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L'-CONVERGENCE OF GREEDY ALGORITHM BY
GENERALIZED WALSH SYSTEM
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Communicated by P. E. Jorgensen

ABSTRACT. In this paper we consider the generalized Walsh system and a
problem L'- convergence of greedy algorithm of functions after changing the
values on small set.

1. INTRODUCTION AND PRELIMINARIES

27

Let a denote a fixed integer, a > 2 and put w, = e« . Now we will give the
definitions of generalized Rademacher and Walsh systems [2].

Definition 1.1. The Rademacher system of order a is defined by

k k+1
goo(ac):ws if € [—, +
a’  a

), k=0,1,---,a—1, z€[0,1)

and for n > 0
n(T + 1) = n(x) = po(a").
Definition 1.2. The generalized Walsh system of order a is defined by

1/10(1') = 17
and if n = aya™ + - - - 4+ aga™ where ny > --- > ng, then
Yn(z) = (@) - P (@).
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Let’s denote the generalized Walsh system of order a by ¥,.

Note that U, is the classical Walsh system.

The basic properties of the generalized Walsh system of order a are obtained by
Chrestenson, Pely, Fine, Young, Vatari, Vilenkin and others (see [2, 11, 15, 17]).

In this paper we consider L!- convergence of greedy algorithm with respect to
U, system. Now we present the definition of greedy algorithm.

Let X be a Banach space with a norm || - || = || - ||x and a basis ® = {¢x}72 4,
loellx =1, k=1,2,...

For a function f € X we consider the expansion

F=>a(f)o
k=1

Definition 1.3. Let an element f € X be given. Then the m-th greedy approx-
imant of the function f with regard to the basis ® is given by

Gm(f,0) = ar(f)ér,

keA
where A C {1,2,---} is a set of cardinality m such that

lan(F)l = lax(H)l, ne A, k¢A

In particular we’ll say that the greedy approximant of f € LP[0,1], p > 0
converges with regard to the ¥, , if the sequence G,,(x, f) converges to f(t) in
L? norm. This new and very important direction invaded many mathematician’s
attention (see [3]-[0], [8, 9, 16]).

Korner [9] constructed an L? function (then a continuous function) whose
greedy algorithm with respect to trigonometric systems diverges almost every-
where.

Temlyakov in [10] constructed a function f that belongs to all L, 1 < p < 2
(respectively p > 2), whose greedy algorithm concerning trigonometric systems
divergence in measure (respectively in LP, p > 2), e.i. the trigonometric system
are not a quasi-greedy basis for LP if 1 < p < oco.

In [6] Gribonval and Nielsen proved that for any 1 < p < oo there exits a
function f(z) € LP[0,1) whose greedy algorithm with respect to Ws- classical
Walsh system diverges in LP[0, 1]. Moreover, similar result for ¥, system follows
from Corollary 2.3. (see [(]). Note also that in [1] and [5] this result was proved
for L'[0,1].

The following question arises naturally: is it possible to change the values of
any function f of class L' on small set, so that a greedy algorithm of new modified
function concerning ¥, system converges in the L' norm?

The classical C-property of Luzin is well-known, according to which every
measurable function can be converted into a continuous one be changing it on a
set of arbitrarily small measure. This famous result of Luzin [10] dates back to
1912.

Note that Luzin’s idea of modification of a function improving its properties
was substantially developed later on.

In 1939, Men’shov [11] proved the following fundamental theorem.
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Theorem (Men’shov’s C-strong property). Let f(z) be an a.e. finite
measurable function on [0,2x]. Then for each € > 0 one can define a continuous
function g(x) coinciding with f(x) on a subset E of measure |E| > 2w —e such that
its Fourier series with respect to the trigonometric system converges uniformly on
[0, 27].

Further interesting results in this direction were obtained by many famous
mathematicians (see for example [1, 12, 13]).

Particulary in 1991 Grigorian obtain the following result [7]:

Theorem (L!-strong property). For each ¢ > 0 there exits a measurable
set E C [0,27] of measure |E| > 27 —¢ such that for any function f(x) € L'[0, 27]
one can find a function g(x) € L'0,27] coinciding with f(x) on E so that its
Fourier series with respect to the trigonometric system converges to g(x) in the
metric of L'[0,27].

In this paper we prove the following:

Theorem 1.4. For any € € (0,1) and for any function f € L0,1) there is a
function g € L'0,1), with mes{z € [0,1) ; g # f} < &, such that the nonzero
fourier coefficients by absolute values monotonically decreasing.

Theorem 1.5. For any 0 < ¢ < 1 and each function f € L'0,1) one can
find a function g € L*[0,1), mes{z € [0,1) ; g # f} < &, such that its fourier
series by U, system L' convergence to g(x) and the nonzero fourier coefficients by
absolute values monotonically decreasing, i.e. the greedy algorithm by ¥, system
L'-convergence.

The Theorems 1.1 and 1.2 follows from next more general Theorem 1.3, which
in itself is interesting:

Theorem 1.6. For any 0 < € < 1 there exists a measurable set E C [0,1) with
|E| > 1 —¢ and a series by ¥, system of the form

o0

> (@), el Lo

i=1
such that for any function f € L'[0,1) one can find a function g € L*[0,1),
g(@) = f(x); if v€E

and the series of the form
Z5ncn¢n(x), where 6, =0 or 1,
n=1

which convergence to g(x) in L'0,1) metric and

zm: OnCnthn (T
n=1

Remark 1.7. Theorems 1.6 for classical Walsh system ¥, was proved by Grigorian

5]

<12-|fll, Vm>1.
1




164 S.A. EPISKOPOSIAN

Remark 1.8. From Theorem 1.5 follows that generalized Walsh system W, has
L'-strong property.

2. BASIC LEMMAS

First we present some properties of W, system (see Definition 1.2).
Property 1. Each nth Rademacher function has period = and

an

on(z) = const € Qy = {1,wy,w?, -+ ., wi '}, (2.1)

itz e AY) = [k ) k=0,--- " —1,n=1,2,--- ..
It is also easily verified, that

(g&n(:v))k = (on(x))™, Vn,k € N, where m =k (mod a)

Property 2. It is clear, that for any integer n the Walsh function v, (x)
consists of a finite product of Rademacher functions and accepts values from €2,,.

27

Property 3. Let w, = e¢"« . Then for any natural number m we have

a, if m=0(mod a),

D whm = (2.2)
0, if m#0(mod a) .
Property 4. The generalized Walsh system U,, a > 2 is a complete orthonormal
system in L?[0,1) and basis in LP[0,1), p > 1 [14]).
Property 5. From definition 2 we have
VYi(x) - Y;(a’c) = Yje4i(x) , where 0 < i, j <a’,
and particulary
Yarys (@) = pi(@) - ¢y(x), if 0<j<a"—1 (2.3)
Now for any m = 1,2,--- and 1 < k < a™ we put AR = [ﬂ im) and

consider the following function

“ 1, ifzel0,1)\ AR
Ii@ =1 Zam ipe e A®.

and periodically extend these functions on R! with period 1.
By xe(x) we denote the characteristic function of the set E, i.e.

1. ifzeFl
)l : 9.4
X (x) {o, ifr¢ E . (2:4)

Then, clearly
I () = do(x) — a™ - Xy (2) (2.5)
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and for the natural numbers m > 1 and 1 <3 < g™

1
_ 1 o
wbiap) = [ Xapl@) Tdr = A 0Si<an (26)
0

! — 0, ifi=0andi>d"
biI’“):/I(’“) i(@)de =47 P
(L") 0 m (@)9i(z)de —A,ifl1<i<ad
where A = const € Q, and |A| = 1.

Hence
ak—1

Xa® (#) = D bilxam)il(e) |

ak—1

19@) = 3 a(IP)(a) | (2.7)

=1

Lemma 2.1. For any numbers v # 0, Ng > 1, € € (0,1) and interval by order a

A=A = (AL By i=1,--- a™ there exists a measurable set E C A and a

am7am

polynomial P(z) by V¥, system of the form

P(z) = Z cxr ()

k=No
which satisfy the conditions:
1) coefficients {cp}i_y, equal 0 or —K-v-|Al
where IKC = const € Q,, K| =1,
2) [El > (1-¢)-[A],
: 5.

3) Py =47 if vek;

0, of x¢&A.

1 1

3 311181 < [ IP@)de <211 L

1 m
A
R NOIQ,%’éN/O |k_ZN Ckwk(xﬂ <a-|y|- \/;

Proof. We take a natural numbers vy s so that
1
vy = [loga g] +1; s=[log, No| +m. (2.8)

Define the coefficients ¢, a;, b; and the function P(x) in the following way:

P(a) =7 - x a0 (@) - I (@), @ €01, (2.9)

Cn = Cp(P) = /01 P(2)¢,(x)dz , ¥n >0,
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a; = ai(X ), 0<i<a™, bj= b(IN), 1<j<a”
Taking into account (2.1)-(2.2), (2.3)-(2.4), (2 6) (2.7) for P(x) we obtain

a™—1 a”!
Z azwz Z waJ a® .%'
a’0 —1 a™—1 N
= Z b; - Z aitj.asi(T) = Z crbr(z)
j=1 i=0 k=No
where
K. if K € [Ng, N
cr = cp(P) = . o or 0, ik € [No, ] (2.10)
0, if & ¢ [Ny, N],
KeQ, |K|=1, N=a"" +a™—a"—1. (2.11)
Set

E={zxeA:Px)=~}.
By (2.4), (2.5) and (2.9) we have
[El =a™™(1 =a™) > (1= ¢)|A],

v,ifrekl,
Plz)=<~v(1—a"), ifze A\ E,
0,ifx¢gA.

Hence and from (2.8) we get

Arpwwm=2wmawu—aﬂ%

and taking into account that a > 2 we have

1 1
3ehl-1al< [ IP@ids <2- -1l
0

m

From relations (2.8), (2.10) and (2.11) we obtain
1

< /01 \P(x)|2da:}

SIS

' N 2
< || =hl- Al Vvt Fam = y| - /]A] - Van + 1
Lk=No
a
< 7|~«/]A|~\/;

18]
< a-hlyf—
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O

Lemma 2.2. For any given numbers No > 1, (Ng € N), € € (0,1) and each
function f(z) € LY0,1), ||f|l1 > O there exists a measurable set E C [0,1),
function g(x) € L'[0,1) and a polynomial by U, system of the form

N
- Z Ck:”vbnk(x)v nk’T

k=No

satisfying the following conditions:

1) |E| >1—c¢,
2) f(z) =g(z)
3) : / f()|dz < / 9(x)|dz < 3 / 1 (@)d.

5) / P(z) — g(x)|de < .

5) g > |Ck| > ‘Ck-i-l’ > 0.
1| m 1
6) Norggz}éN/o kz]; CkUn, ()| do < 3/0 |f(z)|dz.
=iVo
Proof. Consider the step function
Yo
= Z’yu : XAV('Z')7 (212)
v=1
where A, are a-dyadic, not crosse intervals of the form AR = [%, aim), k =
1,2,---,a™ so that
2 g’ ! ’
v Al/ T4 o d . 2.1
0< b < oz ([ 1flas ) (2.13)
€
0 <mllAd < <IffAu] <o < mellAu| < 5.
/ |f(z x)|dr < mln{— / |f(x)|dx}. (2.14)

Applying Lemma 2.1 successively, we can find the sets E, C [0,1) and a polyno-

mial
Ny —1

P,(z) = Z kU, (), 1 <v <y,

k:NV—l
which, for all 1 < v < vy, satisfy the following conditions:

ekl = 1wl 1A, k€ [N,o1, N,) (2.15)
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B> (1=¢)-[A], (2.16)

Yy ot re E,

P,(z) =
() {0 A
1 1
Sl 1A < /0 | P, () |d < 2y [ - [Ay. (2.17)
\A |

N, mex / | Z Crtn ()] < a || (2.18)

Define a set E, a function ¢g(z) and a polynomial P(z) in the following away:

=> P(x) = by (r), N=N, L (2.19)
g(x) = P(x) + f(z) — p(x). (2.20)
E = 6 E,. (2.21)

From (2.12),(2.14), (2.16)-(2.17), (2.19)-(2.21) we have

|E| >1—¢,

f(z)=g(z), forxekFE,

/ |dm</|g |dx<3/ F(2)|da.

By (2), (2.14), (2.15) and (2.20) we get

/|P g |dm_/|f 2)|de < e.

g > |Ck‘ Zle+1| >O, for k:No,N0+1,"' ,N—l

That is, assertions 1)-5) of Lemma 2.2 actually hold. We now verify assertion
6). For any number m, Ny < m < N we can find j, 1 < j < 1 such that
N;_1 <m < Nj. then by (2.24) and (2.30) we have

m

Z ckwnk Z-Pn + Z quvz)nk ([E)

k=Nop k=N;_1
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hence and from relations (2.13), (2.14), (2.17), (2.18) we obtain

/

m

Z Crn, ()| dx

k=Noy

N
]
—
~
B
+
\
M
=
=
§
&

A
[\
h

<
.
S
+
Q
2

3. MAIN RESULTS

Proof. Let
{/n(2)}00 (3.1)

be a sequence of all step functions, values and constancy interval endpoints of
which are rational numbers. Applying Lemma 2.2 consecutively, we can find a
sequences of functions {g,,(z)} of sets { £, } and a sequence of polynomials

Np—1

Z ka¢mk($>7 NO - ]-7 |ka| >0

k=Np_1
which satisfy the conditions:

|E,| >1—¢-47802 (3.2)
fu(x) =7,(x), for all =€ E,, (3.3)

3| 1l < / )l <3 [ 11, (o)lde (3.9

/|P (z)|dx < 478+2)

1 M 1
o omas /0 k; et (2)] d < 3 /0 o (@) |de (3.5)
=Np_1
1
= > lem] > lempa | > lemy, [ > 0. (3.6)

Set

[e%¢) oo Np—1

Zcmkl/}mk Z :Z Z cmkwmk(x>

k=1 n=1k=N,_1
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and
E=()E. (3.7)
n=1

It is easy to see that (see (3.2)), |[E| > 1 —e¢.

Now we consider a series
o

Z cii(x)

i=1
where ¢; = ¢, @ € [my, mgs1). From (3.6) it follows that |¢;| | 0.
Let given any function f(z) € L'0,1) then we can choose a subsequence

{fs, (£)}>2; from (3.1) such that
Zfsn(l’) -

1
/ | o, (2)|dx < €- 478+2) > 9,
0

lim dr =0, (3.8)
N—oo Jg

where
a_mmﬁ;/Lﬂ@u@, (3.9)
2 JEe
We set
Ny —1
gl(x) = gsl(m)7 Pl(x) = Ps1 (ZE) = Z kawmk(‘r) (310)
k:Nsl—l
It is easy to see that
€
/ 7(@) — fun ()] < &
Taking into account (3.4), (3.5) and (3.10) we have

1 M 1 1
o | 3 cntm) <3 | 1@z <6 [ n@)ar
=4Vsy1—1

Then assume that numbers vy, vo, -+, 1,01 (11 = $1), functions g¢,(z), f,, (),
n=12---,q— 1 and polynomials

M,
PR(ZL‘) = Z ka¢mk(x)7 Mn - Nl/n—la Mn = Nun - 1;
k=M,

are chosen in such a way that the following condition is satisfied:

gn(x) = fs,(x), z€E,, 1<n<q-1, (3.11)

1
[ e <4 1<n<q-
0

n

> (Pu(@) — gi(2))

k=2

de <4780t 1 <pn<qg—1, (3.12)

/
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1 M
max__ / Z Cony Uy (T) | dr < 47, 1<n<q—1. (3.13)
Ma<M<Ma Jo | S57
We choose a function f, (z) from the sequence (3.1) such that
1 n
| @) = [£l0) = S0 — gula) | do < a0 g
0 k=2
This with (3.8) imply
1 n
[ o) = Yo Pe) — o) do < 475171
0 k=2
and taking into account relation (3.14) we get
1
/ | fo, (2)|dx < 47 %%
0
We set
M,
Py(z) = Py, () = ) cmptbm (@), (3.15)
k=M,
where
M, =N, 1, M,=N, —1,
9(x) = fs, () +[9,,(x) = fu, ()] (3.16)
By (3.3)-(3.5), (3.12)-(3.16) we have
94(7) = f5,(2), x € E,, (3.17)
1
/ |9q()|d (3.18)
0
1 n
< / funl@) [fsq ) - S (A >] di
0 k=2
Z x))| dx
k=2

/|gy rm/
< 473,
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1 n
< / qu(x) [fsq($) - Z(Pk(x) - gk(z))] dx
0 k=2
1
) 1Py, (z) = G,,())|dx
< 4—8(71—}-1)6
1| M 1
ngll\?;{Mq/o k;;q Conp Uy, () | dx < 3/0 | fo, (2)|dz < 473", (3.19)

Thus, by induction we can choose the sequences of sets { £, }, functions {g,(z)}
and polynomials {P,(x)} such that conditions (3.17) - (3.19) are satisfied for all
q > 1. Define a function g(x) and a series in the following away:

g(@) = gula), (3.20)

M,

Zfsncnwn(@ = Z Z Cong Yy, (T) | (3.21)
n=1 n=1 | k=M,

where
.

1, if i =my, where k€ U[Mq,Mq]

g=1

(0, in the other case .

Hence and from relations (3.4), (3.7), (3.11), (3.20) ,

g(z) = f(z), w€E, g(z)€L'0,1),

3 | @lde < [ ot <4 [ 1 (322)

Taking into account (3.15), (3.18)-(3.21) we obtain that the series (3.21) con-
vergence to g(z) in L'[0,1) metric and consequently is its Fourier series by ¥,
system, a > 2.
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From Definition 1.3, and from relations (3.9), (3.13), (3.22) for any natural

number m there is N,, so that

1Gn(@ll = lISm(@)lli = / S bucutin(2) | de

1
= 4/ |f(x)|dx
0
- 1 M
< e )
1 o
0 ~
! 1
- 3/ l9(@)lde < 12/ |f(2)|dz = 12| ]
0 0

OJ
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