
Communications in
Commun. Math. Phys. 132, 155-176 (1990) Mathematical

Physics
© Springer-Verlag 1990

Master Symmetries of the XY Model

Huzihiro Araki*
Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan

Dedicated to Res Jost and Arthur Wlghtman

Abstract. Master symmetries, found by Barouch and Fuchssteiner for a finite
size XY model with the help of a computer program, are mathematically
analyzed for an infinitely extended XY model by a rigorous operator algebraic
method with an easy computation. The infinite family of commuting Hamil-
tonians and the master symmetries generating them form an infinite dimen-
sional Lie group of automorphisms of a C*-algebra of observables for the
model.

1. Introduction

The one-dimensional XY-model in statistical mechanics of the spin 1/2 lattice
system is known to be exactly solvable. One possible feature of an exactly solvable
quantum model is the existence of a commuting family of explicitly describable
operators (constants of motion or symmetry generators) which commute with the
Hamiltonian of the model. Barouch and Fuchssteiner [7] found an interesting
mechanism of creating such a commuting family, which will be quoted in detail in
the next section.

Barouch and Fuchssteiner refers the proof to a computer computation. They
give only the first few operators in the commuting family explicitly and no general
explicit forms for the operators in an infinite family are given. The complicated
expressions for the first few operators do not seem to suggest any general explicit
form either. Thus we are not sure about the proof of the claim for the general
operators in the infinite family, e.g. the proof of their commutativity.

Also Barouch and Fuchssteiner do not specify the boundary condition for the
model. The expression for the master symmetry containing the number j of the
lattice site explicitly excludes the possibility of the periodic boundary condition.
However the validity of the commutativity can be broken at the boundary for
other boundary conditions.
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The aim of this paper is to present a more proper mathematical formulation, to
provide a rigorous proof and to give manageable description of a general term (not
just the first few operators in an infinite family) for master symmetries and
commuting families derived from them.

We show that master symmetries and the commuting families derived from
them (after multiplied by z) form an infinite dimensional Lie algebra of derivations
defined on a common dense subalgebra 3Ϊ0 in the C*-algebra 31, consisting of all
local observables, that their closures are generators of one-parameter groups of
automorphisms of 81, forming an infinite-dimensional Lie group and that the
subgroup generated by commuting families is abelian. Furthermore, it is found
that each member of commuting families derived from all master symmetries
under consideration is a finite linear combination of members of the commuting
family generated by the basic master symmetry.

It is very likely that the abelian subgroup of automorphisms mentioned above
(or its closure) is maximal abelian in the group of all automorphisms of 81.

In Sect. 2, we formulate the main results as Theorems. Theorems 1 and 2 are
essentially the claim of Barouch and Fuchssteiner [7], while Theorem 3 is new.
While Theorems 1-3 are Lie algebra statements about derivations of the C*-
algebra of observables, Theorem 4 is a result about the exponentiation of the
infinite Lie algebra into a group of automorphisms.

In Sect. 3, we review the C*-algebraic method of solution for the one-
dimensional XY-model. In particular, the CAR algebra is introduced via the
Jordan Wigner transformation from the spin algebra.

In Sect. 4, master symmetries and commuting families derived from them are
explicitly computed as derivations on the CAR algebra.

In Sect. 5, the problem of going back from the CAR algebra to the algebra of
observables is solved for derivations and the uniqueness is shown.

In Sect. 6, the exponentiation of derivations into automorphisms is carried out
by the technique of Bogoliubov automorphisms of the CAR algebra and then by
changing over to automorphisms of the spin algebra.

In Sect. 7, we collect results of the preceding sections into a proof of Theorems
in Sect. 2. We also remark in Sect. 6 about the maximal abelian nature of the
commuting family of automorphisms on the CAR algebra due to a theorem of
Kishimoto [9] and conjecture the same for the spin algebra.

2. Statement of Results

We denote the lattice sites in one dimension by integers Z, the Pauli spin operators
at each lattice site; e Z by σ^\ σ(

y

j\ and σj 0, the C*-algebra of observables generated
by them at all lattice sites j e Z by 81, and the subalgebra consisting of all finite
polynomials of σ's by 8Ϊ0.

The standard expression for the Hamiltonian of the XY-model is given by

H=-J Σ #(/), (2.1)

(2.2)
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(In notation of [7], - J(l +γ) = Jx, - J(l -y) = Jr -2Jλ = h.) We interpret H as
the derivation

δHA = [H, A] = - J Σ [# (/% A] (2.3)
jeZ

for A E 8Ϊ0. Each term of the sum (2.1) defines an inner derivation, which vanishes
for sufficiently large j for any given A e 9I0 due to the commutativity of σ's at
different lattice sites, i.e. [H(j\A] vanishes if; and jH- 1 are outside of supporting
sites of A. (The supporting sites of an element A may be defined as the set of all;
which appears in an explicit expression for A in terms of σ's.) Therefore (2.3) is
actually a finite sum and belongs to 9ί0 for any A e 9I0.

In this note, we explicitly exclude the case (Λ,,y) = (0, ±1) (the case of one-
dimensional Ising model).

We consider another derivation of a similar nature given by

S= Σ S(/), (2.4)

(2.5)

We use the following "master symmetry" in the sense of a derivation on 310,

M? . (2.6)
JeZ

This is related to the first master symmetry M0 of Barouch and Fuchssteiner ((3.2)
and (3.7) in [7], where (3.7) should read λ= -(1/2)Λ) via

M0 = JP-(l/2)#, (2.7)

which produces the same family of commuting "Hamiltonians" as P except for the
constant coefficient J. We note that P(j) of (2.6) can be obtained from H(ft of (2.2) by
multiplying the terms σ^+ υ and σ</>σ</+ υ by (/ + (1/2)) and the term σ^ by;, the
purpose of the σ(

z

j) term being just to cancel (1/2) in the coefficient ofH(j) for the σ(

z

j)

term.
The derivation P is called a master symmetry because of the following

property.

Theorem 1. Starting with H0 = H and S0 = S, the derivations Hn and Sn on 3ί0 are
defined recursively by

H(Π+1) = J[P,HJ, (2.8)

S(,+1) = i[P,SJ> (2.9)

π = 0, 1, 2, .... Then for any j, k e Nu{0},

[H,, # J = [flj, SJ = ISj, SJ =0 . (2.10)

More explicit description of Ha and Sπ as well as the proof will be given later.
We note that the commutator of derivations are defined, for example, by

δHn+ί(A) = ί(δP{δHn(A)} - δHn {δP(A)}) . (2.1 1)
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By (2.1) and (2.6), we have for

, LH(k), A]-] - [_H(k\ [_P(j\ A]-]}

(2.12)

πM = V Σ {TO, LH(k), A]-] - [_H(k\ [_P(j\ A]-]}
j.k

where the last equality is by Jacobi identity. This will be denoted by

(2.13)

Similar expressions can be written down for other Hn and Sn.
We define cj0 to be the set of all finite linear combination of Hn, n = 0, 1, 2, . . . and

SΛ, n — 0, 1, 2, . . . with real coefficients. Addition of any element of g0 to the master
symmetry P does not change Hn and Sn defined above due to the abelian nature of
g0. In particular M0 of Barouch and Fuchssteiner and our P produce the same Hn

and Sn except for a constant coefficient Jn.
In the same spirit, we define another master symmetry P±\

Pι = -Σ Λίfl, (2 14a)

(2.14b)

This differs from the second master symmetry Mί of Barouch and Fuchssteiner by
a constant coefficient and an addition of elements of cj0:

(2.15)

We now define an infinite family of master symmetries recursively by

Pj+ι = ilP,Pj], 7 = 1,2,.... (2.16)

As before, the Pj (/ = /,2, ...) are understood as derivations on 9I0.
Each of Pj produces a commuting family of derivations on 910, which commute

mutually for different;:

Sk+1J = ilPpSkJ-], SOJ = S. (2.18)

Here k=0, 1,2,....
We extend the notation of (2.17) and (2.18) for ; = 0 with P0 = P, so that

Hk,0 = Hk,Sk,Q = Sk. We have

Theorem 2. For all kj, /, m = 0, 1, 2, . . .,

[Hki/, fllt J = [flk, j, Slt J = [Ski „ 7J. J = 0 . (2.19)

We note that M 7 in [7] and 4Jj+ 1PJJ = \,2,... differ by an element of g0 for
eachj and hence produce the same family of H's and S's as /Γs and T's of Barouch
and Fuchssteiner up to constant coefficients. Thus Theorem 2 is the claim by
Barouch and Fuchssteiner, for which we give a straightforward proof. Actually we
have the following stronger result, which proves Theorem 2 in view of Theorem 1.
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Theorem 3. For all kj = 0, 1, 2, . . .,

#*jeβo, Skje&o (2.20)

We now describe our result about integrating (or exponentiating) these
derivations. Let QI be the set of all finite real linear combinations of Pfc,
fc = 0, 1, 2, . . . and elements of g0.

Theorem 4. For any Xe§l9the closure of IX is the generator of a one-parameter
group of automorphisms of 91, which will be denoted as eίx. For X, Ye g0, e

ix and eίγ

commute.

Actually we can describe the group generated by eix, X e g1 in more detail. This
will be a subject of the forthcoming paper.

3. The Method of Solution

i. Introduction of CAR-Algebra

We now quote the operator algebraic method of solution for the XY-model
[3, 4, 5].

We introduce two involutive automorphisms of 91 defined as follows:

Θ(A)= lim ( f[ <tf>W Π <
N->oo \j=-N ] \j=-N

Θ-(A)= lim ( Π O^]A( Π σ<Λ (3.2)
N^oo \j=-N ) \j=-N )

More explicitly, they can be defined by the following action on the generators of 91:

<9(σ</>) = - σ$ , <9(σ</>) = - σjf> , θ(σ®) = a® . (3.3)

(7 = 0, ±1, ±2,...).

if &*>
if ^O.

Let & be the crossed product of 9ί by the action <9"_ of neZ2. More explicitly,
91 is the direct sum

(3.5)

where the element T of 91 satisfies

T2 = l, T* = T, TAT=Θ.(A) (3.6)

for all ^691. The automorphisms Θ and Θ_ of 91 can be extended to
automorphisms of $ (again written by the same letters Θ and <9_) satisfying Θ(T)
= Θ.(T)=T.

The algebras 91, 9I0, and $ί are decomposed into a sum of Θ-even and <9-odd
parts via the following elementwise decomposition:

A±=2-\A±Θ(A)), (3.7)



160 H. Araki

where Θ(A+) = ±A± by definition. Accordingly,

. (3.8)

We define the following C*-subalgebra of 91.

9ICAR = 9I+ + 'ra_. (3.9)

It is generated by the so-called Jordan- Wigner transform of σ's,

(3.10a)

(3.10b)
where J

ί1*...<#-D if j^2, (3.11a)

1 if 7 = 1, (3.1 Ib)

^. . . f fU) if ^O. (3.1 Ic)

These operators satisfy the canonical anticommutation relations (CAR):

ίcp ck-] + = [cj*, c*] + = 0, [cp ck*] + = δjk, (3.12)

where [yl,5]+ =AB + BA and δjk is 0 fory 'φfc and 1 for j = k.
The automorphism <9_ of 31 leaves 9ICAR invariant (as a set) and & can also be

viewed as the crossed product of 9ICAR by the Θ _ action of Z2. Generators of 91 can
be expressed in terms of creation and annihilation operators cj and Cj and T as
follows:

σ \Z) O/*5^/1 1 /T^Jj T ^ ^/° I y^^4^ /T™' -— '/ ' C1 T/'/^ /^^^ C\ 1 ^^— ^»t- j C j — J. , U v — J. k) jH C j "T" C/ i I , Cί -y — J O ί» \^ C ^ . \ /

Again, 91CAR can be split into Θ-even and 0-odd parts:

. (3.14b)

2. Self dual Formulation of CAR and Bogoliubov Automorphisms [1, 6]

We introduce the complex Hubert space

Jf = /2(Z)Θ/2(Z). (3.15)

An element h of JΊf consists of two elements / and g of /2(Z), denoted by

instead of /z = /Θg. Each /e /2(Z) can be described by its components fj9j 6 Z. We
denote

which converges in the C*-norm of 9ICAR. We introduce the antilinear involution Γ
on $e by

<3 ]8)
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where the bar in / and g denotes the componentwise complex conjugation. Then
{B(h)} generates SICAR and satisfies the following selfdual form of CAR:

2)l> (3 19a)

B(h)* = B(Γh). (3.19b)

Here we are using the notation of physicists for the inner product:

(*ι, *i) = (/i, Λ) + fei, 82) = Σ (7ι j/2, + gι/g2/) - (3.20)
j

For any unitary operator U commuting with Γ, there exists the unique
automorphism of 2ICAR, denoted by av and called a Bogoliubov automorphism,
satisfying

(3.21)

Examples are Θ = α _ t for U= — 1 and 6>_ =αβ_ where

'-, (3 22)

3. XY-Model Hamiltonian

The operator ff(/) given by (2.2) belongs to ?l+ =?l+AR and can be written as a
quadratic expression of cp cj+ί, cj and cj+ 1 up to a constant term which does not
count as a derivation:

! + cj+ lCf) + 2y (cA+ 1 + cf+ tf) + 4λcfc} - 2λ . (3.23)

The derivation (2.3) can now be explicitly written:

δg(B(h)) = B(2JKh) , (3.24a)

Here the 2 x 2 matrix notation for the operator K on 3? corresponds to the 2
components notation (3.6) for elements h of X, U and (7* are shift operators on
/2(Z) to the left and to the right:

The operator K is bounded, acting on 3? and satisfies

K* = K, ΓK=-KΓ. (3.26)

The derivation δH exponentiate to a one-parameter group of automorphisms
(αH)f = eiδH, ίeR, of 9ICAR, explicitly given as Bogoliubov automorphisms:

(«ιrλ = ̂ w , V(t) = exp i(2JKί) . (3.27)

In subsequent computations, it is advantageous to introduce the following
Fourier transform. For each /e/2(Z) and h e j t f , we define functions of 0eT
= R/2πNas follows:

f(θ)= Σ ePfn9 h(θ)= Σ einθhn. (3.28)
neZ neZ
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Here f(θ) is a complex number and h(θ) is a 2 dimensional vector for each θ. The
inverse relations are

2 (3.29a)

hn=(2πΓ1 e~inβh(θ)dθ. (3.29b)

The operator K is diagonalized by this transformation.

(3.30a)

. (3.30b)
—

We note that

sin2θ]1/2. (3.31)

We also note that

4. Master Symmetries - Lie Algebra Computation

All the derivations introduced in Sect. 2 are infinite sums of inner derivations by
elements of 91 + = 51+AR, and hence we compute them first for 9ICAR, using notation
of the preceding section.

First, S(j) of (2.5) can be written as

Therefore the derivation δs(A) = Σ[S(j),A] for A = B(h) is given by

(4.2)

(4.3)
->J

Next, P(j) of (2.6) can be written as

P(/)=(/+(l/2))tf(/)-Λ(2c;c,.-1), (4.4)

where H(j) is given by (3.23). Therefore δp(A) =-Σ[P(/), A] for A = B(h) is given by

ό,(B(Λ))=B(PA), (4.5)

y(i/ί-ι/ι), -( ' l j

where 17 j and δ are defined by

)J.=;ftJ., (δh)(θ)=(-id/dθ)h(θ)=-ih'(θ), (4.7)

(4.8)
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Note that δU = U(δ - 1), (δ - 1) U* = U*δ. The last term in (4.4) serves the purpose
of canceling out the (1/2) term for — 2λ in H(j). The above expression for P can be
written in a compact way

(4.9)

because 2U1 = δU+Uδ and 2C7* = δU* + U*δ, where K is given by (3.24b).
A basic property of P is the following commutation relation:

i[P, K] = i[δ, K2] = 2kk 1 (4.10)

due to (3.31), where k is the multiplication of the derivative k(θ}:

(kh)(θ) = k(θ)h(θ). (4.11)

Computing in ^-representation of the test function space Jtf , we obtain

i[P,αl] = 2α'K, (4.12)

i [P, &K] = i [P, b]K + hi [P, K]

= (2h'fc2 + 2bkk) I = 2k(d/dθ) (kb) 1 (4.13)

for any multiplication operators a and b in ^-representations. By repeating these
computations, we obtain the following description of the derivations Hj on 9ICAR.

Proposition 4.1.
(4.14)

"where Hj 15 ί/z^ multiplication of the following expressions in θ-representation of Jtf :

\h,(θ)l foroddj,

=\hfβ)K(β) forevenj. (4Λ5)

The functions hj satisfy

h2n = 2Dh2n-ΐ, h2n + i=2kDkh2n, (4.16)

where D = (d/dθ). With the initial condition h0 = 2J, they are given by

h2n = 22n+lJ(D k)2nl, (4.17a)

h2n+i = 22n+2Jk (D k)2n+1l, (4.17b)
where n = 0, 1,2, ... .

Here the product D - k is the product of the differentiation operator D = (d/dθ)
and the multiplication operator fe, and it does not mean the differentiation of the
function k(θ) alone. The initial condition is by (3.24a).

Similarly, we obtain the following.

Proposition 4.2.

δsjίB(h)) = B(Sjk), (4.18)

where Sj is the multiplication of the following expression in θ-representation of ffl:

faroddj.
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The functions Sj satisfy

2n_l9 s2n+l=2Ds2n. (4.20)

With the initial condition s0(θ) = — 4sin#, they are given by

s2n= -22n+2(kD)2nsinθ, (4.21a)

*2n+ι = -22n+3D(kD)2nsmθ, (4.21 b)

where n = 0, 1,2, ... .

The initial condition is given by (4.3).
We now compute the second master symmetry P^ We have

- 4jcfcj + 2j + 2λ(2j + 1) (cf+ ,cj + c?c,.+ J . (4.22)

Therefore
)y (4.23)

p _
1 ^ \ «Jiτ*2fχ , ι\ ττ2/& ox _ j/*2^ + 1)_ jj2^_^_

= (1/2) {(t/+ C7*)P + P(C/+1/*)}. (4.24)

We can now compute all members of the infinite family of master symmetries

PJ

Proposition 4.3.

(4.25)

(4.26)

where the operators L7 satisfy the recursive relation

They are the multiplication of the following expressions in θ-representation:

ffor even),

where the functions PJ satisfy the recursive relations

p2n+l = 2(kDk)P2n, (4.29a)

P2π = 2p'2n-1. (4-29b)

initial condition pi=cosθ, they are given by

P2n + 1 = 22n(kD)2n cos β , (4.30a)

p2π = - 22n - \Dk)2n ~2smθ. (4.30b)
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The initial condition is due to (4.24), in which (U + U*)/2 is the multiplication of
cos0 in ^-representation.

Proposition 4.4.

h), (4.31)

where Hfc tj is the multiplication of the following expression in θ-representation:

/m- far odd j and odd fc,
k'j{)~\hkJΘ)K otherwise, (4J2)

/c = l,2, ...,j = l,2, .... The functions hktj satisfy the following recursion relations:

fc2B+i,;=4(p,JcDfc)V; far odd j, (4.33a)

*2.+2j=4(pp)A2.+ i j far odd j, (4.33b)

hl+lj=4(pjkDk)hlJ for even j, (4.34)

where n= 0,1,2,..., /= 0,1,2, ____ WίίJi t/ie initial condition h0tj=2J (a constant
function), they are given by

/t2n+1,, =(4p,./eD)2π+12J/c for odd j, (4.35a)

h2nj=4pjD(4pjkD)2"-12Jk for odd j, (4.35b)

hu=(4p}kDk)l2J for even j. (4.36)

Proposition 4.5.

δSkj(B(h)) = B(SkJh), (4.37)

where S^ is the multiplication of the following expression in θ-representation:

far odd j and odd k,

k = 1, 2, . . ., 7 = 1, 2, . . . . T/ze functions sktj satisfy the following recursion relations:

s2nj = 4pjkDks2n -ltj for odd j , (4.39a)

S2*+ι.j=4pjDs2Λj for odd j, (4.39b)
sι + 1 , j = 4Jpyfe2Z)5Λ y /or ^t ^n j . (4.40)

Wίft ί/ie initial condition s0>7 = — 4sinβ, ί/i^y are given by

s2nJ=-42n+1(pjkD)2nsmθ for odd j, (4.41a)

S2n+ι.j= -42n+2pjD(pjkD)2nsmθ for odd j , (4.41b)

sz>j=-4z+1(p jfe
2D)/sinθ for even j. (4.42)

5. Extension of Derivations to ίϊ

For any finite interval / of integers Z, we define $(/) to be the subalgebra of $
generated by σ$/>, a®, σ(

z

j\jel, and cp cfjel, 2I(/) = 2ln^ί(/) to be the subalgebra
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of 91 generated by σ</>, σ</>, and σ</>, "jεJ, and 9ICAR(/) = 9lCARn9Ϊ(/) to be the
subalgebra of 91CAR generated by cj and cj5,; e /. We define $0 and 9l£AR to be the
union of 91(7) and 9ΪCAR(7) for all finite intervals / of Z, respectively. They are
subalgebras of & and 9ICAR, and

AR, (5.1)

, (5.2)

where the latter is defined already in Sect. 2.
Let 91 +(/) denote 91+ n9I(/), i.e. the set of <9-even elements of 91(1). It coincides

with 9l+AR(/) = 9l+n9ICAR(7) for any interval / due to relations such as

11', (5.3)

of > σ</+ "> , (5.4)

where (a,j8) = (x,x), (x,y), (j;,x), (y,y) and

4^^ + cf, ^^ife-cf). (5.5)

Let J5f be the set of all derivations δ of ΰϊ0 such that there exists an index set Ξ = {α},
a finite interval IΛ in Z for each α and Jfα = X* e 9I+(/α) satisfying the following two
conditions:
(A) δW^iΣίXvA], ^e^ί0, (5.6)

(B) The set Ξj of α e Ξ such that j e Jα is finite.

Proposition 5.1. The sum in (5.6) is a finite sum of non-zero elements in $[0. The set
<£ is a real Lie algebra of symmetric derivations on 9t0.

Proof. For Aε$i(I\ consider IΛ such that Jn/α is empty. Then 9I+(/α) and 9ί(J)
commute because /n/α is empty and 9I+AR(/α) and 91CAR(J) commute for the same
reason. Since 9l+(/α) = 9f+AR(/α) and 91(7) is generated by 91(7) and 91CAR(J), A
commutes with XΛ. Thus \XΛ, A] = 0 unless α belongs to the finite set

(LISA, (5.7)

and hence the sum in (5.6) is finite and belongs to &0 for A e $0.
Due to X* = Xa, δ defined by (5.6) is a symmetric derivation. If δ ί is defined by

(5.6) with Yβ, β e Ξ', instead of XΛ, α e Ξ, then we have

4], (5.8)

where veΞuS' and Zα = Xa for αeS, Zβ= Yβ for βeΞ',

l (5.9)

for any real c. Further,

], (5.10)
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where μ = (oι,β)eΞxΞ' = Ξ" is restricted to the pair such that IΛn*Iβ is non-empty
and

I*vIβ), (5.11)

where IΛvIβ is again a finite interval and hence

-!«, β) = {(<*, β)', J e /α, fc e /f for some /c e IΛ}

u{(α, /?); ;' e 7 ,̂ /c e Ia for some fc e 7^} (5.12)

is finite. Therefore 3? is a Lie algebra of symmetric derivations on $0. Q.E.D.

Proposition 5.2. ^4 derivation δeJ£ is determined by its value on B(h) for allhe^f
with a finite number of non-zero components hn.

Proof. First the finite linear span oϊB(h) with such h is the same as the finite linear
span of Cj and cfJeZ. By the linearity and the derivation property

J+l...AH9 (5.13)

the value of δ on B(h) determines its value on 9l£AR.
Next we have

Tl = bT, (5.14a)
α

b = i Σ (X.-θ _(*„)) e 21 +(/°), (5.14b)

where the sum can be restricted to α e Ξ0, for example, and 1° = u {/α; α e Ξ0}. Note
that, on 9ί(/α), Θ _ = id if IΛ > 0 and θ _ = & if /α < 0, so that Θ _(JQ = Xa in either
case because .λΓαe9ϊ+(/α). For any ^e9i^AR

5 the relation TΘ.(A)T=A implies

b). (5.15)

On the other hand δ(l) = δ(!2) = lδ(l) + δ(l)l=2δ(l) implies <5(1)=0 as is well-
known, and hence

b). (5.16)

Therefore (5.15) and (5.16) determine the commutator

(5.17)

for any A e 9ίoAR in terms of the value of δ on 9IoAR

There exists a unique tracial state τ on 9ίCAR, induced from the unique tracial
state on full matrix algebras. Since

τμ) (5.18)

for any A e 9ICAR and unitary U due to the tracial property of τ, we obtain from (3.2)

(5.19)
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for any ^4e2ICAR. Then the formula (5.14b) implies

τ(&) = 0. (5.20)

The algebra 9ICAR(7°) is isomorphic to the full 2N x 2N matrix algebra where N is
the cardinal number of the finite set 7°. Let uij9 ίj = 1, 2, . . ., 2N be its matrix unit.
Any ,4e2ϊCAR(7°) can be written as

(5.21)N (Σ ukjlujk, 6] +τ(6)l) .

Therefore (5.17) and (5.20) uniquely determine fee2l+(7°)c2loAR in terms of the
values of δ on 9l£AR. Q.E.D.

Remark. In the above proof, we used an explicit form (5.14b) to show that τ(fe) = 0.
This can be avoided by using the following argument.

We consider the following linear functional on $:

τ(A, + A2T) = τ(AJ (Al9 A2 e 91CAR) . (5.22)

Then

f(μ1+x2r)*μ1+x2τ))=τ(x?^1 + β.μ!)β-μ2))^o (5.23)

and hence τ is a state. Furthermore by (5.19) we obtain

=ΐ((A1+A2Ίγ(A1+A2T)). (5.24)

This proves that τ is tracial.
From the middle expression in (5.16), we obtain

τ(b) = τ(δ(T) T) = τ(Tδ(T) + δ(T) T)/2 = 0 .

This argument can be used whenever we know that δ(T) = bT with be?lCAR.

6. Automorphism Group

If all XΛ in (5.3) are quadratic polynomials of cj and cf,jεIΛ, then δ(B(h)) = B(Xh)
for a skew symmetric linear operator X defined on h e tf with a finite number of
nonzero components. Let <£E be the subset of <£ consisting of such derivations
satisfying the following two conditions:

(a) X is bounded.
(b) [0_,X] is in the trace class.

Here θ_ is the operator defined by (3.22).
Actually (b) is automatic and a stronger statement hold for δ e JS? . Namely, we

have
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If 0 is not in the interval /α, then Θ _ ( X α) = Xa for X Λ e 21 + (7α) and hence the sum is
over α in a finite set Ξ0. For each α ε Ξ09 Θ _ (XΛ) — XΛ is a quadratic expression of a
finite number of c7 and cj and hence

i [6> _(*«) - *α, B(A)] = β(xα/ι) , (6.2)

where xα is of a finite rank. Hence the following stronger property holds:

(b') Y = θ _ Xθ _ - X is of a finite rank .

This implies (b) due to [0_,X] = Y0_.

Proposition 6.1. The subset &B is a Lie subalgebra of &. For any δ e J5?β, there
exists a one-parameter group exp 5ί of automorphisms of $ with the closure fiof δ as
its generator. It leaves the subalgebras 9ίCAR, 9ί and $1+ of $1 invariant as sets.

Proof. If derivations δl and δ2 in &B satisfy δJ(B(h)) = B(Kjh)9 then δ = [δi,δ2'}
satisfies 5(B(Λ)) = B(Xft) with X = [X1?X2]. The linear operator X satisfies (a) and
(b), where we use the Jacobi identity for commutators as well as the ideal property
of the trace class operators to obtain (b). Therefore &B is a Lie subalgebra of 5£.

Due to X* = XΛ, δ is a symmetric derivation and hence

JJ(ΓXΛ) = B(XΛ)* = δ(B(h))* = δ(B(h)*)

= δ(B(Γh)) = B(XΓh) (6.3)

from which we obtain

[X,Π=0. (6.4)

Since <J(1) = 0, the CAR implies

0 = <5([£(/h)*, B(Λ2)] +) = [«(X*ι)*, B(Λ2)] + + [B(*i)*, «(XΛ2)] +

= (XΛ1,Λ2) + (Λ1,XΛ2) (6.5)

for all A l 5 Λ2 with a finite number of components. Therefore Jί is skew symmetric:

X*=-X. (6.6)

By (6.2) and (6.4),

Ut = ext (6.7)

is a unitary operator commuting with Γ and hence defines a Bogoliubov
automorphism ocϋt of 9ICAR satisfying

). (6.8)

The generator of αUt then coincides with δ on B(h) and hence on
By the condition (b),

Y = θ_X0_-X = [0_,X]0_ (6.9)

is in the trace class and satisfies

ΓX*Γ=-Y (6.10)
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due to [Γ,0_]=0, (6.4) and (6.6). There exists an element 7e2I^.AR called the
bilinear Hamiltonian (7= (1/2) (B, ΎB) in the notation of [1]) satisfying 7* = - 7
,due,oY ,-Y,aad (6.n)

By (7.12) of [1] and 0_Y0_ = - Y, it also satisfies

6>_(7)=-7. (6.12)

Using the expansional formalism in [2], we define

W,= l+Σ }...'7\- V.-*ι (6.13)
n = l 0 0

where Yt = uϋt(Y). By using Eqs. (2.17), (2.18), Propositions 3 and 4 of [2] as well
as the property 7* = — Y, we see that Wt is unitary. By Theorem 2 of [2], Wt

satisfies the cocycle equation:
Wa+t. (6.14)

Therefore
βt(A) = Wflϋt(A)W* , ί e 2tCAR (6.1 5)

defines a continuous one-parameter group of automorphisms of ?1CAR.
Using (4.11) of [2], we obtain for V^e^^-^Θ^Uβ^

= β.t{- (d/ds)*Us(B(Vth))\s=o ~ [Y, TO)] + B(dVth/dt)}

Therefore β_t(B(Vth)) is constant in t. Since its value at ί = 0 is B(h\ we have

βt(B(h)) = TO) = «κt(Λ) = θ-*uβ -(B(h)) . (6.1 7)

Thus we have obtained the following formula:

Wflϋt(A)W* = *yt(A) = θ-*Utθ-(A) (6.1 8)

for A = B(h) and hence for all ,4e2ICAR.
By (6.12) and (6.13), we obtain

β.(W9=ι+ Σ Γ./TV^).^-^)^.-^! (6.19)
«=1 0 0

where we have used the relation

Θ-(Yt) = Θ_*UtΘ.(Θ-(Y)) = *Vt(-Y) (6.20)

and notation
Yt' = *Vt(Y)=Wtxϋt(Y)W*. (6.21)

The quantity -Yt' corresponds to (7*(-7))(ί) of (3.7) in [2] with B=Y and
A = — Y and hence

Θ_(Wt)Wt=ί (6.22)

due to A + B = 0 in (3.10) of [2].
We now define the extension αf of αϋt from 9ICAR to & by

(6.23)
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To show that αf is indeed a * automorphism, we have to see that relations T2 = 1,
T* = T and TA T = 0 _ (̂ ) for ̂  e 2ICAR are preserved, namely it is enough to check
the following relations:

\, (6.24)

W*T=TWt, (6.25)

TWflϋt(A) TWt = aϋt(Θ .(A)) . (6.26)

Equation (6.24) holds by (6.22) and Θ^(Wt)=TWtT. Because Wt is unitary,
(6.24) implies W* = TWtT and this implies (6.25). By (6.25) and (6.18), we obtain

TWtaϋt(A)TWt=TWtaUt(A)W*T

= T{θ-aΌtθ.(A)} T=κϋtθ_(A) (6.27)

which shows (6.26).
In the notation of [1], we have

αl7t(B,YB) = (B,t/ ίYt/_ ίB) (6.28)

by (7.12) of [1]. It is an entire analytic function of a complex number ί, because
Uz = ezX is an entire analytic function of z (values are bounded operators), Y is in
the trace class and (B, LB) is linear and continuous in L with the bound

l. (6.29)

Therefore Wt of (6.13) has an entire analytic extension:

0 0
(6-30)

In particular, Tis in the domain of the generator of α,. Since the generator of αr

is a symmetric derivation coinciding with δ on 2ICAR, it must be an extension of δ by
the uniqueness result given in Proposition 5.2 (see Remark after Proof of
Proposition 5.2).

Since αz(£(Λ)) = B(ezXh) and αz(T) = TWZ are entire analytic, all elements of Φ0

are entire analytic elements of δ. Thus the condition (B2) of Theorem 3.2.50 of [8]
is satisfied. Since the generator of αr satisfies the condition (Cl) there, it is satisfied
by δ which is a restriction of the generator to $0. The condition (Al) is also
satisfied with D(δ) = $10. Therefore the closure of δ is exactly the generator of α, by
Theorem 3.2.50 of [8].

Since α, maps B(h) to B(Uth) and Tto TWtmth W^e2I+,thesubalgebras9ICAR,
21 and 91+ are invariant under αr as sets. Q.E.D.

Remark to Theorem 6.1. Except for the first statement (that <£B is a Lie algebra),
Theorem 6.1 holds for δ defined on $10 such that iX is analytic on the set of all h e $
with a finite number of non-zero components. The proof is the same because
Ut = ext will have the same property as l/f of (6.7), δ is analytic on B(h) in 2ί0 (i.e.
when h has a finite number of non-zero components),

G(ί)= sup \\ePE\\
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is finite for small ί^O and for the (finite dimensional) projection £ on a finite
interval of Z (projection considered in the Hubert space 3? = /2(Z)®/2(Z))
supporting the operator Y, and the estimate (6.29) holds with G(|Imz|)2 replacing

Proposition 6.2. The set of automorphisms

G0 = {exp(5"; <5eig0}kicAR (6.31)

(restricted to 91CAR

>) is maximal abelίan in the sense that any automorphism of 9ΪCAR

commuting with all elements of G0 is in the closure of G0 (relative to the poίntwise
convergence).

Proof. Let E be the spectral projection of K for its positive spectrum, namely

(Eh) (θ) = E(θ)h, E(θ) = (2k(θ)) - *(K(Θ) + k(θ)) . (6.32)

Due to ΓKΓ= -K, we have

ΓEΓ = \-E. (6.33)

Thus E is a basis projection in the terminology of [1] and [6].
Let M be the abelian von Neumann algebra of all bounded multiplication

operators in ^-representation on the space E 3? (rather than 3? ). It is then maximal
abelian, as E(θ) is one-dimensional for each θ.

For the Proof of Proposition 6.2, we need the following Lemma describing g0

exactly.

Lemma 6.3. The derivations δ in ig0 are exactly those of the following form:

δ(B(h)) = B(Sh\ (Sh) (θ) = S(θ)h(θ) , (6.34)

iδ2(θ)K(θ) , (6.35)

where δ± and δ2 are any Laurent polynomial of elθ such thatδ^ is a real odd function
of θ and δ2 is a real even function of θ:

δ^δtf), δ2(θ) = δ2(θ), (6.36)

δ,(-θ)= -δ,(θ)9 δ2(-θ) = δ2(θ). (6.37)

Proof of Lemma. By the beginning part of the proof of Proposition 6.1, ΓSΓ = S
and £* = — S. If S is of the form given by (6.34) and (6.35), then 3* = —£ implies
(6.36) and (3.32) for Γ implies (6.37).

Since

kDk = k2D + (1/2) (dk2/dθ), (6.38)

the formula for Hj and S, shows that ̂ s for Hj and Sj are in fact of the form given by
(6.34) and (6.35) with δ± and δ2 Laurent polynomials of eίθ. Since k2 is at most of
second degree and D does not change degrees, we can find the exact degrees as
follows:
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ForyΦ+1,

degree coefficient

h2n(θ) 2n 22n+lJ(γ2-l)n(2n)l

s2n(θ) 2n + 1 i22n + V - 1 )n(2n) I

s2n + ι(θ) 2n+l -22" + 2(y2

For y2 = l and/lφO,

h2n(θ) n 24n + 1Jλnn\2

s2n(θ) tt+1 i2*H+1λHn\(n + ί)\

The case (Λ,,y) = (0, ±1) has been excluded from the beginning (see Sect. 2).
In addition, h2n(θ) and s2n+1(θ) are even functions of θ while h2n+ί(θ) and s2π(0)

are odd functions of θ. Therefore, by taking the real linear combination, we obtain
any real odd polynomial of eiθ for δ^ and any real even polynomial of ew for <52

(even-odd as a function of θ). Note that a real even function which is of the highest
degree k as a Lausent polynomial o f e ί θ is unique up to the addition of lower degree
polynomials and a constant coefficient (for example cos kθ) and a real odd function
which is of the highest degree fe is also unique in the same sense (for example sin kθ).
This proves Lemma 6.3.

We remark that if y2 = 1, Λ,ΦO, then the S's become redundant.
We now resume the proof of Proposition 6.2. By Stone- Weierstrass theorem,

any periodic continuous function of θ can be approximated by Laurent
polynomials of eiθ. The closure of G0 in Aut3ίCAR contains all Bogoliubov
automorphisms av with U = ex and

(Xh)(θ) = X(θ)h(θ), X(θ) = iXl(θ)l + ίX2(θ)K(θ), (6.39)

where Xl is any odd real periodic continuous function of θ and X2 is any even real
periodic continuous function. Since ||J3(Λ)|| = | |Λ| |, by using approximation in
strong operator topology on Jf , closure of G0 in Aut9ϊCAR contains ex with any
even real periodic L°° -function Xί and any even real periodic measurable function
X2 such that X2(θ)k(θ) is essentially bounded. Then (Uk)(θ) = U(θ)h(θ) with UE
exhausting unitary elements of M. Now the maximal abelian property of G0

follows from the maximal abelian property of M on EJ^ by Theorem 2 of
Kishimoto in [9].

Proposition 6.4. The subgroup

00 = {exp5;<5eiβo} (6.40)

of Aut?l is abelian.

Proof. By Proposition 6.2, we already know that the action of G0 on 910 is abelian.
Therefore this Proposition follows from the following uniqueness result about
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extension of automorphisms because αxα2 and α2α1 always coincide as automor-
phisms of $1CAR for two automorphisms in G0 and hence they must coincide also on
& as <30 is connected.

Lemma 6.5. Let {αj, {/Jj, 0^ t ̂  1, be two continuous families of automorphisms of
$1 such that they leave 9ICAR invariant as a set and

at(T) Te 9ICAR , βt(T) Te 21CAR . (6.41)

// oct and βt coincide on 21CAR and if α0 = /?0, then αf = βt for all t.

Proof. It is enough to show

αt(Γ) = /?,(Γ). (6.42)

ForanyΛe9IC A R,

α,(T)4αf(T)=αf(Tα_tμ)T)=αf(9_α_tμ), (6.43a)

βt(T)Aβ,(T) = β,(Tβ_,(A) T) = ββ-β-t(A) . (6.43b)

Since α, = j8, on 2ICAR, we obtain

Jβt(T)αί(T)^α((Γ))S((Γ) = ̂ Θ()?_(αtΘ_α_(μ)=^ . (6.44)

Since

l, (6.45a)

l, (6.45b)

(6.44) implies

[^Γ)αt(ΓM] = 0. (6.46)

By (6.41)

βt(T)oct(T) = (βt(T) T) (Γαr(T)) = (βt(T) T) (α,(T) T)* e 9ICAR . (6.47)

Therefore βt(T)oιt(T) is a scalar operator λl. By multiplying α^T) and using (6.45a),
we have

(6.48)

for some complex number λ. By (6.45a) and (6.45b), λ2 = 1 and hence

βt(T)=±*t(T). (6.49)

By continuity, the sign is common for all t and, since it is +1 for f = 0 by
assumption, we obtain (6.42) for all ί. Q.E.D.

7. Conclusion

Proofs of Theorems in Sect. 2 are essentially given in the preceding sections. We
summarize it below.

The commutativity of all H k f j and Sktj as derivations on 2ICAR are immediate
from concrete expressions given to them in Propositions 4.1, 4.2, 4.4, and 4.5. Since
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these derivations are of the class 3? treated in Proposition 5.2, the uniqueness of
extension from 3ΪCAR to $ shown in Proposition 5.2 proves the commutativity of
these derivations on $1 and hence on 91. This proves Theorems 1 and 2.

Since these derivations are of the form given in Lemma 6.3 (as follows from
explicit forms given by Propositions 4.4 and 4.5), Hk 7 and S k f j are contained in cj0

by Lemma 6.3. This proves Theorem 3.
The second half of Theorem 4 is Proposition 6.4. The first half of Theorem 4

will follow from Remark to Proposition 6.1 if we prove that aΆheJjf with a finite
number of non-zero components are analytic vectors of any XEQ^.

For such an /z,

h(θ)= Σ ft/", (7.1)
M^m

where each hj is a constant of θ. Let α= max ||Aj||^. Any XeQi is of the form
j

)9 lp(θ)= Σ lpjj», (7.2)

where p = l,2, each lpj is a 2x2 matrix, constant of θ, and D = d/dθ. Let

β = max || lpj\\ . Then, Xnh is a sum of (4k + 2)"(2w + 1) terms ((4/ι + 2) is the number
pj

of terms in X and (2m + 1) is the number of terms in h) of the form

{eij»θ(D) . . . eίJ2θ(D)eijίθ(D)eίjθ} Ln... L.hj , (7.3)

where [/|^m, \Jι\^k for all /, (D) is either D or 1, and each Lt is / l jΊ or I 2 j l . The
expression in the parenthesis of (7.3) has its absolute value bounded by

b1l/>All/>Ji+j2l...l/+Ji + ...+j»-il^nn («+*)• (7 4)z = o

We also have

\\Ln...L1hj\\^βnκ. (7.5)

These estimates imply

i (m + lk).

Hence

is convergent if

Therefore, any h is an analytic vector of X.
Proposition 6.2 leads to an obvious conjecture that G0 might be maximal

abelian on 91.
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