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Abstract. Master symmetries, found by Barouch and Fuchssteiner for a finite
size XY model with the help of a computer program, are mathematically
analyzed for an infinitely extended XY model by a rigorous operator algebraic
method with an easy computation. The infinite family of commuting Hamil-
tonians and the master symmetries generating them form an infinite dimen-
sional Lie group of automorphisms of a C*-algebra of observables for the
model.

1. Introduction

The one-dimensional XY-model in statistical mechanics of the spin 1/2 lattice
system is known to be exactly solvable. One possible feature of an exactly solvable
quantum model is the existence of a commuting family of explicitly describable
operators (constants of motion or symmetry generators) which commute with the
Hamiltonian of the model. Barouch and Fuchssteiner [7] found an interesting
mechanism of creating such a commuting family, which will be quoted in detail in
the next section.

Barouch and Fuchssteiner refers the proof to a computer computation. They
give only the first few operators in the commuting family explicitly and no general
explicit forms for the operators in an infinite family are given. The complicated
expressions for the first few operators do not seem to suggest any general explicit
form either. Thus we are not sure about the proof of the claim for the general
operators in the infinite family, e.g. the proof of their commutativity.

Also Barouch and Fuchssteiner do not specify the boundary condition for the
model. The expression for the master symmetry containing the number j of the
lattice site explicitly excludes the possibility of the periodic boundary condition.
However the validity of the commutativity can be broken at the boundary for
other boundary conditions.
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The aim of this paper is to present a more proper mathematical formulation, to
provide a rigorous proof and to give manageable description of a general term (not
just the first few operators in an infinite family) for master symmetries and
commuting families derived from them.

We show that master symmetries and the commuting families derived from
them (after multiplied by i) form an infinite dimensional Lie algebra of derivations
defined on a common dense subalgebra 2, in the C*-algebra U, consisting of all
local observables, that their closures are generators of one-parameter groups of
automorphisms of A, forming an infinite-dimensional Lie group and that the
subgroup generated by commuting families is abelian. Furthermore, it is found
that each member of commuting families derived from all master symmetries
under consideration is a finite linear combination of members of the commuting
family generated by the basic master symmetry.

It is very likely that the abelian subgroup of automorphisms mentioned above
(or its closure) is maximal abelian in the group of all automorphisms of .

In Sect. 2, we formulate the main results as Theorems. Theorems 1 and 2 are
essentially the claim of Barouch and Fuchssteiner [7], while Theorem 3 is new.
While Theorems 1-3 are Lie algebra statements about derivations of the C*-
algebra of observables, Theorem 4 is a result about the exponentiation of the
infinite Lie algebra into a group of automorphisms.

In Sect. 3, we review the C*-algebraic method of solution for the one-
dimensional XY-model. In particular, the CAR algebra is introduced via the
Jordan Wigner transformation from the spin algebra.

In Sect. 4, master symmetries and commuting families derived from them are
explicitly computed as derivations on the CAR algebra.

In Sect. 5, the problem of going back from the CAR algebra to the algebra of
observables is solved for derivations and the uniqueness is shown.

In Sect. 6, the exponentiation of derivations into automorphisms is carried out
by the technique of Bogoliubov automorphisms of the CAR algebra and then by
changing over to automorphisms of the spin algebra.

In Sect. 7, we collect results of the preceding sections into a proof of Theorems
in Sect. 2. We also remark in Sect. 6 about the maximal abelian nature of the
commuting family of automorphisms on the CAR algebra due to a theorem of
Kishimoto [9] and conjecture the same for the spin algebra.

2. Statement of Results

We denote the lattice sites in one dimension by integers Z, the Pauli spin operators
at each lattice site j € Z by 6, 61, and ¢, the C*-algebra of observables generated
by them at all lattice sites je Z by 2, and the subalgebra consisting of all finite
polynomials of ¢’s by .

The standard expression for the Hamiltonian of the XY-model is given by

H=-J Y H(), 2.1)

JjeZ

H{)=(1+7)6P6¥*V+(1—7)cP6* D+ 2169, (2.2
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(In notation of [7], —J(1+y)=J,, —J(1—y)=J,, —2JA=h.) We interpret H as
the derivation

ogA=[H,A]=—-J jezz LH(j), A] (2.3)

for AeU,. Each term of the sum (2.1) defines an inner derivation, which vanishes
for sufficiently large j for any given A€, due to the commutativity of ¢’s at
different lattice sites, i.e. [H(j), A] vanishes if j and j+ 1 are outside of supporting
sites of A. (The supporting sites of an element 4 may be defined as the set of all j
which appears in an explicit expression for A in terms of ¢’s.) Therefore (2.3) is
actually a finite sum and belongs to U, for any 4eA,,.

In this note, we explicitly exclude the case (4,7)=(0, +1) (the case of one-
dimensional Ising model).

We consider another derivation of a similar nature given by

S= ¥ S(), 24
JjezZ
S(j)=0Pal* V- g+, 2.5)

We use the following “master symmetry” in the sense of a derivation on 2,
P=- ,ZZ PG),  PG)=(+(1/2)H()—Ae?. (2.6)
je
This is related to the first master symmetry M, of Barouch and Fuchssteiner ((3.2)
and (3.7) in [7], where (3.7) should read 1= —(1/2)h) via
My,=JP—(1/2)H, 2.7

which produces the same family of commuting “Hamiltonians” as P except for the
constant coefficient J. We note that P(j) of (2.6) can be obtained from H(j) of (2.2) by
multiplying the terms 6P6¥* " and 6’6y * V) by (j +(1/2)) and the term 69 by j, the
purpose of the o term being just to cancel (1/2) in the coefficient of H(j) for the ¢¥
term.

The derivation P is called a master symmetry because of the following

property.
Theorem 1. Starting with Hy=H and S,=S, the derivations H, and S, on W, are
defined recursively by
H(n+1)=i[P’Hn]’ (2.8
S(n+ 1)=l[P, Sn]) (29)

n=0,1,2,.... Then for any j, ke Nu{0},
[Hj’Hk]=[Hj’ Sk]z[Sj’ Sk:|=0. (2.10)

More explicit description of H, and S, as well as the proof will be given later.
We note that the commutator of derivations are defined, for example, by

511,. + 1(A) = i(5P {5Hn(A)} - 5Hn {5P(A)}) . (2'1 1)



158 H. Araki

By (2.1) and (2.6), we have for Aeq,
op(@)=1iJ ,Zk {[PG), [H(k), A11—[H(k), [P(), A11}

=iJ ,Zk [LPG), H(k)], A1, (2.12)

where the last equality is by Jacobi identity. This will be denoted by
H,=iJ zk [PG), H(k)]. (2.13)
Js

Similar expressions can be written down for other H, and S,
We define g, to be the set of all finite linear combination of H,,n=0, 1,2, ... and
S, n=0,1,2, ... with real coefficients. Addition of any element of g, to the master
symmetry P does not change H, and S, defined above due to the abelian nature of
go- In particular M, of Barouch and Fuchssteiner and our P produce the same H,,

and S, except for a constant coefficient J".

In the same spirit, we define another master symmetry P :

Pi=~ % Py(), (214a)
je
Py()=G+1) {(1+7)0Pa¥" Vg * D 1 (1 —y)sPad* oy +2)

=269 —(2j + 1) AcPe¥* Y+ 6Peit V). (2.14b)

This differs from the second master symmetry M, of Barouch and Fuchssteiner by
a constant coefficient and an addition of elements of g,:

M,=4J?P,+2J%S,—4JAH. (2.15)
We now define an infinite family of master symmetries recursively by
P;,,=i[P,P;], j=1,2,.... (2.16)

As before, the P; (j=1,2,...) are understood as derivations on U,
Each of P; produces a commuting family of derivations on 2, which commute
mutually for different j:
Hk+1,j=i[PjsHk,j]a H, ;=H, (2.17)

sJ

Sk+1,j=iLPp S, ;1.  So,;=S. (2.18)

sJ
Here k=0,1,2, ....
We extend the notation of (2.17) and (2.18) for j=0 with Py=P, so that
Hk,0=Hk’ Sk,():Sk‘ WC haVC

Theorem 2. For all k,j,I,m=0,1,2,...,
[Hk,j’ Hl,m] = [Hk,j’ Sl,m] = [Sk,j’ sz] =0. (2-19)

We note that M in [7] and 4J7*'P;, j=1,2, ... differ by an element of g, for
each j and hence produce the same family of H’s and S’s as H’s and T’s of Barouch
and Fuchssteiner up to constant coefficients. Thus Theorem 2 is the claim by
Barouch and Fuchssteiner, for which we give a straightforward proof. Actually we
have the following stronger result, which proves Theorem 2 in view of Theorem 1.
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Theorem 3. For all k,j=0,1,2,...,
Hy jego, S j€90- (2.20)

We now describe our result about integrating (or exponentiating) these
derivations. Let g; be the set of all finite real linear combinations of P,
k=0,1,2,... and elements of g,.

Theorem 4. For any X €g,, the closure of iX is the generator of a one-parameter
group of automorphisms of A, which will be denoted as e'’*. For X, Ye g,, ¢ and e*
commute.

Actually we can describe the group generated by ¢'*, X e g, in more detail. This
will be a subject of the forthcoming paper.

3. The Method of Solution

1. Introduction of CAR-Algebra
We now quote the operator algebraic method of solution for the XY-model

[3,4, 5]
We introduce two involutive automorphisms of U defined as follows:
N . N .
O(4)= lim < I1 a‘}’) A< I1 oi”) , (3.1)
N—-wo \j=-N j=—N
0 R 0 -
@_(4A)= lim ( I1 o",”) A < I1 a‘,’)). (32)
N-ow \j=-N j=-N
More explicitly, they can be defined by the following action on the generators of U:
O(cP)=—0?, O(eP)=—0p, O(V)=0. (3.3)
(=0, +1,+£2,...).
. ) if j=1
@_(c9)={%" = 4
o=l i 120 9
(@=x,y,2).

Let U be the crossed product of A by the action " of ne Z,. More explicitly,
9 is the direct sum

A=A+ TA, (3.5)
where the element T of 9 satisfies
T>=1, T*=T, TAT=06_(A) (3.6)

for all AeU. The automorphisms @ and @_ of A can be extended to
automorphisms of ¥ (again written by the same letters @ and @ _) satisfying @(T)
=0 _(T)=T

The algebras 2, A, and A are decomposed into a sum of O-even and O-odd
parts via the following elementwise decomposition:

A=A, +A_, A,=2"Y4+6(4)), (3.7)
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where ©(A.)= + A, by definition. Accordingly,

W=, +A_, A=Wy, +W,_, A=W, +9_. (3.8)
We define the following C*-subalgebra of .

UCAR=Q[, + TU_. (3.9

It is generated by the so-called Jordan-Wigner transform of ¢’s,
¢;=TS{e¥V—ia)2, (3.10a)
where ck =TSV +icl)/2, (3.10b)
oV ...gi™V if j=2, (3.11a)
S;=11 if j=1, (3.11b)
¢ ...69 if j=<O0. (3.11¢)

These operators satisfy the canonical anticommutation relations (CAR):
[Cjack]+=[c;kacl?]+=os [Cjac;:]+=5jk7 (3.12)

where [4,B], =AB+BA and 6 is O for j+k and 1 for j=k.

The automorphism @ _ of 9 leaves ACAR invariant (as a set) and A can also be
viewed as the crossed product of A°AR by the @ _ action of Z,. Generators of 2 can
be expressed in terms of creation and annihilation operators c¥ and ¢; and T as
follows:

oP=2c¥c;—1, oP=TS(c;+c}), V=TSjic;—c}). (3.13)

Again, AR can be split into ©-even and @-odd parts:
QICAR — QICAR | Q[CAR (3.14a)
USAR_Q, | UCAR_TYQ[_. (3.14b)

2. Selfdual Formulation of CAR and Bogoliubov Automorphisms [1, 6]
We introduce the complex Hilbert space

H=LZ)D,(Z). (3.15)
An element h of # consists of two elements f and g of I,(Z), denoted by
h= <f> (3.16)
g

instead of h= f @g. Each fel,(Z) can be described by its components f, je Z. We
denote

B(h)=Y fic¥*+ Y gc;» (3.17)

which converges in the C*-norm of AAR, We introduce the antilinear involution I

on # by
r (g 7) (3.18)
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where the bar in f and g denotes the componentwise complex conjugation. Then
{B(h)} generates AR and satisfies the following selfdual form of CAR:

[B(hy)* B(hy)]+ =(hy, hy)1, (3.19a)
B(h)*=B(I'h). (3.19b)

Here we are using the notation of physicists for the inner product:
(hi, hy)=(f1, ) +(81,82)= ; (fljfzj+g—1jg2j) . (3.20)

For any unitary operator U commuting with I', there exists the unique
automorphism of AAR, denoted by «;, and called a Bogoliubov automorphism,
satisfying

ay(B(h))=B(Uh). (3:21)
Examples are @=a_, for U= —1 and & _ =0a,_ where
_ )izt
0-1)= {—fj i<o. (3:22)

3. XY-Model Hamiltonian

The operator H(j) given by (2.2) belongs to 2, =ASA® and can be written as a
quadratic expression of ¢;, ¢;,;,¢¥ and c¥, ; up to a constant term which does not
count as a derivation: ‘

H{)=2(cjcty 1 +cjr16F)+2y(cicjp 1 i icF) +4AcTc;—24. (3.23)
The derivation (2.3) can now be explicitly written:
Ox(B(h))=B(2JKh), (3.24a)

K=<U+ U*—2A, y(U-U¥ ) (3.24b)

—yU—-U%, —(U+U*-2))

Here the 2 x 2 matrix notation for the operator K on # corresponds to the 2
components notation (3.6) for elements h of K, U and U* are shift operators on
1,(Z) to the left and to the right:

UNj=fi+1» U*)j=fi-1. (3:25)
The operator K is bounded, acting on 5 and satisfies
K*=K, TIK=-KrI. (3.26)

The derivation dy exponentiate to a one-parameter group of automorphisms
(ag),=e"", teR, of UCAR, explicitly given as Bogoliubov automorphisms:

Ok =0yy, U()=expi2JK1). (3.27)

In subsequent computations, it is advantageous to introduce the following
Fourier transform. For each fel,(Z) and he #, we define functions of T
=R/2nN as follows:

fO)= % e™f,, hO)= Y eh,. (3.28)
neZ

neZl
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Here f(6) is a complex number and h(6) is a 2 dimensional vector for each 6. The
inverse relations are

fi=@m1 T e~ f(6)do, (3.29a)
0
h,=(2n)~! zjn e " n(6)do. (3.29b)
[
The operator K is diagonalized by this transformation.
(Kh)(8)=R(0)h(0), (3.30a)
_,[cos8—4 —iysin6
K(©)=2 (iy sinf  A—cosf ) ' (3.306)
We note that
RO*=k¥0)1, k(0)=2[(A—cosB)?+y?sin?0]"/2. (3.31)
We also note that
_ “‘g(—e)) o WO (f(0)> 132
(I'n)(6) (f(—@) or h(6) 20)) (3.32)

4. Master Symmetries — Lie Algebra Computation

All the derivations introduced in Sect. 2 are infinite sums of inner derivations by
elements of A, = AR, and hence we compute them first for AAR, using notation
of the preceding section.

First, S(j) of (2.5) can be written as

S(j)=2i(c¥, 1c;—cFcjry)- 4.1)

Therefore the derivation d5(A4)= Z[S(j), A] for A= B(h) is given by
Os(B(h))= B(Sh), 4.2)
S=2i<U*0_U U*O_U), S(0)= —4sinf1. (4.3)

Next, P(j) of (2.6) can be written as
P(i)=(+(1/2)H({j)— A2c¥c;—1), 4.4)
where H(j) is given by (3.23). Therefore dp(A4) = — Z [ P(j), A] for A= B(h)is given by
op(B(h))=B(Ph), @4.5)
U - U,—-Ux
P2 o —@rot ) o
where U, and ¢ are defined by

(0h);=jh;,  (6h)(6)=(—id/dO)h(0)= —iN'(6), 4.7

U, =0+01/2)U, Uf=U*o+1/2)=(0—-(1/2)U*. 4.8)
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Note that 6U =U(0—1), (6 — 1) U* = U*$. The last term in (4.4) serves the purpose
of canceling out the (1/2) term for — 21 in H(j). The above expression for P can be
written in a compact way

P=0K+Kd, 4.9)

because 2U ; =06U + U and 2UF=6U* + U*6, where K is given by (3.24b).
A basic property of P is the following commutation relation:

i[P,K]=i[6,K*]=2kk'1 4.10)
due to (3.31), where k' is the multiplication of the derivative k'(6):
(K'h) (6)=K'(0)h(0). 4.11)
Computing in f-representation 6f the test function space #, we obtain
i[P,al]=2d'K, 4.12)
i[P,bK]=i[P,b]K +bi[P,K]
=(2b'k* + 2bkk’) 1 =2k(d/d0) (kb) 1 4.13)

for any multiplication operators a and b in f-representations. By repeating these
computations, we obtain the following description of the derivations H; on AR,

Proposition 4.1.
Oy (B(h))=B(H;h), 4.14)

where H; is the multiplication of the following expressions in O-representation of # :

A,0)= {:igllc(e) ?Z: Z:jr{ , . (415)
The functions h; satisfy
hy,=2Dh,, ., h,,,,=2kDkh,,, 4.16)
where D =(d/d6). With the initial condition h,=2J, they are given by
hy,=2*"*1J(D-k)*"1, 4.17a)
hypi1=2*"*2Jk-(D-k)*"*'1, (4.17b)

where n=0,1,2, ....

Here the product D - k is the product of the differentiation operator D =(d/db)
and the multiplication operator k, and it does not mean the differentiation of the
function k(6) alone. The initial condition is by (3.24a).

Similarly, we obtain the following.

Proposition 4.2.
Js,(B(h)=B(S;h), (4.18)
where S; is the multiplication of the following expression in 0-representation of H# :

$0)= {s}(()) 1 for evenj,

s{O)R(0) for oddj. (4.19)
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The functions s; satisfy

Syn=2kDks,,_, S,,41=2Ds,,. (4.20)

With the initial condition sy(6)= —4sin0, they are given by
Son=—22"*%(kD)*"sin6, (4.21a)
Sops1=—22""3D(kD)*"sin0, (4.21b)

where n=0,1,2,....

The initial condition is given by (4.3).
We now compute the second master symmetry P;. We have

Pi()=—2(G+1){ck sc;+cFcjra+r(cici a4 o)}
—djc¥c;+2i+2A2j +1) (ki 1c;+cFejvy). 4.22)

Therefore
op,(B(h))=B(P,h), (4.23)
— <U*2(5+ 1)+ UX3—1)+20—AU*(25+1)+ U(26—1)), YWUAS—1)—U*¥3+1))
v HU*3+1)—UXS—1)), —U*3+1)— U6 —1)— 20+ (U*Q25+ 1)+ U(25—1)))
=(1/2){(U+U¥P+PU +U*)}. (4.24)

We can now compute all members of the infinite family of master symmetries
P;:

g
Proposition 4.3.
op(B(h))=B(P;), 4.25)
P;=L,P+PL;, (4.26)
where the operators L; satisfy the recursive relation
L., =i[P, L], j=12,.... 4.27)

They are the multiplication of the following expressions in §-representation:

-t s

where the functions p; satisfy the recursive relations
P2n+1=2(kDk)p2y, (4.29a)
P2n=2P2n-1- (4.290)

With the initial condition p, =cos0, they are given by
Dan+1=22"(kD)*" cos®, (4.30a)
Pan= —22""Y(Dk)*" %sinf. (4.30b)
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The initial condition is due to (4.24), in which (U + U*)/2 is the multiplication of
cos@ in f-representation.

Proposition 4.4.
0g, (B(h)=B(H,, ;h), (4.31)

where H, ; is the multiplication of the following expression in 6-representation:

- {0l Sttt
k=1,2,...,j=1,2,.... The functions h,_; satisfy the following recursion relations:
hynt1,j=4(p;kDk)h,, ; for odd j, (4.33a)
Rans2,;=4@D)Yhon+y,; foroddj, (4.33b)

hy11,;j=4(pikDk)h, ;  for evenj, (4.34)

where n=0,1,2,..., 1=0,1,2,.... With the initial condition h, ;=2J (a constant
function ), they are given by

Bynsy,;=(4pkDY*"*'2Jk  for odd j, (4.35a)
Ry ;=4p;D(4pkD)*"~*2Jk  for odd j, (4.35b)
h, j=(4pkDk)'2J  for even j. (4.36)
Proposition 4.5.
05, (B(W)=B(S, ;h), (4.37)

where S, ; is the multiplication of the following expression in 0-representation:

S.00= (01 heior " (39
k=1,2,...,j=1,2,.... The functions s, ; satisfy the following recursion relations:
Son, j=4p;kDksy,_, ; for odd j, (4.39a)
Son+1,j=4p;Dsy,; for odd j, (4.39b)
Si+1,j=4p;k*Ds, ; for evenj. (4.40)

With the initial condition s, ;= —4sin, they are given by
San, ;= —4*"*(p;kD)*"sinb for odd j, (4.41a)
Son+1,;= —4*""2p,D(p;kD)*"sin® for odd j, (4.41b)
s,;=—4"1(pk*D)'sinf  for even j. 4.42)

5. Extension of Derivations to 9

For any finite interval I of integers Z, we define 9I(I) to be the subalgebra of 9
generated by 69, 69, 6\, je I, and ¢, ¢¥, je I, A(I)=ANA(I) to be the subalgebra
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of A generated by o, ¢, and ¢, jel, and AAR(I)=AARAY(]) to be the
subalgebra of AR generated by c; and c¥, j e I. We define [, and ASA® to be the
union of U(I) and ACAX(I) for all finite intervals I of Z, respectively. They are
subalgebras of 91 and AAR, and

UGAR = Q[ NUCAR | (5.1)
Q[O=§Ionm, (5'2)

where the latter is defined already in Sect. 2.
Let A, (I) denote A, nA(I), i.e. the set of @-even elements of A(I). It coincides
with ASAR(I) = A, " ACAR(I) for any interval I due to relations such as

S _fitn—1 .
0Po§*m =d9 < I Qcte— 1)) dg+m, (5.3)
k=j
494+ = g9 (“ﬁ" a;k>) g, (54)
k=j

dP=c,+cf, dP=i(c,—c}). (5.5)
Let £ be the set of all derivations & of 9, such that there exists an index set & = {a},
a finite interval I, in Z for each « and X, = X* e %, (I,) satisfying the following two

conditions:
(A) 5(A)=iY [X,,A], Ae¥,, (5.6)

(B) The set Z; of e Z such that jel, is finite.

Proposition 5.1. The sum in (5.6) is a finite sum of non-zero elements in 9. The set
< is a real Lie algebra of symmetric derivations on %,

Proof. For Ae (1), consider I, such that InI, is empty. Then 2, (I,) and A(I)
commute because InI, is empty and ASAK(I,) and A4R(I) commute for the same
reason. Since U, (I,)=WGAR(I,) and A(I) is generated by A(I) and AAY(), 4
commutes with X . Thus [X,, A]=0 unless a belongs to the finite set

(U5) 5.7)

and hence the sum in (5.6) is finite and belongs to 9, for 4%,
Due to X =X, ¢ defined by (5.6) is a symmetric derivation. If ¢, is defined by
(5.6) with Y, e Z, instead of X,, a€Z, then we have

(6+51)(A)=izv‘, [Z,,A4], (5.8)

where ve EUE" and Z,=X, for aeZ, Z;=Y; for e =,
(o) (A)=i} [cX, A] (5.9)

for any real c. Further,
[6,6,J(A)=iY [W,,A4], (5.10)
M
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where u=(x, f)e E x E'=E" is restricted to the pair such that I,nI; is non-empty
and
W,=i[X,, Y,]e U (I,0],), (5.11)
where 1,01, is again a finite interval and hence
E.p=1{(,p);jel, kel for some kel,}
U{(e, B); jely, kel, for some kelg} (5.12)
is finite. Therefore & is a Lie algebra of symmetric derivations on %,. Q.E.D.

Proposition 5.2. A4 derivation 6 € & is determined by its value on B(h) for all he #
with a finite number of non-zero components h,,.

Proof. First the finite linear span of B(h) with such h is the same as the finite linear
span of ¢; and ¢}, je Z. By the linearity and the derivation property

6(A1"‘All)=ZAI"'Aj—l‘s(Aj)Aj+1"’AII? (5.13)
J
the value of § on B(h) determines its value on ASAR,
Next we have

8(T)=iY [X,, T]1=bT, (5.14a)

b=iY (X,— O _(X)eU, (I, (5.14b)

where the sum can be restricted to o € £, for example, and 1°= U{I,; a € Z,}. Note
that, on (1), ® _=idif I,>0and ®_ =0 if I, <0, so that ® _(X,)= X, in either
case because X,e A, (I,). For any A e USAR, the relation TO _(A) T= A implies

8(A)— O _8(6 _(A)=(TO_(A)T)—TH(O _(A) T
=8(T)O _(A)T+TO_(A)5(T)=bTO _(A)T+TO_(A)TTHT
=bA+AO_(b). (5.15)

On the other hand 6(1)=6(12)=16(1)+6(1)1=25(1) implies 6(1)=0 as is well-
known, and hence

0=6(1)=86(T*»=8(T)T+ Té(T)=bT?*+ TbT=b+ O _(b). (5.16)
Therefore (5.15) and (5.16) determine the commutator
[b, A]=06(4)— O _6(0 _(A4)) (5.17)

for any A€ ASAR in terms of the value of § on ASAR,
There exists a unique tracial state 7 on A°AR induced from the unique tracial
state on full matrix algebras. Since

((UAU*)=1(U*U A)=1(4) (5.18)
for any A € ACAR and unitary U due to the tracial property of 7, we obtain from (3.2)
(O _(4) =(A) (5.19)
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for any A€ AAR, Then the formula (5.14b) implies
2(b)=0. (5.20)

The algebra ACAR(1°) is isomorphic to the full 2V x 2" matrix algebra where N is
the cardinal number of the finite set I°. Let u;;, i, j=1,2, ...,2" be its matrix unit.
Any A e AAK(I%) can be written as

b=2"V <k2 ;[0 b] +1:(b)1). (5.21)

Therefore (5.17) and (5.20) uniquely determine be A, (I°)CASAR in terms of the
values of 6 on ASAR. Q.E.D.

jo

Remark. In the above proof, we used an explicit form (5.14b) to show that 7(b)=0.
This can be avoided by using the following argument.
We consider the following linear functional on 9:

1A, +A,T)=1(4,) (4, A,eULR), (5.22)
Then
(A, +4,T)* (4, + A, T)=1(AT4,+ 0 _(43)0 _(4,) 20 (5.23)
and hence £ is a state. Furthermore by (5.19) we obtain
(A +A,T) (A, + A, T)*)=1(4, 4T + 4, 43)
=1(ATA; +A34,)=1(4T4,+ O _(43 4,))
=14, +A4,T)*(4, +A4,T)). (5:24)

This proves that £ is tracial.
_ From the middle expression in (5.16), we obtain

1(b)=4(8(T) T)=4(T5(T)+8(T) T)/2=0.

This argument can be used whenever we know that §(T)=bT with be AR,

6. Automorphism Group

If all X, in (5.3) are quadratic polynomials of c; and c¥, je I,, then 6(B(h))= B(Xh)
for a skew symmetric linear operator X defined on he s with a finite number of
nonzero components. Let #5 be the subset of £ consisting of such derivations
satisfying the following two conditions:

(a) X is bounded.
(b) [0_,X] is in the trace class.

Here 0_ is the operator defined by (3.22).
Actually (b) is automatic and a stronger statement hold for 6 € &. Namely, we
have

B((6-X0_—X)h)=6 _5(6_(B(h))—(B(h)
=i (0 _([X,, ©_(B(h)]) - [X,. B(h)])

=iy [(@_(X,)—X,), B(h)]. (6.1)
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If 0 is not in the interval I, then ® _(X,)= X, for X,e W ,(I,) and hence the sum is
over « in a finite set 5. Foreach a € 5, ® _(X,)— X, is a quadratic expression of a
finite number of c; and ¢} and hence

l[@ —(Xa) - Xaa B(h)] = B(xah) s (62)
where x, is of a finite rank. Hence the following stronger property holds:
(b" Y=0_X0_—X is of a finite rank.

This implies (b) due to [0_,X]=Y0_.

Proposition 6.1. The subset Ly is a Lie subalgebra of ¥. For any € %y, there
exists a one-parameter group exp ot of automorphisms of N with the closure 8 of J as
its generator. It leaves the subalgebras UAR, A and N, of N invariant as sets.

Proof. If derivations 6, and 6, in % satisfy d{B(h))=B(X;h), then 6=[0;,6,]

satisfies 6(B(h))= B(Xh) with X=[X,, X, ]. The linear operator X satisfies (a) and

(b), where we use the Jacobi identity for commutators as well as the ideal property

of the trace class operators to obtain (b). Therefore %5 is a Lie subalgebra of £.
Due to X*=X,, 0 is a symmetric derivation and hence

B(I'Xh)= B(Xh)* = §(B(h))* = 6(B(h)*)
=0(B(I'h))=B(XTI'h) (6.3)
from which we obtain
[X,I]=0. (6.4)
Since §(1)=0, the CAR implies
0=06(LB(h1)*, B(h2)].+)=[B(Xh,)*, B(h,)]+ + [B(h,)*, B(Xh,)]

=(Xhy, hy)+(hy, Xh,) (6.5)
for all hy, h, with a finite number of components. Therefore X is skew symmetric:
X*=-X. (6.6)

By (6.2) and (6.4),
U,=eX 6.7

is a unitary operator commuting with I' and hence defines a Bogoliubov
automorphism oy, of AR satisfying

oy (B(h)=B(Uh). (6.8)

The generator of «y, then coincides with 6 on B(h) and hence on AGAR.
By the condition (b),

Y=0_X6_—-X=[0_X]6_ 6.9
is in the trace class and satisfies

rX*r=-Y (6.10)



170 H. Araki

due to [I,0_]1=0, (6.4) and (6.6). There exists an element YeAAR called the
bilinear Hamiltonian (Y=(1/2)(B, YB) in the notation of [1]) satisfying Y*=—Y
(due to Y¥*=—Y) and

LY, B(h)]=B(Yh). (6.11)
By (7.12) of [1] and 0_YO_ = —Y, it also satisfies
O_(V)=-Y. 6.12)
Using the expansional formalism in [2], we define
o t th-1
W=1+3Y [... | Y, ...Ydt, .. dt, (6.13)
n=10 0

where Y,=ay(Y). By using Egs. (2.17), (2.18), Propositions 3 and 4 of [2] as well
as the property Y*= —Y, we see that W, is unitary. By Theorem 2 of [2], W,
satisfies the cocycle equation:

Wy (W) =W, (6.14)

Therefore
BlA)=Woy (AW*, teUAR (6.15)

defines a continuous one-parameter group of automorphisms of AR,
Using (4.11) of [2], we obtain for V,=¢®-*°-'=0_U,0_

(d/dt)f - (B(Vh) =B - (d/ds)B - (B(V, +sh))ls=0o
= B-{ —(d/ds)uy (B(V)\;s= o — LY, B(V;W)] + B(dV;h/d1)}

=p_.{—B(XV,h)—B(YV}h)+ B(0_X60_V,h)}=0. (6.16)
Therefore §_,(B(V;h)) is constant in t. Since its value at t=0 is B(h), we have
B{B(h))=B(V;h) =0y, (h) =6 _0oy, 6 _(B(h)). (6.17)
Thus we have obtained the following formula:
Way (AW =ay, (4) =0 oy, _(4) (6.18)

for A= B(h) and hence for all A€ AAR,
By (6.12) and (6.13), we obtain

o t th-1
O_(W)=1+ ;l (j) g (=Y)...(=Y)dt,...dt, (6.19)
where we have used the relation
0_(Y)=6_0y,0_(6_(Y) =0 (—Y) (6.20)
and notation
Y =ty (V)= Wty (V) W;*. (6:21)
The quantity — Y, corresponds to (Y*(—Y))(¢) of (3.7) in [2] with B=Y and
A= —Y and hence
O _(WW,=1 (6.22)

due to A+B=0 in (3.10) of [2].
We now define the extension «, of oy, from AR to A by

0(A+ A4, T)=ay (A1) + oy (A)TW,. (6.23)
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To show that a, is indeed a * automorphism, we have to see that relations T2 =1,
T*=Tand TAT = O _(A)for A e U°AR are preserved, namely it is enough to check
the following relations:

TW,TW,=1, (6.24)
W*T=TW,, (6.25)
TWay (A) TW, =0y, (0 _(A). (6.26)

Equation (6.24) holds by (6.22) and @ _(W,)=TW,T. Because W, is unitary,
(6.24) implies W,* = TW,T and this implies (6.25). By (6.25) and (6.18), we obtain

TWoy (A TW,=TWay (A)W*T

=T{O_ay,0 _(4)} T=0y,0 _(4) (6.27)
which shows (6.26).
In the notation of [1], we have
ay,(B,YB)=(B,U,YU _,B) (6.28)

by (7.12) of [1]. It is an entire analytic function of a complex number ¢, because
U,=e™ is an entire analytic function of z (values are bounded operators), Y is in
the trace class and (B, LB) is linear and continuous in L with the bound

I S(1/2) [ Y]], e?IXiilimet, (6.29)

Therefore W, of (6.13) has an entire analytic extension:

11 th-1

W, =1+ z 2L | Ve Yoy dty.dty. (6.30)

In particular, T is in the domain of the generator of a,. Since the generator of «,
is a symmetric derivation coinciding with & on A°AR, it must be an extension of & by
the uniqueness result given in Proposition 5.2 (see Remark after Proof of
Proposition 5.2).

Since o (B(h)) = B(e**h) and o(T)= TW, are entire analytic, all elements of 9,
are entire analytic elements of 6. Thus the condition (B2) of Theorem 3.2.50 of (8]
is satisfied. Since the generator of a, satisfies the condition (C1) there, it is satisfied
by & which is a restriction of the generator to ¥,. The condition (A1) is also
satisfied with D(8)=U,,. Therefore the closure of § is exactly the generator of &, by
Theorem 3.2.50 of [8].

Since «, maps B(h) to B(U,h) and T to TW, with W,e U, the subalgebras AAR,
A and A, are invariant under «, as sets. Q.E.D.

Remark to Theorem 6.1. Except for the first statement (that .5 is a Lie algebra),
Theorem 6.1 holds for & defined on ¥, such that iX is analytic on the set of all he #*
with a finite number of non-zero components. The proof is the same because
U,=e* will have the same property as U, of (6.7), d is analytic on B(h) in 2, (i.e.
when h has a finite number of non-zero components),

G(t)= sup ||eXE|

—t<s=t
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is finite for small >0 and for the (finite dimensional) projection E on a finite
interval of Z (projection considered in the Hilbert space # =I,(Z)®DI,(Z))

supporting the operator Y, and the estimate (6.29) holds with G(|]Imz|)? replacing
211Xl imz]

Proposition 6.2. The set of automorphisms
Go={expd; d €igo}lycar (6.31)

(restricted to AAR ) is maximal abelian in the sense that any automorphism of AR
commuting with all elements of G, is in the closure of G (relative to the pointwise
convergence ).

Proof. Let E be the spectral projection of K for its positive spectrum, namely
(Eh)(6)=E(6)h, E(0)=(2k(0))” *(K(6)+k(0)). (6.32)
Due to I'KI'= — K, we have
T'Er=1—E. (6.33)

Thus E is a basis projection in the terminology of [1] and [6].

Let M be the abelian von Neumann algebra of all bounded multiplication
operators in f-representation on the space E# (rather than ). It is then maximal
abelian, as E(6) is one-dimensional for each 6.

For the Proof of Proposition 6.2, we need the following Lemma describing g,
exactly.

Lemma 6.3. The derivations ¢ in ig, are exactly those of the following form:
3(B(h))= B(Sh),(5h) (8)=6(8)h(0), (6.34)
5(0)=i6,(0)1+i5,(0)K(6), (6.35)

where §, and &, are any Laurent polynomial of e” such that 6, is areal odd function
of 0 and 6, is a real even function of 6:

01(0)=0,(0), 09,(0)=0,(0), (6.36)
01(=0)=—0,(6), 0x(—0)=0,(0). (6.37)

Proof of Lemma. By the beginning part of the proof of Proposition 6.1, 'ST"' =6
and §* = —§. If § is of the form given by (6.34) and (6.35), then §* = —§ implies
(6.36) and (3.32) for I" implies (6.37).

Since
kDk=k?D +(1/2) (0k?/26), (6.38)

the formula for H;and S;shows that &sfor H ;and S;arein fact of the form given by
" (6.34) and (6.35) with §, and J, Laurent polynomials of ¢*. Since k? is at most of
second degree and D does not change degrees, we can find the exact degrees as

follows:
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For y+ +1,
degree coefficient
h,,(0) 2n 2241 (32 —1)"(2n)!
hons10) 2042 —i22"*2J(y2—1)"*1(2n+1)!
S(0)  2n+1 22"+ 1(y2 —1)"(2n)!
San+1(0)  2n+1 =22 2(y2 —1)"(2n+ 1)!
For y>=1 and 1%0,
h,,(0) n 24n+1 )12

hyo () ntl —i2 4100 Il (n g 1)]
S0 n+1 24" 12 (n+1)!
Syue1(0) n+1 24n+2)m(n 4 1)12

The case (4,7)=(0, +1) has been excluded from the beginning (see Sect. 2).

In addition, h,,(6) and s,, . ,(0) are even functions of 8 while h,, , ,(6) and s,,(0)
are odd functions of 0. Therefore, by taking the real linear combination, we obtain
any real odd polynomial of e’ for §, and any real even polynomial of e for 6,
(even-odd as a function of 6). Note that a real even function which is of the highest
degree k as a Lausent polynomial of e is unique up to the addition of lower degree
polynomials and a constant coefficient (for example cos k) and a real odd function
which is of the highest degree k is also unique in the same sense (for example sin k).
This proves Lemma 6.3.

We remark that if y2=1, 140, then the S’s become redundant.

We now resume the proof of Proposition 6.2. By Stone-Weierstrass theorem,
any periodic continuous function of § can be approximated by Laurent
polynomials of ¢”. The closure of G, in AutA®R contains all Bogoliubov
automorphisms ay with U =X and

Xh)(0)=XO)h©O), X(O)=iX,(0)1+iX,0)K(0), (6.39)

where X, is any odd real periodic continuous function of # and X , is any even real
periodic continuous function. Since |B(h)| = | k||, by using approximation in
strong operator topology on #, closure of G, in Aut AAR contains eX with any
even real periodic L*-function X ; and any even real periodic measurable function
X, such that X ,(0)k(6) is essentially bounded. Then (Uk)(0)= U(0)h(f) with UE
exhausting unitary elements of M. Now the maximal abelian property of G,
follows from the maximal abelian property of M on E# by Theorem 2 of
Kishimoto in [9].

Proposition 6.4. The subgroup
Go={expd; deig,) (6.40)
of Aut is abelian.

Proof. By Proposition 6.2, we already know that the action of G, on %, is abelian.
Therefore this Proposition follows from the following uniqueness result about
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extension of automorphisms because o, «, and «,a, always coincide as automor-
phisms of AR for two automorphisms in G, and hence they must coincide also on
9 as G, is connected.

Lemma 6.5. Let {,}, {8,}, 0<t <1, be two continuous families of automorphisms of
N such that they leave AR invariant as a set and

o (T)TeAAR | B(T)Te AR, (6.41)
If o, and B, coincide on AR and if ay=P,, then a,=P, for all t.

Proof. It is enough to show

a(T)=B(T). (6.42)
For any A e ACAR
(T AafT)=a(Ta_(A)T)=a,0 _a_/[A), (6.43a)
BAT)ABLT)=B(TB-A)T)=p.0_p_[A). (6.43b)
Since a,= B, on AAR we obtain
B(T)o(T)Ao(T)B(T)=B,0.p_,0,0 _a_[(A)=A. (6.44)
Since
w(TP=a(TH=a(1)=1, (6.45a)
BATY =B(T?)=B1)=1, (6.45b)
(6.44) implies
[B{T)(T), A]=0. (6.46)
By (6.41)
BAT)a(T)=(B(T) T)(Tor T)) = (BAT) T) (o T) T)* € AUAX. (6.47)

Therefore f,(T)a/(T) s a scalar operator A1. By multiplying «(T) and using (6.45a),
we have

B{T)=20(T) (6.48)
for some complex number A. By (6.45a) and (6.45b), A2=1 and hence
B(T)= £ a(T). (6.49)

By continuity, the sign is common for all ¢ and, since it is +1 for t=0 by
assumption, we obtain (6.42) for all t. Q.E.D.

7. Conclusion

Proofs of Theorems in Sect. 2 are essentially given in the preceding sections. We
summarize it below.

The commutativity of all H, ; and S, ; as derivations on A** are immediate
from concrete expressions given to them in Propositions 4.1,4.2, 4.4, and 4.5. Since



Master Symmetries of the XY Model 175

these derivations are of the class & treated in Proposition 5.2, the uniqueness of
extension from ACAR to U shown in Proposition 5.2 proves the commutativity of
these derivations on 9 and hence on . This proves Theorems 1 and 2.

Since these derivations are of the form given in Lemma 6.3 (as follows from
explicit forms given by Propositions 4.4 and 4.5), H, ; and S, ; are contained in g,
by Lemma 6.3. This proves Theorem 3.

The second half of Theorem 4 is Proposition 6.4. The first half of Theorem 4
will follow from Remark to Proposition 6.1 if we prove that all h e # with a finite
number of non-zero components are analytic vectors of any X eg;.

For such an A,

hO)= Y he’, (7.1)
lilzm
where each h; is a constant of 0. Let «= max |/h;|| 5. Any X g, is of the form
i
X=L0)D+1,0), 0= IZ 1%, (7.2)
lilsk

where p=1,2, each [,; is a 2x2 matrix, constant of 6, and D=d/df. Let
B=max ||[,;. Then, X"h is a sum of (4k + 2)"(2m + 1) terms ((4h +2) is the number
oy

»J
of terms in X and (2m+ 1) is the number of terms in h) of the form
{e”%D)...e"*D)e"(D)e®} L,... Lyh;, (7.3)

where |j| <m, |jj| <k for all [, (D) is either D or 1, and each L, is I,;, or l,;. The
expression in the parenthesis of (7.3) has its absolute value bounded by

n—1
VI +idl+ic+ial---U+i+ - il S IEIO (m+1lk). (7.4)
We also have
(L,...Lihj[| < fa. (1.5)

These estimates imply
n—1
| X h|| < (4k +2)" f"2m+ 1) [] (m+1k).
1=0

Hence
22" X h]|/n!
is convergent if
|z| (4k+2) Bk <1.

Therefore, any h is an analytic vector of X.
Proposition 6.2 leads to an obvious conjecture that G, might be maximal
abelian on .
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