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Abstract. First we derive stability properties of KMS states and subsequently
we derive the KMS condition from stability properties. New results include a
convergent perturbation expansion for perturbed KMS states in terms of
appropriate truncated functions and stability properties of ground states.
Finally we extend the results of Haag, Kastler, Trych-Pohlmeyer by proving
that stable states of //-asymptotically abelian systems which satisfy a weak
three point cluster property are automatically KMS states. This last theorem
gives an almost complete characterization of KMS states, of //-asymptotic
abelian systems, by stability and cluster properties (a slight discrepancy can
occur for infinite temperature states).

1. Introduction

Let (91, τ) denote a C*- (or W*-) dynamical system composed of a C*- (or W*-)
algebra 91 and a strongly continuous (σ-weakly continuous) one-parameter group
of ^-automorphisms τ of 91. If δ is the generator of τ and for P = P*e 91 one defines
δp by δP(A) = i[P,A] then one can introduce the automorphism group τp

generated by δ + δp and compare the structures associated with (91, τ) and the
perturbed system (91, τp).

There are two approaches to this study. The first is a "time-independent"
perturbation theory pioneered by Araki [2,3], and relying on results of Connes
[8]. This method is designed for comparison of τ-KMS states and τp-KMS states,
i.e. modular states over (91, τ), and (9ί, τp), respectively. The second approach is a
"time-dependent" perturbation theory introduced by Robinson [16]. This second
method allows comparison of more general states for systems satisfying suitable
ergodicity hypotheses, e.g. conditions of asymptotic abelianness.
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The primary object of these investigations is the set of "stable structures" and
various notions of stability are possible. The method of Araki and Connes
establishes that there is a one-to-one correspondence between (τ, β)-KMS states
and (τp, β)-KMS states for all βeIR and that every extremal (τp,β)-KMS state is a
vector state of an extremal (τ,/?)-KMS state. This normality is a natural form of
stability. On the other hand Robinson [16] remarked that a τp-in variant state ωp

evolves to a unique τ-invariant state ω, i.e.

ω(A)= lim ωp(τt(A))
|ί|-»oo

for all ^4e2I, if, and only if,

r
lim J dtωp([P,τt(A)~]) = Q

T— >• oo _ j,

for all AG 21. Now if ωp is contained in a family of states ωλp, 0 < Λ, :g 1, for which
α/p-»ω in a suitable sense as A-^0 then one formally obtains the "stability
condition"

r
lim f dίω([P,τt(X)]=0.

Γ->oo _ Γ

This form of stability was introduced by Haag, Kastler and Trych-Pohlmeyer
[10]. These authors proved that if the condition is valid for a dense set of P, AE 21,
and if (21, τ, ω) satisfy certain ergodicity assumptions, then ω is automatically a
(τ, β)-KMS state for some βeIRu{± 00} (see also [6, 12, 13]). This striking result
showed that stability and the KMS condition are to a large extent equivalent.

Since these early works there have been two types of investigation of stability.
The first derives stability conditions for special states, e.g. KMS states or ground
states, and the second aims at deducing the KMS condition from stability and
ergodicity. Although the initial investigations were quantum-mechanical sub-
sequent studies have examined the classical case [1, 14]. We give various results of
the first kind in Section 2, and a general theorem of the second kind, partially
based on a technique of [11], in Section 3.

2. Stability Properties

Let βeR1. A state ω over the C*-(W*-) dynamical system (21, τ) is defined to be a
(τ,j8)-KMS state if

ω(Aτίβ(B)) =

for all A, B in a norm (σ-weakly) dense τ-invariant *-subalgebra of the *-algebra
2Iτ of entire analytic elements for τ (and ω is normal in the FF* case). It follows that
ω is τ-invariant when βφO, and we let pfω,77ω, t/ω,ΩJ denote the co variant
cyclic representation generated by ω. Moreover Ωω is separating for 77ω(2I)" and τ
is the modular group associated with the pair (/Iω(2I)", Ωω) if β= — 1. For any pair

1 In the arguments of the rest of this section it is implicitly assumed that β > 0. The case β < 0 can be
treated analogously, while Theorems 1 and 2 are trivial in the case /? = 0
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A, BeΠJφi)" there exists a complex function FAB which is analytic on
= {z; Imze(0,jS)}, bounded and continuous on Q)^ and satisfies

If A, #e2Iτ then F A B(z) = ω(Aτ Z(B)) and by "abus de notation" we will consistently
write

These results extend to several variables [2,3]. If

^)-{z-(z1,...,zJ?Imz1e(0,j8)JmzjE(0,Imz.

and A, Bl9 ...,£„ e77ω(9I)" then the function

where τtj(Bj) = V Jψ^BjU ω(t^*, has a holomorphic extension to the tube £^n) which
is continuous and uniformly bounded on Q)(^. We also write

for this function and this is consistent if J315 ...,£„ e9Iτ. The bounds

sup \FA(Bi](z)\^\\A\\ f{ \\Bj\\
ze@(") j=1

are valid.
Next define the perturbed group τp as the group with generator δ + δp where δ

is the generator of τ and δP(A) = i[P, A] for P = P*e 51 and all ^e 21. Thus τp is the
unique solution of the norm (cr-weak) differential equation

for AeD(δ). This can be solved by integration and iteration and one finds

τΐ(A) = τt(A)+ £ ί"J ̂  ί dί2... '"j '^[τJ^C... [τ(l(P),τ(μ)]]].
n ^ l 0 0 0

This is the original definition given by Robinson [16]. There is an alternative
formulation of τp which was independently derived by Araki [2], Connes [8], and
Robinson [16]. First one defines Γfe^H as the unique solution of Γ0

p = i and

.̂L = ιpp

τ (p)
at l t( j

Thus

rt

p=ί+ Σ fidi/i^.-.'T'^Tjp)...!,^).
n ^ l 0 0 0



212 O. Bratteli et al.

One then finds that Γt

p is unitary, it satisfies the co-cycle relation

rP
1 t + s

and

If ω is a (τ,β)-KMS state then t\-*ω(AΓt

p) has an analytic extension to the strip
2β which can be constructed via the functions FAtP(z) and the perturbation series.
One has in particular

ω(AΓp) = ω(A) + £ (~ W ί ds,] ds2 ...
n ^ l 0 0 0

for αe[0,/Γ|. The bounds on FAP then establish that AeIRM>ω(AΓ^p) is an entire
analytic function. A key result of Araki is that ω(/^p)>0 and the state ωp defined
by

ωp(A) = ω(AΓp)ω(Γp)

is a (τp,β)-KMS state. Moreover ω is an extremal (τ,β)-KMS state if, and only if,
ωp is an extremal (τp,/?)-KMS state. A simple proof of this is given in [17].

It follows from the above that λ^+ωλP(A) is analytic in a neighbourhood of the
origin and our first result concerns the coefficients of the Taylor series expansion of
this function and its radius of convergence. The coefficients are identifiable as
integrals of truncated functions and we must first recall the definition of such
functions.

Let 3 denote an arbitrary index set and F a function from the non-empty
ordered finite subsets of 3 to the complex numbers. The truncation FT of F is
defined recursively by

F(I)=Σ Π W)>
&! Je^i

where the sum is over all partitions ^7 of the finite set /, and the elements of each
i retain the order of /. If α is any point in / one then has

F(I)= X FT(J)F(I\J}.

This follows directly from the recursion relations by noting that the coefficient of
an arbitrary term FT(J) in these relations is given by

Σ Π FT(K) = F(I\J).
&!,j Ke^i/j

These definitions can now be applied to a state ω and a set At of elements of 2ί to
define truncations ωτ(A1 A2 ... An) of ω(A1A2...An).

Theorem 1. Let (51, τ) be a C*-, or W*-, dynamical system and ω a (τ, β)-KMS state
over 91.

It follows that for each v4e2I and P = P*e2I the truncated function
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is the boundary value of a function FA(z) ( = ωτ(A; τzn(P);... τZι(P)) which is
holomorphic in the tube Q)(£\ continuous and uniformly bounded on its closure @n

β,
and

sup \FA(z)\^2"n\ \\P\\" \\A\\.

Moreover if2\\P\\ <1 the perturbed (τp, β)-KMS state ωp given by

ωp(A} = ω(AΓi

p

β}/ω(Γi

p

β)

is determined by the uniformly convergent series

β S n _ !

ωp(A) = ω(A)+ Y (— 1)" \ds, ... f dsnωτ(A\ τ (P);... τ (P)).x ' x ' ί—ί \ ' J i J H I V ' ion x ' IΛ i v / /

n ^ l 0 0

Proof. The truncated functions are finite linear combinations of the non-truncated
functions and these latter are holomorphic in Q){f etc. If we define FA as the
appropriate combination of these holomorphic functions we obtain the first
statement.

To derive the bound on FA we first note that ωτ satisfies the KMS condition

ωτ(A; τJP);... Vι(P); Vί,(P);... τtl + i

= ωΓ(τt/P);... τ f l(P); A ; τJP);... τ t j+l(P)).

This follows from the definition of ωτ and the KMS condition for ω. But the
Phragmen-Lindelof theorem implies that FA attains its supremum on one of the
edges Imz1=Imz2 = ... =ImZj = β, Imz7 +1 =Imz7.+2 = ... =Imzn = 0. Hence

sup \FA(z)\£ sup sup|ωr(τ (P); . . . ;τ t l (P);A; . . . ;τ (P))|.
ze^γ l ^ j ^ n ί e l R " 3 J

But a function F and its truncations Fτ are related by

F(I) = FT(I)+ Σ FT(J)F(I\J).
aeJcI

Thus if \F(I)\ ^ 1, and \FT(I)\ < 2m ~ 1 (|/| -1)1 for |I| ̂  n where n > 2 (\I\ denotes the
number of points in /, then for |/| =n +1

We can apply this result to ωτ(A1;A2',...',An) with l l ^ l l ^ l . One has
\ω(Aί9 A2...An)\^l and |ωr(v4 )| ̂  1, jω^^ A)\ ^2 and hence

for all n ̂  1 by induction.
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Combination of these results immediately yields

supJ^(z)|^2"rc!llPHUII.

Next suppose AeR->ωAP has the power series expansion

ωλP(A)= Σ λ»ώp

n(A).

Define ωp(A) by ωp(A) = ω(A) and

ωζ(A) = (-!)"{&!.•• '"I' dsnω(AτiSn(P}...τiβl(P)).
o o

Hence

Multiplication by the denominator on the right and term by term comparison of
power series then gives

ώp

n_r(A)ωp(t). (x)
r = l

In particular ώ^(A) = ω(A) and

= -$dsωT(Aτis(P)).
0

Now for I = {ίm, ...,1^} adopt the notation

ω(A;I)=ω(AίSi(P)...τiSi P))
ll lm

ωT(A /) + ω(A τίsί ( P ) ; . . . ; τis, (P))
1 m

and assume that

0 0

for r ^n— 1. But then

β Sn-r-l

•JdSi... j dsn_rω(t;{,...,n-r})
o o

by (*) and the definition of ωP(i). By change of integration variable this gives

β S n - l

ω^(>4) = ώp(A) + (- 1)" J dsί... J d5π Σ ωr(^ 5 Jϊω(^ \IU)»
o o jςi
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where / = {!, ...,n} and the sum is over the strict subsets of /. But the relation
between a function and its truncations gives

Σ ωτ(A J)ω(l /\J) = ω(A /) - ωτ(A /)
j$/

and hence

ώp

n(A] = ωp

n(A) - ( - 1)" J ds, . . . 7 ' dsJωίΛ /) - ωτ(A /)}
0 0

This establishes the correct identification of the perturbation series for ωp by
induction.

Next consider the orbit of ω under the evolution τp. The time dependent
formalism developed in [16] indicates that under certain general ergodicity
hypotheses ω evolves into a (τp, /?)-KMS state. If ω is extremal, it is natural to
define the system as stable if the evolved state is the unique (τp, β)-KMS vector
state ωp of ω. Explicitly this definition of stability requires that

ωp(A)= lim ω(τP(A)).
t-> ±αo

But it then follows from the τ-invariance of ω and the iterative form for τp that

ωp(A)= lim ω(τ_tτ
p(A)}

ί-> ± oo

= ω(A)+ lim Σ ( - 0 " f Λ ι . . . ί Λπω([τtn(P)[...[τtl(n^]...]]).
ί ~ > ± 0 0 n ^ l 0 ί n _ j

Thus one obtains a series for ωp which is seemingly different to that of Theorem 1.
The identity of these series, term-by-term yields a set of stability conditions which
we next derive for strongly clustering ω.

Theorem 2. Let ω be a (τ, /?)-KMS state over the C*-, or W*-, dynamical system
(91, τ) and assume that ω is strongly clustering, i.e.

lim
ί-> ± oo

for all A.
It follows that

lim ... lim /(dtjfdt,... 7 dίBω([τJP),[...,[τfl(P)^]...]])
T 1-^±oo Γn->±oo Q tι tn_ι

β Sn-l

= 1^... ί ^nωrμ;τίSn(P);...;τίSι(P))
o o

/or α/ί A, Pe9X απJ m particular

lim
Γ-> oo

/or
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Proof. Let Pe2Iτ and introduce P(sl9 ...,Sj) = τiSj(P)...τiSί(P). We first argue that

ί+X+1 f rfsx ... T^MVι(P)'β] Vι(p(sι> ...,Sj)))
0 0

β SJ

= -i\ds1... ^dsj+ίω(Bτtj(P(sl9...9sj+J)-BτTj+ί(P(sί9...9sj+Jί).

This follows from the KMS condition and contour integration. The KMS
condition allows one to re-express the left hand side as the difference of two terms
Ll and L2, where

Tj+ι β Sj-i
Lι= ί dtj+ί^dsί... f dSjCύ(Bτt (P(β9sί9...9Sj)))9

tj 0 0

£2= ΪX +iί^i- J^ds^(Bitj+i(P(s^...,spm-
tj 0 0

Next by a change of variable s'k = sk+1—sk + β ; k= 1, ...,7 — ! and s^β — s^ and a
subsequent shift of the contour of integration one finds

0 0

Another change of variable gives the desired identification of Lί—L2. A similar
identity is valid for a general Pe9ί by approximation with analytic elements.

Next define C and X by

..,Tn)= jX ί^ί2... f ̂
0 ίi ίn- l

Application of the above identity and strong clustering gives

«-ι Γl Tj

lim
Γ1...Tn-±oo

for n ̂  2 and
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The proof is concluded by induction. The last equation establishes the case n = l.
Suppose the result is true for 7 = !, . . . , w — 1, then the above identity gives

7=1 0

β Sn-l

$dsn-j+l- ί dsn
0 0

0 0

= ( - 0" I ds, . . . '"I ' dsnωT(A τίSn(P) . . . τtol(P)) ,
0 0

where we have changed the integration variables and used the general relation
between a function and its truncations as in the conclusion of the proof of
Theorem 1. This completes the induction.

The last statement of the theorem follows by subtracting the two limits
T-> ± oo in the case n— 1.

Next we examine stability and instability of ground states, and ceiling states.
There are various equivalent definitions of such states. We define ω to be a τ-
ground state of 31 if

for all AeD(δ) where δ is the generator of τ. Similarly ω is called a τ-ceiling state if

These states are also called (τ, + oo)-KMS states, and (τ,— oo)-KMS states,
respectively. This is motivated by the fact that if a sequence ωn of (τ, /?n)-KMS
states converges weak* to a state ω as βn-+ oo (βn-+ — oo) then ω is a τ-ground state
(τ-ceiling state). This convergence property is an easy consequence of an in-
finitesimal generator characterization of KMS states given by Sewell [18], see [7].

Alternatively, and equivalently, ω is a τ-ground state if ω is τ-in variant and if
the corresponding unitary representation Uω(t) = eitHω given by

has the property Hω ^0. If this is the situation then I7ω(ί)eilω(8l)" by the Borchers-
Arveson theorem [4, 5, 7].

Furthermore ω is a τ-ground state if, and only if, for each pair A, £ε2I there
exists a function FAB which is continuous in Imz^O, analytic and bounded in
Imz>0 and such that

Again we will write FAB(z) = ω(Aτz(B)) even if
Similar characterizations of ceiling states are possible but in the first one has

#ω^0, and in the second Imz^O. We will concentrate on ground states and omit
further reference to the entirely analogous ceiling states.
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There are several distinct notions of stability for an extremal (τ, β)-KMS state.
The strongest notion is the existence of a (τp, β)-KMS vector state. But it was
shown in [16] that the ground state of the ideal Fermi gas does not have a τp-
ground state as a normal state for a certain class of perturbations of the form
P = a*(f)a(f). [We use the standard notation a(f) etc. for the annihilation
operators etc. which generate the CAR algebra describing the Fermi gas.] The
failure of this form of stability has a clear physical origin. The perturbation causes
the formation of an infinite number of infra-particles, i.e. particles with in-
finitesimally small energy, whenever / fails to vanish on the Fermi surface p2 = μ
and the ground state of the perturbed system has infinite density.

A second notion of stability is given by the condition
T

(*) lim f dίω([Λτf(P)]) = 0
T^ co _ j,

for all ^4,Pe9ϊ, derived in Theorem 2 for (τ,/?)-KMS states. If ω is a strongly
clustering ground state, and the Arveson spectrum, [4], of P does not contain zero,
then the condition (*) still holds, but it does not hold for general A, P in this case
unless the Hamiltonian has an energy gap at zero energy. This is a consequence of
the following theorem. In particular, condition (*) fails to hold generally for the
free Fermi sea, as one can also verify directly for A = a(f), P = «*(/), where /is an
L2-function such that/(r) is sufficiently ugly near the Fermi surface p2=μ. Thus
the infra-red divergence is the sole root of instability of this second type for
strongly clustering ground states.

Theorem3. Let (91, τ) be a C*-, or W*-, dynamical system and ω a strongly
clustering τ-ground state. Let Uω(t) = eltHω be the unitary group which implements τ
in the cyclic representation {J^ω,77ω, Ωω}.

The following conditions are equivalent
T

(*) 1. lim f
T— >• 00 _ j,

for all A, BεM.

T

T ~~^ OO _ rr,

for all A, Be 91.

2. lim J dt{ω(Aτt(B))-ω(A)ω(B)}=0
T ~~^ OO rr,

3. lim } &{(ψ,l/β(t)φ)-(v,QJ(Ωω,φ)}=0
—

for all
4. There exists an £ > 0 such that

where σ(Hω) denotes the spectrum of Hω.

Proof. 3=>2=>1 trivially. We next prove 1=>3. It evidently suffices to consider ψ
such that (φ, Ωω) = 0. Now, as ω is strongly clustering it is pure and (jΊfω, Πω) is
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irreducible. Therefore one may use the Kadison transitivity theorem (see, for
example, [9, p. 44]) to construct an AεM such that Πω(A)Ωω = ιp and ΠJA^Ω^Q.
Therefore

lira j dt(ψ,UJt)Ψ)= lim f dtω(\_A*,τt(A)\)
1 — > OO _ rr, 1 — > OO _ rp

= 0.

3=>4. Let H be the restriction of Hω to a closed separable £/ω-invariant
00

subspace 2tf of J^ωΘCί2ω, H= J rd£(r) the spectral decomposition of H, and dv
o

the measure in the corresponding spectral representation. Then for \p,φEJ^ we
have

f dt(ψ9e
ίtHφ)=ίdtχT(t)(ιp9e

ίtHφ)

Hence, assumption 3 implies that

for all geL1(dv). But the uniform boundedness theorem then implies that the
functions

2sin(7/)
f\— > -

r

are uniformly bounded in L°°(rfv) for all sequences Tn such that Tπ->oo. It follows
immediately that v([0, ε}) = 0 for some ε>0, or

A priori, ε depends on the choice of the separable [7ω-invariant subspace ffl of
3^ωQ(LΩω, but as the closed subspace generated by a countable number of such
subspaces is still a separable t/ω-invariant subspace, it follows by an ad absurdum
argument that one may choose an ε>0 independent of the subspace.

4=>3. By restricting to a separable, ^-invariant subspace we may assume that
J^ω is separable. Keeping the notation above, the strong clustering assumption
means that

lim f eίtrf(r)dv(r) = 0
f->±oo J> ± o o

for a

But if geL1(dv) then /(r)= - is an ^-function since ε>0, and hence
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that is

r
lim f

Γ->oo _

foralli/;,
Note that the implications Io2<=>3<>4 in Theorem 3 remains valid when the

strong clustering assumption for ω is replaced by the assumption of extremality
among the τ-ground states on 91 = 0 + 21. We preferred the strong clustering
hypothesis because this is sufficient to derive condition 1 for (τ, β)-KMS states with

Although the stability condition (*) is not valid in general for ground states it is
possible that it holds for all A, P in a norm dense *-subalgebra 2ί0 of 21. We have
not been able to establish this except for C*-dynamical systems which satisfy a
strong condition of asymptotic abelianness.

A C*-system (21, τ) is defined to be L1(2ί0)-asymptotically abelian if
00

J Λ||[^,τ((B)]||<+oo
— oo

for all ,4,£e2l0 where 2I0 is a norm dense *-subalgebra of 2ί. This type of
condition first appeared in [16] where it was used to establish the existence of the
M011er morphisms

)= lim τp_tτt(A)
-

p

> ± oo

for PE2I0. It was verified in [16] for the CAR algebra over L2(IRV) and the free
evolution.

Theorem 4. Let (21, τ) be an L1^^- asymptotically abelian C* -dynamical system.
It follows that

(*) J Λω([Λτf(5)]) = 0
— oo

for all ,4,£e2I0, and for all (τ,j8)-KMS states where βeIRu{±oo}.

Proof. First adjoin an identity, if necessary. One can extend τ to 2ί = O + 2ί by

and a straightforward argument with an approximate identity gives a one-to-one
correspondence between the (τ, β)-KMS states of (21, τ) and the (τ, β)-KMS states ώ
of (21, τ) with II ώ| 21 I I = 1. Thus we can assume that 21 has an identity.

If j8 = 0 then ω is a trace and (*) is trivially true.
Next assume βeIR\{0} and ω is an extremal (τ,/?)-KMS state. Therefore ω is a

factor state and as (21, τ) is asymptotically abelian in norm it follows that it is
strongly clustering, [7]. Thus the stability condition (*) follows from Theorem 2
and it extends directly to finite convex combinations of extremal (τ, )S)-KMS states.
Finally because the L1(2I0)-asymptotic abelianness provides a uniform bound one
can extend (*), for A, £e2I0, to all weak* limit points of finite convex combinations
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of extremal states. But the Krein-Milman theorem allows any (τ, β)-KMS state to
be approximated in this manner and this completes the proof for finite β.

The cases β= ± oo are identical so we assume β= + GO.
First for ε>0 define χε by specifying its Fourier transform χε through χε(p)

= (2π)~1/2/ε for pe[ε,2ε] and χε(p) = 0 otherwise, i.e. by Fourier transformation

2ε ' εt\ l/εt

Hence

limχ ε(ί)=l.

But it then follows from the Lebesgue dominated convergence theorem, ^(SIo)
asymptotic abelianness, and Fourier transformation that

00 00

μ*)])=lim j dtχε(t)ω(\:A ,τt(A*)-])
ε^ O _ ̂

= lim ξd(Πω(A*)Ωω9Eω(p)Πω(A*)Ωω)

for all ,4e9ί0. We have used Eω to denote the spectral measure associated with the
unitary group Uω which implements τ and the second step follows because the
support of Eω is in [0, oo). But an identical argument with χε supported by
[ — 2ε,ε] gives

tμ*)])=-lim ]* d(Πω(A)Ωω,Eω(p)Πω(A)Ωω)
ε~>ϋ -2ε

Therefore

for all A<Ξ$IQ and the general result follows by polarization.
We end this section with a discussion of the stability condition proposed in

[10]. If (91, τ) is an asymptotic abelian C*-dynamical system and ω is a τ-
stationary state of 91, this stability condition is that for P = P*e2I0 and /lelR
sufficiently small (depending on P) there exists a τAP-stationary state ωλp on 91
such that

\imωλP(A) =
λ^> 0

for all ^4e9I, and the stability property

lim ωλP(τt(A)) = ω(A)
t-» ± oo

holds for all ^4e9I. If ω is a strongly clustering (τ,β)-KMS state these conditions
are satisfied with ωλp equal to the normal state of Theorem 1. Next assume that ω
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is a strongly clustering ground state satisfying the stability requirements of
Theorem 3, i.e.

σ(ίfjς{0}u[β,oo>

for some ε>0. It follows easily from resolvent identities that Hω + λΠω(P) has a
unique normalized eigenvector ψλp (up to a phase) of minimum energy for small
enough λ, and one may verify that the corresponding vector-states ωλp satisfies the
stability properties above.

In the case that ω is a strongly clustering ground state, but Hω has no energy
gap at zero, the existence of normal perturbed ground states ωλp does not
necessarily follow. We have already remarked that the free Fermi sea is an example
of this, [16]. However, the ground state of the free Fermi gas is unique [7]. It
follows from the next Proposition that this ground state is stable in the sense of
[10].

Proposition 5. Let (21, τ) be a C*-dynamical system where 21 has an identity and
which is ^(W^-asymptotic abelian. Assume that (21, τ) has a unique ground state ω.

It follows that for each P = P*e2I0 there exists a ground state ωp for (2ί, τp\ If
{ωp} is an arbitrary family of such ground states, then

timωλP(A) =

and

lim ωp(τt(A)) =
t-> ± oo

for all Ae^ P = P*e2I0.

Proof. Since Hω + Πω(P) is bounded below for all P = P*e2ί, the existence of a
ground state for τp follows by taking a weak* limit of a sequence of vector states,
where the Hω + 77ω(P)-spectrum of the vectors tend to the infinum of the spectrum
of Hω + Πω(P), [7]. Let ωp be an arbitrary ground state of (21, τp) for each P.

The assumed asymptotic abelianness ensures that the M011er scattering
morphisms

yp

+(A)= lim τp_tτt(A)
t~ > ± 00

exist for P = P*e2I0, [16]. y+ define ^-isomorphisms between 21 and y + (2I)
satisfying the intertwining relations

P P

for all ίeR Hence the C*-dynamical systems (y + (2ϊ),τp) have a unique ground
state ρ + , which are defined by ρ + ° y + =ω. Since ωp |y + (2I) is a ground state, it
follows that

P Pω °y+ =ω

and hence

) = ωpoyp

+(A)= lim ωp(τt(A)).
~~ ί->± oo
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Now, by the estimate

\\yλ

+

p(A)-A\\^\λ\]ds\\lP,τt(Aϊ]\\
o

which is valid for ,4e2I0, it follows that

for all AεW. Combining this with ω

λP(yλ

+

p(A)) = (A\ it follows that

limωλP(A) = ω(A).

Later on, in Corollary 7, we will discuss a fourth stability condition which is
equivalent with the one considered in Theorem 4.

3. Stability and the KMS Condition

In the previous section we studied various stability properties of KMS states and
our next aim is to derive a result in the converse direction, i.e. we establish a result
of the Haag, Kastler, Trych-Pohlmeyer type. Roughly we deduce that the extremal
τ-invariant states of asymptotically abelian systems which are stable under local
perturbations are necessarily extremal KMS states at some value of βeIRu{ + oo}.
In fact we assume L1 -asymptotic abelianness and a three point cluster property.
Within the framework of L1 -asymptotic abelianness the following theorem essen-
tially characterizes extremal (τ, β)-KMS states with a slight discrepancy if β = 0.
This discrepancy arises because the extremal (τ,0)-KMS states, i.e. the extremal
invariant traces, are not necessarily factor states, but this discrepancy is absent if 91
has a unique trace state. (This theorem was claimed to be true in [11], but the
proof was not completed. For elementary results of extremal invariant states over
asymptotically abelian systems etc., see [7].)

Theorem 6. Let (21, τ) be a C* -dynamical system which is
abelian, and ω a τ-invariant state over 21. Assume that

1. Either

= ω(A1)ω(A2)ω(A3)

for all A^ A2, A3e2l, or ω is a factor state.
2. ω satisfies the stability requirement

for all A, Pe2I0.
It follows that ω is an extremal (τ, β)-KMS state for some

Proof. As ίf->τf(B) is uniformly continuous for each βeSIo, it follows from the
I}(*&Q) asymptotic abelianness that

lim
ί-> ± 00
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for all A, Be 9I0, and hence for all A, Be 91. Thus if ω is a factor state it follows that

= ω(A1)...ω(An)

for all neZ+ and all ^-eSI. Therefore it suffices to prove the theorem under the
three point clustering assumption.

If {Ea} is an approximate unit on 91 it follows that

and using this one easily proves the two point cluster property

lim ω(Aτt(B)) = ω(A)ω(B)
ί->±00

from the corresponding three point property. Also, we may assume that 9ί0 is
closed under regularization by //-functions.

Let us define

f|W = FA,,p,(t) = o4Pίτt(Ai))-ω(Pί)ω(Ai)

G;W = GAt<Pt(t) = ωW^JP,) - ω(Al]ω(Pί)

for At, P,.e9ro.

Observation ϊ (Haag and Trych-Pohlmeyer [11]). tt->F1(ί)F2(ί)-G1(ί)G2(ί) is an
//-function, and

oo

j Λ{F1(ί)F2(f)-G1(ί)G2(ί)} = 0.
— oo

Proof. By the stability requirement we have

where

/1(s)= j dtω(P1[_τs(P2),τt(A1)^τt + s(A2))
— oo

GO

/2(s)= j dtω(Pίτt(Aί][τs(P2),τ^t(A2)-\)
— GO

/3(s)= j
— GO

/4(s)= ]

The integrands of I2 and /3 are dominated by ^-functions which are independent
of 5, and using the two-point clustering and Lebesgues dominated convergence
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theorem, we obtain

im{/2(s)

= dtω(P1τt(A1))ω(lP2,τt(A2)-])

= dt{FAltPl(t)FAlfp2(t)-GAliPl(t)GA2tP2(t)},
— oo

where the last step used the stability condition.
Hence it is enough for Observation 1 to show that

lim /!($) = lim/4(s) = 0.
s— >• oo s-> oo

But by a change of variable,

Again the integrand is dominated by the //-function ίf-^llpjl ll[P2J
τί(^ι)]H \\A2\\

which is independent of 5, and the limit of the integrand as s->oo is

ω(Pl)ω(ίP29τt(A1ί])ω(A2)

by the three point cluster property. Thus, by Lebesgue theorem,

lim/1(s) = ω(P1)ωμ2) f dtco&P^AJ])
s^«>

= 0.

One shows that lim /4(s) = 0 by a similar reasoning, and this ends the proof of
Observation 1.

Now, from the relations

and Observation 1 it follows that

$dt{F1(t)G2(s-t)-G1(t)F2(s-t)}=Q.

Define Hί=HAίPι by

H1(t) = F1(t)-Gί(t).

Then H1 is an ^-function, and from the relation above we get
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If Uω(t)=$elptdEω(p) is the spectral decomposition of C/ω, let

μί=μAί,Pί>
 vi=vAi,pί

be the measures defined by

dμί(p) = (P*Ωω9 dEm(p)A&J - ω(Pi)ω(^(p)dp

dvt(p) = (AfΩω, dEJ - p)P, ΩJ - ω(Ai)ω(Pi}δ(p)dp .

Then

Fi(t)=$eίt?dμi(p)

Gί(t)=$eit?dvi(p}

and thus

dμi(p)-dvi(p) =

where Hi is the Fourier transform of Ht. From the convolution relations above we
now obtain

Observation 2.

for all^ , P^eSIo.

Next, define a subset S£IR by

S = {peR;Hji fp(p)Φθ for some

Observation 3. S is an open set, S= —S and

Proof. S is open since each //^ P is the Fourier transform of an //-function, and
thus is continuous. The symmetry follows from the relation

-(A*Ωω9dEω(-p)PΩ

and HA p(0) = 0 by this same relation (or stability).

Observation 4. There exists a well defined pair μ, v of σ-finite measures on S such
that
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for peS, and, furthermore

dμ(p)=-dv(-p).

Proof. Since S is open, S is the union of an increasing sequence of compact sets, and
as each HA P is continuous it follows that there exists a countable partition
{S15S2> ...} of S into Borel sets, and elements Ai9 P^eϊίo sucn tnat

\HAιtPι(p)\^ί

for peSt. Now, define

for peSi5 z=l,2, ... . Then μ, v are well-defined σ-fmite Borel measures on S, and
Observation 2 implies that

for all A,PG^ί0 and all peS. Finally

Now, the Radon-Nikodym theorem implies that there exists |μ| + |v|
measurable functions ψ on S such that

Since dμ(-p)= -dv(p) we have d(\μ\ + \v\)(p) = d(\μ\ + \v\)(-p) and

= -ψ2(p)
Define subsets S0, S ,̂ and S^ of IR by

Sr=lR\(S0uSJ.

Since ψ1(p) = 0 if, and only if, t/;2( — p) = 0, we deduce immediately

Observation 5.

S0 = — S^ , Sf=—Sj

in the sense that the sets differ only on a set of |μ| + |v|-measure zero.
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Define a Borel function φ on IRVS^ by

1 on R\5.

Observation 6.

on IRV^. Furthermore φ(p)>0 and φ( — p) = φ(p)~l on S^ (except for a set of
\μ\ + |v|-measure zero).

Proof. It follows from Observation 4 that

|v|)(p)

M)(p)

for peS, while

dμA,P(p) ~ dvA,p(p} = HA>P(p)dP = 0

for pe Sc. As dμA*}A(p) ^ 0 and dvA*fA(p) ^ 0 for all p Φ 0 and all Aε 9I0, it follows that
φ(p) ^ 0 and since φ(p) φ 0 for p e Sf, one has φ(p) > 0 for p e 5'/. φ(p) = φ( — p) ~ ί is a
consequence of tp1(p)= — ψ2(~p)

Observation 7. If £ω is the projection valued measure corresponding to Hω, then

£ω(s0)=o
and, consequently

£ω(S00uS/) = l.

From the relation

it follows that

and hence, as 0<£S0 by Observations,

for allΛPe9I 0.

Observation 8.

(P*Ωω,Eω(Sf)AΩJ

for all A, PeJΐω = Πa(Wf
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Proof. By Observation 6, one has

(P*Ωω,dEω(p)AΩω)

= dμA>P(p) + ω(P}ω(A)δ(p] dp

= φ(p)dvAίP(p) + ω(P)ω(A)δ(p)dp

= (φ(py>2A*Ωω,dEω(-p)φ(p)ί'2PΩω)

for pelRVS^, and ,4,Pe2I0, where we have identified 9ί and ΠJ^Ά}. Integrating
over IRVS^SjuSΌ, we obtain from spectral theory that

and

(P* Ωω, Eω(Sf)AΩJ = (P* Ωω,

where we have used £ω(S0) = 0 and Eω( — (SfuS0)) = Eω(SfuS00) which follows
from Observations 5 and 7.

Since 2Ϊ0 is strong *-dense in Jfω, this relation extends to all A,
Next define

Then EfeJίω.

Observation 9.

Proof. Since

eitH-Jί'ω e-
itH" = Jί'ω

for all ίeIR, it follows ihat.E commutes with eίtHω, and hence

By Observation 8, one has

(Eω(Sf) (1 - Ef)P* Ωω, E

= 0

for all ^,Pe^ω, and hence

Now, Ωω is cyclic and separating for the von Neumann algebra JίE — EfJίωEf

on JjfE = Ef34fω. Define HE = HωEf = EfHω and let A, J be the modular operator
and modular conjugation associated with the pair (JίE, Ω). Then
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is the spectral decomposition of HE. As eίtHε leaves Ωω invariant and defines an
automorphism group of M& it follows that

β = — λ E

and hence

JEE(B)J = EE(-B)

for all Borel sets ££R In particular it follows from Observation 7 that

But

by Observations 5 and 7. Thus

Ef = EE(-Sf) = Eω(Sf)Ef

and Observation 9 implies :

Observation 10.

Ef = Eω(Sf).

Now, by extremality and asymptotic abelianness Eω = Eω({0}) is a one-
dimensional projection, and as Ωω is separating for JIE it follows that

inf \ω(AB'Q-ω(B)ω(AC)\=0
B' e Co troί^)

for all A, B, CeJίE. As HE and A commute strongly, it follows from [12, 13] that
the joint spectrum Σ of (logzl, HE) is a closed additive subset of 1R2. But since Ωω is
separating for ME, Σ is symmetric, and we conclude :

Observation 11. The joint spectrum Σ of (logzl, HE) is a closed subgroup of IR2.
We next show

Observationl2. If Eω(Sf) is not one-dimensional, then Sf is dense in IR and
σ(H£) = R

Proof. σ(HE) is a group by the remarks before Observation 11, and as 0 is a simple
eigenvalue of Hω it follows from the assumption and Eω(Sf) = Ef that σ(//£)φ {0}.
But σ(HE) cannot have any nonzero isolated points because this would imply that
Hω has a nonzero eigenvalue λ with a corresponding eigenvector ψ such that
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But then

(ψ, Πω(τ,(B))Ωω) = (Uω(- t)ψ, Πω(B)Ωω)

= e'λ'(ψ,Πω(B)ΩJ

for all Be'Ά. Therefore choosing B such that

this contradicts the fact that

in the weak topology. It follows that

Observation 13.

Proof. This is demonstrated as in the last part of the proof of Proposition 4.2 in [15].

Observation 14. The restrictions of the measures dμAtP and dvA P to S^S^ are
absolutely continuous with respect to Lebesgue measure and

° ;

Proof. This follows from the relation

dV>A,p(p) - ά^A,p(P} = HA>P(p)dp

together with the equations

Next, define subsets 5+g

s_= Π {P;HAΛ4p)ίθ}.
AeWo

Then S± are closed sets, and since

s= (p;H
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by polarization, it follows that

But the measures dμAtA*(p) and dvAfA*(p) are non-negative for pφO, and hence it
follows from Observation 14 that

except for sets of spectral measure zero. By subtracting the latter sets from S^ and
S0 we may assume that the inclusions are strict and hence

where the bar denotes closure. Therefore one has :

Observation 15.

Now, by Observation 7 and 10, one has

Eω(SJ = t-Ef

and thus

Observation 16.

We now finish the proof of Theorem 6. We consider two cases

Casel. Eω(Sf) is not one-dimensional. In this case σ(HE) = Ί^ by Observation 12.
We show, ad absurdum, that Ef = ί. If not σ(Ht_E) = l& by Observation 13 and
hence S^^IRby Observation 16. But then S0= — S^^IR by Observation S, and

hence S00r^S0r^S = S. But SΦ0 since S^QS, and hence this contradicts
Observation 15. It follows that Ef = t. Now £(5^ = 1 by Observation 10, thus
£ω(500) = 0, and we may assume that 5^=^0 = 0 by modifying ψl9 ιp2 on sets of
\μ\ + |v|-measure zero.

It follows from Observation 8 that

= (P*Ωω,AΩ

for all A, PεJtω. As JtfωΩ is a core for Δ 1/2, and Hω and A 1/2 commute strongly, it
follows from this relation and a joint spectral representation of Hω and A that

A=φ(-HJ.
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It follows that

Z£{(lQg((?(-p)),p);peIR}.

Now, Σ cannot have any isolated points by the reasoning used in Observation 12,
and Σ is a closed subgroup of IR2 by Observation 1 1. As σ(Hω) = IR it follows that Σ
must have one of the forms,

1. Z-R2.
2. Σ is an array of equidistant straight lines, not parallel with the log A -axis,

one of which contains the origin.
3. Σ is a straight line through the origin not coinciding with the log A -axis.
In Case 3, there exists a jSelR such that £ = {( — βp,p);peIR} and thus logzl

but then ω is a τ-KMS state at value β. Hence to complete the treatment of Case 1,
we must eliminate possibilities 1 and 2 above.

There are now two possibilities
Case la. HAfA* = Q for all v4e9ί0. In this case

ω(AA*) = FAtAJ(0) + ω(A)ω(A*)

for all y4e2ϊ0, and hence ω is a trace, i.e. ω is a (τ, 0)-KMS state.
Caselb. H^*(p0)φO for some ,4e2I0 and p0eIR. Since HA'A* is continuous, we
may assume that p 0 φO and that #^*(p)φO for all pe(p0 — ε, p0 + β), where ε is
some positive number. From Observation 6 and the relation

we deduce that

(φ(p) - ϊ)dvAtA*(p) = HAt

(1 - φ(pΓ 'WA^(p) = HA>A*(p)dp .

As HAtA* is a real function we have two possibilities : HA>AJ(p0)^0. IϊHAίA*(p0)>Qί

then ήAAJ(p)>0 for pe(p0 — ε, p0 + ε). We now deduce from the relation

that v is a positive measure on (p0 — ε, p0 4- ε) and

(φ(p)-ί)dv(p) = dp

on this interval. It follows that φ(p)^i for pe(p0 — ε, p0 + ε) except for a set of |v|-
measure zero. But dμ(p) = φ(p)dv(p) and so φ(p)^l for pe(p0 — ε, p0 + ε) except for
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a set of //-measure, and hence spectral measure, zero. Thus we may choose φ such
that φ(p) ^ 1 on (p0 — ε, pQ + ε). But this means that the set

does not contain any point of the form (d,p) where d<0 and — pe(p0 — ε, p0+ε).
As Σ is contained in this set, this excludes possibilities 1 and 2.

The case HAΛ*(p0)<0 is treated by noting that HA*tA(-p0)= -HAtAJ(p0)

Case 2. Eω(Sf) is one-dimensional. If Eω(Sf) = 1 in this case, it follows that ω is a τ-
invariant character, and hence ω is a KMS state at all values βeIRu{ + oo}. If
EJSyOΦl, then_Eω(S00) = i-Eω(S/)_φO and_SΦ0 because S^S._We argue, ad
absurdum, that S^ΦR If not, then S~0= -S^ = Rand hence S^nS0nS = Sφ0 in
contradiction with Observation 15. Thus S^ φR, and by Observation 16

But since σ(Hω) has no isolated points it follows from [13] that σ(Hω) is contained
in one of the sets ± [0, +00), and thus ω is a ground state or a ceiling state, i.e. ω
is a KMS state at value + oo or — oo.

By summarizing the results of the last two subsections, we obtain an almost
completely satisfactory theory for the connection between stability and the KMS
condition for C*-dynamical systems (91, τ) which are L1(9ί0)-asymptotically
abelian.

Assume that 91 has an identity 1, and let ω be a τ-stationary state on 91. If
P = P*e9I0, it follows that the M011er morphisms [16]

γλ/= lim τλp

tτt
f-* + OO

exist strongly for Λ,eR Furthermore one has the intertwining relations

and

timγλ/(A) = A

for all Ae 91 by the estimate

±00

which is valid for v4e9ί0.
Now, there exists a unique state ωλp on yip(9I) satisfying

ωλp(yλ_p(A)) =

and ωλp is τAP-stationary by the intertwining relations. But ωλp extends to a state
of 9ί, and applying an invariant mean to this extension composed with τλp we
obtain a state ωλp on 91 such that the relation above remains valid, and
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1. ωλp is τλp -stationary

Next, it follows from the estimate

\ωλp(A] - ω(A)\ ^ \ωλp(A - yλp(A)}\

^\\A-yλp(A)\\

that

2. λ\->ωλp is continuous at λ = 0 in the sense

limωλp(A) = ω(A)

for all Aε<Ά.

Now, define a state ωλp on 91 by

From the relation

it follows that

3. The limits lim ωλP(τt(A)) exist for all A e 91, and
f-» ± oo

lim ωλP(τt(A)) = ω(A)
t~> — 00

lim ωλp\
t-> + oo

We call any family {ωλp; P = P*e9ί0, |/l|<εp} of states satisfying the require-
ments 1, 2, and 3 above (including the existence of ωλp] a family of perturbed states
of ω.

Corollary?. Let (91,τ) be an L1(9I0)-asymptotically abelian C*-dynamical system,
and assume that 91 has an identity. Let ω be a τ-stationary state of 9ί, and let
{ωλp P = P*e9I0, \λ\ <εp} be a family of perturbed states of ω.

Consider the following conditions
lβ. ω is an extremal τ-KMS state at value β.
2. a) ω has the three point cluster property

lim ω(τtι(^41)τί2(y42)τί3(^43))
i * J

= ω(A1)ω(A2)ω(A3).

b) ω satisfies the stability property

lim\ωλP(A)-ω(A)\/λ = 0

for all A e 9ί.
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It follows that 2 implies lβ for some βeIRu{±oo}. Conversely lβ for
βe(Ru{ ± oo})\{0} implies 2, and lβ for β = 0 implies 2 when 2a) is replaced by the
weaker cluster property

Mω(Aτ(B)} =

for all A, Betyί, and any invariant mean M on 1R,
In particular, lβfor some /?eIRu{ + 00} and 2 are equivalent if ω is a factor state

or if 91 has a unique trace state.
Furthermore the family of perturbations {ωλp} can be chosen such that ω λp — ω

in the following cases

A) If I. holds with
B) If 1. holds with β= + oo and there exists an ε>0 such that

σ(Hjς{0}u[ε,+oo>.

C) If I. holds with β= + oo, and (91, τ) has a unique ground state.
In these cases ωλp can even be taken to be a τλp-KMS state at value β.

Proof. We first show that the stability condition 2b) is equivalent to the by now
familiar condition

for all A, Pe9I0. But this is a consequence of the relation

τλ_p

tτt(A) = A-ίλ\ dsτλ_p

s([_P, τs(A)]}
o

which gives

) = ωλp(yλ_p(A))

= ωλp(A) - iλ f
o

= ωλp(A) - iλ J dsωλp(lP, τs(A}]) ,
o

and hence

(ωλ*(A)-ω(A))/λ
oo

= -i J dsωλp(LP,τs(A)-]).
— oo

The Lebesgue dominated convergence theorem and requirement 2 on the family
{ωλp} now immediately imply that the two stability conditions are equivalent.

Thus it follows from Theorem 6 that 2 implies ίβ for some /?ElRu{ + oo}. But ί β

for βeIRu{± 00} implies (*) by Theorem 4.
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Now, ίβ for βelR\{0} implies that ω is a factor state and if ίβ is true for
βζ {± 00} then ω is pure. Thus ω is a factor state in both cases, and it follows from
the asymptotic abelianness that

lim ω(τtί(Aί)...τtn(An))
inf | t i - t ί | ->oo
ι * J

= ω(Al)...ω(An)

for all nεZ+ and all 4 fe2l, [7].
If ίβ holds for /J = 0, i.e. ω is an extremal invariant trace, then ω is an extremal

invariant state by asymptotic abelianness, and thus

Mω(Aτ(B)) = ω(A)ω(B).

If ω is assumed to be a factor state, one derives n-point clustering as above, and
hence 2 and ίβ, for some βeIRu{±oo}, are completely equivalent.

But if 91 has a unique trace state then every extremal (τ, /?)-KMS state ω must
be a factor state.

(If j5 = 0 then ω is the unique trace and is automatically a factor state.) The
equivalence and 2 and ίβ, for some j8eIRu{ + oo}, follows once again.

The last statement of the Corollary follows from combining the results of [2]
and [16] for βeIR and the rest follows from Proposition 5 and the preceding
remarks.
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