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Abstract. We study unimodal interval maps Γ with negative Schwarzian derivative
satisfying the Collet-Eckmann condition \DTn(Tc)\ ^ Kλn

c for some constants
K > 0 and λc > 1 (c is the critical point of T). We prove exponential mixing
properties of the unique invariant probability density of T, describe the long term
behaviour of typical (in the sense of Lebesgue measure) trajectories by Central
Limit and Large Deviations Theorems for partial sum processes of the form
Sn = YJlZofiT^X and study the distribution of "typical" periodic orbits, also in
the sense of a Central Limit Theorem and a Large Deviations Theorem.

This is achieved by proving quasicompactness of the Perron Frobenius oper-
ator and of similar transfer operators for the Markov extension of T and relating
the isolated eigenvalues of these operators to the poles of the corresponding Ruelle
zeta functions.

1. Introduction

During the last years considerable progress was made towards the understanding
of the metric structure of general unimodal maps with negative Schwarzian
derivative (henceforth called iS-unimodal maps). The likely limit set in the sense of
Milnor [Mi] was described and related to the conservativeness/transitiveness of the
map with respect to Lebesgue measure [BL1, BL3, GJ, Ma, K4]. The ergodicity of
S-unimodal maps without stable periodic orbit was proved in [BL2, BL3, Ma]. (For
a discussion of these results see [HK3].) Also new sufficient or equivalent conditions
for the existence of invariant probability densities were found. (The uniqueness of
such invariant densities follows from the ergodicity of T) Before we describe some of
these results, we introduce the class of maps we are going to investigate:

T: [0, 1] -• [0, 1] is of class C3 and has a unique nondegenerate critical point
c of order /, see (1.2).
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We also assume that T has negative Schwarzian derivative, i.e.

T'" 3 /' T"\2

ST:= — Γ - -1 —y I <Ξ 0 except at c where T = 0 .

For such maps Collet-Eckmann [CE] proved:

If lim inf nJ\DTn(Tc)\ > 1, then T has an invariant probability density.

Indeed, they used some additional assumption, which was removed in [N3].
Recently, Nowicki-van Strien [NvS2] strengthened this to:

oo

If £ \DTn(Tc)\~1/ι < oo, then Γhas an invariant probability density .

For xG [0, 1], let λ(x) := lim supM^„ nJ\DTn(x)\. With this notation Keller proved
in[K4]:

If J(x) > 1 for a set of points x of positive Lebesgue measure, then T has
an invariant probability density.

Finally, combining this with observations from Nowicki [Nl], the following result
is shown in [K4]:

If T is uniformly hyperbolic on periodic points, i.e. if

inf{I(z): Tnz = z for some weN} > 1 ,

then T has an invariant probability density.

As a consequence of the general metric theory of S-unimodal maps [BL3, K4,
Le] it is known that an invariant probability density, if it exists at all, gives rise to
a measure preserving dynamical system which is mixing (and even weakly
Bernoulli) up to a finite rotation. This means that there is a finite disjoint collection
of p intervals Io,. . . ,Ip-i which are cyclically permuted by Γ, and Tp, restricted to
any of these intervals, is unimodal and mixing. If p — 1, Γis called nonrenormaliz-
able, otherwise we say T is finitely renormalizable.

None of these results, however, answers the following two questions in case
T has an invariant probability density:

1. Suppose Γis mixing with respect to its invariant density. What is its mixing rate
in terms of correlation decay or coefficients of weak Bernoulliness (= coefficients of
absolute regularity)?
2. How are "typical" periodic orbits distributed?

In this paper we attempt to answer these two questions for S-unimodal maps
satisfying the Collet-Eckmann condition

λc > 1, where λc:= lim inf \J\DTn{Tc)\ , (1.1)

henceforth called Collet-Eckmann maps (C-E maps). Benedicks-Carleson [BC]
proved that the set of parameters a for which the map x\-^ax(l — x) satisfies the
condition (1.1), has positive Lebesgue measure. It is widely believed that these maps
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are very close to uniformly hyperbolic ones, i.e. to maps T for which there is some
k > 0 such that \(Tk)f(x)\ > 1 uniformly for all xe[0, 1]. Very general transfer
operators and zeta functions for uniformly hyperbolic maps were studied in [BK],
and the results proved there open the road to answering the above two questions
for such maps (cf. also [K5]). In this paper we apply the same strategy of proof to
Collet-Eckmann maps T satisfying the following additional regularity assum-
ptions:

Γ(0) = Γ(l) = 0, and for each β0 > 0 there is a constant M > 0 such that

forall/?e[0,j80],

<M

\DT(x)\

\Tx — Tv\

\x-v\\DT(x)\
< M if u < c < v .

These conditions are satisfied e.g. if T is a polynomial map with vanishing
derivatives at c of all orders up to / — 1, but also for T(x) = α(l — \2x — l\ι) with
real I > 1. In both cases conditions 1 and 2 are easily checked. For condition 3 one
should observe that the expressions of interest are bounded by 1 if both, x and
u (respectively v), are close to c, and that the derivatives of these expressions have
a bounded number of sign changes.

Our main results determine the spectrum of transfer operators associated with
T (Theorem 2.1) and relate poles of dynamical zeta-functions of T to isolated
eigenvalues of these operators (Theorem 2.2). As it involves the Markov extension
of T, we can give a precise formulation of it only after some preparations in Sect. 2.
Here we formulate some consequences of these theorems, which can be stated more
directly:

Let T be a nonrenormalizable Collet-Eckmann map, and denote Lebesgue
measure on [0, 1] by m. Then T has an invariant probability density h, and for
μ = h-m, the dynamical system (Γ, μ) is mixing.

Theorem 1.1. (Γ, μ) has exponentially decaying correlations, namely. There are
constants C > 0 and p < 1 such that for any measurable F, G: [0,1] —• C with F of
bounded variation and §\G(x)\ι+δdx < oo for some δ > 0 and any n e N holds

Here var(i7) denotes the variation of F over [0, 1].

Remark 1.1. For Misiurewicz maps (maps for which c is not an accumulation
point of (Tnc)n>0) an estimate of this type is contained in [Zil]. For maps of
Benedicks-Carleson type (maps with λc > 1 and | Tnc — c\ > rn for some r > 0 and
all n ^ 1, see [BC]) L.S. Young announced a result like Theorem 1.1 during
a conference on Lyapunov Exponents in May 1990 at Oberwolfach. It is published
in her preprint [Yo], which we received, after this paper was submitted. In both
situations also a central limit theorem like our Theorem 1.2.1 is proved.
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Remark 1.2. The invariant density h(x) can be estimated from above as follows:

00

h(x) S const- X IDT^^Tc)]-111^ - Γc^1'11" .
i=l

This is proved, even for more general maps, in [N4]. From our construction of the
density h we can derive only a weaker estimate. L.S. Young [Yo], however,
obtained from her construction an estimate similar to the one above. For
Misiurewicz maps an estimate of this type was already obtained by Szewc [Sz].

Now consider F:[0, 1] ->R of bounded variation or F(x) = log|Γ'(x)| and
define random variables Sn(x) = £?=o F(T(x) on the probability space ([0,1], ra).
It follows from Theorem 1.1 that

00

0^σ}:= Var(F) + 2 £ Cov(F,FoTn)< oo ,
n = l

where Var and Cov denote variance and covariance respectively (compare e.g.
[Rou]). (If F = log I T'l which is not of bounded variation, one has to approximate
Fby Fn = max{F, - n}.)

Theorem 1.2. 1. The process {Sn)n>0 satisfies the following central limit theorem:

0, 0) denotes the point mass in 0.)
2. Suppose σp > 0. Then (Sn)n>0 satisfies the following large deviations estimate: For
each sufficiently small ε > 0 there is — oo ^ α(ε) < 0 such that

lim - log m -Sn-\Fdμ > ε > = α(ε) .

Remark 1.3. The possible occurrence of σj = 0 is discussed in [Rou, PUZ]. In
particular, σF > 0 if F is an indicator function. For Misiurewicz maps (see Remark
1.2) and for F = log |Γ ' | see also [Zi2].

Remark 1.4. Stronger limit theorems such as invariance principles can be proved
along the lines of [HK1] and [Ry]: First use the spectral properties of J5f̂  (see
Corollary 2.1) to show that the itinerary process (/Λ)πeN (defined by In(x) = L if
Tnx < c and In(x) = R if Tnx > c) is absolutely regular (= weakly Bernoulli) with
exponential mixing rate, and then apply general results from the theory of station-
ary stochastic processes. For Misiurewicz maps this was done in [Zil] . The proof
there relies on a spectral representation theorem for Perron-Frobenius operators
of Misiurewicz maps given in [Sz] which is similar to our Theorem 2.1. However,
we must say that we were not able to follow all the arguments used in [Sz], namely
his assertions (5.30) and (6.18).

Remark 1.5. Using our Proposition 4.1, one can proceed as in [Rou] to prove
convergence rates in the central limit theorem and a local limit theorem.

Remark 1.6. If T is a finitely renormalizable Collet-Eckmann map, then, as we
remarked above, it has a periodic interval / of some period p, and the dynamical
system (/, Γp, μ\j) is mixing. Theorems 1.1 and 1.2 hold also for this system.



Collect-Eckmann Maps 35

For the next theorem let Perπ = {xe [0,1] : Tnx = x}. The sets Pern are finite,
and we consider discrete probability distributions vn on Perπ with probabilities
vn(x) proportional to \DT (x)^1. These distributions reflect the fact that a periodic
orbit is detected all the easier the more stable it is.

Consider again F: [0, 1] -> C of bounded variation or F = log| 7"|, and define
random variables S'n on the probability space (Pern, vΛ) by

S'n(x) = "Σ F(Γx).
ΐ = 0

Theorem 1.3. 1. The process (S'n)n>0 satisfies the following central limit theorem:

Law(tt~ 1 / 2S; - \Fdμ) =>yK(0, σ2

F) .

2. Suppose σp > 0. Then (S'n)n>0 satisfies the following large deviations estimate:
For each sufficiently small ε > 0 there is — oo ^ α(ε) < 0 such that

lim - log vn
n

-S'n-lFdμ > ε > = α(ε) .

Remark 1.7. If F = log | T'\, the theorem says that vn-typical periodic orbits have
Lyapunov exponents very close to the exponent of m-a.e. trajectory.

Analogues of Remarks 1.5 and 1.6 apply also to (Sf

n)neN.

Remark 1.8. Dynamical zeta functions and their relations to transfer operators
have been first studied by Ruelle, see e.g. [Rue]. A very complete account of
transfer operators, zeta functions and the distribution of periodic orbits for sub-
shifts of finite type and Axiom A systems is the recent book by Parry and Pollicott
[PP]. Results like Theorem 1.3 for Axiom A flows were obtained without using
zeta functions by Lalley [La].

2. Outline of the Main Results and Scheme of the Proofs

The strategy of proofs is the following: We extend the system ([0, 1], T) to a system
(X, T) (Sects. 2.1, 3), which inherits local properties (such as metric and derivative)
of ([0, 1], T). On X we introduce a new metric (Sect. 6.2) in which some iterate of
T is uniformly expanding (Proposition 6.3). We find isolated eigenvalues of the
Perron-Frobenius operator (a particular transfer operator)jn the new metric (2.1)
and deduce mixing properties of the invariant density on X and on [0, 1] (Corol-
lary 2.1 and Appendix B).

In order to prove Theorem 1.3 we use zeta functions (Sect. 2.3) which are related
to the characteristic functions of the measures vn on periodic points. We prove a 1-1
correspondence between poles of zeta functions and isolated eigenvalues of corres-
ponding transfer operators (Theorem 2.2), and using analytic perturbation theory
for linear operators (Proposition 4.2 and Sect. 5)) we deduce Theorem 1.3.

2.1. Markov Extensions. An essential tool in this paper is the Markov exstension
of Γ, which was used in [K4] to study Lyapunov exponents of maps with negative
Schwarzian derivative and in [BK] to investigate the relation between the poles of
zeta-functions and eigenvalues of transfer operators for T in (abstract) hyperbolic
situations.
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The Markov extension of Γ(more exactly: of the dynamical system ([0,1], T))
is a dynamical system (X, f) together with a factor map π: X -> [0,1]. The state
space X is a countable union of intervals Di9 (zeN), which are disjoint copies of
subintervals D; of [0, 1], One should think of it as an infinite tower of intervals over
the basis [0,1]. π maps all points xeX from the same vertical^fiber to the same
base point x = π(x). The requirement πo T = Ton means that Tacts horizontally
just like T but may (and will) push a point x from one level to another. Hence it
makes sense to talk about the derivative T' of T9 namely T' = T' o π. Also, as X is
accountable union of intervals, it is natural to specify a Lebesgue measure m on
X by m ^ o π " 1 =m\Di(ieN). Further details of this construction are given in
Sect. 3.

2.2. Transfer Operators. Many aspects of the dynamics of T and f can be de-
scribed by transfer operators J£φ and JS^ associated with these transformations. For
φ e C [ 0 ' 1 ] we define

j ^ : C [ 0 ' 1 ] ^ c [ 0 ' 1 ] , seφf{χ)= Σ <p(y)f(y),
yeT-^x

and analogously JSf̂ : C x -+ Cx for φ e Cx. <£φ is obviously a well defined linear
operator, whereas one has to be careful in defining jSf̂  since its definition involves
a possibly infinite summationJΓis an infinite-to-one transformation). Occasionally
we write &\_φ~\ instead of JS?̂ .

Of immediate interest are the transfer functions φ = 1/|Γ'| and φ = l/\T'\.
They not only give rise to positive operators, but JS?̂  also has the property that for
any two bounded measurable f,g: [0,1] -> C,

In particular, if h is a probability density on [0, 1] satisfying jSf̂ ft = h, then μ — hm
is a Γ-invariant measure and mixing properties of the system (Γ, μ) are reflected
by spectral properties of if^, cf. [HK1]. This operator is traditionally called
Perron-Frobenius operator.

The same holds for if^ with respect to the measure m, the Lebesgue measure on
X. Also (cf. [K2, Lemma 4.6]),

ii&jh = h and Λ(x) = ^ Λ(jc), thenJS^Λ = A. (2.1)

Unfortunately, in the case of maps with critical points, the special transfer
functions φ and φ are unbounded and may give rise to transfer operators with very
unpleasant spectral properties. One way to overcome this difficulty is to consider
a transfer function Ψ which is multiplicatively cohomologous to φ,

A

Ψ = φ-^-^ (2.2)
T

with a weight function w, w(x) =f= 0 for all x. It follows from the definition of
£ψ that

J^(w /) = w J ^ ( / ) . (2.3)
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In Sect. 4'we investigate sfφ for particular weight function w,Jor which this
operator leaves the space B V of functions of bounded variation /: X -• C invariant.
More precisely, as in [BK] we define

where

( ~ ~ \
BV = Σ v a r ^ ( / ) + S U P I/I

ieN \ Df /

BV equipped with the norm \\ \\BV *S Banach space.
Recall that

λc = lim inf \/\DTn(Tc)\, and let (2.4)
n-> oo

λ p e r : = inf{I(z): Γ"z = z for some neN} > 1 , (2.5)

λη := lim inf {|^| ~1/M: η is the biggest monotonicity interval of Tn] . (2.6)
«-* 00

Denote

c,/lper} and /l £ := m i n { ^ , A,} . (2.7)

In Sect. 6 we discuss the relations between the various λ% and we see that λE > 1
follows from our basic assumption λc > 1.

Along the lines of [BK] we prove the following spectral theorem in Sect. 4.1:

Theorem 2.1. Suppose T is a Collet-Eckmann jnap satisfying (1.2). For each
Θ > λβ1 there is a weight function w defining Ψ such that the transfer operator
££ψ\BV-+BV is quasicompact with spectral radius 1 and essential spectral radius
r e s s < Θ.r e s s

1This means that, for each Θ > λβ 1, the weight function can be chosen such that the
operator j£f̂  can be decomposed as

N(Θ)

Sfφ = Σ PiW + A) + P&, (2.8)

where Φu for i = 1,. . . , N(Θ\ and ^ are projections commuting with J^ψ and such
that ΦiΦj = Φi& = 0 for i + ; and £f + ^ ^ = Id. For each i = 1,. . . ,ΛJV(0) we
have, Ipfl > (9, rank(^) < oo, and J ^ is nilpotent with ^ J ^ = JΓ^ = JT{. Finally

ίv^ const 0W.

Remark 2.1. Further special features of the particular transfer function Ψ are:
Pi = 1, and the set {/?J: |p f | = 1} is a cyclic group of simple eigenvalues. In
particular, the corresponding J^t are identically 0.

Remark 2.2. One cannot expect a better estimate of the essential spectral radius
than re s s ^ λ~Q\. For the full parabola Tx = 4x(l — x), which is conjugated to the
tent map with slope 2, the essential spectral radius equals 1/2, and one has
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Although we are quite far from proving it, we conjecture that the essential
spectral radius is equal to λ~Q\ if Γis uniformly hyperbolic on periodic points. Even
more, there might be a functional analytic setting such that this statement makes
sense for any S-unimodal map including those with stable periodic orbits and those
with a solenoidal attractor.

Let^BF* = {fw jeBV}, and for geBV* let \\g\\*:= Wgw'1^- It js obvious
that (BVύ, || |lw) is a Banach space, isometrically isomorphic to (BV, || ||βΐ>)

Because of relation (2.3) we obtain immediately

Corollary 2.1. ^φ'.BV^ -^BV^ is quasicompact with spectral radius 1 and essential
spectral radius re s s < 1. The spectral decomposition from (2.8) carries over to J£φ.

Theorem 1.1 follows from Corollary 2.1 by a standard calculation (see Appen-
dix B). The central limit part of Theorem 1.2 can be deduced from Theorem 2.1 as
in [ K l ] , where a central limit theorem of Gordin is applied. There is, however,
a more classical way to do this, which was introduced in [Rou], and which can be
modified to yield a proof of the large deviations part of Theorem 1.2. It uses the
relation between more general transfer operators and Fourier or Laplace trans-
forms of the random variables Sn introduced in Sect. 1.

For F: [0, 1] -> C of bounded variation and β,teC let

φ(x) = φβ(χ). e? Fix\ φ{x) = φβ(x) e"F{π*\ Φ(x) = Ψβ(x) e i < F ( w i) . (2.9)

In Sect. 4 we actually prove that, for β close to 1 and sufficiently small |ί ^Theorem
2.1 and Corollary 2.1 remain valid for JS?[Φ] and jSf [φ] instead of i f [ # ] and
J£[ψ2 except that the spectral radius needs no longer be 1. (For arbitrary β,teCit
may happen that the essential spectral radius and the spectral radius coincide, i.e.
that the operator has no isolated leading eigenvalues.) This fact, combined with
general analytic perturbation theory, is used in Sect. 5 to prove Theorem 1.2 from
the Introduction. Let β = 1. The transfer operators are linked to these probabilistic
results by the fact that J <£n\Jp~\hdm (which is a function of ί) is just the Fourier or
Laplace transform of Sn when t is purely imaginary or purely real respectively. For
thefunctipn F = log|7" |, which is not of bounded variation, we set t = 0, and
\φ~\hdm, as a function of β — 1, is again the transform of Sn.

For a more comprehensive discussion of the various approaches to probabilis-
tic limit theorems for mixing transformations see [K2, Sect. 9].

2.3. Zeta Functions. In order to relate the distribution of typical periodic orbits to
the invariant measure μ, we study dynamic zeta functions

where

ζnίφl= Σ
xePerM

), and £[Φ](z) are defined analogously. In fact, using φ = φoπ,

C M = C[φ] = C[Φ] (2.10)
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The first equality is a consequence of elementary facts about Markov extensions of
unimodal maps, see (3.5), whereas the second one follows immediately from the
relation

see (2.9) and (2.2). Our main result is

Theorem 2.2. Suppose T is a Collet-Eckmann map satisfying (1.2). Let φ and Φ be
transfer functions as in (2.9) depending on parameters β and ί, and assume $lβ > 0.
Define

3= 5[φ] = lim "/sup|Φ(x) Φ(Γx) . .

«->oo v x

Then

1. ζ\_φ]{z) = ζ[Φ~\(z) is meromorphίc and nonzero in {\z\ < d~1}.

2 5£φ\BV'-> BV has essential spectral radius r e s s ^ #, and if \z\ < 5 " 1 , then z is

a pole of ζ with multiplicity k if and only if z~ι is an eigenvalue of S£φ with

multiplicity k.

3. For each Θ > λ^1 there is a weight function w such that for small t and β close to

1 holds 5 [Φ] > Θ.

Assertions 1 and 2 follow directly from Proposition 4.3. For t = 0 and β = 1, the
third assertion is a direct consequence of Proposition 6.3, and the argument
extends to t and β — 1 close to 0, because 5[Φ] depends continuously on ί and /?.

The probabilistic results on the distribution of typical periodic orbits given in
the introduction follow from this theorem similarly as Theorem 1.2 follows from
the spectral representation: Defining φt as in (2.9), it is easily checked that
CnLψtVζnίΦ^ (as a function of ί) is just the Fourier respectively Laplace transform
of the random variable Sr

n defined in the introduction. Theorem 2.2 allows to
expand this transform in powers of the isolated eigenvalues of if [φ t] and if [ι^],
and analytic perturbation theory for isolated eigenvalues links these facts to the
probabilistic statements made in Theorem 1.3. More details are given in Sect. 5,
and a general account of these ideas (presumably a kind of folklore knowledge) is
[K5].

3. Markov Extensions

In this section we define the Markov extension of the dynamical system ([0,1], T).
As a purely topological construction it was introduced in a series of papers by
Hofbauer, see e.g. [Hoi, Ho2]. A piecewise smooth version of it was used in [K2]
and [BK] for investigating transfer operators and zeta functions of piecewise
expanding maps, and that proved also useful for studying ergodic properties of
5-unimodal maps.

Compared to ([0, 1], T) the Markov extension has two advantages: The critical
trajectory has no accumulation points, and the extension has a countable Markov
partition, where each member of the partition is an interval and is mapped onto
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a finite union of intervals from the partition. The price one must pay for these
convenient properties is the non-compactness of the state space.

Before we start the construction of the Markov exstension, we must, for
technical reasons, modify our original system ([0, 1], T) on the countable set
of points Un^oT~n{c}. We can either double all these points and extend T
to the enlarged space by taking one-sided limits (see e.g. [BK, Sect. 1]),
or we delete this set from the state space (cf. [K4, Sect. 3]). In neither case
the zeta functions are affected, because the critical point cannot be periodic
under the C-E assumption. Also the spectral properties of transfer operators
are unchanged by this procedure, see [BK, Prop. 1.1]. Therefore, abusing
slightly the notations, we shall forget this doubling. We write (α, b) for any intervals
with endpoints a and b.

3.1. Cylinders and Their Images. Let 2£n be the partition of [0, 1] into maximal
intervals of monotonicity of Tn. We call elements of 2£n cylinders of order n and
denote them by η. ηn[x] is the cylinder of order n containing x. Note that cylinders
are open-closed after doubling c and its preimages. In particular, ηn[x] is unam-
bigously defined in this modified state space.

If ηε&n, then (with two exceptions) η = (α, β\ with DTn(oc) = DTn{β) = 0,
and there exist r φ s , 0^r,s<n such that Tr(oc) = c = Ts(β). Therefore
Tn(η) = (cM_r, cn-s), where cm denotes Tm(c). The two exceptions are the first
and the last cylinder (in the sense of the order on the interval [0, 1]) which
are of the form (0, z) and (z', 1) with Tn-\z)= Tn~1(zf) = c and Tn(0,z) =
r (zU) = (0,Cl).

Let us call the intervals ηk [c + ] and ηk [c ] the central cylinders (of order k > 0),
where c+ and c~ are the points obtained from c by doubling. The images of these
two cylinders

Dk:= T\ηkic
 + -\) = Tk(ηk[c^) = (ck9 ck)

coincide, k being well defined for^ny k > 1. Namely we have nk[c + ] = (c + , α) with
Tsa = c± for some s < fc, and k = k — s < k. As Tk is monotone on ηk[c + \ it
follows that Tk is monotone on Tk~kηk[c + ], which contains c±. But this means
that Tk~kηk[c±] is contained in ^ [ c + ] or in ηk[c~~\. Hence

β*=3Γ*(ι ί fc[c + ] ) c Γ ί ( ι y i [ c ± ] ) = D s and ceDk.k. (3.1)

Additionally we denote Do = [0,1], Dx = (0, cλ) and c\ = 0. It follows that for the
two exceptional cylinders of order n, Tn(η) = Dx. For any other r\e2£n there exist
0 ^ r < s < n with Tn(η) = (cπ_ r, cM_s) and such that Tr(η) is a central cylinder of
order n — r, Tn(η) = Dn-r and n — r = n — s.

Consider ηeXn with Tn(η) = Dk = (ck, ck\ 0 < k ^ n. If csDk, then ηφ&n + l9

but η = η+ κjη~ (up to doubling of the endpoints). Both η+, η~ are in JΓn + 1 , and
Tn + 1(η + ) = D ^ ^ = (ck+u C l ) , Tn+I(η~) = Dk + 1 = (ck+u c±). In this case
k+l = l = k+ 1. On the other hand, if cφDk, then ηeZn + u Tn + 1(η) = Dk + 1

= (c fc+1,cjfe+1)and k + 1 = k + 1.

32. The Extension. Now we define the extension of T acting on the tower
X c [0,1] x N. Let X:= (J^L0Dk be the union of disjoint copies of the intervals
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Dk, where Dk = {<x,/c>|xe/)k}. Denoted = {Dk}k^0. We define f:X->X in the
following way: Let x = <x, k}eDk,

if ik = 0 ,

fx=<\ <7x, /c+l>, if / c > 0 a n d c<£Z)fc or xe(ck,c)aDk ,

if /c> 0 and c e D k and xe(c, ck) .

Recall that Tn is well defined, because we doubled c and all its preimages. Let us
call the two natural projections π and K, SO that x = <π(x), κ(x)). We say that
x is climbing if κ(Tx) = κ(x) + 1 and jumping otherwise (then κ(fx)
= k(x) +\ S κ(x)9 equality possible only for K = 1 or 2). If ceDk, k > 0, then we
say that Dk is a splitting level - both climbing and jumping are here possible. Dk-kis
always a splitting level.

As Γacts locally just like T (modulo climbing and jumping), f'(x) = Γ'(π(x)),
and the critical points of Tn are the preimages of the critical point of Tn under π~ 1 .
The critical values of Tn are the endpoints of Dkf 1 < k ^ n and the point <c l 5 1>.
One of the endpoints of Dfc, namely <cfc, /c}, is climbing for ever, the other ( < Q , fe>)
is climbing to the next splitting level, say D s, and then jumps back to (c-s+ ί9s + 1>.

So all critical points of Tn, n > 0, are eventually climbingforever and they are
the only points with this property, because T and hence T has no homtervals
(= intervals on which all iterates of T are monotone).

The notion of cylinders extends as follows: ήe JΓn iff ή = Dknπ~1η for some
k and ηe^n. Such ^'s are maximal intervals of monotonicity of Tn.

The system (X, T) has Markov property in the following sense: By definition

χ:= \J9Dk and TDk = Dk+1 if there is no splitting or TDk = Dk + ίuDk + 1 if Dk is

a splitting level. For a cylinder ή = Dkr\π~ιηe^1 this means that Tή = D j ? where

Dj = T(Dk nη), and by induction one infers:

Iϊή = Dknπ~1η with ηs&ni then fnή = Dje@ and Dj = Tn(Dknη) . (3.2)

We note the following consequences of this assertion for later reference:

f (3.3)

If πή = πή' for ή, ή'e&n9 then fnή = fnή'. (If c is eventually
periodic with period p, then it might be necessary to restrict to
n > p. Otherwise D{ φ Dj whenever i φjf.) Any xeή has a

brother x' eή' such that πx = πx' and Tnx = Tnx' and hence
DTn{x) = D Γ ( x ' ) . (3.4)

Hence the trajectories of two points of the same fiber (i.e. in π - 1 x for some
xe [0, 1]) which are in the interior of the tower (i.e. are not endpoints of an interval
Dk) will collapse after some iterations. As a consequence we have:

If fnx = x, then Tn(πx) = πx, and conversely, if Tnx = x, then
there is a unique x G π - 1 x such that Tnx = x . (3.5)

The first of these assertions is trivial. The second one is proved as follows: If x = 0,
then f <x, 0> = f<x, 1> = <x, 1>, and for k > 1 either <x, k) φDk, or (in the case of
a full unimodal map) x = ck and hence Γ<x, fc> = <x, k + 1>. So suppose x Φ 0
and consider <x, 0 > e D o . As c is not periodic, xφ{Jk^0 T~k{c}, and as the only
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points in Do which are mapped under some iteration of T to an endpoint of some
Dk are of the form <z, 0> with ze[Jk>0 T~k{c}, the orbit of <x, 0> is disjoint from
the set of endpoints of the intervals Dk. Now (3.4) implies thatthere is some p > 0
such that fpn(x, 0> = fpn(fn(x, 0» , which means that x := fp"<x, 0> is periodic
under Tn and π(x) = Tpnx = x. Suppose there is a further point yeπ~1x with
Tny = y. By jthe same arguments as above, there is some p' > 0 such that
x = fp'nx = fp'ny = y.

The following is obtained from [HK2, Lemma 4.i] as in [BK, Lemma 3.2]. The
proof is easy, and we suggest the reader to try it on its own in order to see, whether
he understood the basic features of Markov extensions:

Iϊήeάn and fnή 2 ή9 then κ(ή) ^ In . (3.6)

Consider now the splitting levels. For any DkeQ) with k > 0 there exist
r < k S s such that Dr and Ds are splitting levels (i.e. ceDr, Z)s) and there is no
splitting level in between. In particular, if k > 1, then r = k — k = s — s.

We call Dk the subinterval of Dk which climbs onto (c, cs) and Dfc~ its
complement which climbs onto (c5, c), where I) s, as just mentioned,
is the first splitting level above (or equal to) Dk. Clearly Dk =
(z, ck) and Dk ={ck,z) with Ts~k(z) = c, for a well defined z ,
which is the preimage of c of smallest order in Dk. (3.7)

We may also speak in an obvious way about Dk . Then T(Dk ) = Dk+ x for
r < k < s. Following this line we write for xeDk,

k(x) = k if xeDk and^fc(x) = fe^if xeDk . Observe that if ή is a
cylinder, ή a Dk, ή + Dk, then k is the same for all xeή and one

can talk about k(ή) . (3.8)

Finally we define for k > 1,

x~k:= (y9 k — ky with y£ηk\_c + ~\ u ^ [ c ~ ] such that Tk(y, k — k} = x .

(3.9)

The point j ; is not always unambigously defined, it may be to the left^or to the right
of c. If this happens, we choose yeηk[c~~]; but note that T(y, k — /c> is the same
for either choice. For xeD0 let X5 = *> a n < i f° r ^^Df let x\ = (y, 0>, ye[0, c~]
such that f<};,0> = x.

The motivation for these^definitions is that we want a point to shadow the
critical trajectory Ή. For xeDk there are two candidates in ^, namely ck and c^ to
be shadowed. From them we select the closer one ck, closer in the dynamically
defined D± sense, so that after the next splitting x may still shadow ck as they jump
or climb together.

This is important, because by the C-E condition we control only initial
segments of c€. As it will be explained later on, the trajectory of x will stick to a new
initial segment of <€ as soon as it can, i.e. at the first time it reaches a D ~ part after
some splitting level. Then it shadows Ή through consecutive D " to the next
splitting and further through all following D+ till the next opportunity (new D~
after splitting), when it sticks to ja new initial segment of # again.

We use the notation xn = Tnx9 but simple arithmetic make sense only on
positive indices. By x_j+n we mean Tn(x-j\ defined only for xeDj. Similarly
xM_fe = (Tnx)-k makes sense only for xneDk.
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Remark 3.1. We want to point out that the sets Do and D1 are dynamically
unimportant. Namely:

nπ-1lO,c-^) = Du fφ1 n π" 1 [c + , C l ]) = D2, and

4. Transfer Operators and Zeta Functions

The aim of this section is a proof of slight generalizations of Theorems 2.1 and 2.2.
We proceed as in [BK] and approximate iterates i ? n at an exponential rate by
some compact operators. This yields the spectral decomposition (2.8), which
depends analytically on the parameters β and t of if. Finally we relate the
eigenvalues of the operators J? to the poles of corresponding zeta functions.

4.1. The Essential Spectral Radius. For a transfer function φ: X -> C and n e N let

φn(x) = φ(x)-φ(fx) ...-φ(fn-1x)

and

= lim \/sup{\φn{x)\:xεX} .
«-»• oo

As in Sect. 2 denote \j/(x) = l/\f'(x)\. In Sect. 6 we define a weight function
w:Z-•](), + oo[ for which we prove that the cohomologous transfer function

vv
Ψ = φ -—ji satisfies:

wo T

< 1 and supίvar^X1?^)} < oo (4.1)

for any βeC with 9lβ > 0 (see Propositions 6.3 and 6.2). It follows immediately
that for each F:[0, 1] -• C of bounded variation and each teC the transfer
function Φ = Ψβ exp(ίF), where F = Foπ, satisfies:

sup< var£>.(Φ) + s u p | Φ | : D ί 6 ^ > =:K(j8, ί, i7) < oo , (4.2)

and because of Proposition 6.2 V(β9 t9 F) is a locally bounded function of the
parameters β and t.

Having established this property we can apply the results of [BK, Sect. 2] to the
operator J^s, which we denote in this section often just by ^£. For readers who
want to check the use of these results carefully we note that V = V(β9 ί, F) is related
to the constant M in Eq. (2.3) of [BK] by M ^ 2V.

Lemma 4.1. (Corollary 2.4 in [BK]) For each Θ > θ[Φ] there exists a constant
C > 0 such that

$v, var^(ΦM), sup \Φn\ ̂ 'C Θn for all n>0 and ή
n
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The constant C is locally uniform in the parameters β and t.

The local uniformity of C is indeed not explicitly stated in [BK], but can be
checked easily by following the (simple) proofs of these estimates.

We needsome further notation: For each n > 0 and each ή e ££n fix Xή e ή in such
a way that Tnxί] = x^ if ή ^ Tnή and arbitrarily otherwise. (Note that the Markov
property of (X, f) implies that ή and fnή are disjoint \ίήφfnή) Then

ή c Tnή for some ήs$n if and only if x~ is the only fix point for

fn in ή . (4.3)

Denote by stfn the set of those ή eβ£n which are not among the two leftmost or the
two rightmost ή in the interval Dt they belong to. Then

sup card{?7 e S n : ή c Dt , ηφsϊn} <L4 (4.4)
i

and

if ^e J/M is contained in ^ , then it is separated from the endpoints
of Di by a distance of at least min{|;J|: η'e£?n} which depends
on n but not on i . (4.5)

As Sn = π " 1 J ^ v 3), we have

π(ή)e^n and hence f"̂  c β0 u . . . Dn for each ήeJn. (4.6)

F o r / e ^ F define

άn:BV-> BV is linear, ||άΠ||gv ^ 1, and

Σ l lM)Zί II FK = Σ 2 | M ) | ^ 2 card(^n) |I/IIBK < » . (4.7)
ή e j / n ή e s/n

We remark that the particular choice of the grid {xή'.ή €<$/„} for the approximation
operator άn is important for estimations on the zeta function but not for the
investigation of the spectral properties of if.

Lemma 4.2 (Proposition 2.7 in [BK]). For each Θ > #[Φ] there is a constant
C > 0 such that

-^nφ\\Bv^C Θn foralln>0.

The constant C is locally uniform in the parameters β and t.

The local uniformity follows again from the proof in [BK].
If the operators όtn had finite/ank, this lemma would imply immediately that the

essential spectral radius 3 of if J does not exceed #[Φ]. (For more details see the
discussion in [K2, Sect. 2.A/B].) If Φ = Φ o π, this is actually the case as is shown in
[BK, Lemma 4.2]. Unfortunately our transfer functions do not have this property,
and we have to modify the approach of [BK] in order to prove

Proposition 4.1. The operators S£ %an\BV ^ BV are compact. Therefore, in view of
Lemma 4.2, the essential spectral radius 3 of S£\ does not exceed 3\Φ\ and <£φ has
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a spectral decomposition as in (2.8). (// $ coincides with the spectral radius of ifφ,
then N(Θ) = 0 in (2.8).)

Proof. For notational convenience, we prove the proposition only for β = t = 1.
However, exactly the same proof works for general β, ί e C with SR/? > 0.

For ηe3?n denote

Suppose^?"?? = D for some ήe<stfn(η) and some De2. Then Tnη = D, and by (3.4),

fnή = D for each ή ^

Let JS? = if [Φ].

where

= Σ M ) χf-« (Φ»°f,r")

Here Tήn denotes the inverse of (Tn)\ή. Now it suffices to prove the compactness of
Άη for fixed ηs^n, because 2£n is finite.

As φ = φ o n and F = F o π, it follows

W°T

Z D 4
ήeJn(η)

If Λ/n(>7) + 0, let ή0 = Do n π ~ x ?/, and define for ή e srfn{η) with ή s D ;

Then

4

As var^(if "χή ) < oo and as T ~n ° π: D -> f/ is monotone, it suffices to prove that
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is compact, and as £ A g ^ 1/(^)1 ^ 11/llίκ, it is enough to show that the family
(Vή:ήestfn(η)) is relatively compact in BV(η\ see [Rud, Theorem 3.25]:

In Sect. 6 we define w(<x, i>) for i > 1 as

| x - C i | |;c-c

where £ = 1// and π s defined in (3.8). q can be any number in ~]λE, 1 [.
Consider ήe^n(η) such that ή^Di. With the notation of Sect. 3,

Di = (ch cj) c D 0 = (0,1). Hence

1 ( ά - 7 + i ) r ί , (4.8)

where

p(μ9υ;x):=[ — - x(l - x)

\\x-u\-\x-v\ )

Observe that by (4.5),

dist(Cf, η\ dist(ci, f?) ^ δ : = min{length(^): f / 'e^} ,

δ depending on n but not on i Let / = [0, 1]\{x: dist(x, η) < δ}. I is a compact set,
and it follows easily that

Γ.IxI-* BV(η\ (M, t;)ι->p(M, t;; •)

is continuous. Hence {p(u,v; •)• (M, ι;)e/ x /} is compact in BV(η).

As the supremum and the variation of q~ι- [DTί~1(x-~i + 1)\~ξ over η is expo-
nentially decreasing in i by Corollary 6.2, it follows that the family (v~:ήejtfn(η)) is
relatively compact in BV(η). D

Proof of Theorem 2.1. Theorem 2λ is the special case β = 1 and F = 0 of this
proposition, for in this case Φ = Ψ, and it follows from Proposition 6.3 that, given
® e ] ^E ι -> 1 C> the constant g involved in the definition of the weight function w can
be chosen such that ,9[Φ] = 5[!P] < 6). JSf p: 5 F - • BV has spectral radius 1, as
f &ψ(f)wdm = j ^ ( / w)rfm = J/ . wdm for all/eBV, see (2.3). D

¥.2. Analytic Perturbations of the Spectrum. The operator ifφ depends via the
function Φ on the parameters β and ί. In order to be able to apply analytic
perturbation theory to it, we show that this dependence is holomorphic.

Lemma 4.3. (JS? [!F V * ] : β, t e C, Wβ > 0) is, as a function of β and as a function of

ί, a holomorphic family of operators on BV in the sense of [Ka~\ and
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Proof. Wέ prove the assertion for β. The proof for t is practically the same.

Fix fe B V which is different from 0 only on one level D e Q). For u e C, | u | small,
we have:

BV

-(fΨu-f)-f\ogΨ

' • " ; <

BV

BV

Now, on a fixed D e ^ , Ψ is bounded away from 0 and + oo, and as Ψ\^eBV(D),

lim

As || ̂ lΨβetF^\ \\BV ύ 6 V(β, t, F) by [BK, Lemma 2.2], and as K(j8, ί, F) varies
continuously with β and ί (see 4.2), the family (&\ΨβetF^: β, ί e C , $lβ > 0) is
locally bounded. Therefore

lim

and in view of [Ka, Ch. 7.1.1], this proves the analyticity of the family of operators.
The formulae for the higher derivatives follow from the observation that

i^ i ) •
As a first consequence of Proposition 4.1 we note

Proposition 4.2. Let βo,toeC, 5H/?0 > 0. For each Θ > 3(Φ(βθ9tθ9-)) there are
a neighbourhood ί / g C x C around (β0, ί0), a positive integer N, and a real constant
C > 0 such that for each &l&(β, ί, )] with (β, ήεU holds'.^

There is a projection Φ\Φ{β, ί, •)] commuting with J£[Φ(β, ί,•)] such that

(Id - Φ[_Φ{β9 U-)Ύ)&[_Φ(βy ί, )] has no eigenvalues of modulus ^ Θ .

, ί, )] αnrf Id — gP[Φ(β, t, )] are analytic functions of β andThe projections
t,(β,t)eU.

Of course, Id - & = Σ^ from (2.8).

Proof Everything follows from Proposition 4.1 and [Ka, Ch. VII. 1.3], except for
the uniformity of the constant C. The argument to prove this is classical: Denote by
R(β, t, z) = (Id - z&[Φ(β, t, ) ] ) " x the resolvent of J£?[Φ(jS, ί, )] and observe that

R(β,t,z)=
k = 0
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and

^ [ * ( ] U 0 m * ( j M , 0 ] = - ^ ί znR(β,t,z)dz.
Z π l \z\=Θ

As the resolvent is analytic in (β, t)eU (see [Ka, Ch. VII.1.3]) and analytic in z in
a neighbourhood of {\z\ = <9}, the uniform estimate for C follows. D

4.3. Zeta Functions. As our transfer function Φ does not have the form Φ = Φ o π,
we cannot treat the zeta functions exactly the same way as in [ B K ] . The necessary
modifications are, although crucial, of technical nature, and we can basically follow
the proof from [ B K ] .

Lemma 4.4. For each finite rank operator Ά\BV-+BV and each n > 0, lJ£nάn is
of finite rank and hence of trace class and

tr(iif"άn)= x ( i i ^ ) ^ ) ,

where the right-hand side converges absolutely.

Proof. Because of the linearity of the trace functional, it is sufficient to prove the
lemma for rank 1 operators. Then rank(J i f n&n) ^ rank( i ) = 1, and, if Ά maps BV
to the one-dimensional subspace spanned by the function f say, then

with an absolutely converging right-hand side, see (4.7). Define J ^ e C by

Then

with an absolutely converging right-hand side. D

In view of Proposition 4.1, J?s has a spectral decomposition as in (2.8), i.e. for
Θ> 5[Φ],

N(Θ)

^ό=Σ Pi(£ + A) + »£Φ , (4.9)

where ^ , for i = 1,. . . , N(Θ\ and ^ are projections commuting with $£s and
such that Φ{Φj = Φ{Φ = 0 for i Φ j and Φ^ + J ] . ^ = Id. For each i = l, x . λ , ΛΓ(6>)
we have | p f | > Θ, rank(^? ) < oo, and ^ is nilpotent with ΦiJVΊ = JfiΦi = ^ .
Finally || Φ£n || ^ ^ const <9".

Proposition 4.3. L^ί Φ(x) = Ψ(x)^etf^\ β, ί e C , 91)8 > 0. For eαcλ 6) >

iV(Θ) Γ oo « / N(Θ)

Π (1 - P^) r a n k (^ ι ) = exp{ Σ - US] - Σ
i = l U = l n \ »=1

Ϊ5 analytic and nonzero in {z: \z\ < Θ~1}.
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As the '^ are projections and the JVΊ = Φ^i are nilpotent, rank(^ ) = t r ( ^ )
and tτ((Φι + Jf{)

n) = t r (^) for all n > 0. Therefore

N(Θ) N(Θ) oo n

Π (1 - p izΓn k (* ) = exp Σ Σ - - ^

= exp

n

- - t r

z"
tr

n

£ = 1

N(Θ) ^

Σ
Hence, in view of the definition of ζ[Φ~\(z\ the proposition follows from

Lemma 4.5.

N(Θ)

- Σ ίΛ[φ]-tr
N(Θ)

< const

wiί/i a constant uniform in n and locally uniform in the parameters β and t. (Indeed, the
uniformity is not necessary for the proof of Proposition 4.3, but will be used in
Sect. 5.)

Proof In the course of the proof, estimates by terms of the form n Θn or
(1 + ε)'Θn will occur. In order to simplify our notation, we shall replace them
tacitly by const Θn. This is possible, because Θ > #[Φ] is arbitrary. Observe also
that all constants can be chosen such that they are locally uniform in β and t.

Let

f(0) _ φ

Then LlΦ] = &+βn

1> by (4.3). As ζ^0) is a finite sum (see (4.6)) and as
ynXή{y) = 0 for yφT"ή, we have (observing of Lemma 4.4 for the last equality)

& 0 ) =

= Σ

where ̂  = Id - Φ = Σ f ?
For Ci,1} we have the estimate (observe (3.6) and (4.4))

l) sup|ΦJ ^ const 6>" . (4.10)
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so the lemma will follow, if we show that

S const >Θn. (4.11)

By Lemma 4.2 and Proposition 4.2,

S const Θn ,

and the proof must be finished by showing that

^ const -Θn (4.12)

with a constant locally uniform in β and t.
As the proof of this estimate is very similar to the corresponding one in [BK],

we defer it to Appendix A. D

5. Probability Transforms and Zeta Functions

In this section we prove Theorems 1.2 and 1.3 on asymptotic normality and
large deviations both for Lebesgue typical trajectories and for typical periodic
orbits.

Further Consequences from Analytic Perturbation Theory. Suppose T is a non-
renormalizable C-E map, i.e. (Γ, μ) is mixing, where μ = hm, see Sect. 2.2. Then the
spectral representation for J ^ reduces to

j£;- = 9\Φγ + Φ{se% where Φγ{f) = jfdih-h and h(x) = Σ W*) (5-1)
xeπ~ ιx

Here &{ = lά- Φu pγ = 1, and

II &φ&i II w ̂  const rn for some r < 1 .

This follows e.g. from (LM, Theorem 5.5.3] together with [K3, Lemma 1].

Consider now ££[Φ~\ where Φ = Ψβ -etF depends on the parameters (/?, ήe
(7, U a neighbourhood of (1,0) in C x C. For (β, t) = (1,0) we have
jSfφ = <gψ. Because of the conjugation (2.3) between Jδf̂  and if^, the operator
5£ψ has Pi = 1 as a simple, isolated eigenvalue with the rest of the spectrum
contained in {\z\ ^ r}. Hence, as stated in Proposition 4.2, /?! is an analytic
function of β and ί, (jS, ί)e t/. Kato [Ka, Ch. VII. 1.5 and Ch. Π.2.2] gives explicit
expressions for the first and second derivatives of pί with respect to the parameters.
These expressions can be evaluated explicitly using the formulas of Lemma 4.3 for
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the derivatives of j£? [Φ]. The calculations are tedious but straightforward, and we
give only the results:

I
and similarly

id \

( d* lo ^
\dβ2 O g P ι )

β=l,t = O

β=l,t = O

" )

A
H)

β=l,t = O

β=l,t = O

= j log Ψ dμ = j log

= σ l o g | Γ ' |

Φdμ= -flog|r|dμ,

(5.2)

(5.3)

For the evaluation of the derivatives with respect to β one must use the fact that

μ = h. m = w •/• m for some feBV and therefore

J |logw\dμ = J |wlog w| -fdm ̂  sup J |wlogw\dm < + 00

by Proposition 6.1.
A more direct calculation of such derivatives, which does not rely on analytic

perturbation theory, can be found in [Rou].

Proof of Theorem 1.2. The central limit part of Theorem 1.2 can now be proved as
in [Rou], the large deviations part as in [K4, 9.6],

Proof of Theorem 1.3. In [K5] it is shown how Theorem 1.3 can be derived from
our results on spectra and zeta functions. As this reference is not very well
accessible, we repeat its proof here. Without loss of generality we assume that

The distributions vn on the sets Per,, = {xe[0, 1]: Tnx = x} defined in the
Introduction are related to zeta functions in the following way: For F: [0, 1] -• C,

Σ

where F = F ° π. In view of Lemma 4.5 and the special spectral representation (5.1)
chosen in this section it follows that for small | τ | ,

< const rn (5.4)

for some r < 1 and a constant not depending on τ. Here P\\_Φ~\ denotes the
eigenvalue pγ of the operator ££[Φ~\. (If F is of bounded variation, then we work
with JSf [Φ(l, τ, )], if F = log |Γ' | , we use J?[Φ(l + τ, 0, •)]•)
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In particular, if τn is a sequence of sufficiently small complex numbers, then

if the limit on the right hand side exists.

The Central Limit Theorem. Let τn = ίτn~ίl2

fτeR. Then, in view of (5.4) and (5.2),

lim log$eiτn-υ2s»dvn= lim n ^

= lim n

and it follows that the characteristic functions of n 1/2S'n converge to that of
0, σj). a

The Large Deviations Estimate. Let τn = τ e R. Then

lim -log jeτS-dvn = lim (logp.lΨe^ - l o g ^ m ) = \ogPι[ΨeτF] ,

and the assertion of Theorem L3 follows from general large deviations theory,
as the function τ\—>logp1[ΨeτF'] is strictly convex at τ = 0 if σj =

d2

dτ
log Pi > 0. For an account of general large deviations see e.g. [PS] or

τ = 0

[CG]. D

6. Estimates on Derivatives and Distortions

In this section we define the weight function w. This function induces a new
geometry on the levels of the tower by setting for

The new metric p increases the distance near the endpoints of each Dh where the
singularities of w are of orderl — 1//. On the other hand the new length of the levels
stays bounded. In this way Tn near critical points loses nonlinearity. Due to some
additional factor in w the derivative of Tn in the new metric is bounded from below
by const -q~n for some q<\. The exponential bound is possible because of
hyperbolic properties of C-E maps. The inverse of this derivative is the transfer
function Ψ denned in (2.2).

In order to prove spectral properties of the corresponding transfer operatoron
an appropriate Banach space we need to verify some estimates on Γ, \ί and Ψ.
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Hyperbolic Properties of C-E Maps. If the map T fulfills C-E, then there are
constants Kc > 0 and λc > 1 such that

\DTn(Cl)\^Kcλ"c.

It is known [Nl , N3, NvSl] that in this case there are constants λper > 1, Kη > 0,
and λη > 1, such that for any n and any /?ePerπ and ηn

\DTn(p)\>λn

per, and d i a m ^ = m a x | ^ | < Kηλ~n .

Both λH = min{Ac, /lper} and λE = mϊn{λ]Jι

9 A }̂ as defined in (2.7) are bigger than
one. (Observe that the constants λc, λη, and λE are not exactly the same as those
with the same names defined in Sect. 2 but can be chosen arbitrarily close to them.)

The relations between the different expansion coefficients (A's) are not yet
completely clear. Arguing along the lines of [ N l ] one can show that

\DTnj(p)\ ^ const (diam& j n)~x for j > 0 and

d i a m ^ ^ const ( m i n ^ , λo})~n ,

where λ0 > 1 depends on how close the above λc is chosen to the one from Sect. 2.
Moreover lim supπ-,0 0 |DΓ"(c1)|1 / M ^ lim inf^^ \DTn{p)\1/n. It is unfortunately

still unknown whether a uniformly hyperbolic structure on periodic points (i.e.
λpeτ > 1) implies the C-E condition.

6.1. Distortions and Variations Related to T.

Expansion Due to the Negative Schwarzian.

Lemma 6.1. (Crossratio expansion) [MS]. Suppose that Sg ^ 0 and Dg\j Φ 0 on
some interval J. If J is a disjoint union of three intervals L, M, R, (M is the middle
one), then

\J\ \M ~ \L\ \R\

In particular, when M is reduced to a point x, then

\gJ\ \L\\R\

For xeJ = (a,b) let us define

dΛx) \b-a\

dj(x) describes the distance from x to the endpoints of J in the following sense:

^ f c - x\, |x - fl|} g dj(x) ί min{\b - x\, \x - a\} , (6.1)

and if x e [α, β~\ c [a, b], then

dla,n(x) g a[βffc](x) . (6.2)



54 G. Keller and T. Nowicki

The second inequality from Lemma 6.1 can be now written as

\Dg{x)\^dβiJ){gx)/dj(x). (6.3)

Now^we come back to the map T. We can speak about dj(x) on the tower when
x e Ja Dj and xj= π x e π ( J ) = [α, fc] c Dj. Then 5j(x):= 57(x). Suppose that

ϊ; and TnxeDk. Define

(5 M (x):=^ n [ ; £ ] (x),

r n containing x,

d(x)\= dβ^x) .

where ήn[x~], the cylinder of order n containing x, is mapped by fn onto Dk. Define
moreover

\DTn(x)\ n ; X J ^ 1 , (6.4)
δ ( Γ n )

Then

and, by (6.2), for any n > 0,

δ(x) ^ δΛ(ά) (6.5)

Corollary 6.1. Suppose that XEDJ and TnxeDk. Assume that both components of
Dj\{x] and both components of Dk\{Tnx] have length bigger than ε. Then for any

const —
\d(fnx)J diam^r/

Proo/. This follows from the following decomposition of the left-hand side of the
inequality: By (6.1) and (6.4),

Lemma 6.2. (Koebe Lemma) [t S] . Suppose that Sg ^ 0 and Dgjj φ 0 on
interval J = (a, 2?). 77zen /or x e J one /zas

\Dg(a)\=\\ga-gb\

In particular, if \Tnx - Tna\ g |Γ nx - Tnb\, then \DTn(x)\ ^ \DTn{a)\/4, other-
wise \DTn{x)\ ^ \DTn(b)\/4. D

More generally one may say that a map g satisfies the Koebe Lemma if for
any σ > 0 there is a τ > 0 such that for any n and any interval (a, b) on which
gn is monotone holds: if xe(a9 b) and \gnx - gnb\/\gna - gnb\ > σ, then \Dgn(x)\
l\Dgn{a)\>τ.

Remark 6.1 (See [NvSl]). It may be interesting to point out that general C-E
maps (not necessarily S-unimodal) have also the above described properties con-
cerning hyperbolicity, expanding the crossratio (perhaps with some constant
smaller than one but uniform in ή) and the Koebe Lemma.

Bounds Related to the Nonflatness of T.
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Lemma 6.3. For each β0 > 0 there is a uniform bound on sup ( α 5 & ) and var ( α b ) of

(
\\DT(x)\dla,by(x),

for βe[O, jβ0]
 and f°r any interval (α, b) on which T is monotone.

Proof. Denote the expression under consideration by F(x). Then s u p ( f l b ) F ^ 1 by

(6.3). We may assume that be (a, c). Then

/ \Tx-Ta\ Y / | r x - 7 |̂ Y ί\DT{a)\\a-b\
[X) \\x-a\\DT(a)\J \\x-b\\DT(x)\J \ \Ta - Tb\

The suprema of all three factors and the variation of the second factor are bounded

by M, see (k2). The third factor is constant, and the first one has at most two

monotone branches by negative Schwarzian. Hence its variation is bounded by

2M. D

Estimations on the Shadows. In this part we prove two technical lemmas which give

exponential estimations for the weight function, c may denote c+ o r e " .

Lemma 6.4. Suppose that yeη = ηd[c], and that there is some v such that x = Tdy e

(v9 c) a (cd, c) c (cd, cd) = Tdη. Let β0 > 0. Then there exists a constant K indepen-

dent of d, y and v such that for all βe[0, j8o],

G{xY:= \DTd{Ty)\H <Cd'c7 j ^ Kλξf

and

Proof. Assume first that \cά — x\ ^ |x — cj\ and write

G(x) = \DT"(Cl)
\DT(x)\ 1
DT(cd)\ \

(\χ-

\x

- c

\c

-

i *

c\

\x-

-cd

x -

-cd

-v\\DTd~ι(
X \v-c\

l ) | | x _ c | ' - i \DT(cd)\

\CΛ-CΪ\ \cd-c\\x-v\
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G{ ^ 1/4̂ ° by the Koebe Lemma and as 1/GX has at most two monotone branches,
varl/G? ^ 2 4̂ ° Gf and \/G{ are bounded by M2βo and are also of bounded
variation uniformly in d (see (1.2)). G3 ^ 1/2 by the assumption on the position of
xe(cd9 cd) such that var 1/Gβ

3 ^ 2βo because of its monotonicity, and finally G4 is
monotonically decreasing and not smaller than 1, whence var 1/Gj ^ 1. In view of
the definition of λH we thus obtain

G(x)β ^ const λξf and var —β ^ const λ^βά .
Gp

Assume now that \cd — x| > |x — cd\. By Lemma 10 in [N2] there exist peri-
odic points p, pγ = Tp of period d such that p = Tdpe(c, cd). Write G(x) as

G(x) =

' H y ^ l \DT(X)\ \ P - C \ 1 ~ ' ( \ χ - c d \ i c a - x l k - V

which can be estimated as before. D

Lemma 6.5. There exsίsts a constant K such that for any x,

Proof. Assume first k = k, so that xeDk. We shall reduce the other case to this one
later on. If |x — ck\ ^ |x — c^|, then the assertion follows from the Koebe Lemma
with K = Kc/4, because λH ^ λc. So we may assume \x — ck\ > \x — ck\ and in
particular | Dk \ > \ Dk~ \.

Consider η = ηk-k\_c] such that Tk~k is decreasing on */. Dfc_fc = Tk~kη is the
highest splitting level below Dk. Hence there exist oceη and pe(c9 α) such that
Tk~koc = c and p is periodic with period k — k, cf. [N2, Lemma 10]. (Then px = Tp
is also periodic with the same period.) Observe that cφTι(]p, α[) for
i = 0,. . . , 2(/c — k) as Γfe"^ is monotone on (p, α) and on (p, c) = Tk~k(p, α). On
the other hand, as Γhas no sinks, thereis βe(p,c) such that Tk~k(β) = α. Therefore
there are ye(c, jS) and k ^ s ^ 2(k — k) such_that Tsy = c, Ds is a splitting level,
*7sM = (c? αX a n d the trajectory (yf: ί = k — k + 1,. . . , s) defines the partition of
D/s into D + and D~ parts, which are monotonically jnapped one onto another.
Therefore D? = (ci9 γt) and PiSD^ = (yi9 αf), (i = fe — k + 1,. . . , s).

By the Koebe Lemma (or by more elementary consequences of negative
Schwarzian) one has for y e (c, y)9

\DTl'Hyi)\ =

for i as above. In particular this holds for i = k and y = x-k, and we have to
estimate \DTk~1(p1)\ from below.

As pΛ is periodic with period k — k, we have \DTk~1(p1)\
= \DTk~1'(p1)\\DT1'-1(Pi)\. The first factor can be estimated by λ^. For the

second one we use the observation Dk c Dk9 which gives \pk — ck\ = \pk — ck\ ^

|x — Ck\ ^ |x — CΔ ύ \Pk — ck\ S \Pΰ —_ck\- We apply the Koebe Lemma to τk~x

on (puCi) a Tηk[cl and obtain I D Γ ^ ^ P i ) ! ^ IDT^^c^/A. This finishes the
estimation in the case k = k. '
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Suppose now that k = k, i.e. xeDk. Remark that, as before, Dk^ Dk, but also
Dk <= Dι . This is due to the fact that the next splitting after k can appear not later
than the next one after k. (Dk is longer, it includes more preimages of c.) If it occurs
earlier, then the splitting point must lie in Dk\Dk and in this case DkaDι,
otherwise D^ = Dk~. Now we can^ estimate the derivative at x by the identical
derivative at his brother x'eDi and use the first part of the proof
(ίc(x') = κ(x') = k = κ(x) = ic(x)). D

Corollary 6.2. Let k> 0. Then

sup

where K is the constant from Lemma 6.5.

Proof This follows from Lemma 6.5 and the fact that by negative Schwarzian
derivative^xι->|DΓ/c~1(x_fc + 1 ) | ~ 1 has at most two monotone parts on each of
Dk and Dk . D

6.2. Construction of the New Metric. We want to find such w that

w

w o Γ D Γ

for some n and q < 1. In other words we want to change the geometry in such a way
that Tn becomes uniformly expanding. As already said, C-E transformations
exhibit a lot of expanding features, and also the negative Schwarzian gives some
expansion. Those two properties are sufficient away from critical points.

On the other hand the C-E condition provides the expansion near the critical
trajectory. So one has to combine these two contributions taking care of the
passage through neighbourhoods of the critical point, which must be visited, as the
C-E condition gives expansion only along initial segments of the trajectory of cγ.
Therefore one has to estimate derivatives of Tn in arbitrary points by derivatives of
carefully chosen initial parts of the critical trajectory.

Let q e ] λi γ, 1 [. Define w: X -» R by

where { = κ(x) and i was defined in (3.8). On the levelD0 let wjx) = 1, and on the
level Dx let w(x) = (cx — x)~(1~1/0. As the levels Do and Dx are dynamically
transient (see Remark 3.1), we shall skip in the sequel the details of estimates
concerning these two sets.

The factor d guarantees expansion near critical points, q gives artificial expan-
sion on levels without splitting, where there is a mean natural expansion but not
necessary on each step, and the derivative part allows to shadow the critical
trajectory from its start at c1.

Proposition 6.1. For any δ e 0, there is a constant C = Cδ > 0 such that

J w\+δ dmS C'(qλ1Jιy~k'il+δ) for all k > 1

where (qλϊjι)-<1+δ)<l.
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Proof. By Lemma 6.5,

f w\+δdm^ const-(qλtfΓ"'
Dk

1 1
• + •

X — Ck Ck — X
dx .

The assertion follows from qλ\lι > 1 and ( l - - j ( l + δ) < 1. D

6.3. Bounds on the Transfer Function Ψ. For XEDJ and xn = TnxeDk we have

wq(Tnx) \DTn(x)\

)-k+l)

It is clear that we want to bound the quotient.

Bounds on Ψi.

Proposition 6.2. For each β0 > 0,

sup sup var£fc(ΪP?) + sup Ψ{ 1 < oo .
\ Dk

Proof. Let x eDy and TxeDk. We consider only the case 7 > 1. The cases j = 0 and
7 = 1 can be treated similarly.

Denote) =j(x) and k = k(fx). There are several possibilities:

1. Dj is not a splitting level^
Then k =j + 1 and fc =7 + 1, (Tx)-k+1 = x-j+i

2. Dj is a^splitting level, x e ί / and TxeDk

+.
Then l = k=j+l =J+ 1, (fx)_ϊ + 1 = ά _ j + 1 .

3. Dj is a splitting level, xeDf and fxeDk~^
Then fc = j + 1, fc = 1,/=;, (fx)-ί + i = fx.

4. Dj is a splitting level, x e DJ and 7x e Dk

+.

Then fc = k =7 + 1 =7 + 1, and (!Γx)_fc + 1 = y'eDi is a brother of y =^x-~j+1 e
Dj-j (i.e. πy = ny'). Their trajectories meet at level Dk after
k — 1 = 7 steps.

5. D7 is ^splitting level, xeDj and TxeDk~.
Then fe = 1,7 =7, and (fx)-i = X ' G Z ) ^ - ! is a brother of xeDj. They meet at
level Dfc after one step. '



Collect-Eckmann Maps

We have '

59

x) =ίd(fx)y-1"/\Dfl'1((fx)-k+ι)\\111 1 f
w(fx)\DT(x)\ \ d(x) j \ |2)f3-i(ά_J+1)| \DT(x)\q]

djfx)
J

-111(

I/I

DTj-1(x-]+i)DT(x)

We simplify the derivatives (taking brothers if necessary) and obtain in cases 1, 2,4,

( i -

d(x) J
Supremum and variation over Dk of the first factor are uniformly bounded by
Lemma 6.3 (i.e. uniformly in βe[0, b] and DkeQ)). The second one is identically
equal to 1 in case 1 and is monotone and bounded by 1 on DJ in cases 2 and 4.

In cases 3 and 5,

δ(Tx) 1

DTj(x-1+1)

The first factor is the same as before. The bound on the [ ] factor follows from
Lemma 6.4, as q~x < λ^1. D

Bounds on Ψn.

Proposition 6.3. For any qe~\λ^*, 1[ there exists C > 0 such that the estimate

holds uniformly in n > 0 and x.

In order to prove this proposition we have to decompose carefully the traject-
ory of x from — j to n.

The Trajectory. We divide the trajectory of a point xeDj up to xneDk in parts
corresponding to the initial segments of the critical trajectory. Let y = x_j and
y = πy. Set t0 = 0 and define ^ to be the minimal t ^ j such that yt is on a splitting
level (i.e. ceDκ(yt)\ and j) ί + 1 is in the D~ part. Analogously, if t{ is defined, let
ti+ί be the minimal t > tt such tha t̂ y is on a splitting level and yt+1eD~. Let r be
the maximal index i such that t{ < j + n. (Observe that r depends on n) This defines
tθ9. . . , tr. Finally let ίΓ+1 = j + n.

Put dim.= ti + 1 — ti for 0 ̂  i ̂  r. Then j)fi + 1 ei)^. for 0 < i < r. The trajectory
Tjyti, (0 < j ̂  dj), first follows one block of D"'s between two splitting levels, then
jumps down and climbs through consecutive blocks of /5+'s, until it reaches at
j = di + 1 a new D~.

Let (c, α) be an interval which is mapped by Tdi monotonically onto (cdi, c).
(Observe that (c9ai) = ηdi + 1[c±~\.) Then yt.e(c,a). Analogously there is an
α' e(cdi, c) such that Tdi+1 a' = c and yίf+ x e(c, α'). We pull back the interval (cd., α')
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by T~dί into the interval (c, yti) and we obtain a cylinder of order dt + d ί + 1 + 1
on one side of j / t i . On the other side of yti (but still in Dd._J we can pull back
the analogous cylinder from near yti + ί and obtain a cylinder of order
dt + di+ί + di+2 + 1. Hence

The point yt. divides Ddi_ι into two parts each of which contains
one of the finitely many cylinders for T of order at
most di + di+ί + di+2 + 1 . (6.6)

Any yt. has a brother y'tieDQ such that they meet after the first jump olyti and climb
together thereafter.

Remember that xneDk.

If k(x) = k for, then ytr is a brother of xπ_fe and if k = k then

ytr = (jcΛ)_fc. In both cases j + n = tr + k . (6.7)

In particular dr=j + n — tr = k.

The Estimation.

Lemma 6.6. Suppose that κ(x) = 1 and κ(xm) = 1.

Proof. In this case

LMί)l^m(ά)l J L ^ J J L d(x) J '
The first factor is smaller than 1 by (6.4). D

Corollary 6.3. For any N there exists a constant C = C(N) such that if in the
situation of the previous lemma the three consecutive dt

9s after x and the three
consecutive d?s after xm are smaller than N, then

Proof. Let ε:= mm{\η\:ηe^3N+ι}. By the assumption on the d£'s and (6.6) we
find, to both sides of x and xm, cylinders of order not exceeding 37V + 1 and hence
of length not smaller than ε. The corollary follows from (6.1) taking C = (2/
ε)1 + 1/ί. D

Lemma 6.7. There exists a constant K such that

Proof. Recall from the decomposition of the trajectory that y = x_j,

ψn(x) = q*
n(x)\qn+]-~k\Dfn(x)\q
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By (6.7), yj+n-k is a brother of xn-i- Therefore

[ - r~1 ~ / dfύ ϊ \ - l + i/iη

g - « + - * ) π ι z > r * ( r j y r W , , : ,
4 = 0 \ddl+l(yti+i)J J

r

By (6.4) and (6.5) the two last factors are bounded by 1. For the first factorjve
use Lemma 6.4 with (c, υ) = ηdi+χc] and observe that tr = £ί=o di=j + n — k.

D

Proo/ o/ Proposition 6.3. Fix AT such that (λlJιq)N > K~3, where iC is the constant
from Lemma 6.7. Let t' = ίfl > ί0 be minimal such that the three consecutive d\
diί9diί + ί and diι + 2, are smaller than N. Let ί" = ίί2 < tr be maximal with this
property. Remembering that y = x-j, so that y~j+n = xΛ, we write

The middle factor starts and ends just after splitting levels with three consecut-
ive small df's. Therefore jv + 1 and jV' + i are separated from the endpoints of their
levels D at least by a distance depending only on N, see (6.6). In the first factor there
are no three consecutive small d{s and in the third one such df's appears only once,
namely at the beginning.

We estimate the middle factor by Corollary 6.3 and the two other factors by
Lemma 6.7. Using the definition of N we obtain

Ψn < const qn . D

A. Appendix

We prove the estimate (4.12) for ζ{

n

2) := Σ ^ n ( ^ i ™ χ ^ ) ( x ^ ) . The proof, which relies
heavily on an estimation technique due to Haydn [Ha], is very similar to the
corresponding one in Sect. 5 of [BK]. But sincethe changes which are necessary
are crucial for our more general setting where Φ is not of the form Φ o π, we give
a complete proof.

For each DeQ) we fix some y^eD.lίήe *£j and fjή = D, we denote by y^ the
unique ΓJ-preimage of j)j> e ή.

For rj € Jfy define

if J = 1
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Observe that Tpή = yfή- Hence, for ήe&j a n d ; ̂  2,

so that

vart^(f^) ^ var^(Φj-i) var̂ (Φ) +

and

sup I ί̂  I gsuplΦy-il va

Therefore, in view of Lemma 4.1,

Φj-i) + 2 suρ|Φ7 _ 1 | )

^ const Θj var^(Φ) (A. 1)

with a constant which is locally uniform in the parameters β and t.

In the next lemma we show that all sums occurring in the following decomposi-
tion of £ί,2) are absolutely convergent,

- Σ

= Σ
ηeέn

= Σ

+ Σ "Σ ΦkiyύPYfmiPn), (A3)
//eiTn k = 0

where we use the convention Φo = 1. Finally, defining %£\ = {ίj
. . . uD f c}, we have

y!,4) = n Σ Σ Σ ^ (
k 0 f2i f

Σ Σ Σ ΦkihWYiW ( A 4 )

The estimate for C^2) follows from
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Lemma A.Ί (Compare Lemma 5.1 in [BK]).
1. yj,4) converges absolutely.
2. yj,2) converges absolutely and \yi2)\ ^ c o n s t Θn.
3. y{

n

3) converges absolutely and \y{

n

3)\ ^ const Θn.

4. |y^5)| S const- Θn.

5. |7^ 6 ) | ^ const-Θ".

All constants are uniform in n > 0 and locally uniform in the parameters β and t of Φ.

Indeed, the absolute convergence of y{3) and y(

n

4) implies that of y{

n

1} and shows
that all equalities of (A.2)-(A.4) are correct. Thus we only need to use

to obtain the desired inequality.

Proof of Lemma A.I. In the proof we will often use the decomposition

Φ = Id - ΦL and the fact that there are j jeBVand linear functional Gj'.BV^C

(j = l ? . . . 9 d:= r a n k ^ 1 ) ) such that Φλf= ΣUiGj(f)-fj A s t h e projection

&> depends analytically on the parameters β and t (see Proposition 4.2), d is locally

constant in β and ί, and the Gy and fj can be chosen such that their norms are

locally uniformly bounded in β andt. ^
We use the notations |j£f| for ££[|Φ|] and D(i) for Dt.
1.

Σ Σ \Φk(yή

= "Σ Σ Σ

= n Σ Σ ( l i

^"Σ Σ Σ

"

Remark. For the last inequality we used the fact that the support of Ϋγ is fn~kή\
such that (|if|k | f ^ | ) | ^ # 0 if and only if fnή' 2 /?'. Hence ή'e£2

n

n-k by (3.6).
Therefore the term corresponding to the Id part in the decomposition
Φ = Id - ΦL is zero in the sum for β{

n

1].
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Now, by (A.I) (and here we deviate for the first time essentially from [BK]),

^ Ί~k
Σ WGjW c o n s t - Θ n

"Z Σ IIGjII const β"-* Σ sup(|JS?|*|/j|) X var^Φ)
fe = O j = l £ = 0 Di ή'e&n-k

^ K by (4.2)

Σ ll^ ll-const-Θ"-fc||mfe|X | | | ^ < oo ,

and ^ 2 ) < oo as c a r d ( ^ ^ f c ) ^ 2n-card(&n-k) < oo .

2. Again we use the decomposition Φ =lά — ΦL\

|v(2)| < y l^"yΊΓγΛ-4- V \ΦL

Now, by the same reasoning as in (4.10),

β«3) = Σ S U P l̂ wl = const* Θn ,

and in view of Lemma 4.1 and assertion (4.4) we have

d

^Σ ΛΣ _ | |G i | | .const-β".|M)l

^ const-Θ" Σ Σ 4 sup |χ |^ const-θn Σ WfjWίP
j = i i = o bi j=i

^ const Θn .

3. Let 0 <* k < n. We first study

Σ
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In view of'(A.I) and (4.2), the first term is bounded by

βί5) S £ Σ ^ f
ί = 0 η'eiln-k

η'^D(i)

S Σ II^Ίl const-Θn~k- Σ var^(Φ)
/ = 0 η'e^n-k

ή'£b(i)
In

^ * c o n s t ' 0 " " k vaΓβ ( i ) (Φ)g const-(In + l)-<9"- f c-K

^ const-β""* .

For the other term we use the remark of part 1 and obtain

βf'ύ Σ .Σ . Σ

= Σ H^ II Σ Σ Σ
j = l i = 0 ή'e^n-k\^nn-k Ve&n

f k ή = ή',ή

^ Σ IIGjII Σ Σ llή'l lBi
7=1 i = 0 ή'e£(n,k,i)

g const-©"-* f HG7II Σ v a rό(.)(X) Σ v a r v ( φ ) >
j = l ΐ = 0 ή'eέi(n,k,i)

where J*(n, /c, ί) denotes the family of those ή' e^n-k\^ln- k which are contained in
TkDh

Now we use the following fact which is proved as Lemma 3.3 in [BK]:

Given η' e^n-k and D i ? there are at most two ήe ££n such that

ή ci βi9 fkήe£in-k\έ2

nlk and π(fkή) c ^' . (A.5)

Observe also:

Suppose Tkή ̂  i ) r for such an ή. Then r > 2n and Γ^Dj Ξ> I) r , whence
r = ί + fc or r = f + fc. (Otherwise there were 0 ̂  s < t < k such that Tsή
and Γ ^ are contained in splitting levels Di+S and D[+t respectively, from

which they jump back. In particular Tt+1ή ^ Dγ^-t + ί . As i + s + 1 = 1

(see Sect. 3), it follows that ί + t^t — s<k<n, which contradicts r > In)
(A.6)

Now we can continue the above estimate as follows:

d 00

βi6)S c o n s t - Θ n ~ k Σ IIGjII Σ var f i ( i )

j = l i=0

^ const-6)"" f c Σ H ^ ll Σ v a r 6 ( 0
j = l »=0

S c o n s t - β " - f e Σ IIGjII l l / j l l^
j=i

< const-0""fe .
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We have thus proved that y%\ ύ const Θn~k. Therefore

P Σ " l ^ ί ^ "Σ c o n s t ' ®*' fΆ

S const Θn .

s proves at the same time the
4. The definition of J£? yields:

Wl -
n - l

y y (sekφ]

< y const -Θk y

^ const Θn Σ Σ

^ const- V-(2n + 1)

^ const 6)" .

absolute convergence of γ^K

II ̂ v II BF by Proposition 4.2,

var^Φ) by (A.I),

5. We use again the remark in 1 and obtain

lτi6)l =

IIΛ

n— 1 oo

Σ o Σ o . ^ Σ # 2 n

d n— 1 oo

Σ Σ Σ Σ

v . 4 k , * ( Λ ) l ^ ) ( Λ )

Σ const Θfc

S const-6>" Σ IIG;|| " Σ Σ Σ

tkη = ή',ήSD(i)

^ const- 0" Σ \\GJ\\'"Σ Σ suplX l Σ 2-var^Φ),
j = l k = 0 i = 0 Dj ί)'e^(n,k,i)

where &(n, fc, i) is defined as in the proof of 3, and we used again (A.5). Observing
also (A.6) we can thus continue

|y£ 6 ) | g const-©" £ ||G7 || " Σ Σ S U P IΛI 2 (varj>(i+k)(Φ) +

^ const-<9" 4nF Σ IIG,II Σ S U P \fj\ b y ( 4 2 )
J = 1 i = 0 ί>,

^ c o n s t - < 9 " Σ l l ^ l i IIΛ lliK

< const (9" . D
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B. Appendix
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Proof that Corollary 2.1 implies Theorem 1.1. If T is nonrenormalizable, i.e. if
(Γ, μ) is mixing, μ = hm, then the spectral representation for S£^: BV^ -^BV^ with
norm || ||^ reduces to (see the beginning of Sect. 5)

g>l = φγ + Φ{£n

h where Φγ (/) = \fdm h and h(x) = ^ Λ(x) .
iceπ" ^

Here Φ{ = lά- Φx and

I I ^ J ^ i IIw ̂  const rn for some r < 1 .

Write F0(x) = F(x) — \F dm, Fo = F o ° π, and analogously for G. Then

• = j (Fo o π) - h dm = j F o

h

Hence, observing that πofn= Γ o π ,

^

by (B.I)

^ f s u p ^ J IGolwdA, where/Π:= JSP^(
ί = 0 β , W £>f

Here w is the weight function introduced in Sect. 6. Now

f \G0\wdm= f

^ const- | |Go| | i+i

by Proposition 6.1, and

w

such that

(B.I)

< h\ <
= \\Mw = const r

oo

= const-r". Σ | |F 0 |£
i = 0

^ const r".var(F0)

IFo

,llί

w

lw = O

(if)

3ns

A

t. .«.
Foft

vv

= const r" var(F) ||Λ||*,

$F-(GoTn)dμ- \Fdμ-\Gdμ\ ^ const r" var(F) | | G 0 | | z + ί . •
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