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Abstract

Multiplicative cascades, under weak or strong disorder, refer to sequences of positive
random measures µn,β , n = 1, 2, . . . , parameterized by a positive disorder parameter
β, and defined on the Borel σ-field B of ∂T = {0, 1, . . . b − 1}∞ for the product
topology. The normalized cascade is defined by the corresponding sequence of random
probability measures probn,β := Z−1

n,βµn,β , n = 1, 2 . . . , normalized to a probability
by the partition function Zn,β . In this note, a recent result of Madaule [27, 2011] is
used to explicitly construct a family of tree indexed probability measures prob∞,β for
strong disorder parameters β > βc, almost surely defined on a common probability
space. Moreover, viewing {probn,β : β > βc}∞n=1 as a sequence of probability measure
valued stochastic process leads to finite dimensional weak convergence in distribution
to a probability measure valued process {prob∞,β : β > βc}. The limit process is
constructed from the tree-indexed random field of derivative martingales, and the
Brunet-Derrida-Madaule decorated Poisson process. A number of corollaries are
provided to illustrate the utility of this construction.
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1 Introduction

The relationship between branching random walks and multiplicative cascades has
a long history, going back to the early works of [10] and of [25], respectively. Recent
results from the latter are exploited in the present note to construct and analyze the
normalized multiplicative cascade probability under strong disorder conditions.

Branching random walks, as discretizations of branching Brownian motion, provide
a natural probabilistic structure that is known to occur, for example, in the context of
reaction-dispersion equations of the type introduced by Fisher, Kolmogorov, Petrovskii
and Piskounov; see [26] and references therein.

Originating in statistical turbulence and other areas in which singular intermittent
random distributions arise, multiplicative cascades are random measures that define
prototypical models of disorder; see [25] for a seminal mathematical formulation whose
inspiration is attributed to Benoit Mandelbrot. Much of the early work on multiplicative
cascades involved the fine-scale (multifractal) structure of a limiting cascade distribution
under conditions that have come to be referred to as weak disorder. In such cases
the total mass defines a positive martingale sequence with a non-trivial a.s. limit. In
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Multiplicative cascade under strong disorder

particular, the cascade measure can easily be normalized to a (random) probability
measure to obtain an a.s. weak limit. On the other hand, while compactness of the tree
boundary ensures tightness, such almost sure weak limits are not expected to exist
under strong disorder.

However, as shown in [24] and in [7], respectively, there is a weak limit in probability
at critical strong disorder, or the so-called boundary case, and a weak limit in distribution
under strict (non-critical) strong disorder. In particular a (random) probability can be
defined in the infinite path limit under strong disorder. This latter result will also follow
from the analysis presented here, but the focus of this note is rather on the structure
of these weak limits and their mutual relation as a stochastic process indexed by the
disorder parameter β > βc. Toward this goal an integral representation is provided
together with a limiting process in the sense of finite dimensional weak convergence
in distribution, see Definition 2.2 below, and defined almost surely as a function of β
on a single probability space. This is then used to provide mutual absolute continuity
between the disorder limits, formulae for the Radon-Nikodym derivatives, and an explicit
description of the genealogy near the root as corollaries. Moreover, it is shown that
as a probability measure valued process, the limit process indexed by β > βc has
a.s. continuous paths in the weak-* topology; in fact in the total-variation norm. The
basic approach is to construct a tree-indexed derivative martingale random field, and
then exploit recent consequences of superposability due to [27, 16].

2 Background Definitions and Notation

To clearly describe the focus of this note it is convenient to introduce some standard
notation defining a multiplicative cascade, and its normalization to a probability. While
the results may be more generally formulated for cascades on more general classes of
trees, including Galton-Watson supercritical branching processes subject to a Kesten-
Stigum condition on the offspring distribution, we restrict the presentation to directed
binary trees for simplicity of exposition.

Consider the infinite binary tree defined by the following set of vertices T =⋃∞
n=0{−1,+1}n with edges defined by pairs of vertices of the form v = (v1, . . . , vn),

and its parent v|(n− 1) = (v1, . . . , vn−1), and rooted at ∅ in correspondence with {−1, 1}0.
The boundary of T is defined by ∂T = {−1, 1}N, with the product topology. An ∞-
tree path is denoted by s = (s1, s2, . . .) ∈ ∂T. We will also consider finite tree paths
s = (s1, . . . , sn) ∈ T\{∅} of length |s| = n, and for s = (s1, s2, . . .) ∈ ∂T, continue to
use the notation s|n := (s1, s2, . . . , sn), read “s restricted to n”, for truncation. Also, for
v ∈ T, k = |v| 6 n we define

∆(v) := {s ∈ ∂T : s|k = v} and ∆n(v) := {s ∈ {−1,+1}n : s|k = v}

as the∞-paths passing through the vertex v and the vertices at level n below the vertex
v, respectively.

Suppose one is given a collection {Xv | v ∈ T} of i.i.d. positive random variables
indexed by T and defined on a probability space (Ω,F ,P). Denote by X a generic
random variable having the common distribution of each Xv and assume that E(X) = 1.
Let

λ(ds) =

(
1

2
δ+1(ds) +

1

2
δ−1(ds)

)N
for s ∈ ∂T, (2.1)

and define the sequence of positive (random) measures µn(ds), n > 1, absolutely con-
tinuous with respect to λ(ds), via their sequence of Radon-Nikodym derivatives given
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Multiplicative cascade under strong disorder

by

dµn
dλ

(s) =

n∏
j=1

Xs|j for s ∈ ∂T. (2.2)

Note that
∫
∂T

f(s)µn(ds), n > 1, is a bounded martingale for any bounded, continuous
function f on ∂T. The corresponding sequence of normalized (random) probability
measures probn(ds) on ∂T is defined by

dprobn
dλ

(s) = M−1
n

n∏
j=1

Xs|j , (2.3)

where the partition function Mn normalizes µn, to a probability measure. Note that

Mn = 2−n
∑
|s|=n

n∏
j=1

Xs|j (2.4)

has mean 1. The sequence of non-normalized measures µn(ds), n > 1, is referred to as a
multiplicative cascade and is the main object of our analysis.

In this framework, the notions of weak disorder and strong disorder, e.g., see
Bolthausen [14] for these notions in the present context, provide a well-known dichotomy
defined in terms of the asymptotic behavior of the partition function as follows. First note
that the sequence of (normalized) partition functions Mn, n > 1, is a positive martingale,
so M∞ := limn→∞Mn exists a.s. in (Ω,F ,P). By positivity of the factors defining the
path probabilities, the event [M∞ = 0] is a tail event and thus by Kolmogorov’s zero-one
law, P(M∞ = 0) must equal zero or one. Kahane and Peyrière [25] for multiplicative
cascades, and (independently) Biggins, Hammersley and Kingman [10], for branching
random walks, had already obtained the following precise conditions for the disorder
dichotomy:

P(M∞ > 0) = 1 ⇐⇒ E(X logX) < log 2. (2.5)

In the case for which [M∞ > 0] a.s., the cascade is said to be in a state of weak disorder,
whereas if [M∞ = 0] a.s., the cascade is in a state of strong disorder. Note that the
deterministic environment X ≡ 1 a.s. can be regarded informally as the “weakest” of the
weak disorder regimes where Mn ≡ 1 and µn(ds) ≡ λ(ds). The special case

E(X logX) = log 2, (2.6)

belongs to the strong disorder regime as critical disorder, or the boundary case. For
example, in the case when X = exp(−βN − β2/2) with N being standard normal dis-
tributed, the boundary case corresponds to β =

√
2 log 2, with the strong disorder regime

obtained for β >
√

2 log 2.
To describe the limit distribution of the (re-scaled) partition function in the critical

case E(X logX) = log 2 or E(X(log 2− logX)) = 0, let us recall the derivative martingale
in the boundary case of the branching random walk; see [11]. We have that

Dn = 2−n
∑
|s|=n

n∑
j=1

(
log 2− logXs|j

) n∏
j=1

Xs|j , n > 1, (2.7)

is an L1-bounded martingale having an a.s. positive limit D∞, and referred to as the
derivative martingale; see [26] for additional historic background in the contexts of
branching random walk and branching Brownian motion. Under some natural regularity
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Multiplicative cascade under strong disorder

conditions on X, Aidekon and Shi [2] proved that
√
nMn/Dn converges in probability to√

2/πσ2 where σ2 := E(X(log 2− logX)2).
Additional insight into the relevance of the derivative martingale to multiplicative

cascade theory can be obtained by considering the basic stochastic cascade recursion

B
d
= A−1B−1 +A+1B+1, (2.8)

where B±1 are i.i.d. non-negative r.v.s having the same distribution as B, and A±1 are
i.i.d. non-negative r.v.s having mean 1/2, and independent of B±1. The recursion (2.8) is
a well-studied recursion in a variety of contexts, see [12]

Under weak disorder B = M∞ is the nontrivial solution for A±1 = 1
2X±1, unique up

to positive constant multiples. However, at strong disorder one has M∞ = 0 a.s; i.e.,
a trivial solution to (2.8). Nonetheless there is a nontrivial solution in the (non-lattice)
boundary case, namely a constant multiple of D∞; see [26, 23].

It is generally well-known as a result of early work originating in [20] that under
strong disorder the solution (fixed point) of the random recursion (2.8) coincides with a
multiple of a Lévy stable process stopped at D∞; see [26] for a summary and extensions.
The results to follow provide a more detailed analysis of the structure of this solution,
through its explicit connections to the extremes of the associated branching random
walk, that facilitates the almost sure construction of the limit probabilities prob∞(ds).

To close this section let us note that tree polymers provide an essentially equivalent
formulation that can be described as follows. Namely, when X = exp(−βW )/E e−βW for
some β > 0, the sequence of random probability measures {probn(ds) : n > 1} is also
referred to as a tree polymer on (∂T,B) at inverse temperature β.

Assuming that W is a random variable with ϕ(β) := E e−βW < ∞ for all β > 0,
the dichotomy (2.5) for the r.v. X = ϕ(β)−1e−βW gives the critical disorder as β = βc
where (β−1 log(2ϕ(β)))′

∣∣
β=βc

= 0 and the weak disorder as β < βc. By centering and

scaling appropriately, i.e., working with βcW + log(2ϕ(βc)) instead of W , without loss of
generality we can assume the so-called boundary case defined by

E(e−W ) =
1

2
and E(We−W ) = 0. (2.9)

Thus with Xv = ϕ(β)−1e−βWv , v ∈ T the strong disorder corresponds to β > 1. The
exponent defined by (3.1) is given by α = 1/β in this framework.

We define the energy of a finite path s ∈ T as

H(s) =

|s|∑
i=1

Ws|i for s ∈ T

and will sometimes use Hn(s) instead of H(s) when |s| = n to emphasize the dependence
on n. Also, in this context the partition function is defined as Zn(β) :=

∑
|s|=n e

−βH(s).
We also define, for v ∈ T, |v| 6 n

Zn(β; v) =
∑

s∈∆n(v)

e−β(H(s)−H(v)). (2.10)

Then (2.10) can be understood as the partition function at the vertex v. Clearly Zn(β) =

Zn(β; ∅). One may note that the scaling of the partition function implies a certain
centering of the branching random walkers induced by the path energies Hn(s), |s| = n,

that may explicitly be expressed as follows:

n
3
2βZn(β) =

∑
|s|=n

e−β(Hn(s)− 3
2 logn).
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Multiplicative cascade under strong disorder

When X = ϕ(β)−1e−βW , we will use µn,β and probn,β for (2.2) and (2.3), respectively.
Note that the normalization constant Mn in (2.4), is the same as (2ϕ(β))−nZn(β). Also,
we have for v ∈ T, |v| < n

µn,β(∆(v)) = (2ϕ(β))−ne−βH(v)Zn(β; v)

and probn,β(∆(v)) = e−βH(v)Zn(β; v)/Zn(β).

We recall the following definitions for finite-dimensional weak convergence.

Definition 2.1. Suppose S is an arbitrary metric space with Borel σ-field B. Let ν, νn, n >
1 be a sequence of probability measures on the product space S∞ = S × S × · · · × · · · ,
with the product topolgy and corresponding Borel σ-field B⊗∞. Let Cfin denote the set of
bounded, continuous real-valued functions on S∞ depending on finitely many coordinates.
We say that νn converges in finite-dimensional distribution to ν if

∫
S∞

g(s)νn(ds) →∫
S∞

g(s)ν(ds) for all g ∈ Cfin.

Note that, Definition 2.1 reduces to the definition of weak convergence when Cfin is
replaced by the class of all bounded, continuous functions.

Definition 2.2. Suppose S is an arbitrary metric space with Borel σ-field B, and I is
an arbitrary index set. Suppose Πn = {νn(x, ds) : x ∈ I, s ∈ S∞} is a sequence of
probability measure valued stochastic processes on a probabilty space (Ω,F , P ). We
say that one has finite dimensional weak convergence in distribution of Πn to Π if for
any finite x1, x2, . . . , xm in I, one has

( ∫
S∞

gi(s)Πn(xi, ds)
)m
i=1
→
( ∫

S∞
gi(s)Π(xi, ds)

)m
i=1

in distribution for all gi ∈ Cfin, 1 6 i 6 m.

3 Main Results

With the previous section as background, let X be a positive random variable with
mean one and satisfying the strict strong disorder condition E(X logX) > log 2 for the
multiplicative cascade defined in (2.2). By calculations of the type given in [22], it is
easy to see the following (scale invariant) fact.

Lemma 3.1. Assume that EX = 1 and EX logX > log 2. Then there is a unique α ∈ (0, 1)

such that

E

(
Xα

EXα
log

Xα

EXα

)
= log 2. (3.1)

Proof. Let ρ(α) = E( Xα

EXα log2X). The assertion is equivalent to the existence of a unique
α ∈ (0, 1) such that

αρ(α)− log2EX
α = 1.

The left side is zero at α = 0 and, at α = 1 it is ρ(1) = EX log2X > 1. Moreover, it follows
from the Cauchy-Schwarz inequality that the left side is also an increasing function of
α. So the assertion follows from these observations together with continuity of the left
hand side.

Let us define

W := log 2 + logE(Xα)− α logX (3.2)

so that W satisfies E(e−W ) = 1/2 and E(We−W ) = 0.

Next we construct a collection of random variables indexed by the vertices of the
infinite binary tree that will appear in the joint convergence of the partition functions
at different vertices at the critical disorder, i.e., β = 1. This tree-indexed derivative
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Multiplicative cascade under strong disorder

martingale random field provides an essential ingredient of the eventual construction.
Recall that, the derivative martingale is defined as

Dn :=
∑
|s|=n

H(s)e−H(s)

and has an a.s. positive limit D∞ satisfying the distributional recursion (2.8), i.e.,

e−W−1D∞(−1) + e−W+1D∞(+1)
d
= D∞ where D∞(±1) are i.i.d. ∼ D∞.

Assume that {Wv : v ∈ T} is a collection of i.i.d. random variables each distributed as
W and indexed by T. Fix a positive integer k. For v ∈ T, |v| = k, let D(v) be i.i.d. copies
of D∞. Now inductively for i = k − 1, k − 2, . . . , 0, define

D(v) := D(v,−1)e−Wv,−1 +D(v,+1)e−Wv,+1 for v ∈ T, |v| = i. (3.3)

It is easy to see that for any fixed i 6 k, {D(v), |v| = i} are i.i.d. copies of D∞ and thus
{D(v) : |v| 6 k} is a consistent family of distributions. By Kolmogorov’s consistency
theorem there exists a (denumerable) tree-indexed collection of random vectors

D∞ := {(Wv, D∞(v)) : v ∈ T} (3.4)

such that the finite-dimensional distribution restricted to {v : |v| 6 k} is given by the
above construction (3.3).

Now define the interval I(∅) = [0, D∞(∅)). One can think of the tree-indexed deriva-
tive martingales D∞ as providing a way in which to partition the interval I(∅) into
successively smaller intervals. Define

I(−1) = [0, e−W−1D∞(−1))

and I(+1) = [e−W−1D∞(−1), e−W+1D∞(+1) + e−W−1D∞(−1)).

Note that D∞(∅) = e−W−1D∞(−1) + e−W+1D∞(+1) a.s. by construction and thus I(+1),
I(−1) is a partition of I(∅). Now to define I(v) for v ∈ T, |v| = k, consider the lex-
icographic ordering on {−1,+1}k, i.e., for u, v ∈ {−1,+1}k, u ≺ v iff there exists
i ∈ {0, 1, . . . , k} such that u|i = v|i and ui+1 < vi+1. Now, for v ∈ T, |v| = k define

I(v) :=

[ ∑
u≺v

e−H(u)D∞(u), e−H(v)D∞(v) +
∑
u≺v

e−H(u)D∞(u)

)
. (3.5)

One can easily check that the collection of intervals {I(v) : v ∈ T} respects the tree
structure in terms of set-inclusion, i.e., if v is an ancestor of u then I(u) ⊆ I(v).

Here we note that, any infinite path s ∈ ∂T can be represented by a point t(s) ∈ I(∅)
and conversely any point t0 ∈ I(∅) corresponds to a unique path s = s(t0) ∈ ∂T in the
sense that {t} =

⋂∞
k=1 I(s|k).

Let θ > 0 be a fixed real number. Consider a decorated (or marked) Poisson point
process N in R × [0,∞) with intensity measure exdtdx, (x, t) ∈ R × [0,∞) and the
decoration at the point (x, t) given by Vx,t which are i.i.d. copies of a point process V .
Let {(Wv, D∞(v)) : v ∈ T} be a collection of random variables indexed by the vertices of
T as constructed above, and independent of N . Fix a real number θ > 0.

Now for any α ∈ (0, 1) and v ∈ T, define

Iα(v) =

∫
R×θI(v)

e−z/αN (dz × dt) =
∑

(x,t)∈N

e−x/α1t/θ∈I(v)

∑
y∈Vx,t

e−y/α. (3.6)

With these preliminaries, the main result of this note may now be stated as follows.

ECP 20 (2015), paper 32.
Page 6/13

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v20-3936
http://ecp.ejpecp.org/


Multiplicative cascade under strong disorder

Theorem 3.2. Assume that the distribution of W is non-lattice, satisfies the boundary
condition (2.9) and the following size-biased moment is finite:

E(W 2 + log+(e−W +We−W ))e−W <∞ (3.7)

Then, we have for any β1, β2, . . . , βk ∈ (1,∞) and v1, v2, . . . , vk ∈ T

{n3βi/2e−βH(vi)Zn(βi; vi) : i = 1, 2, . . . , k} ⇒ {I1/βi(vi) : i = 1, 2, . . . , k}

in the sense of convergence in distribution for some θ > 0 and some point process V . In
particular, there are random probability measures prob∞,β(ds) on ∂T parameterized by
β > 1 and defined on a common probability space such that

{probn,β(∆(v)) : v ∈ T, β > 1} ⇒ {prob∞,β(∆(v)) : v ∈ T, β > 1},

in the sense of finite-dimensional convergence in distribution (see (2.2)) and

prob∞,β(∆(v)) := I1/β(v)/I1/β(∅) ≡ I−1
1/β(∅)

∫
R×θI(v)

e−βzN (dz × dt), v ∈ T.

Remark 3.3. The physics of random distributions of the type obtained here can be
phrased in terms of metastates as defined in [3]. In fact, we prove finite-dimensional
convergence of the joint distribution of the probn,β’s and the disorder, i.e., the Wv’s.
This defines a metastate in the Aizenman-Wehr sense [3]. Related notions occur in
the mathematical physics literature [30, 15]. For example, a metastate in the sense of
Newman-Stein requires that one condition on the disorder first, and then obtain the limit
of an empirical distribution of the probnk ’s along some sparse (but deterministic) sub-
sequences nk. The more purely probabilistic content follows the perspective of Aldous’
[4] objective approach in which one may view the construction of the random objects
prob∞,β as natural stochastic structures associated with the sequence probn,β , n > 1 via
a weak convergence in distribution; e.g. see Corollary 3.5 below.

Here we mention that in the strong disorder regime, i.e., β > 1, the measures µn,β
do not have a non-trivial limit. However, the σ-finite measure n−3β/2 · µn,β has the weak
limit µ∞,β := I1/β(∅) prob∞,β over the collection of sets ∆(v), v ∈ T and µ∞,β(∆(v)) can
be written as a scale mixture of 1/β-stable random variables.

As a consequence of the explicit construction we can see that the limiting measures
(prob∞,β , β > 1) are defined on the same probability space and are mutually absolutely
continuous on ∂T Ω-a.s. By the definition of the intervals (I(v))v∈T, any infinite path
s ∈ {−1,+1}∞ in the binary tree will be represented by a point t(s) in the interval I(∅).
More specifically, with this notation, one has the following immediate consequence.

Corollary 3.4. (prob∞,β , β > 1) are defined on the same probability space and are
mutually absolutely continuous with the Radon-Nikodym derivative of prob∞,β1

with
respect to prob∞,β2

at the infinite path s (with corresponding time point t(s)) given by

dprob∞,β1

dprob∞,β2

(s) =
Cβ1

(t(s))I1/β2
(∅)

Cβ2
(t(s))I1/β1

(∅)
.

where the β-contribution for a single point t0 is given by

Cβ(t0) :=
∑

(x,t)∈N :t=t0

e−βx
∑
y∈Vx,t

e−βy.

Moreover, the sample paths of the (probability) measure-valued process β 7→ prob∞,β
are a.s. continuous for the total variation norm and, hence, weak-* topology, i.e., as
βn → β > 1 one has prob∞,βn converges weakly to prob∞,β .
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Proof. Observe that the Poisson process is independent of the intervals. The β – contri-
bution for a single point t0 is nonzero for countably infinitely many t’s and the support
set for t0, projection of N on the second co-ordinate, is independent of β. Continuity of
the process β 7→ prob∞,β in the total variation norm follows from the absolute continuity
using Scheffe’s theorem, and continuity of the respective Laplace transforms appearing
in the Radon-Nikodym derivatives. This implies the asserted continuity in total variation
norm, and hence the weak-* topology.

In fact, the random mapping β 7→ probn,β, can be considered as a random process
with sample paths indexed by β ∈ (1,∞) and taking values inM({0, 1}∞), the space of
probability measures on {0, 1}∞ endowed with the weak* topology. A central result of
this paper states that this sequence of processes converges weakly to a limiting process
β 7→ prob∞,β , in the finite-dimensional sense (see Definition 2.1 and 2.2).

It may be noted that similar formulae are known for other models of disorder, such
as the random energy model (REM), and generalized random energy model (GREM),
introduced by [19, 32, 29] and related by mean-field type formulations. It was shown by
[9] as a consequence of [29] that the genealogy of the GREM is given by the Bolthausen-
Sznitman coalescent. It is interesting to note the manner in which the asymptotic results
for the multiplicative cascade model differ from those of GREM, yet remain within the
general framework of Λ-coalescence (for non-uniform Λ.) This is elaborated upon with
related comments are included at the close of this note.

Another specific by-product of Theorem 3.2 is that one can easily find the limiting
distribution of the genealogical tree of randomly chosen k vertices in {−1,+1}n from
the distribution probn,β. Recall that for v = (v1, v2, . . . , vn) ∈ T and an integer k 6 n,
we have v | k = (v1, v2, . . . , vk). Consider the decorated Poisson process as given in
equation 3.6. Let ν be the (random) probability measure supported on I(∅) so that

ν′β(t0) =
1

I1/β(∅)
∑

(x,t)∈N :t=t0

e−βx
∑
y∈Vx,t

e−βy.

Let νβ be the probability measure on ∂T such that t(s) ∼ ν′β when s ∼ νβ . The following
corollary follows easily from Theorem 3.2.

Corollary 3.5. Let v1,v2, . . . ,vk be k many i.i.d. vertices from the probability measure
probn,β on {−1,+1}n. Let u1,u2, . . . ,uk be k many i.i.d. vertices from the probability
measure νβ . Then for any fixed integer k we have

(v1 | k,v2 | k, . . . ,vk | k)
w−→ (u1 | k,u2 | k, . . . ,uk | k)

as n→∞.

This implies local convergence of the genealogical tree for randomly chosen k vertices
from probn,β near the root.

Finally let us record that a companion formulation of weak convergence in distribution
can be given in terms of Fourier transforms as follows.

Corollary 3.6. At any strong disorder β > 1, for each finite set F ⊆ N

p̂robn,β(F )⇒ p̂rob∞,β(F ) in distribution,

where p̂robn,β , n > 1, p̂rob∞,β denote their respective Fourier transforms as probabilities
on the compact abelian multiplicative group ∂T for the product topology.

Proof. The continuous characters of the group ∂T are given by χF (t) =
∏
j∈F tj for

finite sets F ⊆ N. In particular there are only countably many characters of ∂T. From
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standard Fourier analysis it follows that we need only show that

lim
n→∞

Eprobn
χF = Eprob∞

χF in distribution

for each finite set F ⊆ N. Let m = max{k : k ∈ F}. Then for n > m,

Eprobn,β
χF =

∫
∂T

χF (s)
dprobn
dλ

(s)λ(ds)

=
∑
|v|=m

∏
j∈F

vj · Zn(β; ∅)−1e−βH(v)Zn(β; v)

=
∑
|v|=m

∏
j∈F

vj · e−βH(v) · n
3β/2Zn(β; v)

n3β/2Zn(β; ∅)
⇒ Eprob∞,β

χF

where the convergence is in distribution.

4 Proof of Main Result

In recent years there has been a rapidly growing literature on the asymptotics of the
extremes of branching random walks. Relatively long, technical papers have provided a
refined understanding of the behavior of the right (or left) most particles in branching
random walks; e.g., [1, 8, 23, 27, 16]. This theory will be exploited to provide a coupled
relation between the asymptotic distributions of the partition functions, suitably scaled,
for a general class of multiplicative cascades under strong disorder and non-lattice
energy distributions, as a function of the disorder parameter. In particular, two essential
structures underlying the results here are:

(a) Biggins-Kyprianou’s version of the derivative martingale; see [16] and [11],
respectively, where these ideas arise in connection with the extremes of branching
random walks, and

(b) Brunet-Derrida’s notion of superposability.
The role of the derivative martingale was previously explained above. As noted,

the construction of the tree-indexed derivative field is an essential element of the a.s.
construction of the weak limits in distribution of the normalized cascade probabilities.
Another is that of superposability of extremal point processes introduced by [16], to-
gether with the (conjectured) corresponding representation as a decorated Poisson
(cluster) process, rigorously established by [27].

Specifically,

Definition 4.1. A point process N on R is said to be superposable if, for an independent
copy N ′ and any a, b ∈ R such that e−a + e−b = 1,

TaN + TbN
′ d

= N,

where Tx
(∑

y δy
)

=
∑
y δy+x, x ∈ R.

The basic example of a superposable point process is the Poisson process on R
with intensity exdx. This is the well-known point process of extremes of a centered
and scaled i.i.d. Gaussian sequence. More generally, a superposable point process is
infinitely divisible and, therefore, it follows that it must be a Poisson cluster point process.
Based on analogous results for branching Brownian motion, it had been conjectured
in [16] that the only superposable point processes were Poisson cluster processes with
Poisson intensity θexdx, θ > 0. This was recently proven as a consequence of infinitely
divisibility, and also as a consequence of LePage representation theory, see [6, 28]. It
may also be interesting to mention as an aside, that the translation invariant Poisson
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cluster processes must be associated in the sense of positive dependence (or FKG
inequalities); [17, 21].

Another conjecture by [16] was recently proven in [27] extending the above quoted
result for i.i.d. Gaussian exremes to the extremes of the energies Hn(s), |s| = n, centered
and scaled. In particular, it is shown that in the boundary case the point process of
extremes is superposable. More specifically, in the notation of the present article,

Theorem 4.1 (Theorem 1.1 in [27]). Assume that the distribution of W satisfies the
condition of Theorem 3.2. Let Nn =

∑
|s|=n δH(s)− 3

2 logn+logD∞ . Then (Nn, Dn) converge
jointly in distribution to (N∞, D∞) where N∞ =

∑
k>1

∑
y∈Vk δxk+y is a Poisson cluster

point process on R with Poisson center process {xk : k > 1} having intensity θexdx, x ∈ R
for some θ > 0, Vk’s are i.i.d. copies of some point process V and D∞ is independent of
N∞.

An easy consequence of Theorem 4.1 (Theorem 2.4 in [27]) and the fact that

n
3
2βZn(β) = Dβ

∞

∑
|s|=n

e−β(H(s)− 3
2 logn+logD∞) = Dβ

∞

∫
R

e−βzNn(dz),

is that for any fixed β1, β2, . . . , βk ∈ (1,∞) we have(
n3βi/2Zn(βi),i = 1, 2, . . . , k

)
=⇒

(
Dβi
∞

∑
k>1

e−βixk
∑
y∈Vk

e−βiy, i = 1, 2, . . . , k
)

(4.1)

where (xk, k > 1) are points of a Poisson point process with intensity θexdx, x ∈ R, Vk’s
are i.i.d. copies of some point process V and D∞ is the limiting derivative martingale
independent of everything else.

Now let N be a Poisson point process in R × [0,∞) with intensity measure exdtdx,
(x, t) ∈ R× [0,∞). It is easy to see that for a finite interval I ⊂ [0,∞), the point process
{x : (x, t) ∈ N , t ∈ I} is Poisson point process with intensity |I|exdx, which has the same
distribution as {xk − log |I|, k > 1} where {xk : k > 1} is a Poisson point process with
intensity exdx. Thus for an interval I of length θD∞ independent of N , we have(∑

k>1

e−βi(xk−logD∞)
∑
y∈Vk

e−βiy, i = 1, 2, . . . , k

)
d
=

( ∑
(x,t)∈N :t∈I

e−βix
∑

y∈V(x,t)

e−βiy, i = 1, 2, . . . , k

)
Now fix an integer k > 1 and consider the set of vertices v ∈ T, |v| = k in the tree T at
level k. Consider the collection of random variables (n3β/2Zn(β; v), |v| = k) which clearly
are i.i.d. and by the above reasoning has the limit (in distribution)( ∑

(x,t)∈N :t/θ∈I(v)

e−βx
∑

y∈V(x,t)

e−βy, |v| = k

)
where I(v), |v| = k are mutually disjoint intervals of length θD∞(v) and {D∞(v), |v| = k}
are i.i.d. copies of D∞. From here the proof of Theorem 3.2 follows easily.

The following revealing calculations are also direct consequences.

Corollary 4.2. Under conditions of the theorem,

lim
β→∞

Γ(1− 1/β)−1n
3
2Zn(β)1/β = n

3
2 e−min|s|=nH(s)

and

lim
β→∞

E(||{e−y, y ∈ V }||β)
(
T

(1/β)
θD∞

)1/β d
= E(max

y∈V
y) ·D∞ ·G

where − logG has Gumble extreme value distribution.
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Proof. A consequence of Theorem 3.2 is that the limiting distribution of

Γ(1− 1/β)−βn3β/2Zn(β)

is the same as a α−stable subordinator T (α)
t stopped at an independent random variable

θD∞E(||{e−y, y ∈ V }||β), where α = 1/β, and ||g(y), y ∈ V ||β , β > 1, denotes the usual

Lβ−norm,
( ∫
R
e−yβV (dy)

) 1
β with respect to the decorating points.

As a closing remark one may view the “genealogical structure” of the resulting
a.s. defined strong disorder cascade probability limit as follows: If vertices are chosen
from the n-th level according to the cascade measure in strong disorder, most of the
branching occurs either within distance o(n) from the root or within distance o(n) from
the n-th level. The branching near the n-th level gives rise to the decoration Point
process in the limiting decorated Poisson process, whereas the Poisson process arises
out of the time spent without any branching; see [18, 5] for comparison with branching
Brownian motion. Our result gives the structure near the root within distance O(1), as
discussed earlier. See Figure 1 for a graphical depiction.

Initial Branching

Final Branching
giving the decoration

Figure 1: Geneological structure in Branching Random Walk

Another genealogical structure can be identified in terms of the Lèvy stable subor-
dinator {T (α)

s : s > 0} by viewing it as a continuous state branching process (csbp), in
a manner as was done in [9] in describing the genealogy of Neveu’s csbp associated
with another disordered system; namely, Derrida’s generalized random energy model
(GREM). In particular it was shown in ([9], Theorem 4) that the genealogy of Neveu’s
csbp defines a Bolthausen-Sznitman coalescent (BSC). This could be accomplished by
exploiting an alternative cascade version of GREM, due to Ruelle in [32]. Now observe
that the (BSC) is a Λ-coalescent for a uniform distribution Λ on [0, 1]; see [31]. So, in

view of recent results of [13], the genealogy of {T (α)
s : s > 0} is that of a Λ−coalescent

for which Λ is a Beta distribution with parameters βc/β and 1 − βc/β. Since βc/β < 1

under strict strong disorder, the results here establish interesting points of contrast and
comparison for these respective models of disorder; also see [18] for other observations
in this regard.
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