Non-triviality of the vacancy phase transition for the Boolean model

Mathew D. Penrose ${ }^{\dagger}$

Abstract

In the spherical Poisson Boolean model, one takes the union of random balls centred on the points of a Poisson process in Euclidean d-space with $d \geq 2$. We prove that whenever the radius distribution has a finite d-th moment, there exists a strictly positive value for the intensity such that the vacant region percolates.

Keywords: percolation; Poisson process; vacant region; critical value.
AMS MSC 2010: 60K35; 60G55; 82B43.
Submitted to ECP on January 22, 2018, final version accepted on July 18, 2018.

1 Introduction

The Boolean model [6, 8] is a classic model of continuum percolation [11, 3] and more general stochastic geometry [9, 4, 14, 10]. In the spherical version of this model, an occupied region in Euclidean d-space is defined as a union of balls (sometimes called grains) of fixed or random radius centred on the points of a Poisson process of intensity λ. One may define a critical value λ_{c} of λ, depending on the radius distribution, above which the occupied region percolates, and a further critical value λ_{c}^{*}, below which the complementary vacant region percolates. It is a fundamental question whether these critical values are non-trivial, i.e. strictly positive and finite.

For fixed or bounded radii, the non-triviality of λ_{c} and λ_{c}^{*} for $d \geq 2$ is well known and may be proved using discretization and counting arguments from lattice percolation theory. For unbounded radii, it took some years to fully characterize those radius distributions for which λ_{c} is non-trivial [8, 7]. In the present work we carry out a similar task for λ_{c}^{*}.

We now describe the model in more detail (for yet more details we refer the reader to [11] or [10]). Let $d \in \mathbb{N}$ with $d \geq 2$. Let μ be a probability measure on $[0, \infty)$ with $\mu(\{0\})<1$. Let $\lambda \in(0, \infty)$. On a suitable probability space $(\Omega, \mathcal{F}, \mathbb{P})$ (with associated expectation operator \mathbb{E}), let $\mathcal{P}_{\lambda}=\left\{y_{k}: k \in \mathbb{N}\right\}$ be a homogeneous Poisson point process in \mathbb{R}^{d} of intensity λ (here viewed as a random subset of \mathbb{R}^{d} enumerated in order of increasing distance from the origin), and let $\rho, \rho_{1}, \rho_{2}, \ldots$ be independent nonnegative random variables with common distribution μ, independent of \mathcal{P}_{λ}. For $x \in \mathbb{R}^{d}$ and $r \geq 0$ we let $B(x, r):=\left\{y \in \mathbb{R}^{d}:\|y-x\| \leq r\right\}$, where $\|\cdot\|$ is the Euclidean norm. The occupied and vacant regions of the (Poisson, spherical) Boolean model are random sets $Z_{\lambda} \subset \mathbb{R}^{d}$ and $Z_{\lambda}^{*} \subset \mathbb{R}^{d}$, given respectively by

$$
Z_{\lambda}=\cup_{y_{k} \in \mathcal{P}_{\lambda}} B\left(y_{k}, \rho_{k}\right) ; \quad Z_{\lambda}^{*}=\mathbb{R}^{d} \backslash Z_{\lambda} .
$$

[^0]Let U_{λ} be the event that Z_{λ} percolates, i.e. has an unbounded connected component, and let U_{λ}^{*} be the event that Z_{λ}^{*} percolates. By an ergodicity argument (see [11], or [10], Exercise 10.1), $\mathbb{P}\left[U_{\lambda}\right] \in\{0,1\}$ and $\mathbb{P}\left[U_{\lambda}^{*}\right] \in\{0,1\}$. Also $\mathbb{P}\left[U_{\lambda}\right]$ is increasing in λ, while $\mathbb{P}\left[U_{\lambda}^{*}\right]$ is decreasing in λ. Define the critical values

$$
\lambda_{c}:=\inf \left\{\lambda: \mathbb{P}\left[U_{\lambda}\right]=1\right\} ; \quad \lambda_{c}^{*}:=\inf \left\{\lambda: \mathbb{P}\left[U_{\lambda}^{*}\right]=0\right\}
$$

It is well known that λ_{c} and λ_{c}^{*} are finite, and that if $\mathbb{E}\left[\rho^{d}\right]=\infty$ then $Z_{\lambda}=\mathbb{R}^{d}$ almost surely, for any $\lambda>0$ (see [8], [11] or [10]), so that $\lambda_{c}=\lambda_{c}^{*}=0$. Hence $\mathbb{E}\left[\rho^{d}\right]<\infty$ is a necessary condition for λ_{c} or λ_{c}^{*} to be strictly positive. In the case of λ_{c}, Gouéré [7] has shown that this condition is also sufficient:
Theorem 1. [7] If $\mathbb{E}\left[\rho^{d}\right]<\infty$ then $\lambda_{c}>0$.
We here present a similar result for λ_{c}^{*} :
Theorem 2. If $\mathbb{E}\left[\rho^{d}\right]<\infty$ then $\lambda_{c}^{*}>0$.
Theorem 2 says that for the spherical Poisson Boolean model with $\mathbb{E}\left[\rho^{d}\right]<\infty$, there exists a non-zero value of the intensity λ for which the vacant region percolates. In fact we can say more:
Theorem 3. For any μ, if $d=2$ then $\lambda_{c}^{*}=\lambda_{c}$. If $d \geq 3$ then $\lambda_{c}^{*} \geq \lambda_{c}$.
Sarkar [13] has proved the strict inequality $\lambda_{c}^{*}>\lambda_{c}$ for $d \geq 3$ when ρ is deterministic, i.e. when μ is a Dirac measure.

Theorem 2 could be seen as a trivial corollary of Theorems 1 and 3. However, we would like to prove Theorems 2 and 3 separately, to emphasise that our proof of Theorem 2 is self-contained (and quite short), whereas our proof of Theorem 3 is not, as we now discuss.

In parallel and independent work, Ahlberg, Tassion and Teixeira [2] prove a similar set of results to our Theorems 2 and 3; their proof seems to be completely different from ours. Earlier, in [1] they proved for $d=2$ that (among other things) $\lambda_{c}^{*}=\lambda_{c}$ whenever $\mathbb{E}\left[\rho^{2} \log \rho\right]<\infty$.

We prove Theorem 2 in the next two sections. The proof of Theorem 3 is given by adapting our proof of Theorem 2 using results in [1], and is therefore heavily reliant on [1]; we give this argument in Section 4.

Finally, we consider the relation between λ_{c}^{*} and a different percolation threshold, defined in terms of expected diameter. For non-empty $B \subset \mathbb{R}^{d}$, let $D(B):=\sup _{x, y \in B}(\| x-$ $y \|)$, the Euclidean diameter of B, and set $D(\emptyset)=0$. Let W_{λ} be the connected component of Z_{λ} containing the origin, and set

$$
\lambda_{D}:=\inf \left\{\lambda: \mathbb{E}\left[D\left(W_{\lambda}\right)\right]=\infty\right\}
$$

It is easy to see that that $\lambda_{D} \leq \lambda_{c}$. Therefore by Theorem 3, for any μ we have

$$
\begin{equation*}
\lambda_{c}^{*} \geq \lambda_{D} \tag{1.1}
\end{equation*}
$$

In Section 5 we present an alternative, rather simple, direct proof of (1.1) (not reliant on any other results, either here or in [1]).

A further result in [7] says that $\lambda_{D}>0$, if and only if $\mathbb{E}\left[\rho^{d+1}\right]<\infty$. Therefore (1.1) provides an alternative proof that $\lambda_{c}^{*}>0$ under this stronger moment condition. Moreover, it is known in many cases that $\lambda_{D}=\lambda_{c}$ (see e.g. [11, 15, 5]), and in all such cases our proof of (1.1) provides another way to show that $\lambda_{c}^{*} \geq \lambda_{c}$.

Our proof of Theorems 2 and 3 for $d=2$ uses a form of multiscale methodology, inspired by [7], which may be of use in other settings. We conclude this section with an outline of the method. At length-scale r, we define functions $f(r)$ and $g(r)$. Up to
a constant multiple, $f(r)$ is the probability of a 'local' event (defined in terms of a box-crossing, using only grains centred near the box) while $g(r)$ is the probability of an 'outside influence' event that is still determined at length-scale r.

We show that $g\left(10^{n}\right)$ is summable in n (see Lemma 2 below), and also that $f\left(10^{n+1}\right) \leq$ $f\left(10^{n}\right)^{2}+g\left(10^{n+1}\right)$ (see (2.2) and (2.6) below). From this we can deduce that there exists n_{0} such that $\sum_{n \geq n_{0}}\left(f\left(10^{n}\right)+g\left(10^{n}\right)\right)<1$, if only we can get started by showing $f\left(n_{0}\right)$ is sufficiently small. This can be done either by taking λ small (in the proof of Theorem 2) or for general $\lambda<\lambda_{c}$, by taking n_{0} large and using a result from [1] (in the proof of Theorem 3). Finally, we can take a sequence of boxes of length $10^{n+n_{0}}$, such that if none of these is crossed then Z_{λ}^{*} percolates.

We let o denote the origin in \mathbb{R}^{d}, and for $r>0$ put $B(r):=B(o, r)$.

2 Preparation for the proof

Throughout this section we assume that $d=2$. We give some definitions and lemmas required for our proof of Theorem 2 .

Given $\lambda>0$, for each Borel set $A \subset \mathbb{R}^{2}$ we define the random set

$$
Z_{\lambda}^{A}:=\cup_{\left\{k: y_{k} \in \mathcal{P}_{\lambda} \cap A\right\}} B\left(y_{k}, \rho_{k}\right)
$$

Also, for $r>0$ set $A_{r}:=\cup_{x \in A} B(x, r)$, the (deterministic) r-neighbourhood of A.
Given $r>0$, let $S(r):=[-5 r, 5 r] \times[-r / 2, r / 2]$, the closed $10 r \times r$ horizontal rectangle (or 'strip') centred at o. Note that $S(r)_{r}$ is a $12 r \times 3 r$ rectangle with its corners smoothed (this smoothing is not important to us).

Let $F_{\lambda}(r)$ be the event that there is a short-way crossing of $S(r)$ by $Z_{\lambda}^{S(r)_{r}}$ (that is, by grains centred within the r-neighbourhood of $S(r)$). Also define the event

$$
\begin{equation*}
G_{\lambda}(r)=\left\{Z_{\lambda}^{B\left(10^{6} r\right) \backslash S(r)_{r}} \cap S(r) \neq \emptyset\right\} \tag{2.1}
\end{equation*}
$$

Lemma 1. There is a constant $C_{1} \geq 1$ such that for all $\lambda>0$ and $r>0$,

$$
\begin{equation*}
\mathbb{P}\left[F_{\lambda}(10 r)\right] \leq C_{1}\left(\mathbb{P}\left[F_{\lambda}(r)\right]^{2}+\mathbb{P}\left[G_{\lambda}(r)\right]\right) \tag{2.2}
\end{equation*}
$$

Proof. Fix (λ, r). Set $S:=S(10 r)=[-50 r, 50 r] \times[-5 r, 5 r]$. Let $T:=[-50 r, 50 r] \times$ $[-4.5 r,-3.5 r]$ and $\tilde{T}:=[-50 r, 50 r] \times[3.5 r, 4.5 r]$, so that T and \tilde{T} are horizontal $100 r \times r$ thin strips along S near the bottom and top of S, respectively.

We shall now define a collection R_{1}, \ldots, R_{37} of horizontal $10 r \times r$ and vertical $r \times 10 r$ rectangles that knit together in such a way that if there is a long-way vacant crossing of each of R_{1}, \ldots, R_{37} then there is a long-way vacant crossing of T (this is a well known technique in these kinds of proof). We shall arrange that they are all contained within the band $\mathbb{R} \times[-12 r,-2 r]$ and their r-neighbourhoods $\left.\left(R_{1}\right)_{r}, \ldots,\left(R_{37}\right)_{r}\right)$ all lie within the lower half of the region $S_{10 r}:=(S(10 r))_{10 r}$.

Here are the details. Let $R_{1}, R_{2}, \ldots, R_{19}$ be horizontal $10 r \times r$ rectangles centred on $(-45 r,-4 r),(-40 r,-4 r), \ldots,(45 r,-4 r)$ respectively. Let R_{20}, \ldots, R_{37} be vertical $r \times 10 r$ rectangles centred at $(-42.5 r,-7 r),(-37.5 r,-7 r), \ldots,(42.5,-7 r)$ respectively.

Similarly, we define a collection R_{38}, \ldots, R_{74} of $10 r \times r$ and $r \times 10 r$ rectangles, such that if each of these has a long-way vacant crossing then there is a long-way vacant crossing of \tilde{T}. Each rectangle $R_{37+i}, 1 \leq i \leq 37$, is defined simply as the reflection of R_{i} in the x-axis.

For $1 \leq i \leq 74$, let D_{i} be the disk of radius $10^{6} r$ with the same centre as R_{i}. Let A_{i} denote the event that there exists a grain of the Boolean model that intersects R_{i} and has its centre in the region $D_{i} \backslash\left(R_{i}\right)_{r}$. Let B_{i} denote the event that the rectangle R_{i} can
be crossed the short way in the union of grains that are centred inside $\left(R_{i}\right)_{r}$. If R_{i} is crossed the short way in the union of grains centred in D_{i}, then $A_{i} \cup B_{i}$ must occur.

Suppose $F_{\lambda}(10 r)$ occurs, i.e. there is a short-way occupied crossing of S, using grains centred in $S_{10 r}$. Then there is no long-way vacant crossing of S, and hence no long-way vacant crossing either of T or of \tilde{T}. Hence

$$
\begin{align*}
F_{\lambda}(10 r) & \subset \cup_{(i, j) \in\{1, \ldots, 37\}^{2}}\left(\left(A_{i} \cup B_{i}\right) \cap\left(A_{37+j} \cup B_{37+j}\right)\right) \\
& \subset\left(\cup_{i=1}^{74} A_{i}\right) \cup\left(\cup_{(i, j) \in\{1, \ldots, 37\}^{2}}\left(B_{i} \cap B_{37+j}\right)\right) . \tag{2.3}
\end{align*}
$$

For $i, j \in\{1, \ldots, 37\}$, since $\left(R_{i}\right)_{r} \cap\left(R_{j}\right)_{r}=\emptyset$ the events B_{i} and B_{37+j} are independent. Hence by (2.3) and the union bound we have (2.2), taking $C_{1}=37^{2}$.

Lemma 2. Suppose $\mathbb{E}\left[\rho^{2}\right]<\infty$. Let $\lambda_{0} \in(0, \infty)$. Then

$$
\begin{equation*}
\sum_{n \geq 1} \sup _{\lambda \in\left(0, \lambda_{0}\right]} \mathbb{P}\left[G_{\lambda}\left(10^{n}\right)\right]<\infty \tag{2.4}
\end{equation*}
$$

Proof. Given $\lambda, r>0$, if $G_{\lambda}(r)$ occurs then there exists a point $y_{k} \in \mathcal{P}_{\lambda} \cap B\left(10^{6} r\right) \backslash S(r)_{r}$ with associated radius $\rho_{k}>r$. Therefore by Markov's inequality $\mathbb{P}\left[G_{\lambda}(r)\right]$ is bounded above by the expected number of such points y_{k}. Therefore

$$
\mathbb{P}\left[G_{\lambda}(r)\right] \leq \lambda \pi\left(10^{6} r\right)^{2} \mathbb{P}[\rho>r]=10^{12} \lambda \pi r^{2} \mathbb{P}\left[\rho^{2}>r^{2}\right]
$$

Hence,

$$
\sum_{n \geq 1} \sup _{\lambda \in\left(0, \lambda_{0}\right]} \mathbb{P}\left[G_{\lambda}\left(10^{n}\right)\right] \leq 10^{12} \lambda_{0} \pi \sum_{n=1}^{\infty} 100^{n} \mathbb{P}\left[\rho^{2}>100^{n}\right]
$$

which is finite because we assume $\mathbb{E}\left[\rho^{2}\right]<\infty$.
Lemma 3. Suppose $\mathbb{E}\left[\rho^{2}\right]<\infty$. Then there exist $b>0$ and $\lambda>0$ such that

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\mathbb{P}\left[F_{\lambda}\left(10^{n} b\right)\right]+\mathbb{P}\left[G_{\lambda}\left(10^{n} b\right)\right]\right) \leq 1 / 2 \tag{2.5}
\end{equation*}
$$

Proof. Let $C_{1} \geq 1$ be as in Lemma 1. Given $\lambda, r>0$ we define

$$
f_{\lambda}(r):=C_{1} \mathbb{P}\left[F_{\lambda}(r)\right] ; \quad g_{\lambda}(r):=C_{1}^{2} \mathbb{P}\left[G_{\lambda}(r / 10)\right]
$$

Then by (2.2) we have

$$
\begin{align*}
f_{\lambda}(r) & \leq C_{1}^{2}\left(\mathbb{P}\left[F_{\lambda}(r / 10)\right]^{2}+\mathbb{P}\left[G_{\lambda}(r / 10)\right]\right) \\
& =f_{\lambda}(r / 10)^{2}+g_{\lambda}(r) \tag{2.6}
\end{align*}
$$

Let $C_{2}=9$. Using (2.4), we can choose b to be a big enough power of 10 so that for all $\lambda \in(0,1]$, we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} g_{\lambda}\left(10^{n} b\right) \leq C_{2}^{-2} \tag{2.7}
\end{equation*}
$$

Now fix this b. Choose $\lambda \leq 1$ to be small enough so that $f_{\lambda}(b) \leq C_{2}^{-1}$. Using (2.6) repeatedly, we have $f_{\lambda}\left(10^{n} b\right) \leq C_{2}^{-1}$ for all n. Then using (2.6) repeatedly again, we have for $n \in \mathbb{N}$ that

$$
\begin{aligned}
f_{\lambda}\left(10^{n} b\right) & \leq \frac{f_{\lambda}\left(10^{n-1} b\right)}{C_{2}}+g_{\lambda}\left(10^{n} b\right) \leq \cdots \\
& \leq C_{2}^{-n-1}+\frac{g_{\lambda}(10 b)}{C_{2}^{n-1}}+\frac{g_{\lambda}(100 b)}{C_{2}^{n-2}}+\cdots+\frac{g_{\lambda}\left(10^{n} b\right)}{C_{2}^{0}}
\end{aligned}
$$

and therefore

$$
\begin{array}{r}
\sum_{n \geq 1} f_{\lambda}\left(10^{n} b\right) \leq\left(C_{2}^{-2}+g_{\lambda}(10 b)+g_{\lambda}(100 b)+g_{\lambda}(1000 b)+\cdots\right) \\
\times\left(1+C_{2}^{-1}+C_{2}^{-2}+\cdots\right)
\end{array}
$$

so by (2.7) and the fact that $\sum_{k=0}^{\infty} C_{2}^{-k} \leq 2$, we have

$$
\begin{aligned}
\sum_{n \geq 1}\left(\mathbb{P}\left[F_{\lambda}\left(10^{n} b\right)\right]+\mathbb{P}\left[G_{\lambda}\left(10^{n} b\right)\right]\right) & \leq \sum_{n \geq 1}\left(f_{\lambda}\left(10^{n} b\right)+g_{\lambda}\left(10^{n} b\right)\right) \\
& \leq 2 C_{2}^{-2}+3 \sum_{n \geq 1} g_{\lambda}\left(10^{n} b\right) \leq 5 C_{2}^{-2}
\end{aligned}
$$

and hence (2.5).

3 Proof of Theorem 2

We can now complete the proof of Theorem 2. We assume from now on that

$$
\begin{equation*}
\mathbb{E}\left[\rho^{d}\right]<\infty \tag{3.1}
\end{equation*}
$$

Consider first the case with $d=2$. Let b and λ be as given in Lemma 3.
Let $S_{1}, S_{2}, S_{3}, \ldots$ be a sequence of 'strips', i.e. closed rectangles of aspect ratio 10, with successive lengths (the short way) $10 b, 100 b, 1000 b, \ldots$ alternating between horizontal and vertical strips with each strip S_{n} centred at the origin. Then each strip S_{n} crosses the next one S_{n+1} the short way.

For each $n \in \mathbb{N}$, define the events

$$
\begin{gathered}
H_{n}:=\left\{S_{n} \text { is crossed by } Z_{\lambda}^{S_{n+2}} \text { the short way }\right\} \\
J_{n}:=\left\{Z_{\lambda}^{\left.S_{n+4} \backslash S_{n+2} \cap S_{n} \neq \emptyset\right\}} .\right.
\end{gathered}
$$

Lemma 4. If none of the events $H_{1}, J_{1}, H_{2}, J_{2}, \ldots$ occurs then Z_{λ}^{*} percolates.
Proof. Suppose none of the events $H_{1}, J_{1}, H_{2}, J_{2}, \ldots$ occurs.
We claim for each $n \in \mathbb{N}$ that $Z_{\lambda}^{\mathbb{R}^{2} \backslash S_{n+2}} \cap S_{n}=\emptyset$. Indeed, if $Z_{\lambda}^{\mathbb{R}^{2} \backslash S_{n+2}} \cap S_{n} \neq \emptyset$ then for some integer $m \geq n+2$ with $m-n$ even we have $Z_{\lambda}^{S_{m+2} \backslash S_{m}} \cap S_{n} \neq \emptyset$, and then since $n \leq m$ we also have $S_{n} \subset S_{m}$ so that $Z_{\lambda}^{S_{m+2} \backslash S_{m}} \cap S_{m} \neq \emptyset$, contradicting the assumed non-occurrence of J_{m-2}.

For each n, by the assumed non-occurrence of H_{n} along with the preceding claim there is no short-way crossing of S_{n} by Z_{λ} so there is a long-way crossing of S_{n} by Z_{λ}^{*}, i.e. a path $\gamma_{n} \subset S_{n} \cap Z_{\lambda}^{*}$ that crosses S_{n} the long way.

Then for each n we have $\gamma_{n} \cap \gamma_{n+1} \neq \emptyset$, so $\cup_{n} \gamma_{n}$ is an unbounded connected set contained in Z_{λ}^{*}. Therefore Z_{λ}^{*} percolates.

Proof of Theorem 2. Suppose $d=2$. Let λ and b be as given in Lemma 3. Recall the definition of events $F_{\lambda}(r)$ and $G_{\lambda}(r)$ at (2.1). We claim now for each n that

$$
\begin{equation*}
\mathbb{P}\left[H_{n} \cup J_{n}\right] \leq \mathbb{P}\left[F_{\lambda}\left(10^{n} b\right)\right]+\mathbb{P}\left[G_{\lambda}\left(10^{n} b\right)\right] \tag{3.2}
\end{equation*}
$$

Indeed, suppose the parity of n is such that S_{n} is horizontal. Then, in terms of earlier notation, $S_{n}=S\left(10^{n} b\right)$. Since $S_{n+4} \subset B\left(10^{6+n} b\right)$ we have $J_{n} \subset G_{\lambda}\left(10^{n} b\right)$ and $H_{n} \subset$ $F_{\lambda}\left(10^{n} b\right) \cup G_{\lambda}\left(10^{n} b\right)$. Then (3.2) follows from the union bound.

Using first Lemma 4, then (3.2), and finally (2.5), we have

$$
\begin{aligned}
1-\mathbb{P}\left[U_{\lambda}^{*}\right] & \leq \mathbb{P}\left[\cup_{n=1}^{\infty}\left(H_{n} \cup J_{n}\right)\right] \\
& \leq \sum_{n=1}^{\infty}\left(\mathbb{P}\left[F_{\lambda}\left(10^{n} b\right)\right]+\mathbb{P}\left[G_{\lambda}\left(10^{n} b\right)\right]\right) \leq 1 / 2
\end{aligned}
$$

Therefore by ergodicity $\mathbb{P}\left[U_{\lambda}^{*}\right]=1$ so $\lambda \leq \lambda_{c}^{*}$. Hence we have $\lambda_{c}^{*}>0$ as required.
Now suppose $d \geq 3$. Let \tilde{Z}_{λ}, be the intersection of Z_{λ} with the two-dimensional subspace $\mathbb{R}^{2} \times\left\{o^{\prime \prime}\right\}$ of \mathbb{R}^{d}, where $o^{\prime \prime}$ denotes the origin in \mathbb{R}^{d-2}.

Let ω_{d-2} denote the volume of the unit ball in \mathbb{R}^{d-2}. It can be seen that \tilde{Z}_{λ} is a two-dimensional Boolean model with intensity

$$
\lambda \omega_{d-2}(d-2) \int_{0}^{\infty} \mathbb{P}[\rho \geq r] r^{d-3} d r=\lambda \omega_{d-2} \mathbb{E}\left[\rho^{d-2}\right]=: \lambda^{\prime}
$$

which is finite by our assumption (3.1). Moreover if σ denotes a random variable with the radius distribution in this planar Boolean model we claim that $\mathbb{E}\left[\sigma^{2}\right]<\infty$. This can be demonstrated by a computation, but it is more quickly seen using the fact that, since $\mathbb{P}\left[o \in Z_{\lambda}\right]<1$ for the original Boolean model by (3.1), also $\mathbb{P}\left[o \in \tilde{Z}_{\lambda}\right]<1$, which would not be the case if $\mathbb{E}\left[\sigma^{2}\right]$ were infinite.

Therefore by the two-dimensional case already considered, for small enough $\lambda>0$ we have λ^{\prime} small enough so that the complement (in the space $\mathbb{R}^{2} \times\left\{o^{\prime \prime}\right\}$) of \tilde{Z}_{λ} percolates. Hence Z_{λ}^{*} percolates for small enough $\lambda>0$, so $\lambda_{c}^{*}>0$.

4 Proof of Theorem 3

As mentioned in Section 1, if $\mathbb{E}\left[\rho^{d}\right]=\infty$ then $\lambda_{c}=\lambda_{c}^{*}=0$, so without loss of generality we assume (3.1).

First suppose $d=2$. We need to prove that $\lambda_{c}^{*}=\lambda_{c}$.
Suppose $\lambda>\lambda_{c}$. Let V_{λ}^{*} be the event that there is an unbounded component of Z_{λ}^{*} intersecting with $B(1)$. For $n \in \mathbb{N}$, set $Q(n):=[-n, n]^{2}$. Let $E(n)$ be the event that there exists a path in Z_{λ}^{*} from $Q(n)$ to $\mathbb{R}^{2} \backslash Q(3 n)$.

The annulus $Q(3 n) \backslash Q(n)$ can be written as the union of two $3 n \times n$ and two $n \times 3 n$ rectangles, and if Z_{λ} crosses each of these four rectangles the long way then $Q(n)$ is surrounded by an occupied circuit contained in $Q(3 n)$ so $E(n)$ does not occur. Hence by Theorem 1.1 (i) of [1] and the union bound, $\mathbb{P}[E(n)] \rightarrow 0$ as $n \rightarrow \infty$. Since $V_{\lambda}^{*} \subset \cap_{n=1}^{\infty} E(n)$, we therefore have $\mathbb{P}\left[V_{\lambda}^{*}\right]=0$ and hence $\mathbb{P}\left[U_{\lambda}^{*}\right]=0$. Hence $\lambda \geq \lambda_{c}^{*}$ so $\lambda_{c}^{*} \leq \lambda_{c}$.

Now suppose $\lambda<\lambda_{c}$. Then by Theorem 1.1(iii) of [1], in the proof of our Lemma 3 we can choose b large enough so that we have both (2.7), and the inequality $f_{\lambda}(b)<C_{2}^{-1}$. Then the rest of the proof of Lemma 3 carries through for this (b, λ), so the conclusion of Lemma 3 holds for this (b, λ). Then the proof (for $d=2$) in Section 3 works for this (b, λ), showing that $\lambda \leq \lambda_{c}^{*}$ for any $\lambda<\lambda_{c}$ and hence that $\lambda_{c}^{*} \geq \lambda_{c}$. Thus $\lambda_{c}^{*}=\lambda_{c}$ for $d=2$.

Now suppose that $d \geq 3$ and $\lambda<\lambda_{c}$. Then as discussed in Section 3, $Z_{\lambda} \cap\left(\mathbb{R}^{d-2} \times\left\{o^{\prime \prime}\right\}\right)$ is a two-dimensional Boolean model possessing no infinite component, so the radius distribution for this two-dimensional Boolean model has finite second moment and the intensity λ^{\prime} of this two-dimensional Boolean model is subcritical (in fact, strictly subcritical since we can repeat the argument for any $\lambda_{1} \in\left(\lambda, \lambda_{c}\right)$). Therefore by the argument just given for $d=2$, the complement (in $\mathbb{R}^{d-2} \times\left\{o^{\prime \prime}\right\}$) of this Boolean model percolates, and therefore the original Z_{λ}^{*} also percolates so $\lambda \leq \lambda_{c}^{*}$. Hence $\lambda_{c}^{*} \geq \lambda_{c}$, and the proof is complete.

5 Alternative proof of (1.1)

We divide the nonnegative x-axis into unit intervals $I_{0}, I_{1}, I_{2}, \ldots$ where $I_{k}=[k, k+$ 1) $\times\left\{o^{\prime}\right\}$ (here o^{\prime} is the origin in \mathbb{R}^{d-1}). For each $k \in \mathbb{N}$ let $W_{k, \lambda}$ be the union of I_{k} and all components of Z_{λ} which intersect I_{k}

Lemma 5. If $0<\lambda<\lambda_{D}$, then $\mathbb{E}\left[D\left(W_{0, \lambda}\right)\right]<\infty$.
Proof. Fix $\lambda \in\left(0, \lambda_{D}\right)$. Then $\mathbb{E}\left[D\left(W_{\lambda}\right)\right]<\infty$. Let F be the event that $I_{0} \subset Z_{\lambda}$, and set $F^{c}:=\Omega \backslash F$. Then $0<\mathbb{P}[F]<1$. If F occurs then $W_{0, \lambda}=W_{\lambda}$. Hence by the Harris-FKG inequality (see [11] or [10]),

$$
\mathbb{E}\left[D\left(W_{0, \lambda}\right)\right] \leq \mathbb{E}\left[D\left(W_{0, \lambda}\right) \mid F\right]=\mathbb{E}\left[D\left(W_{\lambda}\right) \mid F\right]<\infty,
$$

as required.
Given $\lambda>0$, define the event

$$
E_{\lambda}:=\left(\cap_{k=2}^{\infty}\left\{D\left(W_{k, \lambda}\right) \leq k / 2\right\}\right) \cap\left\{Z_{\lambda} \cap\left(I_{0} \cup I_{1}\right)=\emptyset\right\} .
$$

Lemma 6. If $0<\lambda<\lambda_{D}$, then $\mathbb{P}\left[E_{\lambda}\right]>0$.
Proof. Fix $\lambda \in\left(0, \lambda_{D}\right)$. Then by Lemma 5.

$$
\sum_{k \geq 1} \mathbb{P}\left[D\left(W_{k, \lambda}\right)>k / 2\right]=\sum_{k \geq 1} \mathbb{P}\left[D\left(W_{0, \lambda}\right)>k / 2\right] \leq \mathbb{E}\left[2 D\left(W_{0, \lambda}\right)\right]<\infty .
$$

Choose $k_{0} \in \mathbb{N}$ with $k_{0}>2$, such that $\sum_{k \geq k_{0}} \mathbb{P}\left[D\left(W_{k, \lambda}\right)>k / 2\right]<1 / 2$. Then by the union bound and complementation, $\mathbb{P}\left[\cap_{k=k_{0}}^{\infty}\left\{D\left(W_{k, \lambda}\right) \leq k / 2\right\}\right] \geq 1 / 2$. Moreover $\mathbb{P}\left[\cap_{k=0}^{k_{0}}\left\{Z_{\lambda} \cap\right.\right.$ $\left.\left.I_{k}=\emptyset\right\}\right]>0$. Hence by the Harris-FKG inequality,

$$
\mathbb{P}\left[E_{\lambda}\right] \geq \mathbb{P}\left[\left(\cap_{k=k_{0}}^{\infty}\left\{D\left(W_{k, \lambda}\right) \leq k / 2\right\}\right) \cap\left(\cap_{k=0}^{k_{0}}\left\{Z_{\lambda} \cap I_{k}=\emptyset\right\}\right)\right]>0
$$

Lemma 7. Suppose that $A \subset \mathbb{R}^{d}$ is closed, connected and unbounded, and that $\mathbb{R}^{d} \backslash A$ has an unbounded connected component. Then ∂A, the boundary of A, has an unbounded connected component.

Proof. Let B be an unbounded component of $\mathbb{R}^{d} \backslash A$. Denote the closure of B by \bar{B}. Then both \bar{B} and $\mathbb{R}^{d} \backslash B$ are closed and connected. By the unicoherence of \mathbb{R}^{d} [12], the set $\bar{B} \cap A=\bar{B} \cap\left(\mathbb{R}^{d} \backslash B\right)$ is connected. Moreover it is unbounded, and contained in ∂A.

Given $\varepsilon>0$, let $\tilde{Z}_{\lambda, \varepsilon}:=\cup_{k: \rho_{k}>0} B\left(y_{k}, \varepsilon \rho_{k}\right)$ and let $\tilde{Z}_{\lambda, \varepsilon}^{*}:=\mathbb{R}^{d} \backslash \tilde{Z}_{\lambda, \varepsilon}$. Let $Z_{\lambda}^{0}:=$ $\cup_{\left\{k: r_{k}=0\right\}}\left\{y_{k}\right\}$, the union of balls of radius zero contributing to our Boolean model ($\tilde{Z}_{\lambda, \varepsilon}$ is the union of all the other balls, scaled by ε). If $\mathbb{P}[\rho=0]>0$ then Z_{λ}^{0} is (almost surely) non-empty but locally finite.

Lemma 8. Let $\varepsilon \in(0,1)$. If E_{λ} occurs then $\tilde{Z}_{\lambda, \varepsilon}^{*} \cup Z_{\lambda}^{0}$ percolates.
Proof. Suppose E_{λ} occurs. Let A be the union of the half-line $[1, \infty) \times\left\{o^{\prime}\right\}$, with all components of Z_{λ} intersecting this half-line. Then A is connected, unbounded, and contained in the half-space $[1, \infty) \times \mathbb{R}^{d-1}$ so o lies in an unbounded component of $\mathbb{R}^{d} \backslash A$. Therefore by Lemma 7, ∂A has an unbounded connected component

No point of ∂A lies in the interior of any of the balls $B\left(y_{k}, \rho_{k}\right)$. Therefore $\partial A \subset$ $\tilde{Z}_{\lambda, \varepsilon}^{*} \cup Z_{\lambda}^{0}$. Thus $\tilde{Z}_{\lambda, \varepsilon}^{*} \cup Z_{\lambda}^{0}$ has an unbounded connected subset.

Proof of (1.1). Assume $\lambda_{D}>0$ (else there is nothing to prove). Suppose $\lambda \in\left(0, \lambda_{D}\right)$ and $\varepsilon \in(0,1)$. By the last two lemmas, with strictly positive probability the set $\tilde{Z}_{\lambda, 1-\varepsilon}^{*} \cup Z_{\lambda}^{0}$ percolates. Almost surely, $\tilde{Z}_{\lambda, 1-\varepsilon}^{*}$ is open, Z_{λ}^{0} is locally finite and all points of Z_{λ}^{0} lie either in $\tilde{Z}_{\lambda, 1-\varepsilon}^{*}$ or in the interior of $\tilde{Z}_{\lambda, 1-\varepsilon}$. Therefore if the set $\tilde{Z}_{\lambda, 1-\varepsilon}^{*} \cup Z_{\lambda}^{0}$ percolates, so does $\tilde{Z}_{\lambda, 1-\varepsilon}^{*}$, and so does $\tilde{Z}_{\lambda, 1-\varepsilon}^{*} \backslash Z_{\lambda}^{0}$. Thus the set $\tilde{Z}_{\lambda, 1-\varepsilon}^{*} \backslash Z_{\lambda}^{0}$, which is equal to $\mathbb{R}^{d} \backslash \cup_{k} B\left(y_{k},(1-\varepsilon) \rho_{k}\right)$, percolates with strictly positive probability, and hence by ergodicity, with probability 1 . Hence by scaling (see [11]) the set $Z_{(1-\varepsilon)^{d} \lambda}^{*}$ also percolates almost surely, so that $\lambda_{c}^{*} \geq(1-\varepsilon)^{d} \lambda$, and therefore $\lambda_{c}^{*} \geq \lambda_{D}$.

References

[1] Ahlberg, D., Tassion, V. and Teixeira, A.: Sharpness of the phase transition for continuum percolation in \mathbb{R}^{2}. Probab. Theory Relat. Fields, (2017), https://doi.org/10.1007/ s00440-017-0815-8. arXiv:1605.05926.
[2] Ahlberg, D., Tassion, V. and Teixeira, A.: Existence of an unbounded vacant set for subcritical continuum percolation. arXiv:1706.03053.
[3] Bollobás, B. and Riordan, O.: Percolation. Cambridge University Press, Cambridge, 2006. x+323 pp. MR-2283880
[4] Chiu, S. N., Stoyan, D., Kendall, W. S. and Mecke, J.: Stochastic Geometry and its Applications. Third edition. John Wiley \& Sons, Chichester, 2013. xxvi+544 pp. MR-3236788
[5] Duminil-Copin, H., Raoufi, A. and Tassion, V.: Subcritical phase of d-dimensional PoissonBoolean percolation and its vacant set. arXiv:1805.00695.
[6] Gilbert, E. N.: Random plane networks. J. Soc. Indust. Appl. Math. 9, (1961), 533-543. MR-0132566
[7] Gouéré, J.-B. Subcritical regimes in the Poisson Boolean model of continuum percolation. Ann. Probab. 36, (2008), 1209-1220. MR-2435847
[8] Hall, P.: On continuum percolation. Ann. Probab. 13, (1985), 1250-1266. MR-0806222
[9] Hall, P.: Introduction to the Theory of Coverage Processes. John Wiley \& Sons, New York, 1988. xx +408 pp . MR-0973404
[10] Last, G. and Penrose, M.: Lectures on the Poisson Process. Cambridge University Press, Cambridge 2018. xx+293 pp. MR-3791470
[11] Meester, R. and Roy, R.: Continuum Percolation. Cambridge University Press, Cambridge, 1996. x+238 pp. MR-1409145
[12] Penrose, M.: Random Geometric Graphs. Oxford University Press, Oxford, 2003. xiv+330 pp. MR-1986198
[13] Sarkar, A. Co-existence of the occupied and vacant phase in Boolean models in three or more dimensions. Adv. in Appl. Probab. 29, (1997), 878-889. MR-1484772
[14] Schneider, R. and Weil, W.: Stochastic and Integral Geometry. Springer, Berlin, 2008. xii+693 pp. MR-2455326
[15] Ziesche, S.: Sharpness of the phase transition and lower bounds for the critical intensity in continuum percolation on \mathbb{R}^{d}. Ann. Inst. H. Poincaré Probab. Statist. 54, (2018), 866-878. MR-3795069

Acknowledgments. I thank the referees for some helpful remarks.

[^0]: ${ }^{\dagger}$ University of Bath, United Kingdom. E-mail: m.d.penrose@bath. ac.uk

