈ (0, 1/4), i.e., the results
are adaptive over b ∈ (1/2 + ρ, 1 − ρ) for any ρ ∈ (0, 1/4), without a loss in
separation rates.

For the moderate sparsity case, it is worth noting that the family of test

procedures ψχ
2

α = ψχ
2

α,b depends on b ∈ (0, 1/2] since the sequence of weights
w(r⋆ǫ (b)) does. It is shown in Theorem 3 of [10] that ‘adaptive’ separation rates
for unknown b ∈ (0, 1/2) are of the form r⋆ǫ ≍ (ǫ4d2b−1 log log d)τ/(4τ+1), i.e., the
adaptive case leads to an unavoidable log log-loss in separation rates compared
to non-adaptive setting. Using the Bonferroni method, it is possible to prove

that the test procedures based on a grid of tests of the form ψχ
2

αd,bl
are adaptive

rate-optimal test procedures. Since this result is similar to the one stated in [10],
we omit it.

6. Extended problem

In this section, we generalize the hypothesis testing problem stated in (1.3) to
more general alternatives. The null hypothesis H0 is still characterized by some
constant const0 and, as in (1.3), under the alternative, the signal function f is,
up to some constant, equal to f1, i.e., f = const1 + f1. The additive sparse
structure on f1 is still assumed, i.e., f1 ∈ Fd,b, as well as every component f1

j is

assumed 1-periodic and orthogonal to a constant (recall that for any t ∈ [0, 1]
d

f1(t) =
∑d

j=1 ξjf
1
j (tj) where ξj ∈ {0, 1} and tj ∈ [0, 1] for any j ∈ {1, . . . , d}).

We then denote by F̃d,b the set of signal functions in Fd,b whose components
are 1-periodic and orthogonal to a constant. Rather than imposing smoothness
constrains component-wise, we now study the alternative classes for which the
smoothness and separation conditions are expressed in terms of the whole signal
function f1. In other words, the main difference between the extended and initial
detection problems is that the distinguishability problem is studied with respect
to a global signal.
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Then, given the alternatives that include signal functions f as in (1.3), where
f1 belongs to the functional class Fext

d (τ, L, rǫ, b), the testing problem of interest
is stated as follows:

H0 : f = const0 versus H1 : f = const1 + f1, f1 ∈ Fext
d (τ, L, rǫ, b), (6.1)

where

Fext
d (τ, L, rǫ, b) =

{

f1 ∈ F̃d,b : ‖f1‖2 ≥ rǫ, ‖f1‖(τ)2 ≤ L
}

,

in which (‖f1‖(τ)2 )2 =
∑d
j=1 ξj(‖f1

j ‖(τ)2 )2. Due to the periodic constraint, we

consider the standard Fourier basis. This allows to express the semi-norm ‖ · ‖(τ)2

in terms of Fourier coefficients. As in Section 3, we then transform the functional
space Fext

d (τ, rǫ, L, b) to the sequence space Θextd (τ, L, rǫ, b), which consists of
sequences θ = (ξjθj,k)j,k such that

d∑

j=1

ξj = d1−b = K,

d∑

j=1

ξj(2π)
2τ
∑

k∈Z

|k|2τ θ2j,k ≤ L2,

d∑

j=1

ξj
∑

k∈Z

θ2j,k ≥ r2ǫ .

Note that if L2 = K and r̃2ǫ = Kr2ǫ , then we have

Θextd (τ, L, r̃ǫ, b) ⊃ Θd(τ, rǫ, b).

This implies that the results on the lower bound continue to hold for
Θextd (τ, L, r̃ǫ, b) with the separation rates (r̃⋆ǫ )

2 = K(r⋆ǫ )
2, where r⋆ǫ is defined by

either (5.9) or (5.11) depending on the values of b. Here, the quantity of interest
is ã(rǫ), the solution of the following extremal problem:

ã2(rǫ) =
1

2ǫ4
inf
θ∈l2

d∑

j=1

ξj
∑

k∈Z

θ4j,k subject to







d∑

j=1

ξj = d1−b = K

d∑

j=1

ξj(2π)
2τ
∑

k∈Z

|k|2τθ2j,k ≤ K

d∑

j=1

ξj
∑

k∈Z

θ2j,k ≥ Kr2ǫ

(6.2)
As follows from Section 4.3 in [13], the solution of the extremal problem (6.2)

is given by

ã(rǫ) ∼ (c1(τ))
1/2Kr2+1/(2τ)

ǫ ǫ−2 as rǫ → 0,
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where c1(τ) is defined in (4.9). That is, ã(rǫ) = Ka(rǫ), where a(rǫ) is the
solution (4.8) of the extremal problem (4.1).

Remark 6.1. Consider the function κ defined by (4.4), for which the sequence
of weights w(rǫ) = (wk(rǫ))k is defined as in (4.2). Then we obtain from (4.7)
that

inf
θ∈Θext

d (τ,K1/2,K1/2rǫ,b)

1

ǫ2

d∑

j=1

ξjκ(θj , w(rǫ)) ≥ ã(rǫ) = Ka(rǫ), (6.3)

and similarly to Proposition 4.1 for any D ≥ 1,

inf
θ∈Θext

d
(τ,K1/2,DK1/2rǫ,b)

1

ǫ2

d∑

j=1

ξjκ(θj , w(rǫ)) ≥ D2ã(rǫ) = D2Ka(rǫ) (6.4)

Now, as in Section 3, with the use of the orthonormal system, instead of
considering the random process X(t) defined in model (1.1), we observe a family
of random sequences (xj,k)k∈Z,j∈{1,...,d} defined by (3.1). Finally, the remained

question is: do the families of test procedures ψχ
2

α given by (5.8) and ψHC

given by (5.10) provide distinguishability? The answer is affirmative and is given
below. Note that it is then sufficient to study the type II error probability of
these tests since their type I error probability has been already studied for the
hypothesis testing problem (1.3).

Theorem 6.1. Assume that rǫ → 0 and let a(rǫ) and ϕ be given by (4.8) and
(2.2), respectively. Then, the following results hold true.

(i) Moderate sparsity—Type II error probability of ψχ
2

α defined by (5.8).

If a(rǫ)d
1/2−b → +∞, then β(ψχ

2

α ,Θextd (τ,K1/2,K1/2rǫ, b)) = o(1).
(ii) High sparsity—Type II error probability of ψHC defined by (5.10).

Assume that log d = o(ǫ−2/(2τ+1)).
If lim inf a(rǫ)/Td > ϕ(b), then β(ψHC ,Θextd (τ,K1/2,K1/2rǫ, b)) = o(1).

Remark 6.2. One should note that the detection boundaries are the same for
the hypothesis testing problems (1.3) and (6.1), the initial one and its general-
ization.

7. Proofs

Proofs of our main results require some preliminary results that are stated
below both under the null and alternative hypotheses. Specifically, we establish
asymptotic tail distributions of the test statistics in hand and find their first
and second moments.

7.1. Properties of test statistics

In this section, we consider the statistics tj defined by (5.1) with any sequence
of weights w = (wk)k∈Z such that wk ≥ 0, ∀k ∈ Z and

∑

k w
2
k = 1/2. Therefore

the quantities L(u), C(u), and Φ̃0 are those defined by (5.3), (5.5) and (5.4).
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Proposition 7.1. Asymptotic tail distribution of tj defined by (5.1).
Assume T maxk wk = o(1), then

logP0(tj > T ) ∼ −T
2

2
as T → +∞,

logPθj (tj > T ) ∼ − (T − Eθj (tj))
2

2
, as (T − Eθj (tj))

T→+∞−→ +∞.

Proof. We consider only the distribution Pθj since P0 is a particular case of
Pθj . The proof consists of bounding Pθj (tj > T ) from above and below. This
is done by using the cumulant-generating function of tj under Pθj which is
defined by φθj (h) = log(Eθj (exp(htj))) for any h. Let us consider only positive
h and let us introduce a new family of probability measures Pθj,h such that
dPθj,h

dP0
= exp(htj) exp(−φθj (h)). This yields

Pθj(tj > T ) = Eθj ,h[1(tj>T ) exp(−(htj − φθj (h)))]

= exp(−(hT − φθj (h))) Eθj ,h[1(tj>T ) exp(−h(tj − T ))]. (7.1)

Let us start with the upper bound.

Upper bound. The second term on the right-hand side of (7.1) is less than 1.
Hence there is a straightforward upper bound on Pθj (tj > T ):

Pθj (tj > T ) ≤ exp(−(hT − φθj (h))). (7.2)

To complete this part of the proof, it remains to determine the minimum value
of a positive value h on the right-hand side of (7.2). The minimum is attained
for positive h such that

Eθj ,h(tj) = T (7.3)

since {

(φθj (h)− hT )′ = Eθj ,h(tj)− T,

(φθj (h)− hT )
′′

= Varθj ,h(tj) ≥ 0,

where (·)′ and (·)′′ denote the first and second derivatives with respect to h, re-
spectively, and, Eθj ,h and Varθj,h are the expectation and variance with respect
to Pθj ,h.

In order to find h that solves Eq. (7.3), we need to determine φθj . For this, set

νj,k =
θj,k
ǫ . Then for any positive h such that h → +∞ and hmaxk wk = o(1),

we obtain

φθj (h) = log
∏

k

Eθj [exp(hwk((νj,k + ηj,k)
2 − 1))]

=
∑

k

{

−hwk +
hwkν

2
j,k

(1− 2hwk)
− 1

2
log(1− 2hwk)

}
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=
∑

k

{

−hwk + hwkν
2
j,k(1 + 2hwk + o(hwk))

−1

2

(

−2hwk −
(2hwk)

2

2
+ o(h2w2

k)

)}

=
∑

k

{hwkν2j,k(1 + o(hmax
k

wk)) + h2w2
k(2ν

2
j,k + 1) + o(h2w2

k)}

= hEθj (tj)(1 + o(hmax
k

wk)) +
h2

2
(1 + o(1)) + o(h2), (7.4)

where the last equality sign in (7.4) follows from (T − Eθj (tj)) → +∞ and
T maxk wk = o(1) as T → +∞. Next, differentiating the right-hand side of (7.4)
with respect to h yields

(φθj (h)− hT )′ = 0 ⇒ h ∼ T − Eθj (tj), as T − Eθj (tj) goes to infinity.

As (T − Eθj (tj))
T→+∞−→ +∞, this leads to the following optimal equivalent

for right-hand side of (7.2):

exp

(

− (T − Eθj (tj))
2

2

)

.

Since by assumption T maxk wk = o(1), the condition hmaxk wk = o(1) with
(T − Eθj (tj)) in place of h is fulfilled.

By assumption T maxk wk = o(1), hence the optimal upper bound under P0

is exp(−T 2

2 ) as T goes to infinity. This completes the proof of the upper bound.

Lower Bound. We are interested in obtaining a lower bound for (7.1). This is
done by first considering a new family of probability distributions under which
the normalized statistics tj are proved to be asymptotically Gaussian.

For h > 0 satisfying Eq. (7.3), let us introduce the following probability
measures Pθj,h,k:

dPθj,h,k

dP0
= exp(htj,k) exp(−φθj,k(h)),

with tj,k defined in (5.2), φθj,k(h) = logEθj,k(exp(htj,k)) and where Eθj,k stands
for the expectation with respect to the observations (xj,k)j,k of (3.1). Denote by
Eθj ,h,k and Varθj,h,k the expectation and variance with respect to Pθj ,h,k.

To establish the asymptotic normality of tj , we will check that the Lya-
punov condition is satisfied. To this end, set σ2

j,h,k = Varθj,h,k(tj,k) and

σ2
j,h =

∑

k σ
2
j,h,k.

Denote by φ
(2)
θj,k

and φ
(4)
θj,k

the second and fourth derivatives of φθj,k with re-
spect to h, respectively. Using well-known relations between moments of tj
under Pθj ,h,k and the successive derivatives of φθj,k(h) with respect to h, in

particular, σ2
j,h =

∑

k φ
(2)
θj,k

, we get
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∑

k Eθj ,h,k(tj,k − Eθj ,h,k(tj,k))
4

(
∑

k σ
2
j,h,k)

2
=

3
∑

k(φ
(2)
θj,k

(h))2 +
∑

k φ
(4)
θj,k

(h)

(
∑

k φ
(2)
θj,k

(h))2

≤ 4max(w2
k)
∑

k w
2
k(1 + o(1)) + o(1)

1
= o(1),

where the last relation follows from maxwk = o(1) and Relation (7.4), since

by (7.4) we get
∑

k φ
(4)
θj,k

(h) = φ
(4)
θj

(h) = o(1). The Lyapunov condition is then

satisfied. This implies that under Pθj,h, Zj,h =
tj−Eθj,h

(tj)

σj,h
is asymptotically a

real standard Gaussian random variable.
Let us return to Relation (7.1), where h is chosen to have Eθj,h(tj) = T , and

observe that

Eθj ,h[1(tj>T ) exp(−h(tj − T ))] = Eθj ,h[1(Zj,h>0) exp(−hZj,hσj,h)].

Due to the asymptotic normality of tj , for any δ > 0,

Eθj ,h[1(Zj,h>0) exp(−hZj,hσj,h)] = Eθj ,h[1(Zj,h∈(0,δ)) exp(−hZj,hσj,h)]
+ Eθj ,h[1(Zj,h>δ) exp(−hZj,hσj,h)]

> (Pθj ,h(Zj,h ∈ (0, δ)) + o(1)) exp(−hδσj,h).
(7.5)

By choosing δ = o(h) in Relation (7.5) implies that

log(Pθj (tj > T )) ≥ φθj (h)− hT − o(h2). (7.6)

Up to o(h2), the right-hand side of (7.6) corresponds to the argument of the
exponential function on the right-hand side of (7.2). This entails that the right-

hand side of (7.6) is equivalent to − (T−Eθj
(tj))

2

2 . This completes the proof of the
lower bound and Proposition 7.1 is proved.

Lemma 7.1. (i) Expectation and variance of tj defined by (5.1).

Eθj (tj) = ξjǫ
−2κ(θj , w), (7.7)

Varθj(tj) = 1 +O((max
k∈Z

wk) Eθj (tj)). (7.8)

(ii) Expectation and variance of L(u) defined by (5.3). Assume that
Tdmaxwk = o(1) and consider any θ = (ξ1θ1, . . . , ξdθd) such that
∑d

j=1 ξj = d1−b. Moreover, assume that for all nonzero ξj , Eθj (tj) ≥ cTd,
with some positive c, and maxj:ξj=1 Eθj (tj) = O(Td). Then, for all

u ∈ (0,
√
2],

E
θ
(L(u)) ≥ d

1
2−b+(u2

4 − ((u−c)+)2

2 )(1+o(1))(1 + o(1)),

Var
θ
(L(u)) = o(dη E

θ
(L(u))) + o(1), η = o(1),

where x+ = max(0, x).
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Remark 7.1. Under P0, the statistics tj and L(u) have zero mean and unit
variance. Moreover, under P0 and the assumption maxk wk = o(1), the statistics
tj are asymptotically standard Gaussian. Under Pθj , the statistics tj − Eθj tj
are asymptotically standard Gaussian if maxk wkEθj tj = o(1), see Lemma 3.1
in [13].

Proof. (i) Recall that
∑

k w
2
k = 1/2. For each index j satisfying ξj = 1, the

random variable (
xj,k

ǫ )2 is a Pθj -noncentral χ
2(1, θ2j,kǫ

−2). From this relation,
(7.7) is easily obtained. Relation (7.8) is deduced from the following calculations:

Varθj (tj) =
∑

k∈Z

w2
k(2 + 4ǫ−2ξjθ

2
j,k)

= 1 +
∑

k∈Z

w2
k4ǫ

−2ξjθ
2
j,k

= 1 +O(max
k∈Z

wk ǫ
−2ξjκ(θj , w))

= 1 +O(max
k∈Z

wk Eθj (tj)).

(ii) For any u ∈ (0,
√
2], as Td → +∞, Proposition 7.1 gives a control over Cu

defined by (5.5):

C2
u = d−1 exp(

u2T 2
d

2
(1 + o(1)))(1 − exp(

−u2T 2
d

2
(1 + o(1))))−1

= d−1+ u2

2 (1+o(1)).

Since u ≤
√
2, the exponent of d in Cu is o(1).

Case 1: for the nonzero ξj ’s, assume that lim sup(uTd − Eθj (tj)) < +∞. In
this case, the probability Pθj (tj > uTd) = Pθj(tj − Eθj (tj) > uTd − Eθj (tj))
is bounded away from zero. This follows from the asymptotic normality of
tj − Eθj (tj) for Eθj (tj) = O(Td) (see Remark 7.1)

Case 2: for the nonzero ξj ’s, assume that uTd − Eθj (tj) → +∞. Then, for any
nonzero ξj , Proposition 7.1 implies that

logPθj (tj > uTd) ≥ − (uTd − cTd)
2

2
(1 + o(1)).

Recall that the number of nonzero ξj is equal to K = d1−b and that for all
nonzero ξj , Eθj (tj) ≥ cTd for some positive c such that maxj:ξj=1 Eθj (tj) =
O(Td). To sum up, the cases 1 and 2 entail that

E
θ
(L(u)) = Cu

∑

j:ξj=1

(

Pθj(tj > uTd)− Φ̃0(uTd)
)

≥ CuK
(

d−
((u−c)+)2

2 (1+o(1)) − d−
u2

2 (1+o(1))
)

= d−
1
2+

u2

4 (1+o(1))+1−b
(

d−
((u−c)+)2

2 (1+o(1)) − d−
u2

2 (1+o(1))
)

(1 + o(1))

= d
1
2−b+(u2

4 − ((u−c)+)2

2 )(1+o(1))(1 + o(1)).
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Similarly, let us study the variance of L(u). Using Proposition 7.1, we obtain

Var
θ
(L(u)) = C2

u

∑

j:ξj=1

Pθj (tj > uTd)Pθj (tj ≤ uTd)

+ C2
u

∑

j:ξj=0

Φ̃0(uTd)(1 − Φ̃0(uTd))

= C2
uKPθj(tj > uTd)(1 + o(1)) + (db−1 + d−b)(1 + o(1))

= (CuEθ
(L(u)) + db−1)(1 + o(1))

= o(dηE
θ
(L(u))) + o(1), η = o(1).

7.2. Upper bound

Remark 7.2. Note that the condition Tdmaxk wk(r
⋆
ǫ ) = o(1) follows from

assumption log d = o(ǫ−2/(2τ+1)). Indeed, Remark 4.2 and the relations in Eq.
(4.10) imply that Tdmaxwk(r

⋆
ǫ ) ≤ (r⋆ǫ )

1/(2τ)Td, where the term on the right-
hand side goes to zero as soon as log d = o(ǫ−2/(2τ+1)). Therefore, assumption
log d = o(ǫ−2/(2τ+1)) allows us to apply Proposition 7.1 and Lemma 7.1.

Proof. Theorem 5.1 (ii).

Type I error probability of ψχ
2

α . It follows from the Central Limit Theorem
that, under the null hypothesis, tb is asymptotically a standard normal random
variable. Therefore

P0(tb > Tα) = Φ(−Tα) + o(1) = α+ o(1).

Type II error probability of ψχ
2

α uniformly over Θd(τ, rǫ, b) for rǫ ≥ Br⋆ǫ ,
B ≥ 1. Thanks to Lemma 7.1, uniformly over θ ∈ Θd(τ, rǫ, b), we have

Var
θ
(tb) =

1

d

d∑

j=1

(1 +O(Eθj (tj,b)))

E
θ
(tb) = d−1/2

d∑

j=1

Eθj (tj,b).

This implies that Var
θ
(tb) = o((E

θ
(tb))

2) provided that E
θ
(tb) → +∞. Let

us study E
θ
(tb): from Proposition 4.1, Lemma 7.1, and Relation (4.7), we get

uniformly over Θd(τ, rǫ, b) with rǫ ≥ Br⋆ǫ , B ≥ 1:

E
θ
(tb) ≥ d1/2−bB2a(r⋆ǫ ) → +∞ as soon as B2d1/2−ba(r⋆ǫ ) ≍ B2 → +∞,

i.e., as soon as rǫ/r
⋆
ǫ → +∞, (7.9)

where r⋆ǫ ≍ (ǫ4d2b−1)τ/(4τ+1).
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Due to (7.9), using Markov’s inequality and Lemma 7.1, for all θ in
Θd(τ, rǫ, b),

P
θ
(tb ≤ Tα) = P

θ
(tb − E

θ
(tb) ≤ Tα − E

θ
(tb))

≤ P
θ
(|tb − E

θ
(tb)| ≥ E

θ
(tb)− Tα)

≤ Var
θ
(tb)

(E
θ
(tb)− Tα)2

= o(1).

This entails that β(ψχ
2

α ,Θd(τ, rǫ, b)) goes to zero as soon as d1/2−ba(rǫ) → +∞,

i.e., as soon as a(rǫ)
a(r⋆ǫ )

→ +∞ where a(r⋆ǫ ) ≍ db−1/2.

Proof. Theorem 5.2 (ii).
Type I error probability of ψHC . Observe that w(ψHC) ≤ w(ψL)+w(ψmax).
The assumption log(d) = o(ǫ−2/(2τ+1)) implies that Tdmaxk wk(r

⋆
ǫ ) = o(1).

Therefore the application of Proposition 7.1 and the fact that D2 > 2 and
N = o(Td) yield

w(ψmax) = P0( max
1≤j≤d

max
1≤l≤N

tj,bl > DTd) ≤
d∑

j=1

N∑

l=1

P0(tj,bl > DTd)

≤ Nd exp(−D2T 2
d /2(1 + od(1))) = Nd1−D

2/2(1+od(1)) → 0.

By Lemma 7.1 and applying Markov’s inequality,

w(ψL) = P0( max
1≤l≤N−1

L(ul, bl) > H) ≤
N−1∑

l=1

P0(L(ul, bl) > H)

≤
N−1∑

l=1

Var0(L(ul, bl))

H2

≤ (N − 1)

H2
,

which goes to zero as d→ +∞ since H ∼ (log d)C , with C > 1
4 and N = od(Td).

Type II error probability of ψHC uniformly over Θd(τ, rǫ, b). For any
θ ∈ Θd(τ, rǫ, b), we obtain

E
θ
(1− ψHC) ≤ min(E

θ
(1− ψmax),E

θ
(1− ψL)), (7.10)

E
θ
(1 − ψmax) ≤ min

j:ξj=1
min

1≤l≤N
Pθj (tj,bl ≤ DTd). (7.11)

First, let us consider the alternatives θ ∈ Θd(τ, rǫ, b) such that for a nonzero
ξj , there exists l ∈ {1, . . . , N} for which Eθj tj,bl ≥ D1Td with D1 > D. From
Lemma 7.1 (i) and Markov’s inequality, we obtain

Pθj (tj,bl ≤ DTd) ≤ Pθj (|tj,bl − Eθj (tj,bl)| ≥ Eθj (tj,bl)−DTd)

≤ Varθj (tj,bl)

(Eθj (tj,bl)−DTd)2
= o(1). (7.12)
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Second, in view of (7.10), (7.11), (7.12), it suffices to study the test procedures
ψL under the alternatives θ ∈ Θd(τ, rǫ, b) such that maxj:ξj=1 max1≤l≤N Eθj ×
tj,bl = O(Td). Then we obtain

E
θ
(1 − ψL) = P

θ
( max
1≤l≤N−1

L(ul, bl) ≤ H) ≤ min
1≤l≤N−1

P
θ
(L(ul, bl) ≤ H).

For any l ∈ {1, . . . , N − 1},

P
θ
(L(ul, bl) ≤ H) ≤ P

θ
(L(ul, bl)− E

θ
(L(ul, bl)) ≤ H − E

θ
(L(ul, bl)))

≤ P
θ
(−|L(ul, bl)− E

θ
(L(ul, bl))| ≤ H − E

θ
(L(ul, bl)))

≤ P
θ
(|L(ul, bl)− E

θ
(L(ul, bl))| ≥ −H + E

θ
(L(ul, bl)))

≤ Var
θ
(L(ul, bl))

(E
θ
(L(ul, bl))−H)2

. (7.13)

For any bl ∈ (1/2, 1), if we prove that inf
θ∈Θd(τ,rǫ,b)

E
θ
(L(ul, bl)) goes to infin-

ity as a power of d (d → +∞), then Lemma 7.1 and the choice of H (recall
H = Od((log d)

C), with C > 1/4) yield the result since in this case the right-
hand side of Relation (7.13) goes to zero.

Third, for b ∈ (1/2, 1), take an index l in {1, . . . , N − 1} such that bl ≤ b ≤
bl+1. This, combined with the continuity of ϕ, yields

bl = b+ o(1), r⋆ǫ (bl) ≤ r⋆ǫ (b) ∼ r⋆ǫ (bl), a(r⋆ǫ (bl)) ≤ a(r⋆ǫ (b)) ∼ a(r⋆ǫ (bl)).

Let θ ∈ Θd(τ, rǫ, b) with b ∈ (1/2, 1) and lim inf(a(rǫ)/a(r
⋆
ǫ (b)) > 1. Then

rǫ ≥ (1 + δ)r⋆ǫ (bl) for some δ > 0. Proposition 4.1 entails that for j such that
ξj = 1 we have

Eθj tj,bl ≥ (1 + δ)2a(r⋆ǫ (bl)) ∼ (1 + δ)2a(r⋆ǫ (b)) ∼ (1 + δ)2ϕ(b)Td.

We then derive from Lemma 7.1 with c = c(b) = (1 + δ)2ϕ(b) that

inf
θ∈Θd(τ,rǫ,b)

E
θ
(L(ul, bl)) > d

1
2+

u2
l
4 −b− ((ul−c(b))+)2

2 (1+o(1))(1 + o(1)). (7.14)

Finally, denote the main term in the exponent of d in (7.14) by

M =
1

2
+
u(b)2

4
− b− ((u(b)− c(b))+)

2

2
.

To obtain the result, it is sufficient to prove that M is positive and bounded
away from zero for any δ > 0.

Intermediate sparsity case. This case corresponds to b ∈ (1/2, 3/4]. Recall that
u(b) = 2ϕ1(b), where ϕ1 is defined in (2.2). Then

M > 0 ⇔
{

(ϕ2
1(b)/2)((1 + δ)2 − 1)(3− (1 + δ)2) > 0 for 0 < δ <

√
2− 1

ϕ2
1(b)/2 > 0 forδ ≥

√
2− 1

.

The latter inequalities are obviously satisfied. This leads to the result.
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Highest sparsity case. In this case b ∈ (3/4, 1) and u(b) =
√
2. Then

M > 0 ⇔
{

((1 + δ)2 − 1)ϕ2(b) > 0 for (1 + δ)2ϕ2(b) ≤
√
2

1− b > 0 for (1 + δ)2ϕ2(b) >
√
2
.

Again, the latter inequalities are satisfied, and the result follows.

Proof. Theorem 6.1 (i).
Similar to the proof of part (ii) of Theorem 5.1, due to (6.3) and (6.4), uniformly

over θ ∈ Θextd (τ,K1/2,K1/2rǫ, b), the type II error probability of ψχ
2

α goes to
zero as soon as rǫ/r

⋆
ǫ → +∞.

Proof. Theorem 6.1 (ii).
The proof of the fact that the type II error probability of ψHC goes to zero as
d → +∞ is similar to the one of Theorem 5.2. Recall that K = d1−b is the
number of nonzero ξj ’s and suppose without loss of generality that ξj = 1, ∀j ∈
{1, . . . ,K} and ξj = 0, ∀j ∈ {K + 1, . . . , d}. Note that the relations (7.10) and
(7.11) remain valid for any θ ∈ Θextd (τ,K1/2,K1/2rǫ, b).

First, similarly to (7.12), for any θ ∈ Θextd (τ,K1/2,K1/2rǫ, b) such that
for the nonzero ξj ’s, there exists l ∈ {1, . . . , N} for which Eθj tj,bl ≥ D1Td
with D1 > D, the type II error probability of ψHC vanishes asymptotically.
Therefore, it suffices to study the test procedures ψL under the alternatives
θ ∈ Θextd (τ,K1/2,K1/2rǫ, b) such that maxj:ξj=1 max1≤l≤N Eθj tj,bl = O(Td).
Therefore, let us take δ > 0 and consider the alternatives that are as far away
from the null hypothesis as rǫ such that rǫ ≥ (1 + δ)r⋆ǫ (b), where r

⋆
ǫ (b) is deter-

mined by a(r⋆ǫ (b)) ∼ Tdϕ(b).

Second, for any l ∈ {1, . . . , N}, observe that the only difference between the
proofs of the extended and initial problems lies in the study of

inf
θ∈Θext

d (τ,K1/2,K1/2rǫ,b)

K∑

j=1

Pθj (tj,bl − Eθj (tj,bl) > ulTd − Eθj (tj,bl)). (7.15)

Now it is no more possible to control (7.15) by using Lemma 7.1 (ii) because
the condition Eθj (tj) ≥ cTd is not necessarily satisfied for all nonzero ξj ’s. In

fact, the only condition we have is
∑K

j=1 Eθj (tj) ≥ cKTd with some constant
c > 1.

Let us now explain why the current proof is reduced to the study of (7.15).
As in (7.13), we get for any θ in Θextd (τ,K1/2,K1/2rǫ, b),

P
θ
( max
1≤l≤N

L(ul, bl) ≤ H) ≤ min
1≤l≤N

Var
θ
(L(ul, bl))

(E
θ
(L(ul, bl))−H)2

.

Due to Lemma 7.1 and the fact that H = Od((log d)
C) with C > 1/4, in order

to obtain the result, it remains to prove that for any l such that bl ≤ b ≤ bl+1

and for all θ ∈ Θextd (τ,K1/2,K1/2rǫ, b), Eθ
(L(ul, bl))

d→+∞−→ +∞ as a positive
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power of d. Finally, recall that E
θ
(L(ul, bl)) is equal to

Cul,bl

K∑

j=1

(

Pθj(tj,bl − Eθj (tj,bl) > ulTd − Eθj (tj,bl))− Φ̃0,bl(ulTd)
)

, (7.16)

where Cul,bl = (dΦ̃0,bl(ulTd)(1 − Φ̃0,bl(ulTd)))
1/2 and Φ̃0,bl(x) = P0(tj,bl > x).

The term in (7.16) corresponds to the product of (7.15) and Cul,bl . The quan-
tity Cul,bl is controlled by Lemma 7.1 and Proposition 7.1. Thus it remains to
study (7.15).

Third, the application of Proposition 7.1 gives the following approximation
of
∑K

j=1 Pθj(tj,bl − Eθj (tj,bl) > ulTd − Eθj (tj,bl)):

K∑

j=1

exp

(

− ((ulTd − Eθj (tj,bl))+)
2

2

)

O(1).

Recall that a(rǫ) given by (4.8) is the solution of the extremal problem (4.1).
Set ηj = Eθj (tj,bl), η0 = (1 + δ)2a(r⋆ǫ (b)) ∼ (1 + δ)2a(r⋆ǫ (bl)) and fT (η) =

exp(− (T−η)2
2 ) ∀η ∈ [0, R], where R = R(T ) > 0 will be specified later on.

Consider also

FK,T (η0)
∆
= inf

K∑

j=1

fT (ηj) subject to

K∑

j=1

ηj ≥ Kη0.

Due to Relation (6.4), we have for the sequence w(r⋆ǫ (bl)) that

K∑

j=1

ηj =
K∑

j=1

Eθj (tj,bl) =
1

ǫ2

K∑

j=1

κ(θj , wl) ≥ K(1 + δ)2a(r⋆ǫ (bl)) ∼ Kη0.

Then, in order to obtain the same right-hand side as in (7.14), it is sufficient
to show that for any l in {1, . . . , N} such that T = ulTd, Relation (7.17) which
is stated below, holds:

FK,T (η0) = KfT (η0). (7.17)

This is handled by a technical result similar to the one stated in Lemma 7.4
and Lemma 7.5 in Ingster et al. [17]. The proof of Lemma 7.2 is postponed to
Section A.

Lemma 7.2. Set λ = (T − η0)fT (η0).

If 0 < η0 < T − 1 and T < R < T +
√

(T − η0)2 − 2 log(1 + 2(T − η0)2)
(7.18)

then,

inf
η∈[0,R]

(fT (η)− λη) = fT (η0)− λη0, (7.19)

which implies that

FK,T (η0) = KfT (η0). (7.20)
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As d→ +∞, for any l ∈ {1, . . . , N} such that T = ulTd with ul > (1+δ)2ϕ(b)

and R = pTd with ul < p < ul +
ul−(1+δ)2ϕ(b)

2 , the conditions in (7.18) are then
satisfied. Therefore the application of Lemma 7.2 yields the results since for all
θ ∈ Θextd (τ,K1/2,K1/2rǫ, b), Eθ

(L(ul, bl)) is larger than

Cul,blK

(

exp(− ((ulTd − 1 + δ)2a(r⋆ǫ (bl)))+)
2

2

)

O(1)− exp

(

−ulTd
2

(1 + o(1))

)

,

which corresponds to the right-hand side of (7.14).

7.3. Lower Bound

Proof. The prior distribution we consider is a classical one for a functional
Gaussian model. In Section 4.3 of [13] it is referred to as the symmetric Three-
point Factors.

Prior. Before defining the prior Πd formally, we shall start with an informal
discussion.

The prior Πd adds mass on (ξjθj)1≤j≤d: the components are i.i.d. and ξj and
θj are supposed to be independent. A natural choice for ξj is a Bernoulli with

a parameter pd ∈ (0, 1) such that E(
∑d

j=1 ξj) ∼ K. The θj ’s are binary random

variables (with probability 1/2) such that θ2j = (θ⋆)2 where the sequence θ⋆

is a solution of the extremal problem (3.1); this guarantees that θj belongs to
Θ(τ, rǫ).

Now, we define the prior distribution more precisely. Let ρd be any sequence of

positive numbers such that ρd
d→+∞−→ 0 and d1−bρsd

d→+∞−→ +∞, ∀b ∈ (0, 1), ∀s >
0. Consider two sequences (ξj)j and (θj,k)j,k of independent random variables
whose distributions are the following:
{
ξj ∼ Bernoulli B(pd) with pd = d−b(1 + ρd), j ∈ {1, . . . , d},
θj,k = εj,k ǫ zk, with P(εj,k = 1) = P(εj,k = −1) = 1

2 , j ∈ {1, . . . , d}, k ∈ Z.

The sequence (zk)k∈Z is deterministic and is defined as follows: (ǫ zk)k =
(θ⋆k)k∈Z = θ⋆ where θ⋆ is the sequence that leads to the solution (4.8) of the
extremal problem (4.1). In particular, this entails that

∑

k∈Z

z4k
2

= a2(rǫ), (7.21)

(2π)2τ
∑

k∈Z

|k|2τ (ǫzk)
2 ≤ 1, (7.22)

∑

k∈Z

(ǫ zk)
2 ≥ r2ǫ . (7.23)

The sequences (ξj)j and (θj,k)j,k are also taken mutually independent. For each
j in {1, . . . , d}, we define the prior distribution πdj on (ξj , θj) as follows:

πdj = (1− pd)δ0 + pd
∏

k∈Z

πj,k = (1− pd)δ0 + pdπj , (7.24)
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where πj =
∏

k∈Z
πj,k, πj,k = 1

2 (δ(−ǫ zk) + δ(ǫ zk)) puts mass on θj,k and δ is the

Dirac mass. Finally, we define the global prior Πd by

Πd =
d∏

j=1

πdj .

Minimax and Bayesian risks. Denote by PΠd the mixture of the measures P
θ

over the prior Πd, and let γ(Q) be the minimal total error probability for testing
a simple null hypothesis H0 : P = P0 against a simple alternative H1 : P = Q
regarding the measure P of our observations (xj,k)k∈Z,1≤j≤d.

Proposition 7.2.

γ ≥ γ(PΠd) + o(1), (7.25)

where γ is the minimax total error probability over Θd(τ, rǫ, b) (see (3.2)).

Proof. Consider two sets Ξ(s) and Ξ+(s) defined by

Ξ(s) = {ζ = ǫ (ξ1(ε1,kzk)k, . . . , ξd (εd,kzk)k) :
d∑

j=1

ξj = s}, 0 ≤ s ≤ d,

Ξ+(s) =
⋃

s≤l≤d
Ξ(l).

First, due to the relations (7.22) and (7.23), Ξ(K) is included in Θd(τ, rǫ, b).
This entails that

γ ≥ γ(Ξ(K)). (7.26)

Second, let us introduce some additional priors: for any subset u ⊂ {1, . . . , d},
define πu =

∏

j∈u πj
∏

j /∈u δ0, where πj is as in (7.24). Note that πu has a
support on the collections ζ = ǫ (ξ1(ε1,kzk)k, . . . , ξd (εd,kzk)k) with ξj = 1 if
and only if j ∈ u. For any integer s such that 0 ≤ s ≤ d, let Gd,s be the set
of all subsets u ⊂ {1, . . . , d} of cardinality s, and define π(s) as the uniform
distribution on Gd,s:

π(s) =
1

(ds)

∑

u∈Gd,s

πu.

Observe that the prior Πd is of the form Πd =
∑d

s=0 rsπ(s) where rs =

psd(1 − pd)
d−s. Clearly, π(K)(Ξ(K)) = 1, which implies

γ(Ξ(K)) ≥ γ(Pπ(K)
). (7.27)

Third, consider the conditional prior of the form Πd+ with respect to Ξ(K)+,

i.e., Πd+(A) =
Πd(A∩Ξ(K)+)

Πd(Ξ(K)+)
which is of the form Πd+ =

∑d
s=K qsπ(s) with qs =

rs∑
d
s=K rs

, K ≤ s ≤ q. Let us prove that

γ(Pπ(K)
) ≥ γ(PΠd

+
). (7.28)
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Denote by XK = {(xj,k)j,k :
dPπ(K)

dP0
((xj,k)j,k) < 1} the admissible set of the

optimal test for testing H0 : P = P0 against H1 : P = Pπ(K)
. Since

γ(Pπ(K)
) = 1−P0(XK)+Pπ(K)

(XK) and γ(PΠd
+
) ≤ 1−P0(XK)+PΠd

+
(XK),

proving (7.28) is then reduced to checking that

Pπ(K)
(XK) ≥ PΠd

+
(XK). (7.29)

In view of Proposition 2.5 in [13], XK is a convex set. Also, the set XK is
sign-invariant and invariant with respect to all permutations of the xj,k’s; the
measures Pπ(s)

, 0 ≤ s ≤ d have the same property of invariance with respect to
all permutations of the xj,k’s. These observations imply

Pπ(K)
(XK) = P

θ
K (XK), PΠd

+
(XK) =

d∑

s=K

qsPθ
s(XK),

where θ
s
= ǫ(z, . . . , z

︸ ︷︷ ︸

s

, 0, . . . 0), z = (zk)k∈Z. Since θ
s
j,k ≥ θKj,k ≥ 0, ∀ j, k, s ≥ K,

the application of Lemma 2.4 in [13] entails that Pθ̄K (XK) ≥ Pθ̄s(XK), s ≥ K.
This yields Relation (7.29) and hence Relation (7.28).

Finally, in view of Proposition 2.11 in [13], it remains to check that

γ(PΠd
+
) = γ(PΠd) + o(1). (7.30)

Similarly to the proof of Proposition 2.9. in [13], it is easily seen that (7.30)
follows from the relation

Πd(Ξ+(K))
d→+∞−→ 1. (7.31)

Acting as in the proof of Proposition 3 in [12], we obtain by Chebyshev’s in-
equality,

1−Πd(Ξ+(K)) = Πd(
∑

ξj < d1−b)

= Πd(dpd −
∑

ξj > dpd − d1−b)

≤ d1−b(1 + ρd)(1 − d−b(1 + ρd))

(d1−bρd)2
,

where the ratio on the right-hand side tends to zero as d goes to infinity. Relation
(7.31) is then proved.

As the relations (7.26), (7.27), (7.28), and (7.30) imply (7.25), the proof of
Proposition 7.2 is completed.

Due to Proposition 7.2. the proof of the lower bound is reduced to bounding

γ⋆
∆
= γ(PΠd) from below.
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Before studying γ⋆, we introduce some useful notation and make some helpful
remarks. Denote by ‖·‖TV and ‖·‖2 the distance in variation and the L2-distance
between any pair of probabilities (P,Q); the latter one is defined by

‖P −Q‖22 =

{
+∞ if P does not dominate Q,
EP (L− 1)2 if P dominates Q,

(7.32)

where L = dQ
dP is the Radon-Nikodym derivative of Q with respect to P .

Remark 7.3. Note that

• ‖ · ‖TV = ‖ · ‖1, where ‖ · ‖1 is the L1-distance.
• If P dominates Q, then ‖P −Q‖22 = EP (L

2)− 1.
• As stated in Proposition 2.12 of [13],

If ‖P −Q‖2 = o(1), then ‖P −Q‖1 = o(1),

If ‖P −Q‖2 is bounded, then lim sup ‖P −Q‖1 < 2.

Using Remark 7.3, one has

If ‖P0 − PΠd‖2 = o(1) then, ‖P0 − PΠd‖1 = o(1) and γ⋆ → 1. (7.33)

If ‖P0 − PΠd‖2 = O(1) then,

lim sup ‖P0 − PΠd‖1 < 2 and lim inf γ⋆ > 0. (7.34)

Therefore, if needed, the L2-distance can be conveniently used instead of the
total variation distance.

Due to (7.33) and (7.34), it remains to study ‖P0−PΠd‖2 which is expressed

in terms of the Bayesian likelihood ratio LΠd =
dP

Πd

dP0
(see Relation (7.32)).

Likelihood Ratios. Here and below, when it is not absolutely necessary, we
omit the arguments of the likelihood ratios. Then, observe that LΠd is defined
by:

LΠd =

∫ d∏

j=1

(
dPθj
dP0

)

dΠd

=

d∏

j=1

∫ (
dPθj
dP0

)

dπdj

=

d∏

j=1

(1− pd + pdLj),

where Lj is the likelihood ratio between Pπj and P0. Denote also by Lπd
j
the

likelihood ratio between Pπd
j
and P0, i.e., Lπd

j
= (1 − pd + pdLj). Then Lj is
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such that

Lj(xj) =

∫
∏

k∈Z

(
dPθj,k
dP0

(xj,k)

)

dπj

=
∏

k∈Z

1

2

(

exp

(

−z
2
k

2
+ zkxj,k/ǫ

)

+ exp

(

−z
2
k

2
− zkxj,k/ǫ

))

=
∏

k∈Z

exp

(

−z
2
k

2

)

cosh(zkxj,k/ǫ), (7.35)

where cosh is the hyperbolic cosine. Using routine calculations, in particular,
using twice the inequality 1 + x ≤ exp(x), ∀x ∈ R, we obtain

E0(L
2
πd
j
) = 1 + p2d{E0(L

2
j)− 1}

= 1 + p2d

{
∏

k∈Z

(

1 + 2

(

sinh

(
z2k
2

))2)

− 1

}

≤ 1 + p2d

{

exp

(
∑

k∈Z

2

(

sinh

(
z2k
2

))2)

− 1

}

≤ exp

(

p2d

{

exp

(
∑

k∈Z

2

(

sinh

(
z2k
2

))2)

− 1

})

,

where sinh denotes the hyperbolic sine. In view of Remark 7.3, in order to study
‖P0 − PΠd‖2, it suffices to study E0(LΠd − 1)2. The latter includes the quantity
E0(L

2
Πd) that satisfies

E0(L
2
Πd) =

d∏

j=1

E0(L
2
πd
j
) ≤ exp

(

dp2d

{

exp

(
∑

k∈Z

2

(

sinh

(
z2k
2

))2)

− 1

})

(7.36)

As d goes to infinity, the right-hand side of (7.36) goes to one provided that

d p2d (exp(A)− 1)
d→+∞−→ 0 with A =

∑

k∈Z

2

(

sinh

(
z2k
2

))2

. (7.37)

Theorem 5.1 (i).
Recall that by assumption b ∈ (0, 1/2]. We shall distinguish between two cases
depending on the values of rǫ with respect to r⋆ǫ defined in (5.9).

Case 1: rǫ/r
⋆
ǫ = O(1). Since dp2d(a(r

⋆
ǫ ))

2 = O(1), it follows that dp2da
2(rǫ) =

O(1). Since dp2d is bounded away from zero, a2(rǫ) = O(1), and, due to Remark
4.2 and the relations in Eq. (4.10), we have supk z

2
k = o(1). This entails that

sinh2(
z2k
2 ) ∼ z4k

4 , which, due to (7.21), implies that A ∼ ∑ z4k
2 ∼ a2(rǫ), and

hence A = O(1). It now follows that exp(A)− 1 ≍ A. Finally, we get

dp2d (exp(A)− 1) ≍ dp2da
2(rǫ) = O(1), (7.38)

and the second part of (i) in Theorem 5.1 is proved.
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Case 2: rǫ/r
⋆
ǫ = o(1). Due to (7.38), we have dp2d (exp(A)− 1) ≍ dp2da

2(rǫ),

and since a2(rǫ)
a2(r⋆ǫ )

= o(1), Relation (7.37) is trivially fulfilled.

Theorem 5.2 (i).
Now by assumption b ∈ (1/2, 1). Due to the condition log(d) = o(ǫ−2/(2τ+1)),
Remark 4.2, and the relations in Eq. (4.10), supk z

2
k = o(1). As in the moderate

case, this yields A ∼ a2(rǫ), and thus we obtain

d p2d (exp(A)− 1) = dp2d exp(a
2(rǫ)(1 + o(1))). (7.39)

Again, we shall consider two cases depending on the values of rǫ with respect
to r⋆ǫ , where r

⋆
ǫ is now defined by (5.11).

Case 1: Suppose that rǫ/r
⋆
ǫ = o(1). Then a(rǫ) = o(Td). Due to Eq. (7.39), this

implies that Relation (7.37) is fulfilled.

Case 2: Suppose that rǫ/r
⋆
ǫ = O(1) and let c(rǫ) be a positive constant satis-

fying c2(rǫ) log(d) = a2(rǫ). Then the right-hand side of (7.39) can be rewritten
as follows:

dp2d exp(a
2(rǫ)) = d1−2b(1 + ρd)

2 exp(log(d)c2(rǫ)(1 + o(1)))

= d1−2b+c2(rǫ)(1+o(1))(1 + ρd)
2.

Therefore, Relation (7.37) is fulfilled provided that c(rǫ) <
√
2b− 1 = ϕ1(b),

where ϕ1 is defined in (2.2). This means that a successful detection is impossible
if c(rǫ) < ϕ1(b), which corresponds to the intermediate sparsity case; in fact, the
inequality c(rǫ) < ϕ1(b) is valid for any b ∈ (1/2, 1) but it could be improved for
b ∈ (3/4, 1). Indeed, for b ∈ (3/4, 1), one can show that a successful detection is
impossible if c(rǫ) is such that c(rǫ) < ϕ2(b), where the function ϕ2 is defined
in (2.2), and for b ∈ (3/4, 1), ϕ1(b) < ϕ2(b). That is why the improvement is
possible and is achieved by dealing with a truncated version of the Bayesian
likelihood ratio LΠd . From now, let us consider a(rǫ) = c(rǫ)

√
log d with 1√

2
<

c(rǫ) <
√
2. The case c(rǫ) ≤ 1√

2
coincides with the intermediate sparsity case

when b ∈ (1/2, 3/4].

Thus, for some positive v, let us define L̂Πd , the truncated likelihood ratio
of LΠd :

L̂Πd =

d∏

j=1

L̂πd
j
=

d∏

j=1

(Lπd
j
)1

(l̃j≤a(rǫ)
√

(2+v) log d)
, (7.40)

where

l̃j = log(Lj) +
1

2
a2(rǫ). (7.41)

Also put

lj = log(Lj), (7.42)
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where Lj is defined by (7.35). Now we introduce two new probability measures
Pνj and Pµj expressed in terms of P0 as follows:

dPνj
dP0

=
exp(lj)

E0(Lj)
, (7.43)

dPµj

dP0
=

exp(2lj)

E0(L2
j)
. (7.44)

In order to get a lower bound for the minimax total error probability, it is
sufficient to prove (see the proof of Theorem 4.1 in [11]) that

E0((L̂Πd − 1)2) = o(1),

where L̂Πd is defined in (7.40) provided that

P0(
d⋂

j=1

{l̃j ≤ a(rǫ)
√

(2 + v) log d}) → 1. (7.45)

In fact, it is enough to prove that

d∑

j=1

P0(l̃j > a(rǫ)
√

(2 + v) log d) → 0. (7.46)

Relation (7.46), and hence Relation (7.45), follows from Relation (7.47), which
is a part of the next lemma whose proof is postponed to Section A.

Lemma 7.3. Assume that rǫ → 0 and log d = o(ǫ−2/(2τ+1)). If T > 0 is such
that T = O(a2(rǫ)), then

P0(l̃j > T ) ≤ exp

(

− T 2

2a2(rǫ)
+ o(a2(rǫ))

)

. (7.47)

Moreover, if lim inf(T/a2(rǫ)) > 1, then

Pνj (l̃j > T ) ≤ exp

(

− (T − a2(rǫ))
2

2a2(rǫ)
+ o(a2(rǫ))

)

, (7.48)

and if lim sup(T/a2(rǫ)) < 2, then

Pµj (l̃j ≤ T ) ≤ exp

(

− (T − 2a2(rǫ))
2

2a2(rǫ)
+ o(a2(rǫ))

)

. (7.49)

Next, it remains to prove that E0(L̂Πd) → 1 and E0((L̂Πd)2) → 1. This will
entail the expected result that E0((L̂Πd − 1)2) = o(1).



1442 G. Gayraud and Y. Ingster

First, consider the term E0(L̂Πd):

E0(L̂Πd) = Πdj=1E0(L̂πd
j
)

= Πdj=1E0(1 + pd(Lj − 1)− 1Dj
(pd(Lj − 1) + 1))

= Πdj=1

(

1− pd(E0(Lj1Dj
)) + (−1 + pd)P0(Dj)

)

= exp(

d∑

j=1

log
(

1− pd(E0(Lj1Dj
)) + (−1 + pd)P0(Dj)

)

, (7.50)

where Dj = {l̃j ≤ a(rǫ)
√

(2 + v) log d} and Dj denotes the complement of Dj .
Relation (7.46) entails the convergence to zero of the second term in the log term
of the right-hand side of (7.50). Therefore, in order to obtain E0(L̂Πd) → 1, it
is sufficient to prove that

dpd(E0(Lj1Dj
)) = o(1). (7.51)

Note that E0(Lj1Dj
) = Pνj (Dj). Since

√
2+v
c(rǫ)

−1 is positive (c(rǫ) <
√
2) for any

positive v, we can applied Relation (7.48) of Lemma 7.3 to get

dpdPνj (Dj) ≤ dpd exp

(

−1

2
log(d)((

√
2 + v − c(rǫ))

2 + o(1))

)

= d1−b(1 + ρd) d
− 1

2 (
√
2+v−c(rǫ))2+o(1), (7.52)

where the right-hand side of (7.52) goes to zero as soon as c(rǫ) <
√
2 + v −

√

2(1− b). This yields Relation (7.51).

Second, we need to study E0(L̂
2
Πd), which is equal to

exp





d∑

j=1

log(1− 2pdE0((1 − Lj)1Dj ) + E0(p
2
d(1− Lj)

21Dj − 1Dj
))



 .

Since the relations dP0(Dj) = o(1) and dpdE0((1 − Lj)1Dj ) = o(1) have been
already proved, it is sufficient to show that dp2dE0((1−Lj)

21Dj ) = o(1). To this
end, observe that

dE0(p
2
d(1− Lj)

21Dj ) ≤ 2
(
dp2dP0(Dj) + dp2dE0(L

2
j1Dj)

)
. (7.53)

The first term on the right-hand side of (7.53) tends to zero as d goes to infinity
since dp2d = dd−2b(1 + ρd)

2 for b ∈ (3/4, 1).
To study of the second term on the right-hand side of (7.53), we take into

account the following two points:
(i) since supk z

2
k = o(1), we can apply Lemma A.1 of Section A with h = 2,

X = xj,k/ǫ, and z = zk, and obtain

exp(2l̃j) = exp(2a2(rǫ)). (7.54)
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(ii) since lim sup(T/a2(rǫ)) < 2 is satisfied as soon as c(rǫ) >
√
2
2 with T =

a(rǫ)
√

(2 + v) log d, we can applied Relation (7.49) of Lemma 7.3, which jointly
with Relation (7.54) leads to

dp2dE0(L
2
j1Dj ) = dd−2b(1 + ρd)

2

× Pµj (l̃j ≤ a(rǫ)
√

log d
√

(2 + v)) exp(2l̃j − a2(rǫ))

< dd−2b(1 + ρd)
2

× exp

(

−a
2(rǫ)(

√
2 + v

√
log d− 2a(rǫ))

2

2a2(rǫ)
+ a2(rǫ) + o(a2(rǫ))

)

= dd−2b(1 + ρd)
2

× exp

(

− log d

2
((
√
2 + v − 2c(rǫ))

2 + c2(rǫ) + o(1))

)

= dd−2b(1 + ρd)
2d−

1
2 (
√

(2+v)−2c(rǫ))
2+c2(rǫ)+o(1). (7.55)

The expression on the right-hand side of (7.55) goes to zero as soon as c(rǫ) <√
2 + v−

√

2(1− b). The last inequality is obtained by resolving the inequality

1− 2b− 1
2 (
√
2 + v− 2x)2 +x2 < 0, where x is constrained to be larger than

√
2
2 .

This implies that a successful detection is impossible as soon as c(rǫ) < ϕ2(b),
where ϕ2 is defined by (2.2).

Appendix A: Appendix

A.1. Lemma 7.2

Proof. If there exists λ such that (7.19) is valid, then Eq. (7.20) is obtained in
adapting Lemma 7.4.’s proof of [17]. Indeed, due to (7.19) and using the fact

that
∑K

j=1 ηj ≥ Kη0, we obtain for all ηj ∈ [0, R], j ∈ {1, . . . ,K}:

K∑

j=1

fT (ηj) ≥
K∑

j=1

inf{fT (ηj)− ληj}+ λKη0

≥ K(fT (η0)− λη0) + λKη0

= KfT (η0). (A.1)

On the other hand,

FK,T (η0) = inf
{(η1,...,ηK):

∑
ηj≥Kη0}

K∑

j=1

fT (ηj)

≤ KfT (η0). (A.2)

Relations (A.1) and (A.2) yield Relation (7.20).
Now, let us prove that (7.18) implies (7.19). For this, set gT (η) = fT (η)−λη

and denote by g′T and g
(2)
T the first and second derivatives of gT , respectively.
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Note that g′T (η) = (T − η)fT (η)−λ, and we choose λ = (T − η0)fT (η0) to have
g′T (η0) = 0.

The study of g
(2)
T yields that g

(2)
T > 0 for |T − η| > 1 and g

(2)
T < 0 for

|η−T | < 1. Since 0 < η0 < T −1, this implies that g′T < 0 on [0, η0[, g
′
T (η0) = 0,

g′T > 0 on ]η0, T − 1], g′T is decreasing on ]T − 1, T + 1], and g′T is increasing
on ]T + 1,+∞[. Moreover, g′T (T − 1) > 0 and g′T (T ) = −λ < 0, so that there
exists t ∈]T − 1, T [ such that g′T (t) = 0. This yields that η0 is a local minimum
of gT . In order to prove that η0 is a global minimum of gT , it is sufficient to
show that gT (R)− gT (η0) > 0. Let us set R = T + x, with a positive real x. We
already know that x < T −η0 since gT (T +(T −η0)) = fT (η0)−λ(T +T −η0) =
fT (η0)− λη0 − 2λ(T − η0) < gT (η0), where the last inequality is valid because
of the choice of λ and T − η0. For x < (T − η0), we obtain

gT (R)− gT (η0) = exp

(

−x
2

2

)

− (T − η0)fT (η0)(T + x)

− fT (η0) + (T − η0)fT (η0)η0

> exp

(

−x
2

2

)

− fT (η0)(2(T − η0)
2 + 1) > 0, (A.3)

where inequality (A.3) is valid as soon as

exp

(

−x
2

2

)

> exp

(

− (T − η0)
2

2

)

(2(T − η0)
2 + 1)

⇔
x < ((T − η0)

2 − 2 log(2(T − η0)
2 + 1))1/2.

Since (7.18) implies (7.19), this completes the proof of Lemma 7.2.

A.2. Lemma 7.3

Proof. The proof of Lemma 7.3 requires an additional result stated as Lemma
A.1 below. For any j ∈ {1, . . . , d}, recall that lj and l̃j are given by (7.42) and

(7.41), respectively. For any j ∈ {1, . . . , d} and k ∈ Z, set l̃j,k =
z4k
4 − z2k

2 +

log(cosh(zkxj,k/ǫ)) and lj,k = − z2k
2 +log(cosh(zkxj,k/ǫ)). Denote by Λj , Λ̃j, and

Λ̃j,k the moment-generating functions of lj , l̃j, and l̃j,k under P0, respectively.
From the equations (7.35) and (7.41), it turns out that for any h,

Λ̃j(h) =
∏

k∈Z

Λ̃j,k(h), (A.4)

Λ̃j(h) = Λj(h) exp

(

h
a2(rǫ)

2

)

. (A.5)

Next, define the function g̃ : (z, y) → z4

4 − z2

2 + log(cosh(zy)), and observe that
the following relations hold:

l̃j,k = g̃(zk, xj,k/ǫ),

Λ̃j,k(h) = E0(exp(hg̃(zk, xj,k/ǫ))). (A.6)
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Lemma A.1. Let X be a real standard Gaussian random variable. For any
z = o(1) and any h = O(1),

log(E(exp(hg̃(z,X)))) = h2
z4

4
+ o(z4).

Proof. Lemma A.1.
For some δ > 0, consider the event E = {|zX | < δ} and denote
by E its complement in R. We shall study the expectations G1(h, δ) =
E(exp(h log(cosh(zX)))1E) and G2(h, δ) = E(exp(h log(cosh(zX)))1E) sepa-
rately. At this point, we choose δ small enough (δ = o(1)) to satisfy zδ−1 = o(1).

First, let us study the term G2(h, δ). With the use of the inequality cosh(x) ≤
exp(|x|), ∀x ∈ R, and the fact that h = O(1), the routine calculations of
exponential moments of a real Gaussian random variable lead to

G2(h, δ) ≤ E(exp(h|zX |)1(|zX|≥δ))

= 2E(exp(hzX)1(X≥δ/z))

=
2√
2π

∫

R+

exp

(

−1

2
(x− hz)2

) 1(x≥ δ
z )
dx exp

(
1

2
h2z2

)

≤ 2 exp

(

h2
z2

2

)

exp

(

−1

2

(
δ

z
− hz

)2)

≤ 2 exp

(

−1

2

δ2

z2
+ o(1)

)

, (A.7)

where, with our choice of δ, the right-hand side of (A.7) is small.

Now, we move on to the term G1(h, δ). If δ is small enough, then |zX | is also
small and the following relation holds:

log(cosh(zX)) =
z2

2
X2 − z4

12
X4 + o(z4X4). (A.8)

Then the routine calculations of exponential moments as above lead to the
following:

G1(h, δ) = E

(

exp

(

h

(
z2

2
X2 − z4

12
X4(1 + o(1))

))1E)
= E

(

exp

(

h

(
z2

2
X2

))(

1− h
z4

12
X4(1 + o(1))

)1E)
= exp

(

−1

2
log(1− hz2)

)

exp

(

−h
4
z4(1 + o(1))

)

= exp

(
h

2
z2 +

h2

4
z4(1 + o(1))

)

exp

(

−h
4
z4(1 + o(1))

)

= exp

(
h

2
z2 +

h2

4
z4 − h

4
z4 + o(z4)

)

. (A.9)
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Taking h = O(1), z = o(1), δ = o(1) and zδ−1 = o(1) in the relations (A.7)
and (A.9) entails that G1(h, δ) = O(1), G2(h, δ) = O(exp(−δ2/(2z2)) = o(1),
and therefore G2(h, δ)(G1(h, δ))

−1 = o(1).

Next, due to (A.7), (A.9) and using the fact that h = O(1), z = o(1), for
small δ such that z0δ

−1 = o(1) and δ = o(1), we obtain

log(E(exp(hg̃(z,X)))) = log(G1(h, δ) +G2(h, δ))−
h

2

(

z2 − z4

2

)

=

(

logG1(h, δ)−
h

2
(z2 − z4

2
)

)

+ log

(

1 +
G2(h, δ)

G1(h, δ)

)

= h2
z4

4
+ o(z4) +

G2(h, δ)

G1(h, δ)
(1 + o(1))

=

(

h2
z4

4
+ o(z4)

)(

1 +
G2(h, δ)(1 + o(1))

G1(h, δ)(h2
z4

4 + o(z4))

)

= h2
z4

4
+ o(z4), (A.10)

where Relation (A.10) holds provided that

G2(h, δ)

G1(h, δ)(h2
z4

4 + o(z4))
= o(1). (A.11)

It is then sufficient to prove (A.11) since (A.10) is the expected result of
Lemma A.1. Recall that h = O(1) and z = o(1) entail that G1(h, δ) = O(1)
and G2(h, δ) = O(exp(−δ2/(2z2))). Then, it is sufficient to establish that

exp(− 1
2
δ2

z2 )z
−4 = o(1). The latter holds if we choose δ such that δ−1 =

o((z
√

log(z−1))−1).

Remark 4.2 and the relations in Eq. (4.10) imply that supk z
2
k ≤ z20 = o(1)

as soon as log(d) = o(ǫ−2/(2τ+1)). Due to (A.6), for any h such that h = O(1),
Lemma A.1 can be applied to the moment-generating function Λj,k(h).

Here and later, we consider any j ∈ {1, . . . , d} and any k ∈ Z. Due to the
relations (A.4), (A.6), (7.21), (7.41), by applying Lemma A.1 and using the
exponential Chebyshev’s inequality, we obtain for any positive h such that h =
O(1),

P0(l̃j > T ) ≤ Λ̃j(h) exp(−hT )

≤ exp

(
h2

2
a2(rǫ)− hT + o(a2(rǫ))

)

. (A.12)

The minimum on the right-hand side of (A.12) is attained for h = T
a2(rǫ)

which

is positive and of order 1; this allows us to prove Relation (7.47).

Due to the relations (A.6), (A.4), (7.21), (7.41), (7.43), by applying again
Lemma A.1 and using the exponential Chebyshev’s inequality, we obtain for
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any positive h such that h = O(1),

Pνj (l̃j > T ) ≤ Eνj (exp(l̃jh)) exp(−hT )

= Λ̃j(h+ 1) exp(−a
2(rǫ)

2
− hT )

= exp

(
(h+ 1)2

2
a2(rǫ)−

a2(rǫ)

2
− hT + o(a2(rǫ))

)

, (A.13)

where the minimum in the right-hand side of (A.13) is attained for h = T
a2(rǫ)

−1

which is positive and of order 1; this yields Relation (7.48).
Recall that under the assumption of Lemma 7.3, the quantity 2a2(rǫ)− T is

positive. Therefore, from (A.6), (A.4), (7.21), (7.44), (7.41), and (A.5), applying
Lemma A.1 and using the exponential Chebyshev’s inequality, we get for any
positive h such that h = O(1),

Pµj (l̃j ≤ T ) = Pµj (−l̃j ≥ −T )
= Eµj (exp(−l̃jh)) exp(hT ))
= E0(exp(−l̃jh) exp(2l̃j)) exp(−a2(rǫ))(Λj(2))−1 exp(hT )

= Λ̃j(2− h)(Λj(2))
−1 exp(−a2(rǫ) + Th)

= Λ̃j(2− h)(Λ̃j(2))
−1 exp(a2(rǫ)) exp(−a2(rǫ) + Th)

= exp

(
1

2
(2− h)2a2(rǫ)− 2a2(rǫ) + Th+ o(a2(rǫ))

)

,

(A.14)

where the minimum in the right-hand side of (A.14) is achieved for h=− T
a2(rǫ)

+2

which is positive and of order O(1); this yields Relation (7.49). The proof of
Lemma 7.3 is completed.
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