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Abstract. We are interested in the widest possible class of Orlicz functions
Φ such that the easily calculable quasinorm [f ]Φ,p := ‖f‖E{IΦ( f

‖f‖E
)}1/p if

f 6= 0 and [f ]Φ,p = 0 if f = 0, on the Orlicz space LΦ(Ω,Σ, µ) generated by
Φ, is equivalent to the Luxemburg norm ‖ · ‖Φ. To do this, we use a suitable
∆2-condition, lower and upper Simonenko indices paS(Φ) and qaS(Φ) for the
generating function Φ, numbers p ∈ [1, paS(Φ)] satisfying qaS(Φ)−p ≤ 1, and an
embedding of LΦ(Ω,Σ, µ) into a suitable Köthe function space E = E(Ω,Σ, µ).
We take as E the Lebesgue spaces Lr(Ω,Σ, µ) with r ∈ [1, plS(Φ)], when
the measure µ is nonatomic and finite, and the weighted Lebesgue spaces
Lr
ω(Ω,Σ, µ), with r ∈ [1, paS(Φ)] and a suitable weight function ω, when the

measure µ is nonatomic infinite but σ-finite. We also use condition ∇3 if
paS(Φ) = 1 and condition ∇2 if paS(Φ) > 1, proving their necessity in most
of the considered cases. Our results seem important for applications of Orlicz
function spaces.

1. Introduction and preliminaries

This article is organized as follows. We start with notation and definitions.
First, we recall the definitions of the Orlicz function, the Orlicz space, the Lux-
emburg norm, and the conditions ∆2, ∆3, and ∆2, at infinity, at zero, and on the
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whole of R+, concerning the growth of the generating Orlicz function. Next, we
recall the definitions of Simonenko indices of the Orlicz functions, at infinity and
on the whole of R+, as well as of Matuszewska–Orlicz indices. We also present
some auxiliary results concerning the conditions ∆2, ∆3, ∇3, ∆

2, and ∇2 for
the generating Orlicz functions on suitable subintervals of R+. Finally, we prove
crucial auxiliary results concerning the embedding of the Orlicz function spaces
into some suitable Lebesgue or weighted Lebesgue function spaces, according to
whether the underlying nonatomic measure space is finite or infinite. Thanks to
these embedding theorems it was possible to define, on certain Orlicz spaces,
some easily calculable quasinorms equivalent to the Luxemburg norm. The con-
struction of the quasinorms and the proofs of their equivalence to the Luxemburg
norm are presented in the final part of the article.

We were inspired by an example of easily calculable quasinorm equivalent to
the Luxemburg norm in the Orlicz space LΦ(Ω,Σ, µ) generated by the Orlicz
function Φ(u) = |u|p log(e + |u|), p ≥ 1, which was presented by Iwaniec and
Verde in [19], as well as by a similar example by Krbec and Schmeisser in [21] for
the Orlicz space generated by the Orlicz function Φ(u) = |u|p logα(e + |u|), with
p ≥ 1 and α > 0.

Let N, R, and R+ be the sets of natural numbers, real numbers, and non-
negative reals, respectively. Denote by (Ω,Σ, µ) a positive, complete, and σ-finite
nonatomic measure space, and denote by L0 = L0(Ω,Σ, µ) the space of all (equiv-
alence classes of) real-valued and Σ-measurable functions on Ω. A nonnegative,
even, and convex function Φ : R → R+ such that Φ(0) = 0 and Φ is not identi-
cally equal to zero is called an Orlicz function. We say that an Orlicz function Φ
satisfies the ∆2-condition for all u ∈ R (at infinity) [at zero] if there is K > 0 such
that the inequality Φ(2u) ≤ KΦ(u) holds for all u ∈ R (for all u ∈ R satisfying
|u| ≥ u0 with some u0 > 0) [for all u ∈ R satisfying |u| ≤ u0 with some u0 > 0
such that Φ(u0) > 0]. Since Φ is even, we then write Φ ∈ ∆2(R+) (Φ ∈ ∆2(∞))
[Φ ∈ ∆2(0)].

Note that in the case of a finite nonatomic measure space, we can assume
without loss of generality that the Orlicz function Φ vanishes only at zero because

otherwise we can find a function Φ̂ vanishing only at zero and equivalent to Φ at
infinity that generates the same Orlicz space with an equivalent norm. In the case
of an infinite nonatomic measure space, the condition ∆2(R+) guarantees that the
Orlicz function Φ vanishes only at zero while for a finite nonatomic measure space,
we need to assume that the function Φ vanishes only at zero, because an Orlicz
function Φ can satisfy condition ∆2(∞) even if Φ vanishes outside zero.

For any Orlicz function Φ, we define its function complementary to Φ in the
sense of Young by the formula

Φ∗(u) = sup
v>0

{
|u|v − Φ(v)

}

for all u ∈ R.
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Given an Orlicz function Φ, we define on L0 a convex semimodular (see [3],
[20], [23], [26], [28], [29])

IΦ(x) =

∫
Ω

Φ
(
x(t)

)
dµ.

The Orlicz space LΦ = LΦ(Ω,Σ, µ) generated by an Orlicz function Φ is defined
as

LΦ =
{
x ∈ L0 : IΦ(λx) < +∞ for some λ > 0

}
.

We will consider Orlicz spaces LΦ equipped with the Luxemburg norm

‖x‖Φ = inf
{
λ > 0 : IΦ

(x
λ

)
≤ 1

}
.

We mention that in [8] Orlicz spaces were considered with a family of norms,
called the p-Amemiya norms (1 ≤ p ≤ ∞). These norms are equivalent to both
the Orlicz norm and the Luxemburg norm. (For more information on Orlicz spaces
endowed with p-Amemiya norms and some results about the geometry of these
norms, see [4]–[12], [22], [15], and [16].) It is of interest that in some cases the
geometry of Orlicz spaces equipped with p-Amemiya norms (1 < p < ∞) is better
than when they are equipped with the Luxemburg norm or the Orlicz norm.

We say that an Orlicz function Φ satisfies the ∆3-condition at infinity (at zero)
[on R] if Φ is equivalent to the function |u|Φ(u) at infinity (at zero) [on R]; that
is, there exist constants K,L > 0, and u0 > 0 such that

Φ(Ku) ≤ |u|Φ(u) ≤ Φ(Lu)

for all u ∈ R with |u| ≥ u0 (for all u ∈ R with |u| ≤ u0) [for all u ∈ R+]. We then
write Φ ∈ ∆3(∞) (Φ ∈ ∆3(0)) [Φ ∈ ∆3(R+)].

Since |u|Φ(u) is greater than Φ(u) when |u| ≥ 1 = Φ(1), the ∆3-condition at
infinity just means that, whenever |u| ≥ 1, we have

|u|Φ(u) ≤ Φ(lu),

where l > 0 is an absolute constant independent of u. Note that we can demand
that l ≥ 1.

Since |u|Φ(u) is smaller than Φ(u) when |u| ≤ 1 = Φ(1), the ∆3-condition at
zero just means that there exists k > 0 such that, for all u ∈ R with |u| ≤ 1, we
have

Φ(ku) ≤ |u|Φ(u).
Note that we can demand that k ≤ 1. If an Orlicz function Φ satisfies the
∆3-condition, then all Orlicz functions equivalent to Φ also enjoy this condition.

We say that an Orlicz function Φ satisfies the ∆2-condition for all u ∈ R+ (at
infinity) [at zero] if Φ ∼ Φ2 for all u ∈ R+ (at infinity) [at zero], that is, there
exist constants K,L > 0 (there exist constants K,L > 0 and u1 > 0) [there exist
constants K,L > 0 and u1 > 0] such that the inequalities

Φ(Ku) ≤ Φ2(u) ≤ Φ(Lu) (1.1)

hold for all u > 0 (for any u ≥ u1) [for any 0 < u ≤ u1]. We denote these
conditions by ∆2(R+), ∆

2(∞), and ∆2(0), respectively. Let us note that in the
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above conditions it is enough to demand the existence of 0 < K ≤ 1 and
L ≥ 1.

Note also that when u ≥ 1 and Φ(1) = 1, in order to show that Φ ∈ ∆2(∞),
we need only check the second inequality in (1.1), because the first inequality is
always satisfied with K = 1. Similarly, when 0 < u ≤ 1 and Φ(1) = 1, in order to
show that Φ ∈ ∆2(0), we need only to check the first inequality in (1.1), because
the second inequality is always satisfied with L = 1. (For more information on
conditions ∆3 and ∆2, we refer readers to [20].)

Throughout this article, we assume without loss of generality that Φ(1) = 1.
Indeed, if Φ(1) 6= 1, then we may consider a new Orlicz function Ψ defined by
Ψ(u) = Φ(au) for all u ∈ R+, with a ∈ (0,+∞) satisfying Φ(a) = 1. Then the
Orlicz spaces LΦ(Ω,Σ, µ) and LΨ(Ω,Σ, µ) are isomorphically isometric, namely,
‖ · ‖Ψ = a‖ · ‖Φ.

Let Φ be an Orlicz function vanishing only at zero with the right-hand-side
derivative denoted by Φ′, and let Φ(1) = 1. The lower and upper Simonenko
indices of the Orlicz function Φ (see [25], [30]) are defined by

paS(Φ) = inf
t>0

tΦ′(t)

Φ(t)
, qaS(Φ) = sup

t>0

tΦ′(t)

Φ(t)
,

plS(Φ) = inf
t≥1

tΦ′(t)

Φ(t)
, qlS(Φ) = sup

t≥1

tΦ′(t)

Φ(t)
.

Observe that if an Orlicz function Φ satisfies the condition ∆2(R+) (resp., ∆2(∞)),
then 1 ≤ paS(Φ) ≤ qaS(Φ) < +∞ (resp., 1 ≤ plS(Φ) ≤ qlS(Φ) < +∞).

Note that in general (i.e., without the assumption that Φ(1) = 1) we can define
the lower and upper Simonenko indices for the Orlicz function Φ in the following
way:

plS(Φ) = inf
t≥c

tΦ′(t)

Φ(t)
, qlS(Φ) = sup

t≥c

tΦ′(t)

Φ(t)
,

where c > 0 is such that Φ(c) = 1. Then, defining another (but equivalent) Orlicz

function Φ̃ by the formula Φ̃(u) = Φ(cu), by putting t
c
= s we get

inf
t≥c

tΦ′(t)

Φ(t)
= inf

t
c
≥1

t
c
cΦ′(c t

c
)

Φ(c t
c
)

= inf
s≥1

sΦ̃′(s)

Φ̃(s)
,

so plS(Φ) = plS(Φ̃) (similarly, qlS(Φ) = qlS(Φ̃)). Let Φ be an Orlicz function satis-
fying the ∆2(R+)-condition, and let us define

hΦ(λ) = sup
t>0

Φ(λt)

Φ(t)
, λ > 0.

The numbers

i(Φ) = lim
λ→0+

log hΦ(λ)

log λ
= sup

0<λ<1

log hΦ(λ)

log λ

and

I(Φ) = lim
λ→∞

log hΦ(λ)

log λ
= inf

1<λ<∞

log hΦ(λ)

log λ
,
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where log is the natural logarithm, are called the Matuszewska–Orlicz indices
(see [27]; see also [26]). The existence of the limits follows from the theory of
submultiplicative functions (see [1], [2], [14], [24], [27] for details). We always
have 1 ≤ i(Φ) ≤ I(Φ) and i(Φ) > 1 if and only if the complementary function Φ∗

satisfies the ∆2-condition.

Theorem 1.1 (see [13, Theorem 1.1]). Let Φ be an Orlicz function. Then

i(Φ) = sup
Λ∼Φ

paS(Λ) and I(Φ) = inf
Λ∼Φ

qaS(Λ),

where paS(Λ) and qaS(Λ) are the Simonenko indices of the Orlicz function Λ van-
ishing only at zero and satisfying Λ(1) = 1, and the supremum and infimum are
taken over all the functions Λ equivalent to Φ.

The Matuszewska–Orlicz indices enable us to estimate the growth of the func-
tion Φ ∈ ∆2(R+) by means of the power functions. Namely, given ε > 0, there is
a constant C > 0 such that

Φ(λt) ≤ Cmax(λi(Φ)−ε, λI(Φ)+ε)Φ(t), λ, t > 0, (1.2)

and

Φ(λt) ≥ Cmin(λi(Φ)−ε, λI(Φ)+ε)Φ(t), λ, t > 0, (1.3)

where C depends on Φ and ε, but is independent of λ and t. Obviously, Φ ∈
∆2(R+) if and only if I(Φ) < ∞. Let us also note incidentally that (1.2) and
(1.3) can be derived from the proof of Lemma 2.7.

We will write f1
l
≺ f2 (f1

a
≺ f2) for functions f1, f2 : [0,∞) → [0,+∞) if there

exist positive constants t0, b, and c such that f1(t) ≤ bf2(ct) for t ≥ t0 (resp.,
f1(t) ≤ bf2(ct) for t > 0). If f1 and f2 are convex, then in the above inequalities
we can put b = 1. Functions f1 and f2 are said to be equivalent for large t > 0

(for all t > 0) if f1
l
≺ f2 and f2

l
≺ f1 (f1

a
≺ f2 and f2

a
≺ f1). We then write f1 ∼ f2

at infinity (resp., f1 ∼ f2 for all t > 0). Note also that, in this article, a function
f : R+ → R+ is said to be quasi-nondecreasing (resp., quasi-nonincreasing) if
there exists a constant L > 0 such that, for any t1, t2 ∈ R+, the inequality t1 < t2
implies that f(t1) ≤ Lf(t2) (resp., f(t1) ≥ Lf(t2)).

2. Auxiliary results

Denote by P the set of all continuous functions f : [0,∞) → [0,+∞) positive
on (0,∞) and such that

f(s) ≤ max
{
1,

s

t

}
f(t) (2.1)

for all s, t > 0.

Remark 2.1. It is easy to see that (2.1) is equivalent to the conjunction of the
following two simple conditions.

(1) If s ≤ t, then f(s) ≤ f(t); that is, the function f is nondecreasing.

(2) If 0 < t ≤ s, then f(s)
s

≤ f(t)
t
; that is, the function f(s)

s
is nonincreasing.
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Let us denote by P the subset of the concave functions in P . We will need the
following lemma.

Lemma 2.2 ([26, Lemma 14.1, p. 130]). For every f ∈ P there exist a concave
function f ∈ P and constants K,L > 0 such that

Kf(t) ≤ f(t) ≤ Lf(t)

for any t ≥ 0.

Lemma 2.3. Let Φ be an Orlicz function vanishing only at zero such that

Φ(1) = 1 and Φ ∈ ∆2(R+), and let p ∈ [1,∞). Let us denote fp(t) = Φ(t)
tp

.
Then

(i) the function fp is nondecreasing on R+ if and only if p ≤ paS(Φ);
(ii) the function fp is nonincreasing on R+ if and only if p ≥ qaS(Φ).

Proof. Note that fp is nondecreasing (resp., nonincreasing) if and only if log fp
is nondecreasing (resp., nonincreasing). Since log fp(t) = log Φ(t) − p log t, then

we have (log fp)
′(t) = Φ′(t)

Φ(t)
− p

t
, and (log fp)

′(t) ≥ 0 if and only if p ≤ tΦ′(t)
Φ(t)

for

any t > 0. The last condition is equivalent to p ≤ paS(Φ). (Statement (ii) can be
proved similarly.) �

Remark 2.4. In the definitions of the Simonenko indices, without loss of generality
we could use the standard derivative Φ′(t) instead of Φ

′
+(t) or Φ

′
−(t), because the

one-sided derivatives of Φ exist and are equal to each other except for at most a
countable subset of R+ (which is of zero Lebesgue measure).

Corollary 2.5. Let 1 ≤ p < ∞ and ε > 0. Then the function fp (see Lemma 2.3)
is nondecreasing and the function fp+ε is nonincreasing if and only if p ≤ paS(Φ)
and qaS(Φ) ≤ p+ ε; that is, p ≤ paS(Φ) ≤ qaS(Φ) ≤ p+ ε. Therefore,

ε = (p+ ε)− p ≥ qaS(Φ)− paS(Φ).

In particular, if fp is nondecreasing and fp+1 is nonincreasing, then qaS(Φ) −
paS(Φ) ≤ 1. Note that if qaS(Φ) − p ≤ ε, where p ≤ paS(Φ), then fp is nonde-
creasing, fp+ε is nonincreasing, and we have qaS(Φ) − paS(Φ) ≤ qaS(Φ) − p ≤ ε.
In particular, we get that when p = paS(Φ), the function fp is nondecreasing, and
that the function fp+1 is nonincreasing if and only if qaS(Φ)− paS(Φ) ≤ 1.

Lemma 2.6. Let Φ be an Orlicz function vanishing only at zero, let Φ(1) = 1, and

let Φ ∈ ∆2(R+). Let x ∈ LΦ and p ≥ 1. The function λ(IΦ(
x
λ
))

1
p is nonincreasing

with respect to λ ∈ (0,∞) if and only if p ≤ paS(Φ), and the function λ(IΦ(
x
λ
))

1
p

is nondecreasing with respect to λ ∈ (0,∞) if and only if p ≥ qaS(Φ).

Proof. Let Φ be an Orlicz function satisfying the assumptions of the lemma, and

let p ≥ 1. We will only show that for any x ∈ LΦ the function λ(IΦ(
x
λ
))

1
p is

nonincreasing with respect to λ ∈ (0,∞) if and only if p ≤ paS(Φ), because the
proof of the second statement is similar. By Lemma 2.3, we know that the function
Φ(t)
tp

is nondecreasing on R+ if and only if p ≤ paS(Φ). Therefore, the function

λpΦ( 1
λ
) =

Φ( 1
λ
)

1
λp

is nonincreasing with respect to λ > 0 if and only if p ≤ paS(Φ).
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Hence, assuming that p ≤ paS(Φ) and taking a > 0 and 0 < λ1 < λ2 < ∞, we
obtain

λp
2Φ

( a

λ2

)
= ap

λp
2

ap
Φ
( 1

λ2

a

)
≤ ap

λp
1

ap
Φ
( 1

λ1

a

)
= λp

1Φ
( a

λ1

)
;

that is, λpΦ( a
λ
) is nonincreasing with respect to λ. Consequently, for x ∈ LΦ,

0 < λ1 < λ2 < ∞, and µ-a.e. t ∈ Ω, we have λp
2Φ(

x(t)
λ2

) ≤ λp
1Φ(

x(t)
λ1

), and by

integrating both sides of the last inequality, we get that λpIΦ(
x
λ
) is nonincreasing

with respect to λ > 0 whenever p ∈ [1, paS(Φ)]. This means that λ(IΦ(
x
λ
))

1
p is also

nonincreasing with respect to λ > 0 for any x ∈ LΦ whenever p ≤ paS(Φ).

Assume now that the function λ(IΦ(
x
λ
))

1
p is nonincreasing with respect to λ ∈

(0,∞) for all x ∈ LΦ. Let us define x = χA, where A ∈ Σ with µ(A) ∈ (0, µ(Ω)).
Then λpΦ( 1

λ
)µ(A) is a nonincreasing function of λ, so λpΦ( 1

λ
) is nonincreasing

with respect to λ ∈ (0,∞). Consequently, the function Φ(u)
up is nondecreasing

with respect to u ∈ (0,∞), which, by virtue of Lemma 2.3, means that p ∈
[1, paS(Φ)]. �

Lemma 2.7. Let Φ be an Orlicz function, let x ∈ LΦ, and let Φ ∈ ∆2(R+).
Then the function λ(IΦ(

x
λ
))1/q is quasi-nonincreasing with respect to λ ∈ (0,∞)

if 0 < q < i(Φ) and quasi-nondecreasing with respect to λ ∈ (0,∞) if q > I(Φ).

Proof. We will only present the proof of the fact that the function λ(IΦ(
x
λ
))

1
q is

quasi-nonincreasing with respect to λ ∈ (0,∞) for all x ∈ LΦ if 0 < q < i(Φ),
because the proof of the second statement is similar. By virtue of Theorem 1.1,
there exists an Orlicz function Ψ such that paS(Ψ) > i(Φ) − δ =: q for any
δ ∈ (0, i(Φ)) and Ψ is equivalent to Φ on R+, that is, there exist positive constants
L1 and L2 such that L1 ≤ L2 and

Ψ(L1u) ≤ Φ(u) ≤ Ψ(L2u) (2.2)

for all u ∈ R+. Since Φ ∈ ∆2(R+), by (2.2), we also have Ψ ∈ ∆2(R+), whence it
follows by (2.2) that there exist positive constants K1 and K2 such that K1 ≤ K2

and

K1Ψ(u) ≤ Φ(u) ≤ K2Ψ(u) (2.3)

for any u ∈ R+. From inft>0
tΨ′(t)
Ψ(t)

> q, we get Ψ′(t)
Ψ(t)

> q
t
for all t > 0. Therefore,

for all λ ≥ 1 and u > 0, we have∫ λu

u

Ψ′(t)

Ψ(t)
dt > q

∫ λu

u

dt

t
,

log Ψ(t)|λuu > log tq|λuu ,

log
Ψ(λu)

Ψ(u)
> log

λquq

uq
= log λq,
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so Ψ(λu) > λqΨ(u) for all u > 0 and λ ≥ 1. Next we have

Φ(λu) ≥ K1Ψ(λu) > K1λ
qΨ(u) ≥ K1

K2

λqΦ(u). (2.4)

In consequence, assuming that 0 < λ1 ≤ λ2 < ∞, we get 0 < 1/λ2 ≤ 1/λ1 < ∞,
so by applying inequality (2.4) with λ = λ2

λ1
and u = 1

λ2
, we obtain

λq
2Φ

( 1

λ2

)
≤ K2

K1

λq
1Φ

( 1

λ1

)
,

which means that the function λqΦ( 1
λ
) is quasi-nonincreasing. Let us now take

arbitrary a > 0. Then

λq
2Φ

( a

λ2

)
= aq

(λ2

a

)q

Φ
( 1

λ2

a

)
≤ Laq

(λ1

a

)q

Φ
( 1

λ1

a

)
= Lλq

1Φ
( a

λ1

)
.

Consequently, there is L > 0 such that λq
2Φ(

x(t)
λ2

) ≤ Lλq
1Φ(

x(t)
λ1

) for all x ∈ LΦ,
0 < λ1 ≤ λ2 < ∞, and µ-a.e. t ∈ Ω. By integrating both sides of this inequality
over Ω, we obtain λq

2IΦ(
x
λ2
) ≤ Lλq

1IΦ(
x
λ1
) for all x ∈ LΦ, which means that the

function λqIΦ(
x
λ
) is quasi-nonincreasing with respect to λ > 0. Therefore, for

any x ∈ LΦ, the function λ(IΦ(
x
λ
))1/q is also quasi-nonincreasing with respect to

λ > 0. �

Lemma 2.8. For any Orlicz function Φ : [0,∞) → [0,∞) satisfying the ∆2(∞)-

condition, there exists an Orlicz function Φ̃ equivalent to Φ at infinity such that

Φ̃ ∈ ∆2(R+), p
a
S(Φ̃) = p ≤ plS(Φ), and qaS(Φ̃) = qlS(Φ).

Proof. Without loss of generality, we can assume that Φ(1) = 1. Let p ∈ [1, plS(Φ)],
and define

Φ̃(t) =

{
tp if t < 1,

Φ(t) if t ≥ 1.

The functions Φ and Φ̃ are equal (hence equivalent) at infinity, and Φ̃ is an

Orlicz function (note that Φ̃ is convex because Φ̃′
−(1) = p ≤ plS(Φ) ≤ Φ′(1)

Φ(1)
=

Φ′(1) = Φ̃′(1)). Moreover, it is clear that Φ̃ ∈ ∆2(R+). Since inf0<t≤1
tΦ̃′(t)

Φ̃(t)
=

sup0<t≤1
tΦ̃′(t)

Φ̃(t)
= p, we get

paS(Φ̃) = min
{
p, plS(Φ)

}
= p ≤ plS(Φ) = inf

t≥1

tΦ′(t)

Φ(t)

and

qaS(Φ̃) = max
{
p, qlS(Φ)

}
= qlS(Φ) = sup

t≥1

tΦ′(t)

Φ(t)
,

which finishes our proof. �
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Lemma 2.9. If an Orlicz function Φ satisfies the ∆2(0)-condition, then Φ ∈
∆3(0). If Φ ∈ ∆2(R+), then Φ ∈ ∆3(R+).

Proof. We can assume without loss of generality that Φ(1) = 1. Let Φ be an
Orlicz function such that Φ ∈ ∆2(0). Then uΦ(u) ≤ Φ(u) for all 0 < u ≤ 1. Since
Φ ∈ ∆2(0), we can find a constant S > 0 such that Φ(Su) ≤ Φ2(u) for 0 < u ≤ 1.
Moreover, since Φ is convex, we have Φ(u) ≤ u for 0 < u ≤ 1, whence

Φ(Su) ≤ Φ2(u) = Φ(u) · Φ(u) ≤ uΦ(u)

for 0 < u ≤ 1, which shows that Φ ∈ ∆3(0). Since it is known (see [20]) that
Φ ∈ ∆2(∞) implies that Φ ∈ ∆3(∞), we conclude that Φ ∈ ∆3(R+). �

Lemma 2.10 ([20, Theorem 6.1, p. 36]). Assume that the Orlicz function Φ
satisfies the ∆3(∞)-condition. Then the function Ψ complementary to Φ in the
sense of Young satisfies the inequality

k1vΦ
−1(k1v) ≤ Ψ(v) ≤ k2vΦ

−1(k2v)

for large values of v, where Φ−1 is the inverse function of Φ and k1, k2 (k1 ≤ k2)
are positive constants independent of v.

Definition 2.11. A function f : [0,∞) → [0,∞) is said to satisfy the ∇3(∞)-
condition (the ∇3(R+)-condition) if there exist constants K,L > 0 such that, for
v ≥ 1 (for v > 0), the inequalities Kf(v) ≤ f(f(v)v) ≤ Lf(v) hold, respectively.
We then write f ∈ ∇3(∞) (f ∈ ∇3(R+)).

Remark 2.12. Note that when Φ is an Orlicz function such that Φ(1) = 1, we
always have Φ−1(v) ≤ Φ−1(Φ−1(v)v) for v ≥ 1, so the condition Φ−1 ∈ ∇3(∞)
reduces only to the right inequality in Definition 2.11 for Φ−1 in place of f .

Lemma 2.13. Let Φ be an Orlicz function such that Φ(1) = 1. Then the following
conditions are equivalent:

(1) Φ ∈ ∆3(∞), that is, there exists K ≥ 1 such that for u ≥ 1 the inequality
uΦ(u) ≤ Φ(Ku) holds;

(2) Φ−1 ∈ ∇3(∞).

Proof. Assume that condition (1) holds, and set u = Φ−1(v). Then v ≥ 1 and by
virtue of (1) we have Φ−1(v)v ≤ Φ(KΦ−1(v)), so Φ−1(Φ−1(v)v) ≤ KΦ−1(v) for
v ≥ 1, that is, Φ−1 ∈ ∇3(∞). Now assume that (2) holds. Setting v = Φ(u), we
get u ≥ 1, and by condition (2) applied to v = Φ(u) there exists K ≥ 1 such that
Φ−1(uΦ(u)) ≤ Ku, so uΦ(u) ≤ Φ(Ku) for u ≥ 1, which ends the proof. �

Lemma 2.14. Let Φ be an Orlicz function such that Φ(1) = 1. Then the following
conditions are equivalent:

(1) Φ ∈ ∆3(R+), that is, there exist K ≤ 1 and L ≥ 1 such that for u > 0 the
inequality Φ(Ku) ≤ uΦ(u) ≤ Φ(Lu) holds;

(2) Φ−1 ∈ ∇3(R+).

Proof. Assume that (1) holds, and set u = Φ−1(v). Then v > 0 and by virtue of (1)
we have Φ(KΦ−1(v)) ≤ Φ−1(v)v ≤ Φ(LΦ−1(v)), so KΦ−1(v) ≤ Φ−1(Φ−1(v)v) ≤
LΦ−1(v) for v > 0, that is, Φ−1 ∈ ∇3(R+). Now assume that (2) holds. Setting
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v = Φ(u), we get u > 0, and by (2) there exist K ≤ 1 and L ≥ 1 such that
Ku ≤ Φ−1(uΦ(u)) ≤ Lu, so Φ(Ku) ≤ uΦ(u) ≤ Φ(Lu) for u > 0, which ends the
proof. �

Definition 2.15. Let p ∈ (1,∞). A function f : [0,∞) → [0,∞) is said to satisfy
the condition ∆p(0) (∆p(∞)) [∆p(R+)] if there exist K,L > 0 such that f(Ku) ≤
fp(u) ≤ f(Lu) for 0 < u ≤ 1 (for u ≥ 1) [for u ∈ R+]. We then write f ∈ ∆p(0)
(f ∈ ∆p(∞)) [f ∈ ∆p(R+)].

Lemma 2.16. Let Φ be an Orlicz function such that Φ(1) = 1. The following
conditions are equivalent:

(1) Φ ∈ ∆2(∞);
(2) there exists p ∈ (1,∞) such that Φ ∈ ∆p(∞);
(3) for any p ∈ (1,∞), we have Φ ∈ ∆p(∞).

Proof. It is obvious that (3) implies (2).
We show that (1) implies (3). Let Φ ∈ ∆2(∞), and let p ∈ (1,∞) be arbitrary.

Note that if u ≥ 1, then Φ(u) ≥ 1 and the inequality Φ(u) ≤ Φp(u) is obvious
for any p ∈ (1,∞). Therefore, we only need to show that the second inequality in
the condition ∆p(∞) holds true. Assume that 1 < p ≤ 2. Then, since Φ(u) ≥ 1
and Φ ∈ ∆2(∞), there exists a constant K ≥ 1 such that

Φp(u) ≤ Φ2(u) ≤ Φ(Ku)

for u ≥ 1. If p > 2, then there exists the smallest n ∈ N such that p ≤ 2n.
Moreover, if u ≥ 1, then Kiu ≥ 1 for any 1 ≤ i ≤ n− 1. Consequently,

Φp(u) ≤ Φ2n(u) =
[
Φ2(u)

]2n−1

≤
[
Φ(Ku)

]2n−1

=
[
Φ2(Ku)

]2n−2

≤
[
Φ(K2u)

]2n−2

≤ · · · ≤ Φ
(
Kn(u)

)
,

which ends the proof of our implication. In a similar way we can prove that (2)
implies (1), so the proof is finished. �

Lemma 2.17. Let Φ be an Orlicz function such that Φ(1) = 1. The following
conditions are equivalent:

(1) Φ ∈ ∆2(0),
(2) there exists p ∈ (1,∞) such that Φ ∈ ∆p(0),
(3) for any p ∈ (1,∞), we have Φ ∈ ∆p(0).

The proof is similar to that of Lemma 2.16.

Lemma 2.18. Let Φ be an Orlicz function such that Φ(1) = 1. The following
conditions are equivalent:

(1) Φ ∈ ∆2(R+),
(2) there exists p ∈ (1,∞) such that Φ ∈ ∆2(R+),
(3) for any p ∈ (1,∞), we have Φ ∈ ∆p(R+).
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Proof. The proof is a consequence of Lemmas 2.17, 2.16, and the fact that every
function Φ satisfying conditions ∆p(0) and ∆p(∞) also satisfies condition
∆p(R+). �

Definition 2.19. Let p ∈ (1,∞). A function f : [0,∞) → [0,∞) is said to satisfy
the condition∇p(R+) (∇p(∞)) if there existK,L > 0 such thatKf(v) ≤ f(vp) ≤
Lf(v) for v ∈ R+ (resp., for v ≥ 1). We then write f ∈ ∇p(R+) (resp., f ∈
∇p(∞)).

Remark 2.20. Note that the first inequality in the condition∇p(∞) for the inverse
function Φ−1 to an Orlicz function Φ such that Φ(1) = 1 always holds because
Φ−1(v) ≤ Φ−1(vp) for v ≥ 1. Therefore, in order to check that Φ−1 ∈ ∇p(∞), it
is enough to check only that the inequality Φ−1(vp) ≤ LΦ−1(v) holds for v ≥ 1
with some L > 0 independent of v.

Lemma 2.21. Let Φ be an Orlicz function such that Φ(1) = 1, and let p ∈ (1,∞).
Then the following conditions are equivalent:

(1) Φ ∈ ∆p(R+),
(2) Φ−1 ∈ ∇p(R+).

Proof. Let p ∈ (1,∞) be arbitrary. Assume first that condition (1) holds. Then
putting u = Φ−1(v) in (1), we obtain

Φ
(
KΦ−1(v)

)
≤

(
Φ
(
Φ−1(v)

))p
= vp ≤ Φ

(
LΦ−1(v)

)
for some constants K ≤ 1, L ≥ 1 independent of v and for all v ∈ R+. After
composing these inequalities with Φ−1, we obtain

KΦ−1(v) ≤ Φ−1(vp) ≤ LΦ−1(v)

for all v ∈ R+, so condition (2) holds.
Now assume that (2) holds. Putting v = Φ(u) in (2), we get

Ku ≤ Φ−1
(
Φp(u)

)
≤ Lu

for some constants K ≤ 1, L ≥ 1 independent of u and for all u ∈ R+, which is
equivalent to

Φ(Ku) ≤ Φp(u) ≤ Φ(Lu)

for all u ∈ R+, so condition (1) is satisfied. �

Corollary 2.22. If Φ is an Orlicz function, then conditions Φ ∈ ∆2(R+) and
Φ−1 ∈ ∇2(R+) are equivalent.

A result similar to that of Lemma 2.21 is true in the case when Φ ∈ ∆p(∞),
p ∈ (1,∞), which is presented below without proof.

Lemma 2.23. Let Φ be an Orlicz function such that Φ(1) = 1, and let p ∈ (1,∞).
Then the following conditions are equivalent:

(1) Φ ∈ ∆p(∞);
(2) Φ−1 ∈ ∇p(∞).

Corollary 2.24. For any Orlicz function Φ, conditions Φ ∈ ∆2(∞) and Φ−1 ∈
∇2(∞) are equivalent.
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Remark 2.25. Since we always have Φ2(u) ≤ Φ(u) for u ≤ 1 and an Orlicz function
Φ such that Φ(1) = 1, then assuming that Φ ∈ ∆2(∞), we get Φ2(u) ≤ Φ(Ku)
for u > 0 and some constant K > 0 independent of u.

Lemma 2.26. If Φ is an Orlicz function satisfying the ∆3(∞)-condition, then
there is a constant l ∈ (0,∞) such that Φ∗(lv) ≤ vΦ−1(v) for v ≥ 0, where Φ∗

denotes the function complementary to Φ in the sense of Young.

Proof. By condition ∆3(∞) for Φ, there exists k ∈ (1,∞) such that

uΦ(u) ≤ Φ(ku) (2.5)

for u ≥ 1. Since uΦ(u) ≤ Φ(u) ≤ Φ(ku) for u ∈ [0, 1], we get by (2.5) that

uΦ(u) ≤ Φ(ku) (2.6)

for u ≥ 0. Let us define the function

Φ1(u) =

∫ |u|

0

Φ(t) dt.

Then, by (2.6), we have

Φ1(u) =

∫ u

0

Φ(t) dt ≤ uΦ(u) ≤ Φ(ku)

for u ≥ 0, whence we deduce that there exists l ∈ (0, 1) such that

Φ∗(lv) ≤ Φ∗
1(v) (2.7)

for v ≥ 0, where Φ∗ and Φ∗
1 are the functions complementary to Φ and Φ1,

respectively. Of course,

Φ∗
1(v) =

∫ v

0

Φ−1(t) dt ≤ vΦ−1(v)

for v ≥ 0, which together with (2.7) gives Φ∗(lv) ≤ vΦ−1(v) for v ≥ 0, finishing
the proof. �

Corollary 2.27. Assuming that M is an Orlicz function of the form M(t) =
t%(t), where %−1 is an Orlicz function satisfying the ∆3(∞)-condition, then from
Lemma 2.26 we conclude that there is a constant l ∈ (0, 1) such that (%−1)∗(lv) ≤
v%(v) for all v ≥ 0. In consequence, taking into account that [(%−1)∗]∗ = %−1,
there exists a constant B ∈ [1,∞) such that M∗(v) ≤ %−1(Bv) for all v ≥ 0.

Remark 2.28. Note that for an Orlicz function Φ such that Φ(1) = 1 we have
Φ2(u) ≤ Φ(u) ≤ Φ(ku) for all u ∈ [0, 1] and any k ≥ 1, which means that
Φ−1(v2) ≤ kΦ−1(v) for all v ∈ [0, 1] and any k ≥ 1. Therefore, in the case
of a nonatomic infinite measure space, assuming that Φ−1 ∈ ∇2(∞), we even
have Φ−1(v2) ≤ kΦ−1(v) for all v ≥ 0 and some k ≥ 1. In a similar way, in
the case of a nonatomic infinite measure space, assuming Φ−1 ∈ ∇3(∞), we get
Φ−1(vΦ−1(v)) ≤ LΦ−1(v) for all v ≥ 0 and some L ≥ 1.
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We will also use the following lemma and corollary to prove our main results.

Lemma 2.29. Let Φ be an Orlicz function, let (Ω,Σ, µ) be a nonatomic infinite
but σ-finite measure space, and let ω(t) =

∑∞
n=1[2

n(1 + µ(Tn))]
−1χTn(t), where

{Tn}∞n=1 is a sequence of Σ-measurable sets of positive and finite measure such
that

⋃∞
n=1 Tn = Ω. Then for any r ∈ [1, plS(Φ)] we have LΦ(Ω,Σ, µ) ⊆ Lr

ω(Ω,Σ, µ)
and there exists a constant K > 0 such that

‖x‖Lr
ω
=

(∫
Ω

∣∣x(t)∣∣rω(t) dµ(t)) 1
r ≤ K‖x‖Φ

for any x ∈ LΦ(Ω,Σ, µ).

Proof. We can assume without loss of generality that Φ(1) = 1. By the proof of
Lemma 2.7, we know that, given any r ∈ [1, plS(Φ)], there exists a constant Lr > 0
such that for all u ∈ [1,∞), we have

|u|r ≤ LrΦ(u). (2.8)

Let us define the Musielak–Orlicz function (for the definition of such functions,
see [17], [28], and the last section of [3])

Ψ(t, u) = |u|rω(t), ∀u ∈ R, t ∈ Ω.

Then for any x ∈ LΨ(Ω,Σ, µ) (the Musielak–Orlicz space generated by the
Musielak–Orlicz function Ψ over the measure space (Ω,Σ, µ)), we have

‖x‖Ψ = inf
{
λ > 0 :

∫
Ω

∣∣∣x(t)
λ

∣∣∣rω(t) dµ(t) ≤ 1
}

= inf
{
λ > 0 :

∫
Ω

∣∣x(t)∣∣rω(t) dµ(t) ≤ λr
}

= inf
{
λ > 0 :

(∫
Ω

∣∣x(t)∣∣rω(t) dµ(t))1/r

≤ λ
}

=
(∫

Ω

∣∣x(t)∣∣rω(t) dµ(t))1/r

= ‖x‖Lr
ω
.

Let us note that condition (2.8) for u ∈ [1,∞) implies that, for µ-a.e. t ∈ Ω and
all u ∈ R, the inequality

Ψ(t, u) ≤ LrΦ(u)ω(t) + ω(t)

holds. Therefore, for arbitrary x ∈ LΦ(Ω,Σ, µ) we have

IΨ

( x

‖x‖Φ

)
≤ Lr

∫
Ω

Φ
( x(t)

‖x‖Φ

)
ω(t) dµ(t) +

∫
Ω

ω(t) dµ(t)

= Lr

∞∑
n=1

[
2n
(
1 + µ(Tn)

)]−1
∫
Tn

Φ
( x(t)

‖x‖Φ

)
dµ(t) +

∫
Ω

ω(t) dµ(t)

≤ Lr

∞∑
n=1

[
2n
(
1 + µ(Tn)

)]−1
+ 1 ≤ Lr + 1.
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Hence, by convexity of IΨ, we get IΨ(
x

(1+Lr)‖x‖Φ
) ≤ 1, whence

‖x‖Lr
ω
= ‖x‖Ψ ≤ (1 + Lr)‖x‖Φ,

which finishes the proof. �

Corollary 2.30. If µ(Ω) < ∞, then by (2.8) we get LΦ(Ω,Σ, µ) ⊆ Lr(Ω,Σ, µ) =
Lr
χΩ
(Ω,Σ, µ). So, setting ω(t) = χΩ(t) in the last lemma, we obtain

‖x‖Lr ≤ K‖x‖Φ, ∀x ∈ LΦ(Ω,Σ, µ)

where K = Lr + µ(Ω), with Lr satisfying condition (2.8).

3. Main results

We now give one of the most important results of this article.

Theorem 3.1. Assume that (Ω,Σ, µ) is a nonatomic finite measure space and
that Φ is an Orlicz function. Let p ∈ [1, plS(Φ)], and let q(Φ) := qlS(Φ) satisfy the

inequality q(Φ)− p ≤ 1. Define %(t) := Φ(t)
tp

. Then the following assertions hold.

(1) If Φ ∈ ∆2(∞), then there exist positive constants K and L such that for
any f ∈ LΦ, we have

K[f ]Φ̃,p ≤ ‖f‖Φ ≤ L[f ]Φ̃,p, (3.1)

where [f ]Φ̃,p is a quasinorm in LΦ equal to zero if f = 0 and for f ∈
LΦ\{0} defined by the formula

[f ]Φ̃,p :=

{
‖f‖LrIΦ̃(

f
‖f‖Lr

) if p = 1 and % ∈ ∇3(∞),

‖f‖Lr(IΦ̃(
f

‖f‖Lr
))

1
p if p > 1 and % ∈ ∇2(∞),

where r ∈ [1, plS(Φ)] and Φ̃ is the function from Lemma 2.8 with paS(Φ̃) =

p ≤ plS(Φ), q
a
S(Φ̃) = q(Φ), and Φ̃ ∈ ∆2(R+).

(2) If Φ ∈ ∆2(R+), then there exist positive constants K and L such that for
any f ∈ LΦ, we have

K[f ]Φ,p ≤ ‖f‖Φ ≤ L[f ]Φ,p (3.2)

with the quasinorm [ · ]Φ,p defined as in statement (1) with r ∈ [1, plS(Φ)]

and with Φ instead of Φ̃.

Proof. The proof proceeds in the following way. First, using Lemma 2.6 and Corol-

lary 2.30 we get the lower estimate of [ · ]Φ̃,p by ‖ · ‖Φ̃ for an Orlicz function Φ̃

from Lemma 2.8 with paS(Φ̃) = p ≤ plS(Φ), q
a
S(Φ̃) = q(Φ), Φ̃ ∈ ∆2(R+) equivalent

to Φ. In order to prove the upper estimate of [ · ]Φ̃,p by ‖ · ‖Φ, we apply Lemmas

2.2 and 2.3, Corollary 2.5, and Lemma 2.8 (which is possible by the assumption

that gaS(Φ̃)− p ≤ 1), as well as the condition % ∈ ∇3(∞) if p = 1 or the condition
% ∈ ∇2(∞) if p > 1, along with Lemmas 2.10 and 2.13 and Corollary 2.24.
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Let p ∈ [1, plS(Φ)], and let Φ̃ be the function from Lemma 2.8 with paS(Φ̃) = p.

By Lemma 2.6 and the fact that Φ̃ ∈ ∆2(R+) (note that Φ̃(1) = 1), we get for all
f ∈ LΦ̃\{0} and for the constant K > 1 from Corollary 2.30 that

‖f‖Φ̃ = ‖f‖Φ̃
(
IΦ̃

( f

‖f‖Φ̃

)) 1
p

≤ K−1‖f‖Lr

(
IΦ̃

( Kf

‖f‖Lr

)) 1
p

≤ N‖f‖Lr

(
IΦ̃

( f

‖f‖Lr

)) 1
p

= N [f ]Φ̃,p

for some absolute constant N > 0 independent of f . Hence, by equivalence of the
norms ‖ · ‖Φ and ‖ · ‖Φ̃, we get ‖f‖Φ ≤ M [f ]Φ̃,p for any f ∈ LΦ\{0} and for some
absolute constant M > 0 independent of f , which ends the proof of the upper
estimate of the Luxemburg norm ‖f‖Φ by the quasinorm [f ]Φ̃,p.

Now we will find the lower estimate in (3.1). Obviously, we can write the Orlicz
function Φ in the form

Φ(t) = tp · %(t), (3.3)

where %(t) := Φ(t)
tp

. In the remainder of the proof we assume that % ∈ ∇2(∞)
or, equivalently, that %−1 ∈ ∆2(∞) (see Corollary 2.24). Note that by virtue of
Lemmas 2.2–2.3 and Remark 2.1, the assumption

qaS(Φ̃)− paS(Φ̃) = q(Φ)− p ≤ 1 (3.4)

guarantees the existence of a concave function equivalent at infinity to the func-
tion %, so that %−1 is equivalent at infinity to a convex function. Indeed, by

Lemma 2.3 applied to the function %̃(t) := Φ̃(t)
tp

, where paS(Φ̃) = p ≤ plS(Φ), we

conclude that %̃ is nondecreasing and that %̃(t)
t

= Φ̃(t)
tp+1 is nonincreasing because of

(3.4), that is, qaS(Φ̃) ≤ p+1 = paS(Φ̃) + 1. Therefore, by virtue of Remark 2.1, we
can apply Lemma 2.2, obtaining the existence of a concave function % equivalent

to %̃. Since Φ ∼ Φ̃ at infinity, we get % ∼ %̃ at infinity, and since % ∼ %̃, so % is
equivalent to the concave function % at infinity.

We will show that [f ]Φ,p ≤ C for f ∈ S(LΦ) and some absolute constant C > 0
independent of f . Since Φ(t) = tp · %(t), by the definition of the quasinorm [ · ]Φ,p,
where p ∈ [1, plS(Φ)], it is enough to show that

‖f‖Lr

(∫
Ω

( |f(t)|
‖f‖Lr

)p

%
( |f(t)|
‖f‖Lr

)
dµ(t)

) 1
p
=

(∫
Ω

∣∣f(t)∣∣p%( |f(t)|
‖f‖Lr

)
dµ(t)

) 1
p ≤ F,

where F > 0 is some absolute constant independent of f or, equivalently, that∫
Ω

∣∣f(t)∣∣p%( |f(t)|
‖f‖Lr

)
dµ(t) ≤ D,

where D > 0 is some absolute constant independent of f . Below in both cases
p = 1 and p > 1 we will use the ∇3(∞)-condition for the function % (equivalently,
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by Lemma 2.13, the ∆3(∞)-condition for the function %−1), which is possible
because the ∆2(∞)-condition for the function %−1 (equivalently, condition ∇2(∞)
for the function %) implies the ∆3(∞)-condition for the function %−1 (see [20];
equivalently, the ∇3(∞)-condition for %). By virtue of Theorem 6.1 from [20] (see
also Lemma 2.10 in this article), we get that the function (%−1)∗ complementary to
%−1 in the sense of Young is equivalent to M(t) := t%(t) at infinity. Consequently,
the function M∗ complementary to M is equivalent to %−1 at infinity; that is,
there exist constants A,B > 0 such that

%−1(At) ≤ M∗(t) ≤ %−1(Bt) (3.5)

for large values of t > 0, so also for t ≥ 1. Then, by Young’s inequality, for any
f ∈ S(LΦ) we get∫

Ω

∣∣f(t)∣∣p%( |f(t)|
‖f‖Lr

)
dµ(t)

= B

∫
Ω

(∣∣f(t)∣∣)p 1
B
%
( |f(t)|
‖f‖Lr

)
dµ(t)

≤ B
[∫

Ω

M
(∣∣f(t)∣∣p) dµ(t) + ∫

Ω

M∗
( 1

B
%
( |f(t)|
‖f‖Lr

))
dµ(t)

]
, (3.6)

where B > 0 is the constant from the second inequality in (3.5). Defining the set

E =
{
t ∈ Ω :

|f(t)|
‖f‖Lr

≥ 1
}
,

noting that %(1) = Φ(1)
1

= 1, and applying Corollary 2.30, we can continue the
upper estimate in (3.6) as∫

Ω

(∣∣f(t)∣∣)p%( |f(t)|
‖f‖Lr

)
dµ(t)

≤ B
[∫

Ω

M
(∣∣f(t)∣∣p) dµ(t) + ∫

Ω\E
M∗

( 1

B
%
( |f(t)|
‖f‖Lr

))
dµ(t)

+

∫
E

%−1 ◦ %
( |f(t)|
‖f‖Lr

)
dµ(t)

]
≤ B

[∫
Ω

(∣∣f(t)∣∣)p%((∣∣f(t)∣∣)p) dµ(t) + ∫
Ω\E

M∗
(%(1)

B

)
dµ(t)

+ ‖f‖−1
Lr ‖f‖1

]
≤ B

∫
Ω

(∣∣f(t)∣∣)p%((∣∣f(t)∣∣)p) dµ(t) +BM∗
( 1

B

)
µ(Ω)

+B‖f‖−1
Lr k‖f‖Lr (k > 0)

≤ C + C

∫
Ω

(∣∣f(t)∣∣)p%((∣∣f(t)∣∣)p) dµ(t), (3.7)

with C > 0 being some absolute constant independent of f . We consider two
cases.
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Case 1. Let p = 1. Since ‖f‖Φ = 1 and Φ ∈ ∆2(∞), we obtain that IΦ(f) = 1
and consequently∫

Ω

∣∣f(t)∣∣%( |f(t)|
‖f‖Lr

)
dµ(t) ≤ C + C

∫
Ω

∣∣f(t)∣∣%(∣∣f(t)∣∣) dµ(t) = C + CIΦ(f) = 2C,

which ends the proof of the theorem in this case.
Case 2. Assume that p > 1. Then

∫
Ω
(|f(t)|)p%(|f(t)|) dµ(t) = IΦ(f) = 1, so

defining the set

F =
{
t ∈ Ω :

∣∣f(t)∣∣ ≥ 1
}

and using the fact that % ∈ ∇2(∞) (equivalently, % ∈ ∇p(∞)), we continue the
upper estimate of (3.7) as∫

Ω

(∣∣f(t)∣∣)p%( |f(t)|
‖f‖Lr

)
dµ(t)

≤ C + C

∫
Ω

(∣∣f(t)∣∣)p%((∣∣f(t)∣∣)p) dµ(t)
≤ C + C

∫
F

(∣∣f(t)∣∣)p%(∣∣f(t)∣∣p) dµ(t)
+ C

∫
Ω\F

(∣∣f(t)∣∣)p%(∣∣f(t)∣∣p) dµ(t)
≤ C + C̃

∫
F

(∣∣f(t)∣∣)p%(∣∣f(t)∣∣) dµ(t) + C

∫
Ω\F

%(1) dµ(t)

≤ C + Cµ(Ω) + C̃

∫
F

(∣∣f(t)∣∣)p%(∣∣f(t)∣∣) dµ(t)
≤ C3

∫
Ω

(∣∣f(t)∣∣)p%(∣∣f(t)∣∣) dµ(t) = C3,

with some absolute constant C3 > 0 independent of f . Hence if ‖f‖Φ = 1, then

[f ]Φ,p ≤ C3.

Thus [ f
‖f‖Φ

]Φ,p ≤ C3‖ f
‖f‖Φ

‖Φ for f ∈ LΦ\{0}, so [f ]Φ,p ≤ C3‖f‖Φ for all f ∈ LΦ.

Finally, since the functional [ · ]Φ,p is positively homogeneous, by virtue of (3.1),
it is evident that [ · ]Φ̃,p is a quasinorm on the space LΦ.

In the proof of the upper estimate in (3.2) under the assumption that Φ ∈
∆2(R+), we work with the original function Φ, obtaining directly that ‖f‖Φ ≤
M [f ]Φ,p for all f ∈ LΦ. The proof of the lower estimate in (3.2) runs in the same
way as that of (3.1). �

Remark 3.2. Note that if plS(Φ) = 1 and qlS(Φ) ≤ plS(Φ) + 1 = 2 or if plS(Φ) > 1
and qlS(Φ) = plS(Φ) + 1, the power p generating the quasinorm [ · ]Φ,p is unique
and equals plS(Φ).

Remark 3.3. Note that by virtue of Lemma 2.23, the assumption % ∈ ∇2(∞) in
Theorem 3.1 may be replaced by %−1 ∈ ∆2(∞).
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Remark 3.4. If for an Orlicz function Φ we have paS(Φ) = qaS(Φ), then denoting
this common value by p the function Φ turns out to be equal to |u|p. Hence for
f ∈ LΦ\{0}, we get directly

[f ]Φ̃,p = ‖f‖Lr

(
IΦ̃

( f

‖f‖Lr

)) 1
p

= ‖f‖Lr

(∫
Ω

(f(t))p

‖f‖pLr

dµ(t)
) 1

p

=
(∫

Ω

(
f(t)

)p
dµ(t)

) 1
p
= ‖f‖Lp ,

meaning that in this case our quasinorm is actually the Lp-norm.

Now we will show the necessity of condition∇3(∞) or∇p(∞) on the generating
Orlicz function Φ in Theorem 3.1.

Theorem 3.5. If µ is nonatomic and finite, plS(Φ) = 1 = Φ(1), and % /∈ ∇3(∞),
where Φ and % are the functions defined in Theorem 3.1, then there is no absolute
constant C > 0 independent of f such that the estimate

‖f‖L1IΦ

( f

‖f‖L1

)
=: [f ]Φ,1 ≤ C‖f‖Φ (3.8)

holds for f ∈ LΦ\{0}, which means that when plS(Φ) = 1, the condition % ∈
∇3(∞) is necessary for the upper estimate of the quasinorm in Theorem 3.1.

Proof. Let plS(Φ) = 1. If % /∈ ∇3(∞), then (see Definition 2.11) for any sequence
{bk} of positive numbers with bk ↗ ∞ one can find a nondecreasing sequence
{tk} of positive numbers such that %(tk)min{1, µ(Ω)} ≥ 1 and

%
(
%(tk)tk

)
> bk%(tk). (3.9)

Define fk(t) = tkχAk
(t) for Ak ∈ Σ such that

IΦ(fk) =

∫
Ak

fk(t)%
(
fk(t)

)
dµ(t) = tk%(tk)µ(Ak) = 1, (3.10)

which implies that ‖fk‖Φ = 1 for all k ∈ N. Applying (3.10), we obtain

[fk]Φ,1 = ‖fk‖L1IΦ

( fk
‖fk‖L1

)
=

∫
Ak

fk(t)%
( fk(t)

‖fk‖L1

)
dµ(t)

=

∫
Ak

tk%
( tk
tkµ(Ak)

)
dµ(t)

= tk%
( 1

µ(Ak)

)
µ(Ak)

= tk%
(
tk%(tk)

)
µ(Ak),
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whence, by (3.9), we have for all k ∈ N

[fk]Φ,1 = tk%
(
tk%(tk)

)
µ(Ak) > tkbk%(tk)µ(Ak) = bk.

Since bk ↗ ∞, the proof is finished. �

Theorem 3.6. If µ is nonatomic and finite, Φ(1) = 1, and % /∈ ∇2(∞), where
Φ and % are the functions defined in Theorem 3.1, then for any r and p with
1 ≤ r < p ≤ plS(Φ), there is no absolute constant C > 0 independent of f such
that the estimate

‖f‖Lr

(
IΦ

( f

‖f‖Lr

)) 1
p
=: [f ]Φ,p ≤ C‖f‖Φ (3.11)

holds for f ∈ LΦ\{0}, which means that when 1 ≤ r < p ≤ plS(Φ), the condition
% ∈ ∇2(∞) is necessary for the upper estimate of the quasinorm in Theorem 3.1.

Proof. Take r and p such that 1 ≤ r < p ≤ plS(Φ), and assume that % /∈ ∇2(∞).
Then % /∈ ∇ p

r (∞), and hence for any sequence {bk} of positive numbers with
bk ↗ ∞ one can find a nondecreasing sequence {tk} of positive numbers such
that %(tk)min{1, µ(Ω)} ≥ 1 and

%(t
p
r
k ) > bk%(tk). (3.12)

Define fk(t) = tkχAk
(t) for Ak ∈ Σ such that

IΦ(fk) =

∫
Ak

(
fk(t)

)p
%
(
fk(t)

)
dµ(t) = tpk%(tk)µ(Ak) = 1, (3.13)

which implies that ‖fk‖Φ = 1 for all k ∈ N. On the other hand, applying (3.12)
and (3.13), we obtain

[fk]
p
Φ,p = IΦ

( fk
‖fk‖Lr

)
‖fk‖pLr

=

∫
Ak

(
fk(t)

)p
%
( fk(t)

‖fk‖Lr

)
dµ(t)

=

∫
Ak

tpk%
( tk
tk(µ(Ak))1/r

)
dµ(t)

= tpk%
( 1

(µ(Ak))1/r

)
µ(Ak)

= tpk%
(
t
p
r
k

(
%(tk)

) 1
r
)
µ(Ak)

> tpk%(t
p
r
k )µ(Ak),

whence by tk ≥ 1 for any k ∈ N, we have

[fk]
p
Φ,p > tpkbk%(tk)µ(Ak) = bk

for all k ∈ N. Now the assumption that bk ↗ ∞ finishes the proof. �
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Example 3.7. Let (Ω,Σ, µ) be a nonatomic finite measure space. Consider the

function Φ(t) = |t|p
loga(a+1)

loga(a + |t|), where a ∈ [e − 1,∞) and p ∈ (1,∞). We

will show what the quasinorm [ · ]Φ,p defined in Theorem 3.1 and equivalent to
the Luxemburg norm ‖ · ‖Φ looks like in this case. Note that Φ(1) = 1, Φ ∈
∆2(R+) (because lim supt→∞

Φ(2t)
Φ(t)

< ∞, and lim supt→0
Φ(2t)
Φ(t)

< ∞) and tΦ′(t)
Φ(t)

=

p+ t
(a+t) log(a+t)

for any t > 0, where log(a+t) is the natural logarithm of a+t. We

will find the upper estimate of qlS(Φ) and calculate plS(Φ). Note that the function
g(t) := p + t

(a+t) log(a+t)
can have its local extremum only at t ∈ R satisfying

log(a + t) = t
a
. Let t0 > 0 be a positive solution of this equation. Then for

a ≥ e− 1, we have

g(t0) = p+
t0

(a+ t0) log(a+ t0)

= p+
t0

(a+ t0)
t0
a

= p+
a

a+ t0
> p.

We know from L’Hôpital’s rule that limt→∞
t

(a+t) log(a+t)
= 0. Therefore

qlS(Φ) := sup
t≥1

tΦ′(t)

Φ(t)

= sup
t≥1

(
p+

t

(a+ t) log(a+ t)

)
= max

{
p+

1

(1 + a) log(1 + a)
, p, p+

a

a+ t0

}
≤ max

{
p+

1

(1 + a) log(1 + a)
, p+

a

a+ 1

}
≤ max

{
p+

1

e
, p+

a

a+ 1

}
= p+

a

a+ 1
< p+ 1

because a
a+1

≥ e−1
e

> 1
e
. Moreover,

inf
t≥1

tΦ′(t)

Φ(t)
= min

{
p+

1

(1 + a) log(1 + a)
, p, p+

a

a+ t0

}
= p,

so plS(Φ) = p. Consequently, qlS(Φ)− p < p + 1− p = 1 and we can apply Theo-
rem 3.1, by which we obtain that the norm ‖f‖Φ is equivalent to the quasinorm

[f ]Φ,s = ‖f‖Lr

(
IΦ

( f

‖f‖Lr

))1/s

= ‖f‖Lr

(∫
Ω

1

log(a+ 1)

(∣∣∣ f(x)‖f‖Lr

∣∣∣)s

log
(
a+

|f(x)|
‖f‖Lr

)
dµ(x)

)1/s

=
(∫

Ω

|f(x)|s

log(a+ 1)
log

(
a+

|f(x)|
‖f‖Lr

))1/s

with r ∈ [1, plS(Φ)] and s ∈ [1, plS(Φ)] satisfying qlS(Φ)− s < 1.
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Theorem 3.8. Let (Ω,Σ, µ) be an infinite σ-finite nonatomic measure space,
and let Φ be an Orlicz function satisfying the ∆2(R+)-condition and such that

Φ(1) = 1. Let p ∈ [1, paS(Φ)] satisfy qaS(Φ)−p ≤ 1. Define %(t) := Φ(t)
tp

. Then there
exist positive constants K and L such that for all f ∈ LΦ we have

K[f ]Φ,p ≤ ‖f‖Φ ≤ L[f ]Φ,p, (3.14)

where [f ]Φ,p is a quasinorm equal to zero if f = 0 and for f ∈ LΦ\{0} defined by

[f ]Φ,p :=

{
‖f‖Lr

ω
IΦ(

f
‖f‖Lr

ω

) if p = 1 and % ∈ ∇3(∞),

‖f‖Lr
ω
(IΦ(

f
‖f‖Lr

ω

))
1
p if p > 1 and % ∈ ∇2(∞),

where ‖ · ‖Lr
ω
, r ∈ [1, paS(Φ)], is the norm on the weighted space Lr

ω(Ω,Σ, µ) con-
sidered in Lemma 2.29.

Proof. The proof of Theorem 3.8 is similar to the proof of Theorem 3.1. The
upper estimate for the Luxemburg norm is obtained by using Lemmas 2.6 and
2.29, as well as the assumption Φ ∈ ∆2(R+). Indeed, assuming p ∈ [1, paS(Φ)], for
all f ∈ LΦ\{0} and a constant K ≥ 1 from Lemma 2.29, which is also true for
r ∈ [1, paS(Φ)], because paS(Φ) ≤ plS(Φ), we get

‖f‖Φ = ‖f‖Φ
(
IΦ

( f

‖f‖Φ

)) 1
p

≤ K−1‖f‖Lr

(
IΦ

( Kf

‖f‖Lr

)) 1
p

≤ N‖f‖Lr

(
IΦ

( f

‖f‖Lr

)) 1
p
= N [f ]Φ,p,

where N > 0 is an absolute constant independent of f , and this is the upper
estimate of ‖f‖Φ.

On the other hand, by applying Corollary 2.27 and taking into account
Remark 2.28, the lower estimate of the Luxemburg norm can be obtained in
a similar (and even easier) way as in the proof of Theorem 3.1. �

Remark 3.9. Note that if paS(Φ) = 1 and qaS(Φ) ≤ paS(Φ) + 1 = 2 or if paS(Φ) > 1
and qaS(Φ) = paS(Φ) + 1, the power p generating our quasinorm [ · ]Φ,p is unique
and equals paS(Φ).

Theorem 3.10. If µ is nonatomic and infinite, paS(Φ) = 1 = Φ(1), and % /∈
∇3(∞), where Φ and % are the functions defined in Theorem 3.8, then for ω
defined as in Lemma 2.29, there is no absolute constant C > 0 independent of f
such that the estimate

‖f‖L1
ω
IΦ

( f

‖f‖L1
ω

)
=: [f ]Φ,1 ≤ C‖f‖Φ (3.15)

holds for all f ∈ LΦ\{0}, which means that when paS(Φ) = 1, the condition
% ∈ ∇3(∞) is necessary for the upper estimate of the quasinorm in Theorem 3.8.
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Proof. Take paS(Φ) = 1. Assume that % /∈ ∇3(∞). Then for any sequence {bk} of
positive numbers with bk ↗ ∞, one can find a nondecreasing sequence {tk} of
positive numbers such that %(tk) ≥ 1 and

%
(
%(tk)tk

)
> bk%(tk). (3.16)

Define fk(t) = tkχAk
(t) for Ak ∈ Σ such that

IΦ(fk) = tk%(tk)µ(Ak) = 1,

which gives that ‖fk‖Φ = 1 for all k ∈ N. Since

ω(t) =
∞∑
n=1

[
2n
(
1 + µ(Tn)

)]−1
χTn(t) ≤ 1

for µ-a.e. t ∈ Ω, where {Tn}∞n=1 is a sequence of Σ-measurable sets of positive and
finite measure such that

⋃∞
n=1 Tn = Ω, then

IωΦ(fk) =

∫
Ak

fk(t)%
(
fk(t)

)
ω(t) dµ(t)

= tk%(tk)‖χAk
‖L1

ω
≤ tk%(tk)µ(Ak) = IΦ(fk) = 1.

Hence

‖χAk
‖L1

ω
≤ 1

tk%(tk)
(3.17)

for all k ∈ N. Applying (3.16) and (3.17), as well as the fact that % is nondecreas-
ing, we obtain

[fk]Φ,1 = ‖fk‖L1
ω
IΦ

( fk
‖fk‖L1

ω

)
=

∫
Ak

fk(t)%
( fk(t)

‖fk‖L1
ω

)
dµ(t) =

∫
Ak

tk%
( tk
tk‖χAk

‖L1
ω

)
dµ(t)

= tk%
( 1

‖χAk
‖L1

ω

)
µ(Ak) ≥ tk%

(
tk%(tk)

)
µ(Ak)

> tkbk%(tk)µ(Ak) = bk ↗ ∞,

which ends the proof. �

Theorem 3.11. If Φ and % are the functions defined in Theorem 3.8, % /∈ ∇2(∞),
and µ is a nonatomic and infinite measure, then for any r and p with 1 ≤ r <
p ≤ paS(Φ) and ω defined as in Lemma 2.29, there is no absolute constant C > 0
independent of f such that

‖f‖Lr
ω

(
IΦ

( f

‖f‖Lr
ω

)) 1
p
=: [f ]Φ,p ≤ C‖f‖Φ (3.18)

holds for all f ∈ LΦ\{0}, which means that when 1 ≤ r < p ≤ paS(Φ), the
condition % ∈ ∇2(∞) is necessary for the upper estimate of the quasinorm in
Theorem 3.8.



658 P. FORALEWSKI ET AL.

Proof. Let the assumptions about Φ, ρ, r, and p be satisfied, and assume that
% /∈ ∇2(∞). Then % /∈ ∇ p

r (∞), and so for any sequence {bk} of positive numbers
with bk ↗ ∞ one can find a nondecreasing sequence {tk} of positive numbers
such that

%(tk) ≥ 1 and %(t
p
r
k ) > bk%(tk). (3.19)

Define fk(t) = tkχAk
(t) for Ak ∈ Σ such that

IΦ(fk) = tpk%(tk)µ(Ak) = 1.

Hence ‖fk‖Φ = 1 for all k ∈ N. Since ω(t) ≤ 1 µ-a.e. t ∈ Ω, where ω is as in
Lemma 2.29, we obtain

IωΦ(fk) =

∫
Ak

(
fk(t)

)p
%
(
fk(t)

)
ω(t) dµ(t)

= tpk%(tk)‖ωχAk
‖L1 ≤ tpk%(tk)µ(Ak) = IΦ(fk) = 1;

that is,

‖χAk
‖rLr

ω
= ‖ωχAk

‖L1 ≤ 1

tpk%(tk)
. (3.20)

Applying (3.20), the fact that % is nondecreasing on R+ when p ≤ paS(Φ), and
(3.19), we obtain

[fk]
p
Φ,p = ‖fk‖pLr

ω
IΦ

( fk
‖fk‖Lr

ω

)
=

∫
Ak

(
fk(t)

)p
%
( fk(t)

‖fk‖Lr
ω

)
dµ(t)

=

∫
Ak

tpk%
( tk
tk‖χAk

‖Lr
ω

)
dµ(t)

= tpk%
( 1

‖χAk
‖Lr

ω

)
µ(Ak)

≥ tpk%
(
t
p
r
k

(
%(tk)

) 1
r
)
µ(Ak)

≥ tpk%(t
p
r
k )µ(Ak) > tpkbk%(tk)µ(Ak) = bk ↗ ∞,

which ends the proof. �
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