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GENERALIZED WALSH SYSTEM

SERGO A. EPISKOPOSIAN

Communicated by P. E. Jorgensen

Abstract. In this paper we consider the generalized Walsh system and a
problem L1- convergence of greedy algorithm of functions after changing the
values on small set.

1. Introduction and preliminaries

Let a denote a fixed integer, a ≥ 2 and put ωa = e
2πi
a . Now we will give the

definitions of generalized Rademacher and Walsh systems [2].

Definition 1.1. The Rademacher system of order a is defined by

ϕ0(x) = ωk
a if x ∈

[
k

a
,
k + 1

a

)
, k = 0, 1, · · · , a− 1, x ∈ [0, 1)

and for n ≥ 0

ϕn(x+ 1) = ϕn(x) = ϕ0(a
nx).

Definition 1.2. The generalized Walsh system of order a is defined by

ψ0(x) = 1,

and if n = α1a
n1 + · · ·+ αsa

ns where n1 > · · · > ns, then

ψn(x) = ϕα1
n1

(x) · · · · · ϕαs
ns

(x).
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Let’s denote the generalized Walsh system of order a by Ψa.
Note that Ψ2 is the classical Walsh system.
The basic properties of the generalized Walsh system of order a are obtained by

Chrestenson, Pely, Fine, Young, Vatari, Vilenkin and others (see [2, 14, 15, 17]).
In this paper we consider L1- convergence of greedy algorithm with respect to

Ψa system. Now we present the definition of greedy algorithm.
Let X be a Banach space with a norm || · || = || · ||X and a basis Φ = {φk}∞k=1,

||φk||X = 1, k = 1, 2, .. .
For a function f ∈ X we consider the expansion

f =
∞∑

k=1

ak(f)φk .

Definition 1.3. Let an element f ∈ X be given. Then the m-th greedy approx-
imant of the function f with regard to the basis Φ is given by

Gm(f, φ) =
∑
k∈Λ

ak(f)φk,

where Λ ⊂ {1, 2, · · · } is a set of cardinality m such that

|an(f)| ≥ |ak(f)|, n ∈ Λ, k /∈ Λ.

In particular we’ll say that the greedy approximant of f ∈ Lp[0, 1], p ≥ 0
converges with regard to the Ψa , if the sequence Gm(x, f) converges to f(t) in
Lp norm. This new and very important direction invaded many mathematician’s
attention (see [3]-[6], [8, 9, 16]).

Körner [9] constructed an L2 function (then a continuous function) whose
greedy algorithm with respect to trigonometric systems diverges almost every-
where.

Temlyakov in [16] constructed a function f that belongs to all Lp, 1 ≤ p < 2
(respectively p > 2), whose greedy algorithm concerning trigonometric systems
divergence in measure (respectively in Lp, p > 2), e.i. the trigonometric system
are not a quasi-greedy basis for Lp if 1 < p <∞.

In [6] Gribonval and Nielsen proved that for any 1 < p < ∞ there exits a
function f(x) ∈ Lp[0, 1) whose greedy algorithm with respect to Ψ2- classical
Walsh system diverges in Lp[0, 1]. Moreover, similar result for Ψa system follows
from Corollary 2.3. (see [6]). Note also that in [4] and [5] this result was proved
for L1[0, 1].

The following question arises naturally: is it possible to change the values of
any function f of class L1 on small set, so that a greedy algorithm of new modified
function concerning Ψa system converges in the L1 norm?

The classical C-property of Luzin is well-known, according to which every
measurable function can be converted into a continuous one be changing it on a
set of arbitrarily small measure. This famous result of Luzin [10] dates back to
1912.

Note that Luzin’s idea of modification of a function improving its properties
was substantially developed later on.

In 1939, Men’shov [11] proved the following fundamental theorem.
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Theorem (Men’shov’s C-strong property). Let f(x) be an a.e. finite
measurable function on [0, 2π]. Then for each ε > 0 one can define a continuous
function g(x) coinciding with f(x) on a subset E of measure |E| > 2π−ε such that
its Fourier series with respect to the trigonometric system converges uniformly on
[0, 2π].

Further interesting results in this direction were obtained by many famous
mathematicians (see for example [1, 12, 13]).

Particulary in 1991 Grigorian obtain the following result [7]:
Theorem (L1-strong property). For each ε > 0 there exits a measurable

set E ⊂ [0, 2π] of measure |E| > 2π−ε such that for any function f(x) ∈ L1[0, 2π]
one can find a function g(x) ∈ L1[0, 2π] coinciding with f(x) on E so that its
Fourier series with respect to the trigonometric system converges to g(x) in the
metric of L1[0, 2π].

In this paper we prove the following:

Theorem 1.4. For any ε ∈ (0, 1) and for any function f ∈ L1[0, 1) there is a
function g ∈ L1[0, 1), with mes{x ∈ [0, 1) ; g 6= f} < ε, such that the nonzero
fourier coefficients by absolute values monotonically decreasing.

Theorem 1.5. For any 0 < ε < 1 and each function f ∈ L1[0, 1) one can
find a function g ∈ L1[0, 1), mes{x ∈ [0, 1) ; g 6= f} < ε, such that its fourier
series by Ψa system L1 convergence to g(x) and the nonzero fourier coefficients by
absolute values monotonically decreasing, i.e. the greedy algorithm by Ψa system
L1-convergence.

The Theorems 1.1 and 1.2 follows from next more general Theorem 1.3, which
in itself is interesting:

Theorem 1.6. For any 0 < ε < 1 there exists a measurable set E ⊂ [0, 1) with
|E| > 1− ε and a series by Ψa system of the form

∞∑
i=1

ciψi(x), |ci| ↓ 0

such that for any function f ∈ L1[0, 1) one can find a function g ∈ L1[0, 1),

g(x) = f(x); if x ∈ E

and the series of the form
∞∑

n=1

δncnψn(x), where δn = 0 or 1,

which convergence to g(x) in L1[0, 1) metric and∣∣∣∣∣
∣∣∣∣∣

m∑
n=1

δncnψn(x

∣∣∣∣∣
∣∣∣∣∣
1

≤ 12 · ||f ||1, ∀m ≥ 1.

Remark 1.7. Theorems 1.6 for classical Walsh system Ψ2 was proved by Grigorian
[8].
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Remark 1.8. From Theorem 1.5 follows that generalized Walsh system Ψa has
L1-strong property.

2. Basic lemmas

First we present some properties of Ψa system (see Definition 1.2).
Property 1. Each nth Rademacher function has period 1

an and

ϕn(x) = const ∈ Ωa = {1, ωa, ω
2
a, · · · ., ωa−1

a }, (2.1)

if x ∈ ∆
(k)
n+1 =

[
k

an+1 ,
k+1
an+1

)
, k = 0, · · · , an+1 − 1, n = 1, 2, · · · ..

It is also easily verified, that

(ϕn(x))k = (ϕn(x))m , ∀n, k ∈ N ,where m = k (mod a)

Property 2. It is clear, that for any integer n the Walsh function ψn(x)
consists of a finite product of Rademacher functions and accepts values from Ωa.

Property 3. Let ωa = e
2πi
a . Then for any natural number m we have

a−1∑
k=0

ωk·m
a =


a , if m ≡ 0(mod a),

0, if m 6= 0(mod a) .

(2.2)

Property 4. The generalized Walsh system Ψa, a ≥ 2 is a complete orthonormal
system in L2[0, 1) and basis in Lp[0, 1), p > 1 [14]).
Property 5. From definition 2 we have

ψi(x) · ψj(a
sx) = ψj·as+i(x) , where 0 ≤ i , j < as,

and particulary

ψak+j(x) = ϕk(x) · ψj(x), if 0 ≤ j ≤ ak − 1. (2.3)

Now for any m = 1, 2, · · · and 1 ≤ k ≤ am we put ∆
(k)
m =

[
k−1
am , k

am

)
and

consider the following function

I(k)
m (x) =

{
1 , if x ∈ [0, 1) \∆

(k)
m ,

1− am , if x ∈ ∆
(k)
m ,

and periodically extend these functions on R1 with period 1.
By χE(x) we denote the characteristic function of the set E, i.e.

χE(x) =

{
1 , if x ∈ E ,

0 , if x /∈ E .
(2.4)

Then, clearly

I(k)
m (x) = ψ0(x)− am · χ

∆
(k)
m

(x) , (2.5)
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and for the natural numbers m ≥ 1 and 1 ≤ i ≤ am

ai(χ∆
(k)
m

) =

∫ 1

0

χ
∆

(k)
m

(x) · ψi(x)dx = A · 1

am
, 0 ≤ i < am. (2.6)

bi(I
(k)
m ) =

∫ 1

0

I(k)
m (x)ψi(x)dx =

{
0 , if i = 0 and i ≥ ak ,

−A , if 1 ≤ i < ak

where A = const ∈ Ωa and |A| = 1.
Hence

χ
∆

(k)
m

(x) =
ak−1∑
i=0

bi(χ∆
(k)
m

)ψi(x) ,

I(k)
m (x) =

ak−1∑
i=1

ai(I
(k)
m )ψi(x) . (2.7)

Lemma 2.1. For any numbers γ 6= 0, N0 > 1, ε ∈ (0, 1) and interval by order a

∆ = ∆
(k)
m = [k−1

am , k
am ), i = 1, · · · , am there exists a measurable set E ⊂ ∆ and a

polynomial P (x) by Ψa system of the form

P (x) =
N∑

k=N0

ckψk(x)

which satisfy the conditions:

1) coefficients {ck}N
k=N0

equal 0 or −K · γ · |∆|,
where K = const ∈ Ωa, |K| = 1,

2) |E| > (1− ε) · |∆|,

3) P (x) =

{
γ, if x ∈ E;

0, if x /∈ ∆.

4)
1

2
· |γ| · |∆| <

∫ 1

0

|P (x)|dx < 2 · |γ| · |∆|.

5) max
N0≤m≤N

∫ 1

0

∣∣ m∑
k=N0

ckψk(x)
∣∣ < a · |γ| ·

√
|∆|
ε
.

Proof. We take a natural numbers ν0 s so that

ν0 =

[
loga

1

ε

]
+ 1; s = [logaN0] +m. (2.8)

Define the coefficients cn, ai, bj and the function P (x) in the following way:

P (x) = γ · χ
∆

(k)
m

(x) · I(1)
ν0

(asx), x ∈ [0, 1] , (2.9)

cn = cn(P ) =

∫ 1

0

P (x)ψn(x)dx , ∀n ≥ 0,
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ai = ai(χ∆
(k)
m

) , 0 ≤ i < am , bj = bj(I
(1)
ν0

) , 1 ≤ j < aν0 .

Taking into account (2.1)-(2.2), (2.3)-(2.4), (2.6)-(2.7) for P (x) we obtain

P (x) = γ ·
am−1∑
i=0

aiψi(x) ·
aν0−1∑
j=1

bjψj(a
sx) =

= γ ·
aν0−1∑
j=1

bj ·
am−1∑
i=0

aiψj·as+i(x) =
N∑

k=N0

ckψk(x) ,

where

ck = ck(P ) =

{
−K · γ

am or 0 , if k ∈ [N0, N ]

0 , if k /∈ [N0, N ],
(2.10)

K ∈ Ωa, |K| = 1, N = as+ν0 + am − as − 1. (2.11)

Set
E = {x ∈ ∆ : P (x) = γ} .

By (2.4), (2.5) and (2.9) we have

|E| = a−m(1− a−ν0) > (1− ε)|∆|,

P (x) =


γ , if x ∈ E ,

γ(1− aν0) , if x ∈ ∆ \ E ,

0 , if x /∈ ∆ .

Hence and from (2.8) we get∫ 1

0

|P (x)|dx = 2 · |γ||∆| · (1− a−ν0),

and taking into account that a ≥ 2 we have

1

2
· |γ| · |∆| <

∫ 1

0

|P (x)|dx < 2 · |γ| · |∆|.

From relations (2.8), (2.10) and (2.11) we obtain

max
N0≤m≤N

∫ 1

0

∣∣∣∣∣
m∑

k=N0

ckψk(x)

∣∣∣∣∣ dx
<

[∫ 1

0

|P (x)|2dx
] 1

2

≤

[
N∑

k=N0

c2k

] 1
2

= |γ| · |∆| ·
√
aν0+s + am = |γ| ·

√
|∆| ·

√
aν0 + 1

< |γ| ·
√
|∆| ·

√
a

ε

< a · |γ| ·
√
|∆|
ε
.
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�

Lemma 2.2. For any given numbers N0 > 1, (N0 ∈ N ), ε ∈ (0, 1) and each
function f(x) ∈ L1[0, 1), ||f ||1 > 0 there exists a measurable set E ⊂ [0, 1),
function g(x) ∈ L1[0, 1) and a polynomial by Ψa system of the form

P (x) =
N∑

k=N0

ckψnk
(x), nk ↑

satisfying the following conditions:

1) |E| > 1− ε,

2) f(x) = g(x), x ∈ E,

3)
1

2

∫ 1

0

|f(x)|dx <
∫ 1

0

|g(x)|dx < 3

∫ 1

0

|f(x)|dx.

4)

∫ 1

0

|P (x)− g(x)|dx < ε.

5) ε > |ck| ≥ |ck+1| > 0.

6) max
N0≤m≤N

∫ 1

0

∣∣∣∣∣
m∑

k=N0

ckψnk
(x)

∣∣∣∣∣ dx < 3

∫ 1

0

|f(x)|dx.

Proof. Consider the step function

ϕ(x) =

ν0∑
ν=1

γν · χ∆ν (x), (2.12)

where ∆ν are a-dyadic, not crosse intervals of the form ∆
(k)
m = [k−1

am , k
am ), k =

1, 2, · · · , am so that

0 < |γν |2|∆ν | <
ε3

16a2
·
(∫ 1

0

|f(x)|dx
)2

. (2.13)

0 < |γ1||∆1| < · · · < |γν ||∆ν | < · · · < |γν0||∆ν0| <
ε

2
.∫ 1

0

|f(x)− ϕ(x)|dx < min{ε
4
;
ε

4

∫ 1

0

|f(x)|dx}. (2.14)

Applying Lemma 2.1 successively, we can find the sets Eν ⊂ [0, 1) and a polyno-
mial

Pν(x) =
Nν−1∑

k=Nν−1

ckψnk
(x), 1 ≤ ν ≤ ν0,

which, for all 1 ≤ ν ≤ ν0, satisfy the following conditions:

|ck| = |γν | · |∆ν |, k ∈ [Nν−1, Nν) (2.15)
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|Eν | > (1− ε) · |∆ν |, (2.16)

Pν(x) =

{
γν : x ∈ Eν

0 : x /∈ ∆ν ,

1

2
|γν | · |∆ν | <

∫ 1

0

|Pν(x)|dx < 2|γν | · |∆ν |. (2.17)

max
Nν−1≤m≤Nν

∫ 1

0

∣∣ m∑
k=N0

ckψnk
(x)
∣∣ < a · |γν | ·

√
|∆ν |
ε
. (2.18)

Define a set E, a function g(x) and a polynomial P (x) in the following away:

P (x) =

ν0∑
ν=1

Pν(x) =
N∑

k=N0

ckψnk
(x), N = Nν0 − 1. (2.19)

g(x) = P (x) + f(x)− ϕ(x). (2.20)

E =

ν0⋃
ν=1

Eν . (2.21)

From (2.12),(2.14), (2.16)-(2.17), (2.19)-(2.21) we have

|E| > 1− ε ,

f(x) = g(x) , for x ∈ E,

1

2

∫ 1

0

|f(x)|dx <
∫ 1

0

|g(x)|dx < 3

∫ 1

0

|f(x)|dx.

By (2), (2.14), (2.15) and (2.20) we get∫ 1

0

|P (x)− g(x)|dx =

∫ 1

0

|f(x)− ϕ(x)|dx < ε.

ε > |ck| ≥ |ck+1| > 0, for k = N0, N0 + 1, · · · , N − 1.

That is, assertions 1)-5) of Lemma 2.2 actually hold. We now verify assertion
6). For any number m, N0 ≤ m ≤ N we can find j, 1 ≤ j ≤ ν0 such that
Nj−1 < m ≤ Nj. then by (2.24) and (2.30) we have

m∑
k=N0

ckψnk
(x) =

j−1∑
n=1

Pn(x) +
m∑

k=Nj−1

ckψnk
(x).
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hence and from relations (2.13), (2.14), (2.17), (2.18) we obtain∫ 1

0

∣∣∣∣∣
m∑

k=N0

ckψnk
(x)

∣∣∣∣∣ dx
≤

ν0∑
ν=1

∫ 1

0

|Pν(x)|dx+

∫ 1

0

∣∣∣∣∣∣
m∑

k=Nj−1

ckψnk
(x)

∣∣∣∣∣∣ dx
< 2

∫ 1

0

|ϕ(x)|dx+ a · |γj| ·
√
|∆j|
ε

< 3

∫ 1

0

|f(x)|dx.

�

3. Main results

Proof. Let

{fn(x)}∞n=1 (3.1)

be a sequence of all step functions, values and constancy interval endpoints of
which are rational numbers. Applying Lemma 2.2 consecutively, we can find a
sequences of functions {gn(x)} of sets {En} and a sequence of polynomials

P n(x) =
Nn−1∑

k=Nn−1

cmk
ψmk

(x), N0 = 1, |cmk
| > 0

which satisfy the conditions:

|En| > 1− ε · 4−8(n+2) (3.2)

fn(x) = gn(x), for all x ∈ En, (3.3)

1

2

∫ 1

0

|fn(x)|dx <
∫ 1

0

|gn(x)|dx < 3

∫ 1

0

|fn(x)|dx. (3.4)∫ 1

0

|P n(x)− gn(x)|dx < 4−8(n+2).

max
Nn−1≤M≤Nn

∫ 1

0

∣∣∣∣∣∣
M∑

k=Nn−1

cmk
ψmk

(x)

∣∣∣∣∣∣ dx < 3

∫ 1

0

|fn(x)|dx. (3.5)

1

n
> |cmk

| > |cmk+1
| > |cmNn

| > 0. (3.6)

Set
∞∑

k=1

cmk
ψmk

(x) =
∞∑

n=1

P n(x) =
∞∑

n=1

Nn−1∑
k=Nn−1

cmk
ψmk

(x),
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and

E =
∞⋂

n=1

En. (3.7)

It is easy to see that (see (3.2)), |E| > 1− ε.
Now we consider a series

∞∑
i=1

ciψi(x)

where ci = cmk
i ∈ [mk,mk+1). From (3.6) it follows that |ci| ↓ 0.

Let given any function f(x) ∈ L1[0, 1) then we can choose a subsequence
{fsn(x)}∞n=1 from (3.1) such that

lim
N→∞

∫ 1

0

∣∣∣∣∣
N∑

n=1

fsn(x)− f(x)

∣∣∣∣∣ dx = 0, (3.8)

∫ 1

0

|fsn(x)|dx ≤ ε · 4−8(n+2), n ≥ 2,

where

ε = min{ε
2
,

∫
E

|f(x)|dx}. (3.9)

We set

g1(x) = gs1
(x), P1(x) = P s1(x) =

Ns1−1∑
k=Ns1−1

cmk
ψmk

(x) (3.10)

It is easy to see that ∫ 1

0

|f(x)− fk1(x)| <
ε

2

Taking into account (3.4), (3.5) and (3.10) we have

max
Ns1−1≤M≤Ns1

∫ 1

0

∣∣∣∣∣∣
M∑

k=Ns1−1

cmk
ψmk

(x)

∣∣∣∣∣∣ dx < 3

∫ 1

0

|fs1(x)|dx < 6

∫ 1

0

|g1(x)|dx.

Then assume that numbers ν1, ν2, · · · , νq−1 (ν1 = s1), functions gn(x), fνn(x),
n = 1, 2, · · · , q − 1 and polynomials

Pn(x) =
Mn∑

k=Mn

cmk
ψmk

(x), Mn = Nνn−1, Mn = Nνn − 1,

are chosen in such a way that the following condition is satisfied:

gn(x) = fsn(x), x ∈ Eνn , 1 ≤ n ≤ q − 1, (3.11)∫ 1

0

|gn(x)|dx < 4−3nε, 1 ≤ n ≤ q − 1,

∫ 1

0

∣∣∣∣∣
n∑

k=2

(Pk(x)− gk(x))

∣∣∣∣∣ dx < 4−8(n+1)ε, 1 ≤ n ≤ q − 1, (3.12)
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max
Mn≤M≤Mn

∫ 1

0

∣∣∣∣∣
M∑

k=Mn

cmk
ψmk

(x)

∣∣∣∣∣ dx < 4−3nε, 1 ≤ n ≤ q − 1. (3.13)

We choose a function fνq(x) from the sequence (3.1) such that∫ 1

0

∣∣∣∣∣fνq(x)−

[
fsq(x)−

n∑
k=2

(Pk(x)− gk(x))

]∣∣∣∣∣ dx < 4−8(q+2)ε. (3.14)

This with (3.8) imply∫ 1

0

∣∣∣∣∣fνq(x)−
n∑

k=2

(Pk(x)− gk(x))

∣∣∣∣∣ dx < 4−8q−1ε,

and taking into account relation (3.14) we get∫ 1

0

|fνq(x)|dx < 4−8qε.

We set

Pq(x) = P νq(x) =

Mq∑
k=Mq

cmk
ψmk

(x), (3.15)

where

Mq = Nνq−1, M q = Nνq − 1,

gq(x) = fsq(x) + [gνq
(x)− fνq(x)] (3.16)

By (3.3)-(3.5), (3.12)-(3.16) we have

gq(x) = fsq(x), x ∈ Eνq , (3.17)

∫ 1

0

|gq(x)|dx (3.18)

≤
∫ 1

0

∣∣∣∣∣fνq(x)−

[
fsq(x)−

n∑
k=2

(Pk(x)− gk(x))

]∣∣∣∣∣ dx
+

∫ 1

0

|gνq
(x)|dx+

∫ 1

0

∣∣∣∣∣
n∑

k=2

(Pk(x)− gk(x))

∣∣∣∣∣ dx
< 4−3nε,
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0

∣∣∣∣∣
q∑

k=2

(Pk(x)− gk(x))

∣∣∣∣∣ dx
≤

∫ 1

0

∣∣∣∣∣fνq(x)−

[
fsq(x)−

n∑
k=2

(Pk(x)− gk(x))

]∣∣∣∣∣ dx
+

∫ 1

0

|P νq(x)− gνq
(x))|dx

< 4−8(n+1)ε,

max
Mq≤M≤Mq

∫ 1

0

∣∣∣∣∣∣
M∑

k=Mq

cmk
ψmk

(x)

∣∣∣∣∣∣ dx ≤ 3

∫ 1

0

|fνq(x)|dx < 4−3nε. (3.19)

Thus, by induction we can choose the sequences of sets {Eq}, functions {gq(x)}
and polynomials {Pq(x)} such that conditions (3.17) - (3.19) are satisfied for all
q ≥ 1. Define a function g(x) and a series in the following away:

g(x) =
∞∑

n=1

gn(x), (3.20)

∞∑
n=1

δncnψn(x) =
∞∑

n=1

 Mn∑
k=Mn

cmk
ψmk

(x)

 , (3.21)

where

δn =



1 , if i = mk, where k ∈
∞⋃

q=1

[Mq,M q]

0, in the other case .

Hence and from relations (3.4), (3.7), (3.11), (3.20) ,

g(x) = f(x), x ∈ E, g(x) ∈ L1[0, 1),

1

2

∫ 1

0

|f(x)|dx <
∫ 1

0

|g(x)|dx < 4

∫ 1

0

|f(x)|dx. (3.22)

Taking into account (3.15), (3.18)-(3.21) we obtain that the series (3.21) con-
vergence to g(x) in L1[0, 1) metric and consequently is its Fourier series by Ψa

system, a ≥ 2.
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From Definition 1.3, and from relations (3.9), (3.13), (3.22) for any natural
number m there is Nm so that

||Gm(g)||1 = ||Sm(g)||1 =

∫ 1

0

∣∣∣∣∣
∞∑

n=1

δncnψn(x)

∣∣∣∣∣ dx
≤ 4

∫ 1

0

|f(x)|dx

≤
∞∑

n=1

(
max

Mn≤M≤Mn

∫ 1

0

∣∣∣∣∣
M∑

k=Mn

cmk
ψmk

(x)

∣∣∣∣∣ dx
)

≤ 2

∫ 1

0

|g1(x)|dx+ ε ·
∞∑

n=2

4−n

≤ 3

∫ 1

0

|g(x)|dx ≤ 12

∫ 1

0

|f(x)|dx = 12||f ||1.

�
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